IHO海道测量规范S-44第五版2008年原版加标注
IHO海道测量规范
IHO海道测量规范(第44号特别出版物1998年第4版)序言国际海道测量组织特别出版物第44号的第4版,现由国际海道测量组织的工作组筹拟完毕。
该工作组是根据第十四届国际海道测量会议的第十五号决议成立的。
有关的参考条款及工作程序则是根据1993年第20号信函文件制定的。
首先,将工作组划分成若干个分工作组,然后这些分工作组通过信函文件提出特别议题。
其次,为了讨论有关议案及草拟出版物的新版本,已分别于1994年9月26日至30日及1997年9月29日至10月3日在国际海道测量局(摩纳哥)召开了两次会议。
澳大利亚、智利、加拿大、法国、意大利、日本、挪威、葡萄牙、西班牙、瑞典、英国、美国(NOAAANIMA)等国的海道测量部门为工作组作了成员的推荐提名,特此致谢。
应该指出的是:新规范的发行并不意味着旧有规范基础上的海图及航海出版物就此失效,而只是为了更好满足用户的需求,为以后的数据采集制定新规范。
我们鼓励各成员国在执行新规范之前,对海道测量中定位和深度的准确度估算进行探讨。
该出版物的主要目的,就是将少数海道测量规范详细化,以便根据这些规范采集到的海道测量数据具有足够的精度,对部分不确定的数据,亦可经过技术处理后,充分满足该信息主要用户,即航海用户(商用、军用或游艇)的安全使用。
以往的S-44各版本主要着眼于为编制海图的海道测量精度进行分类,而如今我们意识到,目前的海道测量资料用户与以往的相比较,更趋向于多样化的广泛领域。
海道测量资料对于海岸区域管理,环境监测资源开发(碳氢化合物和矿物开采)、法律和司法问题、海洋和气象模型制作、工程和建筑规划以及其他诸多领域都很重要。
为了提高海道测量数据的实用性,应使数据既要新又要更详细、可靠,并用数字化形式表示,以满足用户要求。
该规范并不能完全满足用户的特殊需求,但至少应为他们评估海道测量数据的质量提供基本依据。
引言海道测量在技术方面正经历着根本性的变化。
多波束测深和航空激光系统与以往断面的方法比较,它几乎可以提供全部海床信息和测量数据,随着卫星定位系统的应用,测深平面定位精度得到了很大的提高,特别是采用差分技术后,效果更为明显。
英国海道测量局(UKHO)海道测量质量管理
英国海道测量局(UKHO)海道测量质量管理一、质量保证措施英国的海道测量历史已经超过两百年之久,严格遵守国际海道测量的相关标准的前提下,制定细致的内部标准,使得海道测量到海图制图的每一个细节都有相应的质量保证措施,加之先进的海道测量和制图技术,这也是英国成为世界领先的航海图书和出版物的生产国的原因所在。
英国的海道测量英国海道测量机构在保证航海图书产品和服务质量方面的这些举措带给我们很多思考,也是值得我们深入研究和关注的。
二、MCA在海道测量数据质量管理正确精准的元数据在保证航海图书及出版物质量方面起着至关重要的作用。
MCA(英国海事及海岸警备署)作为履行英国海道测量义务的国家水上安全和环境保护的政府机构,负责720,000km2的水域测量,并制定每年的民间海道测量计划,它把保证采集数据的质量贯穿于工作的始终。
采取最先进的测量技术包括高分辨率的MBES,数字侧扫声纳,RTK全球定位系统等确保精确的海道测量数据的同时,MCA和UKHO的技术人员会定期的访问CHP测量船来验证数据的完整性。
在最终数据被接收之前,数据会通过UKHO的海底数据中心严格的质量保证程序的检查,检查包括如数据密度、测线间的一致性、测量参数和潮汐观测等,数据一旦通过验证,将会被归档在UKHO的水深数据库当中,用来生产航海图书产品。
三、UKHO在航海图书产品质量管理UKHO作为一个政府机构,同时也是世界领先的数字和纸质航海图书和出版物的生产商。
对于产品和服务质量的重视也是它在全球处于领先地位的重要原因,以下内容列举了UKHO在质量保证方面的一些观点和方法:UKHO制定了ISO 9001:2000及TickIT(英国的软件质量体系认证)认证的自身的质量体系,认证范围覆盖了UKHO 所有业务工作。
UKHO质量体系的目标旨在提供符合国际海道测量标准的产品和服务,如:IHO海图规范S-4,测量标准S-44以及海道测量数据传输标准S-57。
海图生产均按照以上标准来进行。
2海道测量(第二章海道测量基础)资料
R第二章 海道丈量基础海道丈量在技术方面正在发生根天性的转变。
跟着卫星定位系统的应用,特别是差分技术的使用,平面定位的精度有了较大的提升。
同惯例的断面丈量对比,多波束和机载激光系统几乎能够供给海底的全覆盖丈量。
本章在剖析了海道丈量偏差的基础上,议论了测深密度、平面基准和垂直基准、海道丈量分类等基本观点,最后对海道丈量规范中海道测量偏差标准进行了研究和比较。
2.1 丈量偏差剖析2.1.1 丈量偏差指标丈量偏差包含有时偏差、系统偏差和粗差,丈量偏差的大小决定了丈量成就的质量。
权衡丈量偏差的指标往常采纳精度(Precision )和正确度(Accuracy )。
精度表示观察值与其数学期 望(均匀值)的失散程度,是指内部切合精度或可重复精度。
精度表示观察值有时偏差的大小, 是权衡有时偏差大小的指标。
若两组观察值的偏差散布相同,则两组观察值的精度相同。
往常采纳中偏差 作为权衡精度的指标,其方差f(x) R偏差散布密集(a )偏差散布函数精度高正确度低Bx均匀值 f(x)正确值均匀值偏差散布失散 (b )R精度低正确度高Bx图2—1精度与正确度2 D ( ) ( 2) 2 f ()d(2—1)R En 2或:2 lim i(2—2)2可由Rn i1n不同的R对应着不同形状的散布曲线,R越小,曲线越峻峭,R越大,则曲线越为缓和,如图2—1所示。
正确度表示观察值的真值或正确值与其数学希望(均匀值)的失散程度。
正确度是权衡系统偏差的指标,可由下式计算:11~(2—3)B X E(X)~当不存在系统偏差时,E(X)X,则B因为在某一固定地址进行重复观察其实不可以除去系统偏差B,所以精度高其实不可以保证准确度高,偏差散布特别密集的丈量数据可能包含多项较大的没有测定的系统偏差,如图2—1(a)。
相同偏差散布比较失散的丈量数据可能拥有较高的正确度,如图2—1(b)。
例如使用测深仪对某一深度进行重复丈量,其测深精度为±,若考虑其余偏差因素其准确度可能只达到±。
IHO海道测量规范
d)机载激光测深系统是一种新技术,该技术应用于浅滩水域能产生巨大功效,机载激光测深技术的测深能力可达50m或更深。
尽管单波束回声测深技术仅能采集到离散的海底形断面情况,且在未来的海道测量中可能继续被沿用,而上述提到的100%覆盖率海底探测技术只会在极其困难的地区才被采用,上述情形这一设想导致了决定继续保留测线间距这一概念,虽然这测量比例没有直接的联系。本版对测深准确度进行分类时与以前的版本有异,而是基于对不同区域航行安全的重要性考虑而对这些地区制定不同的准确要求。本次修订本对严格要求的区域具有比以前更高的准确度要求,而对于航行不具险的区域则在准确度要求方面比以往放宽了许多。本次S-44的修订本中制定了新的要求,即要求测量师尽可能把所有新数据标出可能的估计误差。
一等
一等海道测量是适用于港口、人港航道、推荐航道、内陆航道以及商船运输繁忙的海岸水域。这些地方的富余深度以及海底底质对船只而言不形成较大的危险(例如软泥或沙质底质)。一等测量应限用于水深小于100m的水域。尽管一等测量对海底扫测精度没有特等测量的要求那么严格,但对船只形成潜在危险的海底特性及障碍物扫测时,须在选定地区采用全床扫测。对该些水域扫测时,测深设备必须保证能分辨出40m深度内大于2 m3的底物特征,或水深超过40 m3时,体积大于深度10%的物体。
该出版物的主要目的,就是将少数海道测量规范详细化,以便根据这些规范采集到的海道测量数据具有足够的精度,对部分不确定的数据,亦可经过技术处理后,充分满足该信息主要用户,即航海用户(商用、军用或游艇)的安全使用。
以往的S-44各版本主要着眼于为编制海图的海道测量精度进行分类,而如今我们意识到,目前的海道测量资料用户与以往的相比较,更趋向于多样化的广泛领域。海道测量资料对于海岸区域管理,环境监测资源开发(碳氢化合物和矿物开采)、法律和司法问题、海洋和气象模型制作、工程和建筑规划以及其他诸多领域都很重要。为了提高海道测量数据的实用性,应使数据既要新又要更详细、可靠,并用数字化形式表示,以满足用户要求。该规范并不能完全满足用户的特殊需求,但至少应为他们评估海道测量数据的质量提供基本依据。
IHO 2007-2011年期间海道测量服务和标准工作情况
IHO 2007-2011年期间海道测量服务和标准工作情况一、前言国际海道测量组织(IHO)成立于1912年,是政府间技术咨询组织,其主要宗旨是协调各国海道测量机构的活动,促进航海资料的统一,推广可靠有效的海洋测绘方法,促进海洋学的成果在航海中的应用。
依照第17届国际海道测量大会(IHC 17)的第8、9、11号决议,2009年1月1日IHO新的结构正式生效,依照新生效的结构“海道测量服务和标准委员会”(HSSC)正式成立。
HSSC是IHO的技术性委员会,取代之前的海道测量信息系统需求委员会(CHRIS)。
其主要目标是推动和协调官方海道测量产品和服务标准、规范和指南的制定,以满足航海者和其他用户的海道测量信息需求。
委员会下设传输标准维护和应用开发工作组(TSMAD)、数据保护方案工作组(DPSWG)、数字化信息描述工作组(DIPWG)、航海出版物标准化工作组(SNPWG)、海图标准化和纸海图工作组(CSPCWG)、数据质量工作组(DQWG)、海上空间数据基础设施工作组(MSDIWG)、潮汐和水位工作组(TWLWG)、海道测量词典工作组(HDWG)、电子海图更新工作组(EUWG)、海洋法咨询委员会(ABLOS)等11个工作小组。
IHO大会每5年召开一次,因此工作报告和工作计划制定的周期也是5年。
2007-2011年期间,IHO海道测量标准和服务方面的工作卓有成效,完成了对多个现有决议、规范、标准的修订和完善,更重要的是在以S-100为代表的下一代海道测量标准开发方面成果丰富。
下面将分别介绍HSSC和各下设工作组5年期间的主要工作情况。
二、HSSC 2007-2011年工作情况(1)总情况第17届海道测量大会之后,CHRIS和HSSC每年举行一次会议。
得益于CHRIS建立的有效程序,HSSC的会议参与范围更加拓展。
特别是,国际间非政府组织(NGIO)的积极参与。
在商务工作方面,HSSC保持对CHRIS相关工作的延续,并进行一定提升。
水文普通测量规范
中华人民共和国行业标准SL 58-93水文普通测量规范Technical standard for general geodesic survey in hydrology1993-12-10发布1994-01-01实施中华人民共和国水利部发布主编单位:水利部水文司批准部门:中华人民共和国水利部中华人民共和国水利部关于发布《水文普通测量规范》SL58-93的通知水文[1993]587号根据原水利电力部1986年标准制修订计划,由水利部水文司主持,黑龙江省水文总站主编的《水文普通测量规范》,经审定,现正式批准为水利水电行业标准,并予以发布.该规范编号为SL58-93,自一九九四年一月一日起实施.该规范由水利部水文司负责解释.各单位在实施中发现问题,请及时函告主编单位及部水文司.该规范由水利电力出版社出版发行.一九九三年十二月十日目次1总则2水准测量3地形测量4断面测量附录A水尺零点高程测量记载表与填制说明附录B断面测量记载表附加说明1总则1.0.1为统一水文普通测量中水准测量,地形测量和断面测量的技术标准,特制定本规范.1.0.2本规范适用于水文站网建设,水文测验,水文调查的三,四,五等水准测量,水尺零点高程测量,河道断面测量和限额以下的地形测量.1.0.3水文普通测量的精度要求,应符合下列规定.(1)长距离水准测量路线最弱点的高程中误差允许值为±40mm;水文测站内的各水准点联测,比降观测的高程测量路线和水尺零点高程测量最弱点的高程中误差允许值为±10mm.(2)平面控制测量最低一级图根网最弱边的相对边长中误差不得超过1/1000.(3)地形图内地物点的点位中误差不得大于图上0.8mm,困难地区亦不得大于1.0mm;等高线插求点高程中误差的绝对值,在平地,丘陵地不得大于1/2基本等高距,山地不得大于1个基本等高距.(4)断面测量的距离控制桩间相对距离中误差不得大于1/500.1.0.4水文测站应使用冻结基面或测站基面.有条件的水文测站应与国家高程系统接测.每站应使用三个基本水准点构成的高程自校系统.1.0.5各项测量的原始记录应现场记载,不得涂改.各项测绘成果应及时进行整理,分类归档,基本水准点和高程自校系统的测量成果应长期保存.1.0.6永久性测量标志应建立位置图,构造图与说明表等档案资料.对测量标志应按国务院《测量标志保护条例》进行保护.1.0.7采用先进测量仪器和新测绘技术时,精度不得低于本规范要求.52水准测量2.1一般规定2.1.1高程引测,地形测量中高程控制水准测量的等级,应执行本规范的有关规定.2.1.2三等水准路线的支线长度,应不大于45km.在两个二等水准点之间布设三等附合路线,其长度应不大于180km;环线周长应不大于300km;测站水准点联测和比降观测高程测量的路线长度应不大于2.8km.2.1.3四等水准路线的支线长度,应不大于15km,在两高级点间布设的附合路线长度应不大于65km;测站水准点联测和比降观测高程测量的路线长度应不大于1km.2.1.4五等水准路线的支线长度,应不大于4km.在高级点间布设的附合路线长度应不大于16km;当用于基本等高距为0.2m的高程控制测量时,支线长度应不大于1km;附合路线长度应不大于4km.2.1.5当水准路线长度大于20km时,应每隔10km左右分一测段,在测段的端点设置或选定基本上相当于校核水准点标准的固定点.2.1.6三,四等水准测量,应采用不低于国内水准仪系列的S3级水准仪,水尺零点高程的测量一般应使用S3级水准仪.五等水准测量可使用S10级水准仪. 2.1.7水准标尺应采用双面水准尺.如因条件限制,可用单面水准尺按一镜双高法施测,不得使用塔尺或折尺.2.1.8水准测量在每仪器站的允许视线长度,前后视距不等差,应符合表2.1.8规定,其视线高度要求三丝能读数.2.1.9水准测量仪器站观测限差应符合表2.1.9的规定.表表表2.1.9测高差之差限差相同.2.1.10往返测量高差不符值,路线,环闭合差限差应符合表72.1.10规定.环由不同等级路线构成时,环闭合差的限差应按各等级路线长度分别计算,然后取其平方和的平方根为限差.2.1.11水准测量成果超限时,应重测.若在本站检查发现后应立即重测,若迁站后才检查发现,则应从水准点或符合限差要求的测段或间歇点开始重测.2.1.12地形高程测量及长距离引测所用水准仪,水准尺,应在使用前进行相应等级的全面检验与校正.在使用中应经常进行水准仪圆水准气泡和i角的检验与校正,i角不得大于20″.水尺零点,一般高程测量等常用水准仪,每年应进行不少于1次的水准仪圆水准气泡和i角的检验与校正.水准尺的米间隔平均真长与名义长之差,线条式因瓦水准尺不得大于0.15mm,木质标尺不得大于0.5mm. 2.1.13地形高程控制及长距离引测的水准测量,应符合下列要求.(1)安置水准仪三角架时,应使其中两脚与水准路线的方向平行,第三脚轮换置于路线方向的左右侧.(2)除路线拐弯处外,每测点上仪器和前后视标尺的三个位置,应接近于一条直线.(3)同一仪器站上测量时,不得两次调焦,转动仪器的倾斜螺旋和测微鼓时,其最后旋转方向应为旋进.使用自动安平水准仪时,相邻站应交替对准前后视调平仪器.(4)每一测段的往测和返测,其仪器站数应为偶数,若为奇数时应加入标尺零点差改正.由往测转向返测时,两标尺必须互换位置,而往测第一个测站上当作前视的水准尺,在返测第一个测站上它应该当作后视水准尺,并应重新安置仪器.(5)工作间歇时,应选择两个坚实可靠的固定点做为间歇点,进行双测.在间歇点上做上标记,间歇后应进行检测.2.2水准点和标石设置2.2.1水文测站的水准点分基本和校核两种.2.2.2水文站应在不同位置设置三个基本水准点,其中一个水准点设置明标,二个设置暗标.基本水准点相互间距离以300~500m为宜.测站附近设有国家水准点时,可设置一个基本水准点.2.2.3基本水准点应设置在水文测站附近历年最高洪水位以上或堤防背河侧高处,能保证水准点稳定又便于引测的地方.2.2.4在各水位观测断面附近可设置校核水准点,其位置和数量应满足进行水尺零点高程测量时,平坦地区的仪器站数不多于6站,不平坦地区的仪器站数不多于11站的要求.2.2.5水准点设置后,应逐一编号.以后无论其高程是否变动,都不得改变其编号,必要时可加辅助编号.2.2.6基本水准点标石的埋设应符合中华人民共和国国家标准(GBJ138-90)的规定.校核水准点标石埋设可参照基本水准点要求适当放宽.2.3三,四,五等水准测量2.3.1三等水准测量采用中丝读数法,进行往返观测.当使用有光学测微器的水准仪和线条式因瓦水准尺进行观测时,也可采用光学测微法进行单程双转点观测,观测程序应为"后,前,前,后".2.3.2四等水准测量采用中丝读数法.当两端点为已知高程点或自成闭合环时,可只进行单程测量.水准支线必须进行往返观测或单程双转点观测,观测程序应为"后,前,前,后"或"后,后,前,前".2.3.3五等水准测量采用中丝读数法.附合或环形闭合路线用单程观测.水准支线应进行往返观测,在困难条件下,也可进行单程双测.2.3.4采用双面水准尺时,中丝读数法要求仪器安平后,望远镜绕垂直轴旋转时,符合水准气泡两端影像分离不大于1cm.采用单面水准尺返测时,变换仪器的高度应不小于10cm.2.3.5光学测微法的仪器安平同第2.3.4条要求,但照准水准尺基本分划时,符合水准气泡两端影像分离应不大于2mm,中丝读数应读至0.1mm.2.3.6采用补偿式自动安平水准仪进行水准测量时,先将水准仪概略整平,即可按一般水准仪观测顺序进行测量.2.3.7三,四等水准测量应读记至1mm,计算平均高差取至0.5mm,五等均记至毫米.用测微法时,中丝读数计算高程平均高差,均取至0.1mm.各等级水准测量的视距和视距差取至0.1m.2.3.8水准测量中应及时检查每一仪器站的观测结果,符合表2.1.8和表2.1.9的规定时,方可迁至下仪器站.2.3.9每测完一个测段,应计算往返测或单程双转点左,右路线测量的高差,其不符值应满足表2.1.10规定,当超出规定时,应按下列要求重测和计算高差结果.(1)对可靠程度小的往测或返测向进行单程重测.如果重测的单程高差与同一方向原测高差的不符值符合限差,且其平均数与反方向的原测高差亦符合限差,则取其平均数作为该单程的高差结果.(2)若重测的高差与同方向的原测高差不符值超出限差,而重测的单程高差与反方向原测高差没有超出限差,则用重测的单程高差与反方向原测单程高差计算闭合差.(3)若该单程重测后与原往,返测的单程高差计算结果均超出限差,则重测另一单程,至符合限差要求为止.(4)用单程双转点左,右路线的测法时,可只重测一个单程单线,并与原测结果中符合限差的一个左或右单线取平均数值.(5)如果重测结果与原测的左右线结果比较均符合限差,则取三次单线的结果平均值.(6)当重测的结果与原测两个单线结果均超限差,应分析原因再测一个单程单线,至符合限差要求为止.2.3.10 附合,闭合,支线水准路线闭合差,应分别按下列公式计算. 附合 ()∑--=∆u d H H h h (2.3.10-1) 闭合 ∑=∆h h (2.3.10-2) 支线 ∑∑-=∆cthh h (2.3.10-3)式中△h ---高差闭合差,m ;∑h ---各测段高差的代数和,m ;∑h t ,∑h c ---路线上各测站的往测,返测的高差总和,m ; H d ---路线上终了已知水准点的高程,m ; H u ---路线上起始已知水准点的高程,m.2.3.11 附合,闭合,支线水准路线闭合差的改正,应按测段长度或仪器站数的比例进行分配,按式(2.3.11-1),式(2.3.11-2)进行路线长度和仪器站数的闭合差改正数计算.h LL ii ∆-=δ (2.3.11-1) h nn ii ∆-=δ (2.3.11-2) 式中δi ---某一测段上路线长度,仪器站数闭合差改正数,m ; L i ---某一测段中前,后视距离的和,m ; L ---水准路线的总长度,m ; n i ---某一测段中的仪器站数; n ---路线中总的仪器站数. 2.4 跨河水准测量2.4.1 河宽小于允许视线长度可直接跨河测量;当河宽大于允许视线长度,但有桥梁可以利用时,可通过桥面进行水准测量.2.4.2 跨河两岸测点间的水平视线距水面的高度要大致相等.当跨河视线长度在300m 以内时,视线高度至水面距离不得小于2m ,视线长度大于300m 时,视线高度至水面距离不得小于3m.2.4.3 跨河两岸安置仪器及标尺的位置,使其能构成平行四边形,等腰梯形或Z 字形布置为宜.跨河视线长度力求相等,岸上视线长度不得短于10m ,且两岸视线长度应相等.使用一台仪器观测时,宜采用Z 字形式.2.4.4 标尺点应牢固.需设置木桩时,木桩顶面直径宜大于10cm ,入土长度应满足标尺点牢固的要求,桩顶高于地面10cm 以上,并钉上圆帽钉.2.4.5按2.4.3条布设跨河测量场地时,应在距跨河点300m以内,设立临时水准点.2.4.6视线长度在300m以内,跨河水准测量应观测两个测回,两个测回的高差不符值,三等水准应不超出8mm,四等水准应不超出16mm,超出限差时,应分析原因,按第2.3.9条要求重测.2.4.7当视线长度在300m以内,跨越水流平缓的河流,静水湖泊,池塘等的四等水准测量,可采用静水传递高程法进行二次观测.两结果不符值,应不超过±20L mm。
《多波束测深系统测量技术要求》编制说明09-12-24
《多波束测深系统测量技术要求》送审稿编制说明一、编制理由随着科学技术的发展,测深技术发生了质的飞跃,从单波束线的测深发展到多波束面的测深。
无论是测深精度还是工作效率都得到了一定的提高。
因此多波束测深系统已广泛应用于全覆盖水深测量作业,在港口航道测量中发挥着重要作用。
目前用于沿海港口、航道水深测量的规范是《海道测量规范》(GB 12327-1998),它主要是针对单波束水深测量的,而利用多波束测深系统进行全覆盖水深测量以及对其测量数据的处理、检验等作业技术要求规范中并没有提到。
这两种手段测量水深其技术要求是有些区别的,所以不能完全参照单波束水深测量的技术要求,原因主要表现在以下几个方面:1、计划线的步设不一样:单波束水深测量垂直于等深线的总方向,而多波束水深测量是平行于等深线的总方向;2、测量模式不一样:单波束是线测量,而多波束是全覆盖测量;3、记录模式不一样:单波束测深仪有模拟记录和数字记录两种,而多波束只有数字记录一种;4、仪器设备安装、校准不一样:多波束水深测量涉及的设备多,其系统安装、校准要求高;6、质量控制要求不一样:对外业数据采集质量要求高。
为了规范多波束测深系统的测量作业,提高测量成果的质量,有必要制定多波束测深系统外业测量和后处理的技术要求。
二、编制经过2003年开始,交通部海事局组织上海海事局编写《多波束测深系统测量技术规定》。
2004年,《多波束测深系统测量技术规定》列入交通部行业标准制定计划。
编写组听取了海事测绘系统内专家以及行业内相关单位的征求意见,修改了《多波束扫测系统测量技术规定》,并将其更名为《多波束测深系统测量技术规定》。
2008年根据交通运输部海事局要求,再次修改《多波束测深系统测量技术规定》,同时根据其内容更名为《多波束测深系统测量技术要求》,于2009年5月上报交通运输部海事局。
三、主要技术说明《多波束测深系统测量技术要求》对采用多波束测深系统进行水深测量的范围、引用标准、术语、系统配置要求、总则、测量实施、数据处理、资料检验和上交资料等具体要求作出了明确的规定。
DB31 436.2-2009 道路人行道设计和施工质量验收规范 第2部分:道路人行道施工质量验收要求
11 水泥混凝土预制板面层 ........................................................................................................... 6
11.1 基本要求 .............................................................................................................................. 6
ICS:93.080.10 P50 备案号:25998-2009
上海市地方标准
DB31/T 436.2-2009
道路人行道设计和施工质量验收规范 第 2 部分:道路人行道施工质量验收要求
2009-07-01 发布
2009-10-01 实施
上海市质量技术监督局 发 布
DB31/T 436.2-2009
2
5.2 验收要求 ................................................................................................................................ 2
多波束测量的精度控制与规范指标
多波束测量的精度控制与规范指标摘要:分析多波束测量、辅助测量的数据精度,研究其对成果水深的影响程度,结合《海道测量规范》与《多波束水深测量技术规定》中的测量等级指标以及IHO规范中对水深不确定度的定义和传播结构的介绍,建立数学模型反解出符合规范的作业环境与辅助测量数据的等级指标,为多波束测量作业提供明确的技术指标、为测量数据的质量建立更全面的评价指标。
关键词:声剖;潮汐;海况;不确定度1引言海底地形资料是海洋环境信息的重要组成部分,现阶段主要通过多波束和单波束测深系统以走航式手段获取[1]。
由于多波束测深系统在探测航行障碍物中具有足够的分辨率,如果采用合理的工作方式,该技术在准确性和全覆盖探测海底地形方面具有巨大的潜力。
目前新一代多波束测深系统的换能器标称精度与分辨率等关键指标均已达到厘米级,影响系统测深精度的主要因素已经从设备本身精度转移到了辅助测量精度以及作业组织的规范程度和成果评价的科学性、全面性上[2]。
我国现行的《海道测量规范(GB12327—1998)》对多波束测量作业过程没有质量指标的界定,其测深精度指标只简单的对分段水深进行限差界定,而最终的数据质量是否符合限差要求是通过主测线与检查测线上交点水深的内符合精度来判断,不能反映客观实际,不具备实际作业的全面指导意义,导致在进行多波束测深作业中,测量人员对作业环境、辅助测量数据没有更深刻的认识和精度的控制。
2测量限差与多波束测量等级指标目前海洋水深测量的技术指标存在较大的模糊性,对实际测量作业没有全面的参考意义。
通过对比国内外的各项技术指标,理清各种数据指标的关系和意义。
《海道测量规范》对测深限差(95%置信度)的要求见表2-1:根据IHO S-44(5th)对水深精度的要求,以不确定度代替精度指标对测深数据进行质量评估,该指标是评价多波束测深数据的总指标。
确定水深不确定度的关键在于概率分布和相应的置信域,以及标准差σ的获取。
在IHO S-44(5th)中,已假定测深数据服从正态分布,并要求置信度为95%。
海道测量标准S-44 6.1.0版说明书
IHO 海道测量标准第6.1.0版由国际海道测量组织发布中文版由中国海事局翻译S-446.1.0版版权声明目录序言 ........................................................................................................................... - 1 -引言 ........................................................................................................................... - 2 -术语 ........................................................................................................................... - 4 -第1章航行安全测量等级 ..................................................................................... - 6 -1.1 简介................................................................................................................................- 6 -1.2 2等..................................................................................................................................- 6 -1.3 1b等................................................................................................................................- 7 -1.4 1a等................................................................................................................................- 7 -1.5 特等................................................................................................................................- 7 -1.6 超等................................................................................................................................- 7 - 第2章水平和垂直定位 ......................................................................................... - 9 -2.1 简介................................................................................................................................- 9 -2.2 大地测量参考系统和框架............................................................................................- 9 -2.3 水平参考框架................................................................................................................- 9 -2.4 垂直参考框架................................................................................................................- 9 -2.5 海图和陆地测量垂直基准关联................................................................................. - 10 -2.6 不确定度..................................................................................................................... - 10 -2.7 置信水平..................................................................................................................... - 10 - 第3章深度,水深覆盖率,要素和底质 ........................................................... - 12 -3.1 简介............................................................................................................................. - 12 -3.2 深度............................................................................................................................. - 12 -3.2.1 深度测量.......................................................................................................... - 12 -3.2.2 干出高度.......................................................................................................... - 12 -3.2.3 最大允许垂直不确定度.................................................................................. - 12 -3.3 要素探测..................................................................................................................... - 13 -3.4 要素搜寻..................................................................................................................... - 13 -3.5 水深覆盖率................................................................................................................. - 14 -3.5.1 100%水深覆盖率 ............................................................................................. - 14 -3.5.2 小于100%水深覆盖率 ................................................................................... - 14 -3.5.3 大于100%水深覆盖率 ................................................................................... - 15 -3.6 航行危险..................................................................................................................... - 15 -3.7 海图目标对象的确认/排除........................................................................................ - 15 -3.8 底质............................................................................................................................. - 16 - 第4章水位和水流 ............................................................................................... - 17 -4.1 简介..............................................................................................................................- 17 -4.2 水位(潮汐)预报......................................................................................................- 17 -4.3 观测水位的归算..........................................................................................................- 17 -4.4 水流(潮流和海流)观测..........................................................................................- 17 - 第5章垂直基准面以上的测量 ........................................................................... - 18 -5.1 简介............................................................................................................................. - 18 -5.2 对导航有重要意义的固定助航标志和地形要素..................................................... - 18 -5.3 浮动导助航标志......................................................................................................... - 19 -5.4 海岸线......................................................................................................................... - 19 -5.5 对导航不太重要的要素............................................................................................. - 19 -5.6 净空高度..................................................................................................................... - 19 -5.7 角度的测量................................................................................................................. - 19 - 第6章元数据 ....................................................................................................... - 21 -6.1 简介............................................................................................................................. - 21 -6.2 元数据内容................................................................................................................. - 21 - 第7章表和技术指标矩阵 ................................................................................... - 23 -7.1 简介............................................................................................................................. - 23 -7.2 航行安全标准............................................................................................................. - 23 -7.2.1 水深测量标准.................................................................................................. - 23 -7.2.2 其它定位标准,潮流和海流.......................................................................... - 23 -7.3 表1 - 航行安全测量最低水深标准 ......................................................................... - 24 -7.4 表2 - 航行安全测量的其它最低标准.......................................................................- 26 -7.5 矩阵描述...................................................................................................................... - 27 -7.6矩阵.............................................................................................................................. - 28 - 附录A矩阵指南..................................................................................................... - 31 -A.1 简介............................................................................................................................ - 31 -A2 矩阵实现实例............................................................................................................. - 32 -A.2.1 矩阵表示......................................................................................................... - 32 -A.2.2 表格实例......................................................................................................... - 32 -A.2.3 文本字符串实例............................................................................................. - 35 -A.2.4 矩阵实例.......................................................................................................... - 37 - 附录B 质量管理指南............................................................................................ - 41 -B.1 质量控制.................................................................................................................... - 41 -B.2 设备............................................................................................................................ - 41 -B.3 程序............................................................................................................................ - 41 -B.4 人员............................................................................................................................ - 42 - 附录C 先验和后验质量控制指南........................................................................ - 43 -C.1 先验不确定度 ............................................................................................................ - 43 -C.2 后验不确定度 ............................................................................................................ - 43 - 附录D 网格化水深测量注意事项........................................................................ - 44 -D.1 引言............................................................................................................................ - 44 -D.2 定义............................................................................................................................ - 45 -D.3 网格注意事项............................................................................................................ - 45 -D.3.1 网格分辨率..................................................................................................... - 45 -D.3.2 采样密度......................................................................................................... - 46 -D.3.3 网格覆盖率..................................................................................................... - 46 -D.3.4 海道测量员覆盖网格节点.............................................................................. - 47 -D.4 网格化方法................................................................................................................. - 47 -D.5 网格不确定度............................................................................................................ - 48 -D.6 适用范围.................................................................................................................... - 49 -D.6.1 测量数据采集................................................................................................. - 49 -D.6.2 测量数据校验................................................................................................. - 49 -D.6.3 测量数据成果................................................................................................. - 49 - D.7 元数据........................................................................................................................ - 50 -序言本出版物(S-44)规定了适用于海道测量的标准,与国际海道测量组织(IHO)其它出版物一样,旨在提高航行安全和改善对海洋环境的认识与保护。
新型40米级海道测量船的设计探讨
新型40米级海道测量船的设计探讨作者:严明毛建辉陈晓华来源:《航海》2021年第01期摘要:海事测绘是我国航海安全链中至关重要的一个环节,由于海道测绘作业的特殊要求,需要专业的海道测量船来完成。
根据新时期海道测量规范要求,本文在船舶主尺度选择时,根据测量等级要求,提出了依据多波束性能确定船长的方法;在动力系统设计上,海道测量船需在测量作业航速和调遣航速的选择上取得平衡;对于作业航速选取,本文提出了依据多波束性能确定最大航速的方法。
此外,本文还通过模型试验等方法对海道测量船的耐波性和操纵性开展研究。
在测量系统设计上,本文提出了新型40米级海道测量船的主要测量设备和安装方式,同时也提出测量系统不仅需要满足目前实际作业任务要求,并为未来设备和功能升级留有余量。
关键词:海道测量船;海道测量规范;多波束测深仪0引言海事测绘是国家经济建设不可缺少的前期性和基础性保障工作,是我国航海安全链中至关重要的一个环节。
在《中国海事航海保障“十三五”发展规划—测绘专项规划》中提出了“测量范围由港口航道扩展到近海重点水域,重要港口的重要通航水域发生变化及时跟踪测量,重点港口和航道多波束扫测覆盖率达100%,突破传统港口航道测量业务,向多元化沿海航行地理信息的全要素采集、评测、加工和服务发展;全面开展沿海干线航路和定线制测量;强化通航尺度核定测量和通航水域水深监测”。
因此,新时期作为开展测绘工作的重要装备,专业的海道测量船在保障水上运输主通道和港口的畅通,保障港口及沿海船舶航行安全方面具有十分重要的作用。
1新型测量船要求由于海道测绘作业的特殊要求,需要专业的海道测量船舶来承担:一是与常规测量船不同,海道测量船需要在繁忙的航道内航行及测绘作业,需要船舶具有良好的操纵性,才能保障船舶安全;二是由于配备的测量设备安装要求比较高,因此其他船舶(如航标船)可能没有合适的测量设备安装位置和操控设备,影响测量效率和测量精度;三是测量船对振动噪声的要求较高,其他船舶可能无法滿足要求;四是测量设备如果采用临时搭载的方式安装在其他船舶上,由于测量设备需要安装、校正,无法满足应急测量快速响应的需要;五是测量数据需要存储、处理、共享等,需要配备专业的数据服务器等存储与网络设施。
国产多波束测深系统在海上风电运维的应用
国产多波束测深系统在海上风电运维的应用摘要:多波束测深系统对于海上风电运维工作具有较强的相关性,通过使用多波束测深系统可以有效的获取风电桩基周边的三维空间信息,进而可以对风电桩基的安全情况进行评估。
国产多波束测深系统在水下勘测领域尚处于起步阶段,本应用场景通过采用国产MS8200多波束测深系统在海上风电运维的实际应用,验证了国产多波束测深系统已经完全满足风电运维的实际需求,同时其测量精度也完全满足相关的行业规范要求,本应用案例对国产多波束测深系统在风电运维的应用效果情况具有重大的借鉴意义。
关键词:海上风电运维;国产多波束测深系统;桩基冲刷;水下地形勘测引言:随着我国海上风电的迅速发展,装机总量的不断提升,海上风电的运维工作将会成为风机运转的日常维护工作,同时,因为桩基深埋水下,受海流、回流等影响,桩基周围往往存在不同程度的冲刷损坏,严重影响海上风电的使用寿命,日常的水下冲刷监测[1],将是维护风机运转和安全的重要工作。
目前,多采用多波束进行全覆盖水深测量,进行地形描绘,通过定期的巡航测量和历史数据对比,研究并分析桩基周围水下地形的变化量和变化趋势,为风机安全提供可靠的数据保障。
2012年之前,国产多波束与国外多波束存在着一定的差异,从整体上讲,当时我国在多波束测深技术的研究方面还未进入完全成熟实用阶段,与同时期国外同类产品的技术指标相比,国产设备还存在一定的差距,在波束数量、测量深度、测量精度和扫描宽度等关键技术上还较为落后,而且设备重量大、功能性较为单一。
经过近十年多波束技术的积累与发展,国产多波束从提高测深范围、提升单次测量获取的水深点数量和精度以及加强数据处理软件的通用性等方面入手,改良了技术设计以及内部算法,并且在最初的薄弱环节上取得了重大的突破。
目前国产多波束也实现了设备的小型化和通用化,在应用方面,国产多波束已经在水下地形探测、沉船打捞、航道淤积计算、水下障碍物应急探测中都具有广泛的应用。
国际海道测量组织(IHO)涉及水深的出版物清单
国际海道测量组织(IHO )涉及水深的出版物清单目前,IHO 涉及水深的出版物共 8 部;能力建设方面出版物 7 部;综合类出版物 5 部;定期出版物 4 部;标准和规范类出版物 29 部;其他类出版物 1 部;正在讨论的出 版物草案 2 部。
2018 年更新标准和出版物共 18 部。
水深出版物B-4 近期水深数据信息B-6 海底特征物标准B-7GEBCO 指南B-8 海底特征物地理名称词典 B-9 GEBCO 数字地图B-10GEBCO 历史B-11IHO-IOC GEBCO 指南能力建设出版物C-16 国家海道测量规范 2008 年 1 月 C-17空间数据基础设施:“海上空间” – 海道测量机构指南2017 年 1 月第2.0.0版C-51 联合国海洋法公约技术手册第 5 版M-1 IHO 基本文件 2017 年 6 月 M-2国家海道测量服务的必要性 2018 年 6 月第 3.0.7 版录M-10IHB 历史2005 年第2 版定期出版物P-1国际海道测量评论每年5 月和11 月出P-6第1 届IHO 大会2017会议录历次大会及特别大会会议录P-7IHO 年报– 2017 年第1 部分–总IHO 年报– 2017 年第2 部分–财务2003-2016 IHO 年报每年更新出版标准和规范S-4IHO 国际海图规则和海图规范INT1 海图符号、缩写和术语INT2 边界、刻度、网格和线性刻度INT3 符号和缩写的使用2018 年11 月第4.8.0 版2018 年第9 版2007 年第4 版2011 年第5 版S-5A海道测量师“A”类适任标准2018 年6 月第1.0.2版S-5B海道测量师“B”类适任标准2017 年6 月第1.0.1版海道测量师和海图制图师适任标准实施指南2017 年3 月第2.0.0 版S-8A海图制图师“A”类适任标准2018 年6 月第1.0.1版S-8B海图制图师“B”类适任标准2017 年9 月第1.0.0版S-11INT 海图和ENC 方案和INT 海图目录配备和维护指南2018 年2 月第3.1.0 版S-12灯光和雾号标准表2004 年6 月(2006 年6 月修订)S-23海洋的界限1953S-32海道测量词典–在线维基版1994 年第5 版S-44IHO 海道测量标准2008 年2 月S-49海员航路指南标准2010 年4 月第2.0.0版S-52ECDIS 海图内容和显示规范S-52 附件A(IHO ECDIS 表示库)2014 年10 月第6.1(.1)版(2015 年6 月澄清版)2014 年10 月第4.0(.2)版S-53IMO/IHO/WMO 海上安全信息联合手册附录 1 航行区域和分区域协调员列表2016 年1 月S-57IHO 数字海道测量数据传输标准2000 年11 月S-58ENC 验证检查2018 年9 月第6.1.0版S-60WGS84 基准面准转换手册1999 年1 月S-61栅格电子海图(RNC)产品规范1999 年1 月S-62数据生产者编码列表更新S-63IHO 数据保护方案2015 年1 月第1.2.0版S-64IHO ECDIS 测试数据集2017 年7 月第3.0.2版S-65ENC 生产、维护和发布指南2017 年5 月第2.1.0S-66关于电子海图强制配备要求的事实2018 年1 月第1.1.0 版S-99S-100 地理空间信息注册机构和管理运行程序2012 年11 月第1.1.0 版S-100IHO 通用海道测量数据模型2018 年12 月S-101ENC 产品规范2018 年12 月第1.0.0 版S-102水深表面产品规范2012 年4 月第1.0.0版S-111表面流产品规范2018 年12 月第1.0.0 版S-122海上安全区域2019 年1 月第1.0.0版S-123海上无线电服务2019 年1 月第1.0.0版其他标准S-4IEC 61174 要求的国际缩写2018 年第4.8.0 版出版物草案CSB 指南文件众包水深指南2019 年4 月第2.0.1 版。
关于《IHO 海道测量规范(S-44)》中“待探测水域范围”标准的分析与研究
NAVIGATION 航海231 概 况国际海道测量组织(IHO)成立于1921年,是政府间技术咨询组织,主要宗旨是协调各成员国海道测量活动,促进全球范围内航海资料的统一,推广可靠、有效的海洋测绘方法,促进海洋成果在航海中的应用[1]。
IHO 海道测量规范目的是将少数海道测量规范详细化,以便根据这些规范采集到的海道测量数据具有足够的精度,对部分不确定的数据,亦可经过技术处理后,充分满足该信息主要用户,即航海用户(商用、军用或游艇)的安全使用[2]。
关于待探测水域范围,《IHO 海道测量规范(S-44)》第六章第二节中提到:建议其探测半径—般为“据报危险物”估计定位误差的3倍(置信度为95%),并须经训练有素的海道测量师对可疑数据调查研究后确定。
由于“据报危险物”估计定位误差是个比较模糊的定义,不同的海道测量师所确定估计定位误差会有所不同,因此这并不能实现以一个比较统一的标准去确定探测范围。
此外,“据报危险物”所处水域测量等级不同,其危害性程度也不同,因此其探测半径要求也不同。
“据报危险物”定位来源不同,其定位误差也不同,因此其探测半径要求也不同。
“据报危险物”本身类型不同,受潮流影响大小也不同,因此其探测半径要求也不同。
综上所述,建议调整原有标准,根据“据报危险物”所处水域测量等级、定位来源、 关于《IHO 海道测量规范(S-44)》中“待探测水域范围”标准的分析与研究性质类型,结合航海图,制定一个较为简明的探测半径要求。
2 理由及依据2.1 探测目的对于“据报危险物”的探测,其最终目的就是为了保障航运安全。
通过探测,精确地定位出“据报危险物”的具体位置,是保障航运安全的一种方式;通过探测,排除该区域危险隐患,是保障航运安全的另一种方式。
前者是最理想结果,后者是最低要求。
2.2 公约要求在很多情况下,我们并不能直接迅速找到“据报危险物”的精确位置,一味扩大探测范围,这不仅需要大量的船舶、设备、人员、时间投入,还仍然无法保证达到目的。
海道测量数据交换与应用
海道测量数据交换与应用发表时间:2018-12-28T09:42:56.807Z 来源:《防护工程》2018年第29期作者:徐怡然[导读] 随着国家海洋发展战略的实施,“提高海洋资源开发能力,发展海洋经济,保护海洋生态环境东海航海保障中心上海海图中心上海 200090摘要:随着国家海洋发展战略的实施,“提高海洋资源开发能力,发展海洋经济,保护海洋生态环境,坚决维护国家海洋权益,建设海洋强国”需要海洋基础地理数据的支持。
《国际海上人命安全公约》第五章第九条要求缔约国开展海道测量工作、管理海洋基础地理数据、编制和出版海图等。
本文以MSDI(海上空间数据基础设施)为切入点,进而介绍了作为海道测量数据交换与应用基础的S-57和S-100,并进一步探讨了其应用范围和NOAA应用实例,旨在构造中国的MSDI。
关键词:MSDI;海道测量数据;S-57;S-100;NOAA一、什么是MSDI(海上空间数据基础设施)?海洋和沿海地区的相互作用形成了一个系统。
这一系统通过影响降雨、海平面,控制着全球气候,从中获取的资源、原材料、能源也影响着人口的变化。
通过开发一个健全、有效的程序可以实现对该系统的认识与控制。
该程序能够实现数据的实时观测、收集、评估、管理、共享和交换,完善获取信息方式以支持海底和海岸环境的模型化、可视化,即建设海上空间数据基础设施。
海上空间数据基础设施包含所有海洋地理和商业信息。
海上空间数据基础设施要想顺利实现,必须建立明确的目标,以达到预期效果。
标准的海上空间数据包括海洋界限、保护区、海洋生物栖息地,海洋学,水深、水文学、地质学、海洋基础设施,沉船,离岸设备装,管道和电缆的相关数据。
二、海道测量数据交换与应用的基础1. S-57数据传输标准IHO S-57在1992年5月被第十四届国际海道测量大会正式批准为IHO的标准,最新版本IHO海道测量数据传输标准(S-57,版本3.1)于2000年制定并取代了原先的3.0版本,此后于2007年和2009年又先后针对其颁布了2个补充条例。
IHOS-44
(置信度95%)
a=0.25m
b=0.0075
a=0.5m
b=0.013
a=1.0m
b=0.03
覆盖率
100%
100%
最大测线间距
(单波束测深仪仅为测线间距,多波束测深仪为测幅外侧间的距离)
要求100%覆盖
三倍平均水深或25m,取最大值
三到四倍平均水深,若超过200m,取最大值
IHOS-44不同等级海道测量最低标准一览表
等级
一级
二级
三级
四级
典型海区举例
重要的航道、锚地、浅水港口
航道、推荐航道、港口及港口入口(水深小于100m)
一、二级测量中未规定的沿岸海区或水深小于200m的海区
一、二、三级测量未规定的非沿岸地区
水平位置精度
(置信度95%)
2m
5m+5%h
20m+5%h
150m+5%h
四倍平均水深
海洋工程规范手册
第一章分类第1节总则分类1原则的分类131.1目的规则1.2一般定义1.3分类的意义,范围和界限1.4服务要求1.5注册1.6设计标准的声明2规则152.1规则的应用2.2生效日期2.3等价2.4新功能2.5分歧和上诉2.6风险assesssment和规则的应用3月16利害关系方职务3.1国际和国家法规3.2测量师的干预3.3操作和维修的单位3.4操作手册3.5船旗国和港口国监督检查3.6测量设备的使用和服务供应商3.7备件4定义4.1离岸单位4.2推进4.3单位'结构类型4.4单位的服务4.5单位的经营4.6临时停靠的位置抛锚4.7尺寸4.8其他定义第2分类记号1一般1.1目的的分类符号1.2符号类型分配2级符号2.1一般3建筑标志3.1一般3.2建设商标名单4结构类型和服务符号4.1结构类型符号4.2服务符号5网站导航和符号5.1导航符号5.2导航符号列表5.3网站符号6其他类符号6.1一般6.2其他类符号适用于所有境外单位6.3其他类符号适用于浮动,生产和储存单位7附加服务功能7.1饲养站(波萨)7.2自动化系统(自动)7.3 直升机平台(人胚肺)7.4惰性气体(中空)7.5 V eriSTAR,船体8其他符号8.1服务符号8.2其他类符号第3节的课堂作业1一般1.12新的建设程序2.1该协会调查的单位在施工期间2.2其他案件2.3文档2.4建设投资组合3日期初步分类3.1定义4类27的调动4.1第4条规定文档1一般281.1原则1.2提交时间1.3文件目录2新建成的单位2.1设计数据2.2设计计算2.3计划和图纸2.4操作手册维护的类第一节一般规定关于调查1一般原则调查1.1调查类型1.2周期性变化,推迟或提前调查1.3扩展的调查的范围1.4一般程序调查1.5委任另一测量师1.6访问调查2证书分类:问题,有效性,认可和重建2.1签发证书的分类2.2分类的有效性,维护类证书2.3批注的船检证书2.4现状调查和建议3类重建调查3.1一般原则3.2正常调查制度(社会保障)3.3连续调查系统(CS)3.4机械维修计划调查系统(PMS)4其他定期检验4.1年度调查4.2中级调查4.3底调查4.4 Tailshaft调查4.5锅炉调查4.6周年日期之间的联系和年度调查,中间调查和阶级重建调查5不定期调查5.1损害调查5.2维修5.3活化调查5.4改装5.5焊接和材料替代6变更所有权6.17排板和重新启用7.1一般原则第2节按年统计调查1一般431.12.1适用范围2.2赫尔,结构和设备2.3机械2.4电气设备2.5船舶自动和远程控制系统2.6特殊功能3类重建调查3.1适用范围3.2级的范围续调查ñ° 13.3级的范围续调查ñ° 23.4机械3.5电气设备3.6船舶自动和远程控制系统3.7(所有类型的特殊功能)4 Bottomsurvey4.1调查前期规划和保存记录4.2部件进行审查4.3载舱4.4特定要求,在调查的入坞代替水的调查移动式近海钻井装置5锅炉调查5.16钻井设备6.1应用6.2年度检验6.3级更新调查第6节与存储有关的存储单元的油区的调查1一般1.1应用1.2文档上2年的调查-赫尔项目2.1天气甲板2.2原油泵房2.3压载水舱3年调查-原油储存机械项目3.1存储区域和原油泵房3.2仪器仪表及安全装置3.3消防领域中的货运系统4中间调查-赫尔项目4.1船舶15岁或以下的年4.2年满15岁以上船舶5中级调查-原油储存机械项目5.1存储区域和原油泵房6类重建调查-赫尔项目6.1统计调查计划和船体调查的准备工作6.2调查范围6.3总体和密切跟进调查6.4厚度测量6.5坦克测试6.6存储区域和原油泵房7类重建调查-货运机械项目7.1货运区和货泵房7.2消防原油储存区系统第7条与存储有关的存储单元的天然气区的调查1一般1.1应用2年的调查-赫尔项目2.1一般2.2天气甲板和存储处理室2.3其他安排或设备2.4压载水舱3年调查-存储设备项目3.1存储区域及泵房3.2仪器仪表及安全装置3.3消防领域的存储系统4中间调查-赫尔项目4.1一般4.2天气甲板和存储系统4.3储存罐和咸水压载水舱5中级调查-存储设备项目5.1存储区域及泵房5.2仪器仪表及安全装置6类重建调查-赫尔项目6.1调查方案6.2调查范围6.3总体和密切跟进调查6.4厚度测量6.5坦克测试6.6储罐结构6.7天气甲板和存储处理室7类重建调查-存储设备项目7.1贮存区,仓储泵房,存储压缩机室7.2消防领域的存储系统第8条水下调查零件和系泊设备1范围调查851.1结构和配件1.2系泊设备1.3推进和操纵2在水调查852.1一般2.2在水调查安排第9条其他调查1调查的惰性气体装置871.1一般1.2年度检验1.3中级调查1.4级重建suvey2调查的附加服务功能的汽车87 2.1年度检验2.2级更新调查3调查的附加服务功能的波萨88 3.1年度检验3.2级机动分队,重建调查3.3级的永久性设施重建调查4调查的生产设备894.1应用4.2生产设备5调查和生产的旋转喉系统89 5.1应用5.2旋转系统5.3生产喉系统SECTION1一般SECTION2定义SECTION3分类详情SECTION4分类标准SECTION5类,商标和标记SECTION6需要的文件原则1分类1.1目的规则1.1.1协会出版的转让给出的要求,并为维护海上单位的分类规则。
工程的测量作业2
1、简述工程建设各个阶段所需进行的主要测量工作。
工程建设的勘察设计阶段—测量工作主要为工程提供各种比例尺地形图,地质、水文勘探等各种测量资料;施工建设阶段—测量工作主要是施工放样和设备安装。
包括建立施工和安装测量控制网、点位放样;运营管理阶段—测量工作主要是建筑物、构筑物的变形观测2、测绘资料要满足工程建设规划设计的需要,主要质量标准有哪几个面的要求。
其主要质量标准是地形图的精度、比例尺的合理选择和测绘内容的取舍适度等。
3、模拟地形图和数字地形图的平面精度和高程精度是如何衡量的?(1)模拟地形图平面位置的精度可用地物点相对于邻近图根点的点位中误差(图上)来衡量 。
主要受下列误差的影响:① 解析图根点的展绘误差—m 展② 图解图根点的测定误差—m 图③ 测定地物点的视距误差—m 视④ 测定地物点的方向误差—m 向m 刺地形图的高程精度,是根据地形图按等高线所求得的任意一点高程的中误差来衡量的。
因此,地形图的高程精度即指等高线所表示的高程的精度。
主要有:1.图根点控制点的高程误差—m 控2. 测定地形点的高程误差—m 形3. 地形概括误差—m概4. 地形点平面位移引起的高程误差—m 移5. 内插和勾绘等高线的误差—m 绘(2)数字地形图平面精度:平面精度仍然可用地物点相对于邻近的图根点的点位(实地)中误差来衡量,其公式为m 定—定向误差对地物点平面位置的影响;m 中—对中误差对地物点平面位置的影响;m 测—观测误差对地物点平面位置的影响;m 重—棱镜中心与待测地物点不重合对地物点平面位置的影响高程;平面精度仍然可用地物点相对于邻近的图根点的点位(实地)中误差来衡量,地物点高程的误差来源主要有:测距误差、测角误差、量测仪器高和目标高误差、以及球气差影响。
4、解释DTM的含义?DTM与DEM有什么区别?数字地面模型(Digital Terrain Model, DTM) DTM是地形表面形态等多种信息的一个数字表示. DTM是定义在某一区域D上的m维向量有限序列:{ Vi , i=1 , 2 ,…, n },DTM是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
iho 的 enc 标准
IHO 的 ENC(电子航海图)标准主要包括以下两个:
1. IHO S-57:这是数字化水道测量数据传输标准,旨在说明各国海道测量部门之间用于交换数字化测量数据,以及将这些数据传递给生产厂家、航海者和其他数据用户的标准。
这个标准也介绍了电子航海图的生成、模型以及交换规则。
2. IHO S-52:这是展开和介绍ENC最基本数据和附加数据的内容的标准,规定了电子航海图的内容和显示、数据结构、改正方法和信息传输途径,以及屏幕上电子海图的颜色和符号使用规则等。
这两个标准都具有法律效力,是矢量形式的电子航海图的数据传输标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IHO海道测量规范第五版-2008IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44) 5th Edition February 2008CONTENTSPage Preface............................................................................................................................... 1 Introduction............................................................................................................................... 3 Chapter 1Classification of Surveys ....................................................................................... 5 Chapter 2Positioning ............................................................................................................. 7 Chapter 3Depths .................................................................................................................... 8 Chapter 4Other Measurements ............................................................................................ 11 Chapter 5Data Attribution ................................................................................................... 12 Chapter 6Elimination of Doubtful Data .............................................................................. 14 Table 1............................................................................................................................. 15 Glossary............................................................................................................................. 17 Annex AGuidelines for Quality Control ............................................................................ 21 Annex BGuidelines for Data Processing (25)NB:Annexes A and B will be removed from this document when the information contained in them is fully included in IHO Publication M-13 (Manual on Hydrography) 等级分类定位深度其他测量质量控制指导方针数据处理指导方针PREFACEThis publication, “Standards for Hydrographic Surveys” (S-44), is one of the series of standards developed by the International Hydrographic Organization (IHO) to help improve the safety of navigation.Formal discussions on establishing standards for hydrographic surveys began at the VII th International Hydrographic Conference (IHC) in 1957. Circular Letters to Member States in 1959 and 1962 reported on the views of Member States and the VIII th IHC in 1962 established a Working Group (WG) comprising 2 members from the USA, 1 from Brazil and 1 from Finland. The WG communicated by mail and held two meetings in conjunction with the IX th IHC in 1967 and prepared the text for Special Publication N o S-44.The 1st Edition of S-44 entitled “Accuracy Standards Recommended for Hydrographic Surveys” was published in January 1968 the Foreword to which stated that “…hydrographic surveys were classed as those conducted for the purpose of compiling nautical charts generally used by ships” and “The study confined itself to determining the density and precision of measurements necessary to portray the sea bottom and other features sufficiently accurately for navigational purposes.”Over subsequent years technologies and procedures changed and the IHO established further WGs to update S-44 with the 2nd Edition published in 1982, the 3rd in 1987 and the 4th in 1998. Throughout these revisions the basic objectives of the publication have remained substantially unchanged and this remains so with this 5th Edition.The Terms of Reference for the WG established to prepare the 5th Edition of S-44 included inter alia: a desire for clearer guidance regarding sea floor features and listed a number of concerns including system capabilities for detecting features and the characteristics of features to be detected. The WG concluded that S-44 sets minimum standards for surveys conducted for the safety of surface navigation. The WG considered it to be the responsibility of each national authority to determine the precise characteristics of features to be detected relevant to their organization and to determine the ability of particular systems and their procedures to detect such features. The WG further concluded that the design and construction of targets used to demonstrate system detection capabilities is the responsibility of national authorities. The reference to cubic features> 1 or 2 metres in size used in these Standards provides a basis for understanding that features of at least this size should be detected.The principal changes made from the 4th Edition are:The division of Order 1 into 1a where a full sea floor search is required and 1b where it is not required. The removal of Order 3 as it was considered that there was no longer a need to differentiate this from Order 2.The replacement, in most cases, of the words “accuracy”and “error”by “uncertainty”. Errors exist and are the differences between the measured value and the true value. Since the true value is never known it follows that the error itself cannot be known. Uncertainty is a statistical assessment of the likely magnitude of this error. This terminology is increasingly being used in measurement: see ISO/IEC 98: 1995 “Guide to the expression of uncertainty inmeasurement” (due to be updated in 2008) and ISO/IEC 99:2007 “International Vocabulary of Metrology – Basic and general concepts and associated terms (VIM).The Glossary has been updated and some terms which the WG consider fundamental to the understanding of these Standards are repeated in the Introduction.The WG considered that information on “How to Survey” w as not appropriate to these Standards and this information has been removed from the 5th Edition. However the WG acknowledges the usefulness of this guidance and the information has been retained in two annexes. The WG recommends that this information should be transferred to IHO Publication M-13 (Manual on Hydrography) at which time the annexes should be removed from S-44.A minimum spot spacing for bathymetric LIDAR has been included in Table 1 for Order 1b surveys where full sea floor search is not required.Finally it was the view of the WG that S-44 provides “Standards for Hydrographic Surveys” and that it is the responsibility of individual Hydrographic Offices / Organizations to prepare “Specifications” based on these Standards. Specifications will be more system specific and as such will be quite dynamic as systems change.INTRODUCTIONThis publication is designed to provide a set of standards for the execution of hydrographic surveys for the collection of data which will primarily be used to compile navigational charts to be used for the safety of surface navigation and the protection of the marine environment. It must be realised that this publication only provides the minimum standards that are to be achieved. Where the bathymetry and expected shipping use requires it, hydrographic offices / organisations wishing to gather data may need to define more stringent standards. Also, this publication does not contain procedures for setting up the necessary equipment, for conducting the survey or for processing the resultant data. These procedures (which are a fundamental part of the complete survey system) must be developed by the hydrographic office/organisation wishing to gather data that is compliant with these Standards. Consideration must be made of the order of survey they wish to achieve, the equipment they have at their disposal and the type of topography that they intend to survey. Annexes A and B provide guidelines for Quality control and Data Processing and it is intended that these will be moved to the Manual on Hydrography (IHO Publication M-13) which provides further guidance on how to perform hydrographic surveys.There is nothing to stop users adopting these Standards for other uses. Indeed, such a broadening of the use of these Standards is welcomed. However, users who wish to adopt these for other means must bear in mind the reason why they were written and therefore accept that not all parts may be suitable for their specific needs.To be compliant with an S-44 Order a survey must be compliant with ALL specifications for that order included in these Standards.It is also important to note that the adequacy of a survey is the end product of the entire survey system and processes used during its collection. The uncertainties quoted in the following chapters reflect the total propagated uncertainties of all parts of the system. Simply using a piece of equipment that is theoretically capable of meeting the required uncertainty is not necessarily sufficient to meet the requirements of these Standards. How the equipment is set up, used and how it interacts with the other components in the complete survey system must all be taken into consideration.All components and their combination must be capable of providing data to the required standard. The hydrographic office / organisation needs to satisfy itself that this is so by, for example, conducting appropriate trials with the equipment to be used and by ensuring that adequate calibrations are performed prior to, as well as during and, if appropriate, after the survey being carried out. The surveyor is an essential component of the survey process and must possess sufficient knowledge and experience to be able to operate the system to the required standard. Measuring this can be difficult although surveying qualifications (e.g. having passed an IHO Cat A/B recognised hydrographic surveying course) may be of considerable benefit in making this assessment.It should be noted that the issue of this new edition to the standard does not invalidate surveys, or the charts and nautical publications based on them, conducted in accordance with previous editions, but rather sets the standards for future data collection to better respond to user needs.It should also be noted that where the sea floor is dynamic (e.g. sand waves), surveys conducted to any of the Orders in these Standards will quickly become outdated. Such areas need to be resurveyed at regular intervals to ensure that the survey data remains valid. The intervals between these resurveys, which will depend on the local conditions, should be determined by national authorities.A glossary of terms used in this publication is given after Chapter 6. Terms included in the glossary are shown in the text in italic type and in the electronic version are hyperlinked to their definition. The following “Fundamental Definitions” from the glossary are considered essential to the understanding of these Standards.FUNDAMENTAL DEFINITIONSFeature detection: The ability of a system to detect features of a defined size. These Standards specify the size of features which, for safety of navigation, should be detected during the survey.Full sea floor search: A systematic method of exploring the sea floor undertaken to detect most of the features specified in Table 1; utilising adequate detection systems, procedures and trained personnel. In practice, it is impossible to achieve 100% ensonification / 100% bathymetric coverage (the use of such terms should be discouraged).Reduced depths: Observed depths including all corrections related to the survey and post processing and reduction to the used vertical datum.Total horizontal uncertainty (THU): The component of total propagated uncertainty (TPU) calculated in the horizontal plane. Although THU is quoted as a single figure, THU is a 2 Dimensional quantity. The assumption has been made that the uncertainty is isotropic (i.e. there is negligible correlation between errors in latitude and longitude). This makes a Normal distribution circularly symmetric allowing a single number to describe the radial distribution of errors about the true value.Total propagated uncertainty (TPU):the result of uncertainty propagation,when all contributing measurement uncertainties, both random and systematic, have been included in the propagation. Uncertainty propagation combines the effects of measurement uncertainties from several sources upon the uncertainties of derived or calculated parameters.Total vertical uncertainty (TVU): The component of total propagated uncertainty(TPU) calculated in the vertical dimension. TVU is a 1 Dimensional quantity.CHAPTER 1 – CLASSIFICATION OF SURVEYSIntroductionThis chapter describes the orders of survey that are considered acceptable to allow hydrographic offices / organizations to produce navigational products that will allow the expected shipping to navigate safely across the areas surveyed. Because the requirements vary with water depth and expected shipping types, four different orders of survey are defined; each designed to cater for a range of needs.The four orders are described below along with an indication of the need that the order is expected to meet. Table 1specifies the minimum standards for each of these orders and must be read in conjunction with the detailed text in the following chapters.The agency responsible for acquiring surveys should select the order of survey that is most appropriate to the requirements of safe navigation in the area. It should be noted that a single order may not be appropriate for the entire area to be surveyed and, in these cases, the agency responsible for acquiring the survey should explicitly define where the different orders are to be used. It should also be noted that the situation discovered in the field by the surveyor may differ sufficiently enough from what was expected to warrant a change of order. For instance in an area traversed by Very Large Crude Carriers (VLCCs) and expected to be deeper than 40 metres an Order 1a survey may have been specified; however if the surveyor discovers shoals extending to less than 40 metres then it may be more appropriate to survey these shoals to Special Order.Special OrderThis is the most rigorous of the orders and its use is intended only for those areas where under-keel clearance is critical. Because under-keel clearance is critical a full sea floor search is required and the size of the features to be detected by this search is deliberately kept small. Since under-keel clearance is critical it is considered unlikely that Special Order surveys will be conducted in waters deeper than 40 metres. Examples of areas that may warrant Special Order surveys are: berthing areas, harbours and critical areas of shipping channels.Order 1aThis order is intended for those areas where the sea is sufficiently shallow to allow natural or man-made features on the seabed to be a concern to the type of surface shipping expected to transit the area but where the under-keel clearance is less critical than for Special Order above. Because man-made or natural features may exist that are of concern to surface shipping, a full sea floor search is required, however the size of the feature to be detected is larger than for Special Order. Under-keel clearance becomes less critical as depth increases so the size of the feature to be detected by the full sea floor search is increased in areas where the water depth is greater than 40 metres. Order 1a surveys may be limited to water shallower than 100 metres.Order 1bThis order is intended for areas shallower than 100 metres where a general depiction of the seabed is considered adequate for the type of surface shipping expected to transit the area. A full sea floor search is not required which means some features may be missed although the maximum permissible line spacing will limit the size of the features that are likely to remain undetected. This order of survey is only recommended where under-keel clearance is not considered to be an issue. An example would be an area where the seabed characteristics are such that the likelihood of there being a man-made or natural feature on the sea floor that will endanger the type of surface vessel expected to navigate the area is low.Order 2This is the least stringent order and is intended for those areas where the depth of water is such that a general depiction of the seabed is considered adequate. A full sea floor search is not required. It is recommended that Order 2 surveys are limited to areas deeper than 100 metres as once the water depth exceeds 100 metres the existence of man-made or natural features that are large enough to impact on surface navigation and yet still remain undetected by an Order 2 survey is considered to be unlikely.CHAPTER 2 – POSITIONING2.1 Horizontal UncertaintyThe uncertainty of a position is the uncertainty at the position of the sounding or feature within the geodetic reference frame.Positions should be referenced to a geocentric reference frame based on the International Terrestrial Reference System (ITRS) e.g. WGS84. If, exceptionally, positions are referenced to the local horizontal datum, this datum should be tied to a geocentric reference frame based on ITRF.The uncertainty of a position is affected by many different parameters; the contributions of all such parameters to the total horizontal uncertainty (THU) should be accounted for.A statistical method, combining all uncertainty sources, for determining positioning uncertainty should be adopted. The position uncertainty at the 95% confidence level should be recorded together with the survey data (see also 5.3). The capability of the survey system should be demonstrated by the THU calculation.The position of soundings, dangers, other significant submerged features, navaids (fixed and floating), features significant to navigation, the coastline and topographical features should be determined such that the horizontal uncertainty meets the requirements specified in Table1. This includes all uncertainty sources not just those associated with positioning equipment.IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44)5th Edition February 2008CHAPTER 3 – DEPTHS3.1IntroductionThe navigation of vessels requires accurate knowledge of the water depth in order to exploit safely the maximum cargo carrying capacity, and the maximum available water for safe navigation. Where under-keel clearances are an issue the depth uncertainties must be more tightly controlled and better understood. In a similar way, the sizes of features that the survey will have or, more importantly, may not have detected, should also be defined and understood.The measured depths and drying heights shall be referenced to a vertical datum that is compatible with the products to be made or updated from the survey e.g. chart datum. Ideally this sounding datum should also be a well defined vertical datum such as, LAT, MSL, a geocentric reference frame based on ITRS or a geodetic reference level.3.2Vertical UncertaintyVertical uncertainty is to be understood as the uncertainty of the reduced depths.In determining the vertical uncertainty the sources of individual uncertainties need to be quantified. All uncertainties should be combined statistically to obtain a total vertical uncertainty (TVU).The maximum allowable vertical uncertainty for reduced depths as set out in Table 1 specifies the uncertainties to be achieved to meet each order of survey. Uncertainty related to the 95% confidence level refers to the estimation of error from the combined contribution of random errors and residuals from the correction of systematic errors. The capability of the survey system should be demonstrated by the TVU calculation.Recognising that there are both depth independent and depth dependent errors that affect the uncertainty of the depths, the formula below is to be used to compute, at the 95% confidence level, the maximum allowable TVU. The parameters “a” and “b” for each order, as given in Table 1, together with the depth “d” have to be introduced into the formula in order to calculate the maximum allowable TVU for a specific depth:Where:a represents that portion of the uncertainty that does not vary with depthb is a coefficient which represents that portion of the uncertainty thatvaries with depthd is the depthb x d represents that portion of the uncertainty that varies with depthThe vertical uncertainty at the 95% confidence level should be recorded together with the survey data (see also 5.3).IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44)5th Edition February 20083.3 Reductions for Tides / Water-level ObservationsObservations sufficient to determine variations in the water level across the entire survey area must be taken for the duration of the survey for the reduction of soundings to the relevant sounding datum. These may be determined either by direct measurement of the water level (i.e. by using a gauge) and if necessary carried across the survey area by co-tidal corrections or by 3D positioning techniques linked to the required sounding datum by a suitable separation model.Tidal / water-level reductions need not be applied to depths greater than 200 metres if TVU is not significantly impacted by this approximation.3.4 Depth measurementAll anomalous features previously reported in the survey area and those detected during the survey should be examined in greater detail and, if confirmed, their position and least depth determined. If a previously reported anomalous feature is not detected refer to Chapter 6 for disproving requirements. The agency responsible for survey quality may define a depth limit beyond which a detailed sea floor investigation, and thus an examination of anomalous features, is not required.For wrecks and obstructions which may have less than 40 metres clearance above them and may be dangerous to normal surface navigation, their position and the least depth over them should be determined by the best available method while meeting the depth uncertainty standard of the appropriate order in Table 1.Side scan sonar should not be used for depth measurement but to define areas requiring more detailed and accurate investigation.3.5 Feature detectionWhen a full sea floor search is required, the equipment used to conduct the survey must be demonstrably capable of detecting features of the dimensions specified in Table 1. Additionally, the equipment must be considered as part of a system (includes survey / processing equipment, procedures and personnel) that will ensure there is a high probability that these features will be detected. It is the responsibility of the hydrographic office / organisation that is gathering the data to assess the capability of any proposed system and so satisfy themselves that it is able to detect a sufficiently high proportion of any such features. The Special Order and Order 1a feature detection requirements of 1 metre and 2 metre cubes respectively are minimum requirements. Features may exist that are smaller than the size mandated for a given order but which are a hazard to navigation. It may therefore be deemed necessary by the hydrographic office / organization to detect smaller features in order to minimise the risk of undetected hazards to surface navigation.It should be noted that even when surveying with a suitable system 100% detection of features can never be guaranteed. If there is concern that features may exist within an area that may not be detected by the Survey System being used, consideration should be given to the use of an alternative system (e.g. a mechanical sweep) to increase the confidence in the minimum safe clearance depth across the area.IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44)5th Edition February 20083.6 Sounding Density / Line SpacingIn planning the density of soundings, both the nature of the seabed in the area and the requirements of safe surface navigation have to be taken into account to ensure an adequate sea floor search.For Special Order and Order 1a surveys no recommended maximum line spacing is given as there is an overriding requirement for full sea floor search.Full sea floor search is not required for Orders 1b and 2 and Table 1 recommends maximum line spacing (Orders 1b and 2) and bathymetric LIDAR spot density (Order 1b). The nature of the seabed needs to be assessed as early as possible in a survey in order to decide whether the line spacing / LIDAR spot density from Table 1 should be reduced or extended.CHAPTER 4 - OTHER MEASUREMENTS4.1 IntroductionThe following observations may not always be necessary but if specified in the survey requirement should meet the following standards.4.2 Seabed SamplingThe nature of the seabed should be determined in potential anchorage areas; it may be determined by physical sampling or inferred from other sensors (e.g. single beam echo sounders, side scan sonar, sub-bottom profiler, video, etc.). Physical samples should be gathered at a spacing dependent on the seabed geology and as required to ground truth any inference technique.4.3 Chart and Land Survey Vertical Datums ConnectionIHO Technical Resolution A2.5, as set out in IHO Publication M-3, requires that the datum used for tidal predictions should be the same as that used for chart datum. In order for the bathymetric data to be fully exploited the vertical datum used for tidal observations should be connected to the general land survey datum via prominent fixed marks in the vicinity of the tide gauge/station/observatory. Ellipsoidal height determinations of the vertical reference marks used for tidal observations should be made relative to a geocentric reference frame based on ITRS, preferably WGS84, or to an appropriate geodetic reference level.4.4 Tidal PredictionsTidal data may be required for analysis for the future prediction of tidal heights and the production of Tide Tables in which case observations should cover as long a period of time as possible and preferably not less than 30 days.4.5 Tidal Stream and Current ObservationsThe speed and direction of tidal streams and currents which may exceed 0.5 knot should be observed at the entrances to harbours and channels, at any change in direction of a channel, in anchorages and adjacent to wharf areas. It is also desirable to measure coastal and offshore streams and currents when they are of sufficient strength to affect surface navigation.The tidal stream and current at each position should be measured at depths sufficient to meet the requirements of normal surface navigation in the survey area. In the case of tidal streams, simultaneous observations of tidal height and meteorological conditions should be made and the period of observation should ideally be 30 days.The speed and direction of the tidal stream and current should be measured to 0.1 knot and the nearest 10º respectively, at 95% confidence level.Where there is reason to believe that seasonal river discharge influences the tidal streams and currents, measurements should be made to cover the entire period of variability.CHAPTER 5 – DATA ATTRIBUTION5.1 IntroductionTo allow a comprehensive assessment of the quality of survey data it is necessary to record or document certain information together with the survey data. Such information is important to allow exploitation of survey data by a variety of users with different requirements, especially as requirements may not be known when the survey data is collected.5.2MetadataMetadata should be comprehensive but should comprise, as a minimum, information on: - the survey in general e.g. purpose, date, area, equipment used, name of survey platform;- the geodetic reference system used, i.e. horizontal and vertical datum including ties to a geodetic reference frame based on ITRS (e.g. WGS84) if a local datum is used;- calibration procedures and results;- sound speed correction method;- tidal datum and reduction;- uncertainties achieved and the respective confidence levels;- any special or exceptional circumstances;- rules and mechanisms employed for data thinning.Metadata should preferably be an integral part of the digital survey record and conform to the “IHO S-100 Discovery Metadata Standard”, when this is adopted. Prior to the adoption of S-100, ISO 19115 can be used as a model for the metadata. If this is not feasible similar information should be included in the documentation of a survey.Agencies responsible for the survey quality should develop and document a list of metadata used for their survey data.5.3 Point Data AttributionAll data should be attributed with its uncertainty estimate at the 95% confidence level for both position and, if relevant, depth. The computed or assumed scale factor applied to the standard deviation in order to determine the uncertainty at the 95% confidence level, and/or the assumed statistical distribution of errors should be recorded in the survey‟s metadata. (For example, assuming a Normal distribution for a 1 Dimensional quantity, such as depth, the scale factor is 1.96 for 95% confidence. A statement such as “Uncertainties have been computed at 95% confidence assuming a standard deviation scale factor of 1.96 (1D) or 2.45 (2D), corresponding to the assumption of a Normal distribution of errors,” would be adequate in the metadata.) For soundings this should preferably be done for each individual sounding; however a single uncertainty estimate may be recorded for a number of soundings or even for an area, provided the difference between the individual uncertainty estimates and the collectively assigned uncertainty estimate is negligible. The attribution should, as a minimum, be sufficient to demonstrate that the requirements of these Standards have been met.。