浅谈高层建筑结构设计分析

合集下载

论高层建筑结构设计与分析

论高层建筑结构设计与分析
科 学 论 坛
l ■
Caiedc ] i h e hoR isnaTngew nccneoyv e
论 高层 建筑结构设计 与分析
曹丽君
( 广州 市华 森建筑 设计 院有 限公司顺 德分 公司 58 2 ) 2 32 [ 摘 要] 筑结 构设 计是 个系 统 的, 面 的工作 。要扎 实 的理论 知 识功底 , 全 灵活 创新 的思 维和严 肃 认真 负责 的工 作态度 。作 为 设计人 员, 掌 握结构 设计 要 的过 程, 证设计 结构 的安金, 保 还要善 于总 结工作 中的经验 。 本文 围绕 建筑结 构, 本文 总结 了建筑 结构设 计的特 点, 出了建筑 结构分 析和各 种体系 相对应 的方法 。 提 [ 关键词 ] 筑结 构 设计 剪 力墙 结 构分析 建 中 图分 类号 :U 5 T32 文献标 识码 : A 文章 编号 : 0 9 9 4 (0 0 2 一 1 6 O 10 — 1X2 1) 6O 1一 1
了。
() 3 刚性楼 板假 定 。许 多建 筑结 构的 分析方 法均 假定楼 板 在 自身平 面 内 的刚度无 限大 , 而平 面 外的刚 度则 忽略 不计 。这一 假定 大大 减少 了结构 位移 的 自由度 , 化 了计算 方法 。并为 采用 空间 薄壁杆 件理 论计 算简 体结 构提供 简 了条件 。一般 来 说, 框 架体 系 和剪 力 墙体 系 采用 这 一假 定 会 是完 全 可 以 对 得 。但是 , 对于 竖 向刚度 由突变 的结 构, 板刚度 较 小, 楼 主要 抗侧 力构件 间距 过大 或 是层数 较少 等情 况, 板变 形的 影响 较大 。特别 是对 结构底 部和 顶部 楼 各层 内力 和位移 的影 响更为 明显 。可 将这 些楼层 的剪力 作适 当调整 来考虑这 种影响。 () 计 图形 的假 定 。建 筑结 构体系 分析采 用 的计算 图形有 三种 : 1 一 4设 () 维协 同分析 。按 一维 协 同分 析 时 .只 考虑 各 抗侧 力构 件在 一 个位 移 自由度 方 向上 的变形 协调 在水 平 力作用 下, 将结 构体系 简化 为 由平行 水平力 方 向 上 的各 榀抗 侧力 构 件 的侧 移相 等 . 由此 即可 建立 一 维协 同 的基 本方 程 。在 扭矩 作用 下, 则根据 同层 楼板 上各 抗侧 力构件 转交 相等 的条 件建 立方程 。一 维协 同分 析 是各 种手算 方 法采 用最 多 的计算 图形。 2 二 维协 同分 析 。二维 () 协 同分析虽然仍将 单榀 抗侧力构件 视为平 面结构, 但考 虑了 同层 楼板上各 榀抗 侧力 构件 在楼 面 内的变形 协调 。纵横 两 方向 的抗侧 力构 件共 同工 作, 同时计 算 .扭矩 与水平 力 同时计 算 。在引入 刚性楼 板 假定后 , 层楼 板 由三 个 自由 每 度, ,, ( 虑楼 板翘 曲时有 四个 自由度)楼面 内各抗 侧力 构件的位 移均 uv 当考 , 由这 三个 自由度 确 定 。剪 力楼 板位移 与其 对应 外 力作用 的平 衡方程 , 矩阵 用 位移 法求解 。二维 协 同分 析主 要为 中小微 型计算机 上 的杆系 结构分析 程序所 采用 () 维空 间分析 。二维 协 同分析 并没 有考虑 抗侧 力构 件 的公共节 点在 3三 楼面外 的位 移协调 ( 向位移和 转角 的协调) 而 且, 竖 , 忽略抗侧 力构 件平面 外的 刚度 和扭转 刚度对 具有 明显 空间工作 性 能的简体 结构也 不是 妥当 的。三维 空 问分 析 的普 通杆单 元每 一节 点 由6 自由度, 个 按符拉 索夫薄 壁杆 理论分 析的杆 端节 点 还应考 虑 界面翘 曲, 7个 自由度 。 有 结 语 随着建筑行业 加快的发展 , 满足建 筑的形式 , 材料, 力学分 析模型都将 日趋 复杂 多元, 了革新建筑 , 为 体现 其魅力, 追求新 的结构 形式 和更 加合理地 力学模 型将 是 土 木工 程 师们 的 目标 和 方 向 。 参 考 文 献 [] 梅 洪元 , 本 臣. 1 付 中国建 筑创 作理论 发展研 究, 筑与 只能建筑 国际 建 学术 研讨会 . 0 2 20 . []覃 力, 2 建筑 设计 的一种 倾 向一 大规模 高层建筑 的集群化 和城市化 , 建 筑与 智能 建筑 国际学术研 讨会 ,0 2 20 .

对高层建筑结构设计的分析

对高层建筑结构设计的分析

对高层建筑结构设计的分析摘要:随着现代建筑技术进步,高层建筑已得到广泛运用,并且仍在不断发展。

由于建筑高度过高,结构设计成为了高层建筑建设中的一大难题。

本文介绍了高层建筑结构设计的特点,分析了高层建筑的结构体系,探讨了高层建筑结构设计的常见问题。

关键词:高层建筑建构设计问题一、高层建筑结构设计的特点相比普通建筑结构设计,高层建筑结构设计更加重视结果体系的选择。

通常,高层建筑结构设计需要着重考虑水平载荷、轴向变形、侧向位移以及结构延性等4大问题,下面进行具体介绍。

1、水平荷载对高层建筑结构设计的影响相比于建筑自重在竖直方向产生的轴向应力与弯矩,建筑水平载荷引起的倾覆力矩和其对竖向构件的轴向应力,随着建筑高度增加而产生的增长值更大。

此外,高层建筑的竖直轴向应力为定值,水平载荷则常常会受风力作用和地震作用影响而产生大幅度波动。

因此,高层建筑结构设计需要加强对水平载荷的重视程度,一方面要确保应力值不超过建筑材料所能承受的最大值,另一方面也要对可能的载荷波动做好充分准备。

2、轴向变形对高层建筑结构设计的影响由于高层建筑高度极高,其竖直应力往往过大,常会导致柱体轴向变形过于明显,从而对建筑梁弯矩造成不利影响。

此外,预制构件的下料长度、构件剪力和侧移大小等关键设计环节也会受到轴向变形的影响。

因此,只有准确估计高层建筑的轴向变形情况,才能保证建筑结构设计的合理性与安全性。

3、侧向位移对高层建筑结构设计的影响因为高层建筑水平载荷会随建筑高度增加而迅速增大,所以高层建筑高度增加也必然会导致建筑侧向位移急剧增大。

因此,进行高层建筑结构设计时,应对建筑侧向位移值作出明确限制,避免侧向位移过大而对建筑结构产生损坏[1]。

4、结构延性对高层建筑结构设计的影响与普通建筑相比,高层建筑的抗震性能要求往往较高,这就要求高层建筑应具有更大的结构延性,使其能在地震发生时产生更大变形。

因此,合理设计施工,保证结构延性也是高层建筑结构设计的基本要求。

高层建筑结构设计分析

高层建筑结构设计分析

高层建筑结构设计分析摘要:随着城市化发展,在建筑面积与建设场地面积相同比值的情况下,高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性、合理性。

本文结合笔者多年的工作经验,对高层建筑结构设计从多方面进行了分析,具有一定的参考价值。

关键词:高层建筑;结构设计:优化设计前言多层和高层结构的差别主要是层数和高度上,但从实际情况上分析两者并没有实质性差别,它们都要抵抗竖向及水平荷载作用,从设计原理及设计方法而言,基本上是相同的。

但是在高层建筑中,要使用更多结构材料来抵抗外荷载,特别是水平荷载,因此抗侧力结构成为结构设计的主要问题。

一、高层住宅结构分析高层建筑结构设计过程中主要把握以下几个方面:1、水平荷载成为控制结构设计的主要因素。

结构内力、位移与高度的关系,除轴向力与高度成正比之外,弯矩和位移随高度都呈指数曲线上升,因此,随着高度的增加,水平荷载将成为主要控制因素。

水平力作用下结构是否优化,材料用量将有很大差别。

2、在抗震地区,随着层数的增加,地震作用对高层建筑危害的可能性也比对多层建筑大,高层建筑结构的抗震设计应受到加倍重视,工程位于抗震区,无需进行地震作用计算,仍需要考虑抗震的构造措施。

3、结构侧向位移成为控制指标。

与多层建筑不同,结构侧移已成为高层建筑结构设计中的关键因素。

随着建筑高度的增加,水平荷载下结构的侧移变形迅速增大,因而应将结构在水平荷载作用下的侧移控制在某一限度之内。

4、轴向变形不容忽视。

高层建筑中竖向荷载数值很大,使得柱产生较大的轴向变形,从而会使得连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大。

轴向变形还会对预制构件的下料长度产生影响,需要根据轴向变形的计算值调整下料长度。

另外轴向变形也会对构件的剪力和侧移产生影响,如不考虑构件竖向变形将会得出偏于不安全的计算结果。

5、结构延性是重要设计指标。

相对于多层建筑而言,高层建筑更柔一些,在地震作用下的变形会更大一些。

浅谈对高层建筑结构设计的几点认识

浅谈对高层建筑结构设计的几点认识

12 侧 移 成 为 设 计 的 控 制 指 标 _ 与低 层 或 多层 建 筑 不 同 ,结 构 侧 移 成 为 高 层 结 构 设 计 中的 关 键 因素 。 随着 建 筑 高 度 的增 加 , 水平 荷 载 下 结 构 的 侧 向 变形 迅 速 增 大 ,
进 、 济 合 理 、 保 质 量 的基 本 原 则 。 经 确 1 高 层 建 筑 结构 设计 的特 点
浅 谈 对 高 层 建 筑 结构 设 计 的几 点 认 识
赵 国 周伟 ( 大连市建筑设计研究院 有限公司)
摘 要 : 合 本 人 在 实 际 建 筑 结 构 设计 中 对 高 层 建 筑 结 构 的 运 用 、 解 和 方 面 , 一 定 高 度 建 筑 来 说 , 向 荷 载 大 体 上 是 定 值 , 作 为水 平 荷 结 理 对 竖 而
不 断 的学 习 , 谈 了高 层 建 筑 结 构 的几 个 主 要 特 点 , 用 的框 架 结 构 , 力墙 载 的 风 荷 载 和 地 震作 用 ,其 数值 是 随着 结构 动 力 性 的 不 同而 有 较 大 浅 常 剪 结构及框架一剪力墙结构三种结构体系的主要特点 , 以供 在 高 层 建 筑 结 构 设 的 变 化 。 计 中做 一 参 考 。 关键词 : 高层建筑结构设计特点 框架结构 剪力墙结构 框架一剪 力 墙 结 构
( 接 第 2 1页 ) 上 1
边 跨 现 浇 段 施 工 流 程 如 下 :地 基 处 理 一 搭 设 支 架 一 铺 设 底 模 的 畅 通 。 其 余 预 应 力 束 及 管 道 安 装 同 箱 梁 悬 灌 梁段 。 板 一 加 载 预 压一 安 装 侧 模一 绑 扎 底 、 腹 板 钢 筋 及 安 装 预 应 力 筋一 装 243 合 拢锁定 合拢前 使悬臂 端与边跨 等高度 现浇段 临时连 .. 端 模 和 内板 模一 绑 扎 顶 钢 筋 及 安 装 预 应 力 筋一 浇 筑 砼一 养 生 凿 毛 。 接 , 可 能 保持 相 对 固定 , 尽 以防 止 合 拢 段 混凝 土 在 浇注 及 早 期硬 化 过 上 部 结 构 模 板 架 立 、 筋 绑 扎 、 道 预 留 、 应 力钢 筋 张 拉 、 钢 管 预 混凝 程 中发 生 明 显 的 体 积 改 变 , 定 时 间按 合 拢 段 锁 定 设 计 执 行 。 撑 劲 锁 支 土 施 工 的施 工 细 节 与 O 样块 施 工 细 节 相 同。 性 骨 架 采 用 “ 埋 槽 钢 +连 接 槽 钢 +预 埋 槽 钢 ” 段 式 结 构 , 断面 预 三 其 24 合 拢段 施 工 合 拢 的顺 序 是 先合 拢 两 边 孔 ,合 拢 完 毕 后 进 行 面 积 及 支 承 位 置 根 据 锁 定 设计 确 定 , 拢 时 , . 合 在两 预 埋 槽 钢 之 间设 置 主 墩 处 临 时 墩 梁 固 结 解 除 , 后 合 拢 主 孔 , 而 完成 主桥 的 合 拢 和 程 连 接 槽 钢 , 由联 结 钢 板 将 连 接 槽 钢 与 预 埋 槽 钢 焊 接 成 整 体 , 时注 然 从 并 同 序 转换 。除 中间合 拢 段 外 , 余 合拢 段 在 浇 筑 混凝 土 的过 程 中均 需 要 意 焊 缝 应 设 在 不 同截 面 处 。 时预 应 力 束按 设 计 布 置 , 拉 锚 固后 不 其 临 张 加 平衡 重 。 因边 跨现 浇 段搭 设长 度 已考虑 边 跨 合 拢 段 支 架 , 跨 合 拢 压 浆 , 拢 完 毕 后 拆 除。 边 合 段 直 接在 支 架 上 现 浇施 工 。 拢 前; 备 工 作 主 要包 括 安 装 钢筋 及 预 应 合 隹 244 浇 注 合 拢 段 混凝 土 合 拢 段 混凝 土 浇 注 过 程 中 , 新 浇 注 .. 按 力 管道 和 合 拢 段施 工 测 量 观 测。 清 除 箱梁 上 的不 必 要 的 施 工荷 载 , 其 混 凝 土 的 重 量 分 级 卸 去 平 衡 重 ( 分级 放 水 )保 证 平 衡 施 工 。 即 , 他 施 工荷 载 移 至 O #块 , T构上 的施 工荷 载 处 于平 衡 状 态 。 使 同时 要 对 245 预 应 力 施 工 合 拢 段 永 久 束 张 拉 前 , 取 覆 盖 箱 梁 悬 臂 并 .. 采 全 桥 的 桥 面 标 高 和桥 轴 线 进 行 联 测 ,观 测气 温 变 化 对 梁体 相 对标 高 洒 水 降 温 以减 小 箱 梁 悬 臂 的 日照 温 差 。 底板 预 应 力 束 管道 安 装 时要 ( 平及竖向 ) 水 的关 系 , 测 合 龙段 的长度 随温 度 变 化 而 变化 的情 况 。 采 取 措 施 保 证 管 道 畅 通 ,待 合 拢段 混凝 土达 到设 计 规 定 强 度 和 相 应 观

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑作为城市的地标和象征,其结构设计一直是建筑领域的一个重要课题。

随着城市化进程的不断加快,高层建筑的数量和高度也在不断增加,因此高层建筑结构设计的难点也逐渐凸显出来。

本文将对高层建筑结构设计的难点进行分析,并探讨如何克服这些难点。

一、受力分析复杂高层建筑由于其高度较大,受力分析通常会比较复杂。

在高层建筑的结构设计中,受力分析是基础和关键,只有深入研究高层建筑所承受的荷载和受力状况,才能有效地解决高层建筑结构设计中的难题。

在受力分析方面,高层建筑在不同楼层和不同构件上所受的荷载和力的分布都会有所不同,需要对整个建筑结构进行全方位的受力分析,确保每一个构件都能满足受力要求。

高层建筑的结构设计还需要考虑各种不同作用下的受力情况,包括静载荷、动载荷、风荷载等,这些都增加了受力分析的复杂性。

针对受力分析复杂的难点,结构设计师需要运用先进的受力分析方法和工具,如有限元分析、结构动力学分析等,对高层建筑的受力状况进行准确的模拟和计算,为结构设计提供科学的依据。

二、抗震设计要求高高层建筑所处的地理位置和环境不同,其抗震设计要求也会有所不同。

一般来说,地震是高层建筑面临的最大威胁之一,因此抗震设计是高层建筑结构设计中的一个重要难点。

高层建筑的抗震设计要求通常比较严格,需要考虑地震波的作用、建筑结构的受力状态、结构的位移要求等多个方面。

抗震设计需要考虑建筑结构在地震作用下的变形和破坏情况,要求建筑结构在地震发生时能够安全稳定地承受地震力的作用,减小地震对建筑结构的影响。

对于高层建筑抗震设计的难点,结构设计师需要根据建筑所处地区的地震烈度和其他地质条件,结合抗震设计规范,进行合理的抗震设计方案设计和结构计算。

还需要采用高性能材料和先进技术,提高建筑结构的抗震能力,确保建筑在地震发生时能够安全稳定地运行。

三、构造系统选择和优化高层建筑的构造系统选择和优化也是结构设计的难点之一。

构造系统的选择直接影响到建筑的结构性能和经济性,因此需要根据建筑的形式、功能和受力特点,合理选择和优化构造系统。

高层建筑结构设计分析(1)论文

高层建筑结构设计分析(1)论文

浅谈高层建筑结构设计的分析摘要:随着高层建筑在我国的迅速发展,建筑高度的不断增加,建筑类型与功能愈来愈复杂。

高层建筑作为特殊的建筑形式,加强其结构设计的实践探讨非常必要。

本文分析了高层建筑结构形式特点的基础上,从不同角度对加强高层建筑结构设计的思路进行了分析。

关键词:高层建筑结构设计设计分析abstract: with the high-level architecture in china’s rapid development, the construction of the height of the increasing, building type and function more and more complex. high-rise building as a special form of construction, strengthen the structure design practice discussion is very necessary. this paper analyzes the high-rise building structure based on the characteristics of the form, from various angles to strengthen high-level building structural design train of thought is analyzed.keywords: designing high-rise design analysis中图分类号:[tu208.3]文献标识码:a文章编号:前言随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层建筑得以快速发展。

另一方面由于轻质高强材料的开发及新的设计计算理论的发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为高层建筑迅速发展提供了必要的技术条件。

高层建筑结构设计案例分析(全文)

高层建筑结构设计案例分析(全文)

高层建筑结构设计案例分析(全文)第一篇范本:高层建筑结构设计案例分析一:前言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。

本文将从以下几个方面进行详细介绍和讨论。

二:背景介绍2.1 高层建筑的定义与分类2.2 高层建筑结构设计的重要性和挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.2 结构设计的常用方法和工具四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。

第二篇范本:高层建筑结构设计案例分析一:引言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。

通过详细的案例分析,我们可以探讨高层建筑结构设计的理论基础、设计方法、实际应用等方面的问题。

二:背景介绍2.1 高层建筑的定义与分类2.1.1 高层建筑的定义2.1.2 高层建筑的分类2.2 高层建筑结构设计的重要性和挑战2.2.1 高层建筑结构设计的重要性2.2.2 高层建筑结构设计面临的挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.1.1 荷载分析与计算3.1.2 结构承载体系选择3.2 结构设计的常用方法和工具3.2.1 结构设计的常用方法3.2.2 结构设计的工具和软件四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.1.1 建筑用途和功能 4.1.1.2 建筑地理环境4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计 4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.1.1 建筑用途和功能4.2.1.2 建筑地理环境4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。

浅析高层建筑结构设计与分析

浅析高层建筑结构设计与分析
工程技术
浅析高层建筑结构设计与分析
曲进莲
% 大 连建 筑技 术发 展中 心设 计院 有限 公司 " 辽 宁大 连 着 社会 发展 " 科 学技 术的 进步 " 基 本 建设 规模 的 大型 建筑 $ 高 层 建筑 等结 构 形式 越来 越多 ! 总结 了高 层 建筑 结构
2 应 用于高 层建 筑 的结 构体系
剪力墙体系! 当受力主体结构全部由平面剪力墙构件组成 时 " 即 形 成剪 力墙 体 系! 剪力 墙 体系 的 强度 和 刚度 都 比较 高 " 有 一 定 的延 性" 传力 直 接均 匀" 整 体性 好 " 抗 倒 塌能 力 强 " 是 一种 良 好的 结构 体系 " 能 建高 度大 于框 架或 框架!剪 力墙 体系 ! 框 架"剪 力墙 体 系! 当框 架体 系 的 强度 和 刚度 不 能满 足 要求 时 " 往 往 需要 在建 筑 平面 的适 当 位置 设置 较 大 的剪 力 墙来 代 替部 分 框 架" 便形 成了 框 架#剪力 墙 体系 ! 在承 受 水平 力 时 " 框 架和 剪 力 墙 通 过有 足 够 刚度 的 楼 板 和连 梁 组 成 协同 工 作 的结 构 体 系 ! 在体系中框架体系主要承受垂直荷载" 剪力墙主要承受水平剪力! 筒 体 体系 ! 凡 采用 筒 体为 抗侧 力 构 件的 结 构体 系 统称 为 筒体 体 系 " 包括 单 筒 体 $ 筒 体 $框架 $ 筒 中筒 $ 多 束筒 等 多 种 型 式 ! 筒 体 是一 种空 间 受力 构件 " 分 实 腹筒 和 空腹 筒 两种 类 型 ! 实 腹筒 是 由 平面 或曲 面 墙围 成的 三 维竖 向结 构 单体 " 空腹 筒 是由 密 排柱 和 窗 裙梁 或开 孔 钢筋 混凝 土 外墙 构成 的 空间 受 力构 件 ! 筒 体 体系 具 有 很大 的刚 度 和强 度" 各构 件 受力 比 较合 理 " 抗 风 $ 抗 震 能力 很 强" 往往 应用 于大 跨度 $ 大 空间 或超 高层 建筑 !

综述高层建筑结构设计分析

综述高层建筑结构设计分析

4 结构软件及设计 参数的采用
按建筑物抗震设 防类别 、 防烈度 、 构体 系 、 设 结 高度 、 场地类别 , 确 定建筑物的抗震等级 . 《 按 高规》 3 . 第 .2条考虑地震作用 ; 3 应根 据结构
的实际情况确定结构 的分析模型而采用不 同的结构软件 . 当体 型及结 构布置复杂 应采用至少 两个不 同力学模型 的结构分析 软件进行 整体 计算 : 结构基本周期是计算风荷载 的重要指标 . 可保 留软件 的缺省值 , 数 算。 计 l 计算后从计算 书中读取其 值 . 填入 软件的 “ 构基本周期 ” 结 选项 . 重新 【 考文献 】 参 计算 即可 : 构计算振 型数 的确定 . 以计算 结果 中的有效质量 系数 结 应 1G 5 0 0 2 0 S 北京: ] 20 . ( 规范称 为参与质量 ) 是否超过 0 来判断振型数 是否足够 , 注意振 [ ] B 0 1 — 0 2混凝 土结 构设计规范[ . 中国建筑工业 出版社,0 2 . 9 应 [] B0 1—0 1 2G 50 120 建筑抗震设 计规范【. s北京: 国建筑工业 出版社 , 0 . ] 中 2 2 0 型数不应超过结构总 自由度数 即结构层 数的 3 : 倍 当软件计算 出最大 地震作用方 向绝对值大于 1 度 时 , 5 应将数 值 回填到软件 的“ 水平力与 [ 责任编辑 : 王爽 ] 整体坐标夹角 ” 选项重新计算 . 得最不 利地震 作用方 向的效应值 。 取

5 电算结果的合理性判断
位移 比是体现结构平面不规则性 的重要指标 ,应满 足 《 规》 高 第 43 _5条规定 , . 注意位 移比的值应是在 “ 对所 有楼层强制 采用刚性楼 板 假定 ” 情况下取得 ; 周期 比是体现扭转效应 的重要 指标 ,力之 比. 是体现结构竖 向不规

浅谈高层建筑的结构设计分析

浅谈高层建筑的结构设计分析
框架体 系。
1 高层 建 筑 结构 设计 高 层建筑 结 构 设计 是为了满足 人们越 来 越 多的建 筑功 能 需 求为 基本 目 标 的。 因此 , 在 进行 高层建 筑 的结 构 设 计 时, 要 充分 考虑 到当 地的经济状况与和人民的生活水平以及施工条件的限制等因素。另 外, 高 层建筑 结 构并 不是低 层建 筑结 构 的叠加 , 其对 于 建筑 结构 的力 学性 质、 设 计构 造原 理 的要求更加 严格 规范 。 现 代高 层建筑 结构 的形 式具 备 多样 化 、 复杂化 的特 点, 除 了原有 的几种 基 本结 构 形式 , 如 框 架 结构 、 剪力墙结 构 以及简 体 结构 等 , 还 需 要根 据 不 同建 筑 的功 能 需 求而 增加 其 他 的结 构 , 同时这 也使 得建 筑 中节点 的连接 形式 更加 复杂 , 不 同的构 件连 接需 要利用 不同 的节点 类型, 这是关系着高层建筑结构安全稳定的重要因素。 另外, 高层建 筑 在增 大基层 载荷 的同时也 为竖 向结 构带 来了更 多的载荷 , 对 墙体 、 柱 体的结 构 强度和 支撑 能 力要 求更高 。 高层 建 筑的 结 构 设计 是 一 项涉 及知 识 面较 广' 考虑 因素较 多 的 现 代化建 筑设 计方 式 , 在设 计 中除了要发挥 设 计的 先进 性 , 使建 筑功 能 得 到很好 的体 现 , 还要 做 好与经济性 的协 调工作 。 2 . 高 层 建筑 结 构设 计 特点 高层建筑相较于 低层建筑 来讲, 其结构设计需要更加严谨 科 学。 笔者通过对现有的高层建筑结构进行深入的研究与分析, 结合自 身对 建筑 结 构 设 计 的理 解 , 提 出了高层 建 筑结 构 设 计不 同干其 他 建 筑结构设计 的几个特点, 主要表现在水平荷载、 轴向变形、 侧移 以及 结构 延性这 几 方面 。 2 . 1 水 平荷 载 成 为 决定 因素 。 一方面 , 因为 楼房 自重和 楼 面使 用 荷 载 在 竖构 件 中所 引起 的轴 力和 弯矩 的数 值 , 仅与 楼 房高 度 的一 次 方成正 比 ; 而水 平荷 载对 结 构产生 的倾 覆力矩 , 以及 由此 在竖 构 件中 引起的轴力, 是与楼房高度的两次方成正比; 另一方面, 对某一定高 度楼 房 来说 , 竖 向荷 载 大体上 是定值 , 而 作为水平 荷 载的风 荷 载和 地 震作用 , 其数 值是 随结 构 动力特 性的不 同而 有较 大幅度 的变化 。 2 . 2 轴向变形不容忽视。 高层建筑中, 竖向荷载数值很大, 能够 在柱 中引起 较大 的轴 向变形 , 从 而会对 连 续梁 弯矩 产生影 响 , 造 成连 续梁中间支座处的负弯矩值减小 , 跨中正弯矩之和端支座负弯矩值 增大; 还 会对 预 制构件 的下 料长 度产生 影 响 , 要求 根 据轴 向变形 计算 值, 对下料 长 度 进行 调整 ; 另外对 构件 剪力和 侧 移产 生影 响 , 与考虑 构 件竖 向变 形比较 , 会 得出偏于 不安全 的结果 。 2 . 3 侧移成为控制指标。 与较低楼房不同, 结构侧移已成为高楼 结构设计中的关键因素。 随着楼房高度的增加, 水平荷载下结构的侧 移变形迅速增大 , 因而结构在水平荷载作用下的侧移应被控制在某 限度 之内 。 2 . 4 结 构 延性 是 重要 设计 指 标 。 一 般在 建 筑 施工设 计 中, 在保证 建 筑物 应有 的强度 的同时 , 要需 要保证 建 筑物 具 有一定 的廷性 。 这是 为了使 建筑 物具 有一 定的变 形能 力, 以 适应 因 自 然 环 境或 人为 因素而

对高层建筑结构设计的要点分析

对高层建筑结构设计的要点分析
( 3 ) 设 置 嵌 固端 方 面
多塔类型计算 , 还是把结构人为的分开而计算 。假如多塔之间的刚度相差很 大, 就 容 易导 致 即使 振 型 参 与 系数 达 标 , 但 是 对 某 一座 塔 楼 的地 震 力 计 算误 差仍 然 有可 能较 大 , 从 而 给结 构带 来 安全 隐 患 。 ( 5 ) 考虑 如何 做好 非 结构 构 件的 计 算与设 计 在 高层建 筑 结 构设 计过 程 中 , 通 常存 在很 多 因 为建 筑 美观 或 功 能要 求 且 非 主体 承重 骨架 体 系 以 内的非 结构 构 件 。针 对这 一部 分 内 容 , 特 别是 高 层 建
动。
( 2 ) 结构 超 高方 面
多塔 间地 震 周期 相 互 干扰 、 近年来 , 我 国涌 现 了很 多底 盘 大 、 塔楼 多 的 新 型高层建筑类 型。作为建筑结构工程师, 必须分析是把结构作为整体并根据
现行 的抗震 规 范 和 高规 中 , 对 结 构 总高 度 有 着严 格 的限 制 , 不仅 把 原 有 限制高度设为A 级高度建筑 , 还增添了B 级高度建筑。所 以, 就结构的此项控 制 因素 必 须严 格 注 意 , 只要 结构 是 B 级 甚 至 超过 了B 级高 度 的 建筑 , 则 意 味着 设计 方 法 与处 理措 施都 会 发生 很 大 的变化 。而在 实 际结 构 设 计过 程 中 , 经常 出现 因结 构类 型 变更 而忽 略 了这 一 问 题 , 导 致 施 工 图 难 以通 过 审 查 , 要 么重 新设 计 要 么开 专家 辩证 会 议 , 这 些对 工 程 的造 价 和工期 等 都有 巨 大 的影 响 。
1 .高层 建筑 结构 设计 中应 注意 的 问题
1 . 1高层 建筑 结构 选 型阶段 结 构 工程 师 在结 构选 型阶段 应 注意 以下几 个 方面 :

高层建筑结构设计特点探析

高层建筑结构设计特点探析

高层建筑结构设计特点探析一.高层建筑结构设计特点(一)水平荷载的作用首先说明,因为楼面荷载以及建筑自身的重量在构件上的弯矩、轴力,与建筑物的高的一次方是成正比的,同时,因为水平荷载对竖构建的轴力以及水平荷载自身产生的力矩,与建筑物高的二次方是成正比;其次要说明的是,当建筑物高度达到一定程度,竖方向的荷载就会维持基本不变,对于水平荷载,地震作用和风荷载的值不是恒定不变的,会因为不同的结构而产生很大程度的变化。

(二)重视轴向变形高层建筑物的竖向的荷载会给支撑柱产生一定的压力,会引起轴向变形,而且也会改变连续梁的弯矩,从而制作的负弯矩也就会降低,也会对准备安置构建的长度产生影响;另外也会影响构建侧移和构建剪力,如果这种和竖方向的变形相比,结果显然是偏于不安全的。

(三)侧移和结构延性跟多层建筑相比,高层建筑对于设计结构中的结构侧移非常重视,楼的层数越多,高度越高,相应的水平荷载产生的构建侧移也就越大,所以,我们控制数值在一定的合格的范围。

如果产生地震,高层建筑的变形也就更大,所以,我们要做到保证建筑物在经过了塑性变形之后没有完全丧失变形能力,从而来防止发生倒塌,所以就应该尽量对结构的延性进行提升。

二.高层建筑的结构分析(一)弹性假定高层建筑物经常用到的方法其中就有弹性计算法。

因为建筑物本身收到了风力和垂直荷载的作用,就会使得结构处于一种弹性工作状态,实际情况基本与这种情况类似。

一旦出现大风或者出现大震就会导致高层建筑物位移量增大,有可能导致建筑物本身出现裂缝,处于一种弹塑性工作状态,这种情况计算位移就不能运用弹性计算法,不然误差很大,这种情况,计算就需要运用弹塑性动力法,这样的计算结果才更接近结构的真实状态。

(二)小变形假定一般的计算方法经常采用这种假定,不过在计算的时候要考虑一下几何非线性问题的研究。

很多人认为,当顶点水平为何与楼房本身的高度比例一旦大于1/500,就要重视两者之间产生的影响。

(三)刚性楼板假定在进行高层建筑物的分析计算中,一般不考虑平面外的刚度,一般情况都是对平面内的楼板刚度假设很大。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑的结构设计是一个复杂而关键的任务,难点主要表现在以下几个方面:1. 抗震设计:高层建筑容易受到地震影响,因此抗震设计是一个难点。

设计师需要根据地震带、地质条件等因素确定建筑的抗震等级,并采取相应的抗震措施,如增加建筑的自重、采用高强度的结构材料、设置抗震支撑结构等。

2. 风荷载设计:高层建筑身处于高空,容易受到风的影响,所以风荷载设计也是一个难点。

设计师需要根据建筑的形状、高度、风速等因素计算出风荷载,并合理地设置建筑的剪力墙、风柱等结构来承受风荷载。

3. 结构稳定性设计:高层建筑的结构需要具备良好的稳定性,以保证整个建筑的安全。

设计师需要考虑建筑在各种荷载作用下的稳定性,如重力荷载、水平荷载等,并设计合理的结构系统,如框架结构、筒状结构等来提高建筑的稳定性。

4. 梁柱布置与结构空间利用:高层建筑的梁柱布局需要兼顾结构的稳定性和空间利用的效果,这是一个难点。

设计师需要考虑梁柱的数量、间距、位置等因素,并合理地布置在建筑的空间内,以满足结构的要求同时最大化地利用空间。

5. 结构材料选择与施工工艺:高层建筑的结构材料选择和施工工艺也是一个难点。

设计师需要考虑结构材料的强度、耐久性、抗腐蚀性等特性,并选择合适的材料来满足结构的要求。

施工工艺也需要与结构设计相匹配,确保结构施工的质量和安全。

6. 结构监测与维护:高层建筑的结构监测与维护是一个难点。

设计师需要设计合理的结构监测系统,及时监测结构的变形、裂缝等情况,并采取适当的维护措施来保证建筑的结构安全和使用寿命。

高层建筑结构设计的难点在于抗震设计、风荷载设计、结构稳定性设计、梁柱布置与结构空间利用、结构材料选择与施工工艺以及结构监测与维护等方面,设计师需要综合考虑这些因素,确保建筑的结构安全和稳定。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析
高层建筑是如今城市中常见的建筑形式,其不仅可以提供更多的空间,同时也是城市
发展的标志。

由于高层建筑的结构设计需要考虑的因素较多,所以其设计难度也相对较大。

本文将从地基承载、风荷载、地震作用等方面分析高层建筑结构设计的难点。

一、地基承载
地基承载是高层建筑结构设计中的一大难点。

在选择地基承载方式时,需要考虑建筑
物的自重、荷载、地基土壤的承载力等因素。

地基土壤的承载力对地基承载能力起着至关
重要的作用。

不同地基土壤的承载力不同,所以需要根据实际情况进行地基土壤勘察,以
确定地基承载方式和地基基础结构。

高层建筑地基承载还需要考虑地铁、地下管线等因素
的影响,这些都会对地基承载产生一定的影响,需要结构设计师进行合理的考虑和设计。

二、风荷载
风荷载是高层建筑结构设计中的另一大难点。

由于高层建筑受到风力的作用,所以需
要考虑风荷载对建筑物的影响。

通常情况下,高层建筑结构设计中会对建筑物采取一些措
施来减小风荷载的影响,比如采用空气动力学设计、采用减震措施等。

高层建筑结构设计
中还会考虑到建筑的稳定性和抗风性能,这些也是结构设计中需要进行综合考虑的因素。

所以,在高层建筑结构设计中,风荷载是需要进行综合分析和设计的一大难点。

地基承载、风荷载、地震作用等因素都是高层建筑结构设计中的难点。

尽管如此,随
着科技的发展和建筑技术的不断进步,相信这些难点在未来会得到更好的解决。

相信在不
久的将来,高层建筑的结构设计将更加完善,也将为城市的发展和规划带来更多的可能。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析
高层建筑的结构设计是建筑工程中的重要环节,也是一个有挑战性的任务。

以下是高
层建筑结构设计中的几个主要难点分析:
1. 抗震设计:高层建筑经常面临地震的挑战,因此抗震设计是高层建筑结构设计中
的重点难点。

抗震设计需要考虑地震力的作用,建筑结构的强度和刚度,以及地基的稳定性。

对于超高层建筑来说,还需要考虑到高层建筑震动与环境的相互作用以及风振效应。

2. 风力设计:高层建筑的高度使其容易受到风的影响,因此风力设计是高层建筑结
构设计的另一个难点。

风力设计需要考虑到建筑物的外形、物理特性以及周围环境的影响,以确定建筑物的抗风能力和稳定性。

3. 结构强度设计:高层建筑的结构强度设计需要考虑到建筑物自重、荷载、温度等
因素,以满足建筑物的安全性和稳定性要求。

在高层建筑中,由于结构自重和承载荷载的
增加,会给结构设计带来更大的困难。

4. 建筑材料选择:高层建筑结构设计中还需要考虑到合适的建筑材料选择。

建筑材
料需要满足高层建筑的强度、刚度和耐久性要求,并且还需要考虑到材料的重量、耐候性、施工方便性等因素。

5. 施工技术:高层建筑的施工过程对结构设计也会带来一定的挑战。

由于高层建筑
的高度和复杂性,施工过程需要采用先进的技术和方法,确保建筑物的结构安全和施工进
度的控制。

高层建筑结构设计要点分析

高层建筑结构设计要点分析

高层建筑结构设计要点分析摘要:伴随着城市化脚步的不断加快,各大城市中高层建筑的建设数量不断增加。

但在高层建筑建设时,假如一味的运用传统的结构设计方案,就无法满足当前时代对于设计的要求,再加上建筑使用功能和类型有所不同,在结构体系方面也呈现出多样化的趋势。

所以,一定要结合实际情况来对结构设计问题进行良好的探讨,保障结构设计更加科学合理,让企业获取经济利益,在无形当中推动整个建筑行业得到良好发展。

关键词:高层建筑;结构设计;要点1高层建筑结构设计的特点和原则1.1高层建筑结构设计的特点高层建筑结构设计特点包括:1)高层建筑相比普通建筑的楼层高度较高,在施工设计以及具体实施方面都存在较大区别。

高层建筑结构设计方案要根据建筑的要求有侧重点地进行。

2)轴向变动也是高层结构设计要考虑的重要因素,竖向承载力的大小直接决定了结构的轴向变形情况,一般竖向承载力越大,结构的轴向变形越大,会对楼面标高产生不可忽视的影响。

3)高层建筑水平荷载产生的阻力与建筑楼层数成正比,而整个建筑高度的二次方与水平负荷的倾覆力、竖向承载轴力成正比,并且该比值随着建筑物高度的增加而增加,对整个建筑结构会产生较大影响。

所以,高层建筑结构设计中需考虑水平负荷。

1.2高层建筑结构设计的原则为了满足现代化建设对高层建筑功能以及外观越来越多的不同需求,建筑设计师的设计理念需实时更新,不断将现代化元素加入新的设计理念中,使设计方案不仅符合现代化的外观审美,还要根据功能的需要,符合现代化内部结构安排。

1)根据建筑功能设计合适的方案,任何建筑工程要顺利开展施工,如期完成任务,实现更高的综合效益,都应有合理、完善的建筑结构设计方案。

设计过程中,要结合当地的地形与地质条件、建筑功能等因素,适当运用科学技术手段融合先进的知识理念进行高层结构设计,通过综合考察和分析设计出可执行性和实用性较强的方案。

2)抗震设计要合理。

为了保证高层建筑的质量和安全,对建筑抗震性能的要求较高,设计师在设计方案时应充分考虑当地的地质结构和板块构造,准确分析地震发生频率和地震级别,对建筑的抗震性能提出针对性的、安全可靠的设计方案,保证抗震设计的合理性。

超高层建筑的承重结构与设计分析

超高层建筑的承重结构与设计分析

超高层建筑的承重结构与设计分析随着城市化的发展,对城市土地使用的需求愈加紧迫,建筑也开始向垂直方向发展。

超高层建筑的出现为城市空间的合理利用提供了更多的空间选择,同时也为建筑结构设计提出了更高的要求。

承重结构是超高层建筑设计的核心,因此它的设计也显得尤为重要。

本文将深入探讨超高层建筑承重结构的设计分析。

一、超高层建筑的承重结构类型超高层建筑的承重结构主要分为框架结构、钢管混凝土结构、钢结构和混凝土核心筒结构四种类型。

1. 框架结构框架结构是一种常用于高层建筑的结构形式。

该结构主要由钢筋混凝土框架所组成,结构柱、横梁和地基等部件连接成一个整体,承受建筑自重及外部荷载,为高层建筑提供足够的承载能力。

框架结构适用于高层住宅、办公楼等建筑,其设计方法简单,施工方便,而且具有很高的抗震性能和承载能力。

2. 钢管混凝土结构钢管混凝土结构是一种由圆形或方形钢管和混凝土组成的结构,其承载能力较强,抗震能力好。

钢管混凝土结构可以与框架结构形成混合结构,以适应不同建筑的设计要求。

3. 钢结构钢结构是一种采用钢材作为主要承重构件,其结构轻巧,操作方便,施工速度较快,且易于拆除和重建。

钢结构的使用广泛,适用于各种类型的建筑,比如桥梁、体育馆、展览馆等等。

4. 混凝土核心筒结构混凝土核心筒结构是一种常见的超高层建筑承重结构类型。

其核心部分由混凝土构成,在核心周围设置框架结构或钢结构,在承受建筑自重及外部荷载的同时,为建筑提供强大的抗震能力和稳定性。

二、超高层建筑承重结构设计的基本要素超高层建筑承重结构设计的基本要素包括荷载、受力特点、结构形式、结构件尺寸及材料,以及结构施工方式等。

1. 荷载荷载是超高层建筑承重结构设计的基础。

建筑的自重、住户或办公人员等的荷载、风荷载、地震荷载等都是超高层建筑承重结构设计需要考虑的荷载,设计师需要根据这些荷载合理确定建筑的承载能力。

2. 受力特点超高层建筑承重结构受力特点和受力形式是构造设计方案的基础,这是因为建筑的承重远远超出了其重量所需要承受的荷载。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑结构设计是一项复杂而具有挑战性的工作,其中存在着许多难点。

本文将从以下几个方面分析高层建筑结构设计的难点。

高层建筑结构的自重和荷载可能较大。

高层建筑需要承载较高的楼层和大型的设备设施,因此其自重和荷载也会相应增大。

这就要求设计师在结构设计中充分考虑各种荷载并进行合理的分配,确保结构能够承受并分散各种力的作用,防止结构的过载和破坏。

高层建筑结构设计需要考虑地震和风荷载等外部荷载的作用。

地震和风荷载是高层建筑结构设计中最重要的荷载。

由于高层建筑的高度和纵横比较大,其在地震和风荷载下的响应可能比普通建筑更加复杂和剧烈。

设计师必须充分了解地震和风荷载的特点,并运用现代结构分析和设计方法进行结构设计,以确保高层建筑在地震和风荷载下的安全性和稳定性。

高层建筑结构设计需要解决建筑形态和空间布局的问题。

高层建筑常常具有复杂的建筑形态和特殊的空间布局要求,例如楼板的跨度大、柱网的密集度高、立面的变化多样等。

这些特点给结构设计带来了困难,需要设计师采用合适的结构形式和布局方案,并进行优化设计,既满足建筑形态和空间布局的要求,又保证结构的稳定性和经济性。

第四,高层建筑结构设计需要充分考虑施工和维护的难题。

高层建筑的施工和维护常常具有一定的困难,例如高空吊装、混凝土浇筑、悬挑结构的施工等。

在结构设计中需要考虑施工的可行性和安全性,为施工过程提供合适的结构支撑和临时构筑物。

还要考虑高层建筑的维护难题,例如如何进行结构检测和维修等,以延长高层建筑的使用寿命。

高层建筑结构设计需要综合考虑多个因素和要求。

高层建筑的结构设计涉及到诸多因素和要求,例如建筑功能、建筑材料、节能环保、经济性等。

设计师需要全面考虑各种因素和要求,权衡各种因素之间的关系,找到一个最佳的设计方案。

高层建筑结构设计存在许多难点,包括自重和荷载的问题、地震和风荷载的问题、建筑形态和空间布局的问题、施工和维护的问题以及多因素综合考虑的问题。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析随着城市化进程的不断加快,越来越多的高层建筑如雨后春笋般拔地而起,成为城市的标志性建筑和地标性建筑。

高层建筑的设计和施工不仅需要考虑建筑的外观美感和功能性,更需要为建筑的结构安全和稳定进行设计。

高层建筑结构设计是一项复杂的工程,其中存在着许多难点和挑战。

本文将从材料选择、结构设计、地基处理等方面对高层建筑结构设计的难点进行分析。

1. 材料选择在高层建筑结构设计中,材料的选择是一个极为关键的问题。

高层建筑需要承受巨大的自重和外部荷载,因此材料的强度和耐久性至关重要。

常见的建筑材料包括混凝土、钢筋、钢材等,它们的质量和性能直接影响着建筑的安全性和稳定性。

传统意义上,混凝土是主要的建筑材料,但是随着钢结构技术的发展,钢结构在高层建筑中的应用越来越广泛。

如何选择适合的材料,保证其质量和性能,是高层建筑结构设计中的一个重要难点。

2. 结构设计高层建筑的结构设计是一个复杂的系统工程,需要综合考虑建筑的受力性能、动力响应、变形控制等诸多因素。

在结构设计过程中,需要进行综合的计算和分析,确定合理的结构形式和施工方案。

还需要考虑整体结构和局部结构之间的协调性和稳定性,确保建筑能够承受各种外部荷载和环境影响。

现代高层建筑不仅需要考虑结构的力学性能,还需要兼顾建筑的美观性和空间布局,如何在这些因素之间取得平衡,也是高层建筑结构设计的难点之一。

3. 地基处理高层建筑的地基处理是一个影响建筑安全和稳定的关键环节。

由于高层建筑的自重较大,地基的承载能力需求也较高。

在地质条件复杂的地区,地基处理更是一项极为复杂的工程。

地基处理不当可能导致高层建筑的沉降和倾斜,严重影响建筑的使用和安全。

如何进行科学合理的地基勘察和处理,是高层建筑结构设计的一大难点。

4. 抗震设计在地震带地区,高层建筑的抗震设计更是一项重要的工作。

地震荷载会对建筑结构产生巨大影响,如何在设计中考虑地震作用,保证建筑在地震中的安全性和稳定性,是高层建筑结构设计中的又一难点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈高层建筑结构设计分析
摘要:为了满足现代城市人口急速增长和人类物质生活的需要,追求新的建筑结构形式,进一步发展高层建筑,本文对高层建筑结构受力特点,结构布置和设计中应注意的一些问题和特点作简要分析。

关建词:高层建筑;结构设计;受力特点;设计分析。

随着现代社会经济的不断发展,人民生活质量水平不断提高,人类的居住环境、居住条件和居住需求也在不断的变化,在国家对土地使用制度控制越来越严格,建筑用地更是越来越稀薄。

建筑物越来越朝着超高层建筑的方向发展,钢筋混凝土结构已经不能满足建筑效益、建筑结构、建设设计和某些特殊功能要求的需要。

钢结构因为重量轻、强度高、塑性韧性好、制作简便,施工工期短而被广泛的应用于高层建筑上,现在的高层建筑结构也越来越向钢结构化方面发展。

1、高层建筑结构的受力特点
建筑结构所受的外力(作用)主要来自垂直方向和水平方向。

在低、多层建筑中,由于结构层数少、平面尺寸较大,其高宽比很小,且结构受风荷载和地震影响也很小,故结构以抵抗竖向荷载为主。

也就是说,竖向荷载往往是结构设计的主要控制因素。

在高层建筑中,首先,在竖向荷载作用下,各楼层竖向荷载所产生的框架柱轴力为:边柱N=wlH/2h,中柱N=wlH/h,即框架柱的轴力和建筑结构的层数成正比;边柱轴力比中柱小,基本上与其受荷面积成正比。

就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。

其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由其底部产生的倾复弯矩为:水平均布荷载Mmax=qH2/2,倒三角形水平荷载Mmax=Oh3/3,即结构底部产生的倾复弯矩与楼层总高度的平方成正比。

就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就越大,较竖向荷载对结构所产生的累积效应增加越快,其产生的结构内力占总结构内力的比重越大,从而成为高层结构强度设计的主要控制因素。

高层建筑结构的主要受力构件有剪力墙、框架柱、梁和楼板。

剪力墙、框架柱足竖向构件,它们是形成结构抗侧力刚度的最主要构件,承担着整个结构的竖向荷载和绝大部分水平荷载;框架梁、楼板是水平构件,结构各楼层的竖向荷载通过楼板传至框架梁再传给竖向构件,同时,对结构抗侧力刚度也有贡献颇的框架梁.还和竖向构件一起承担整个结构的荷载水平荷载;次外,有些高层建筑结构还有斜向构件,它们对结构抗侧力刚度贡献很大,对构件之间的传力起着重要作用,除自重外,一般不直接受荷。

结构在水平阵风作用下,当振动加速度a超过0.015G时会使人的正常生活受影响,因为加速度α=A(2πf),当频率f为定值时,α与振幅A成正比,因此结构的侧移幅值的大小要受限制。

过大的侧移易使隔墙、围护结构以及高级装修受损,地震或阵风引起的过大变形也会造成电梯轨道无法使用。

结构过大的变形会引起结构的二阶效应,造成结构杆件产生附加内力,影响结构承载力。

如果高层建筑采用的是钢结构,和普通的钢筋混凝土结构相比钢结构自身具有很强的变形能力,且在钢结构中采用的隔墙、装饰材料又多为较轻,采用的幕墙、悬挂板、铝板等变形能力较强,所以钢结构JGJ99-98标准中规定的限值标准要比钢筋混凝土结构规定的限制标准宽松。

2、高层建筑钢结构设计分析
高层建筑钢结构设计中,结构工程师应与建筑师紧密配合,要考虑建筑特点、功能、荷载性质、材料供应、制作安装等多种因素,择优选取利于抗震、抗风又经济合理的结构体系和平立面布置。

常用的高层建筑钢结构体系有框架体系,双重抗侧体系(钢框架一支撑或剪力墙板体系、钢框架一混凝土剪力墙体系、钢管混凝土框架一剪力墙体系、钢框架一混凝土核心简体系)、简体体系(框简体系、简中简体系、桁架简体系、框筒束体系)和巨型框架体系。

无论采用什么结构体系,具体设计中都应使结构具有明确的计算简图、合理的传力途径、多道抗震防线,力求形成立体构件或尽量使结构能趋向于实现总体屈服机制。

结构布置和设计中应尽量使结构具有以下几方面的特点,或注意考虑到以下一些原则。

1、使结构构件能形成立体化,在竖向构件布置时,尽量使由墙或密柱与深梁能组成简体或巨型柱,使结构单元形成不同力学特性的立体构件,构成在任何方向都具有较大的刚度与抵抗力矩的能力。

2、使柱或巨型柱周边布置,将柱沿平面周边设置使结构整体具有更大的抗侧和抗扭刚度。

3、使结构支撑化。

在框筒结构体系中由于水平力作用下存在固有的剪力滞后效应,当功能需要加大柱间距时剪力滞后效应更易削弱结构的抗侧刚度,影响水平承载力,因此在框筒中增设支撑能强化框筒;当房屋四角有巨柱采用支撑使其形成立体支撑体系更有利于抵抗各向力,发挥其材料潜力。

4、园锥形能减小风载体型系数和增大抗侧抗扭刚度,特别在非地震区南风荷载起控制作用的高层建筑,采用园锥体型能节约材料经济性好。

5、选用高强、轻质材料,有条件时设置安装传感器、质量驱动装置等减振设置使其动力反应智能化。

6、应积极探讨将目前的整体结构分析、单个构件设计向整体结构分析、整体结构构件设计方向发展考虑,使各构件的承载力可靠度尽量一致。

7、用增大结构阻尼方法以减小结构加速度;用合理的几何平、剖面图形合理的墙板及构件连接方法来减小侧向位移,而不要随意采用加大柱截面的方法来提高抗侧抗弯刚度。

实践证明外柱布置远离平面重心或芯筒,或使外柱沿建筑物全高向内全高度倾斜等方法均能有效地减小侧向位移值,用增加主梁的线刚度EI/L在框架中也能起到减少侧向位移的作用;而采用加大柱截面的方法来提高框架抗侧刚度其效果将很小且不经济。

一般框架刚度通常取决于大梁刚度而不是柱的刚度,因为一般跨度和层高的建筑中柱的刚度比梁刚度已大很多。

8、在结构的平面与剖面设计中应尽量避免出现不规则体型。

建筑的开间进深应尽量统一,框筒、墙、支撑的布置尽量对称。

常用的框筒结构中为充分发挥框筒作用应严格控制房屋的高宽比,且内筒边长不宜小于相应外筒边长的1/3,框简柱跨不宜大于层高,框筒裙梁高度不宜小于800mm,框筒结构为矩形平面时其长宽比不宜大于 1.5:1,否则应改用框简束体系。

筒的墙面开洞面积宜小于50%墙面积,内外简之问的间距一般可取l0-16m,为了保证角柱具有足够的承载力,角柱宜为中心柱截面积的1.5 -2倍。

一般还应该根据具体情况选用支撑,型钢混凝土墙板、竖缝钢筋混凝土墙板或钢板剪力墙等作为主要抗侧构件。

注意应使支撑、剪力墙能沿高度竖向一致连续布置。

边柱外柱应尽量使其参与结构整体抗弯以增加整个结构的抗侧刚度和承载力,在抗震设计中应注意使结构形式强节点弱杆件、强竖弱平、强压弱拉。

柱的超载必须避免,屈服应控制在梁和支撑上,要多道传力途径,多道设防,适当增多结构的超静定次数。

要避免水平刚度产生偏心和竖向刚度、强度的突变。

节点连接应刚强,
3、在地震作用下建筑结构设计
地震时,由于地震波的作用产生地面运动,通过房屋基础影响上部结构,使结构产生振动,房屋振动时产生的惯性力就是地震荷载。

地震波可能使房屋产生垂直振动与水平振动,但一般对房屋的破坏主要是由水平振动引起,因此,设计中主要考虑水平地震力。

地震荷载是惯性力,因此它的大小除了和结构的质量有关外,还和结构的运动状态有关,通常把结构的运动状态(各质点的位移、速度、加速度)称为地震反应。

地面运动情况可以由地面加速度波形来描述,不同的地震、不同的场地、不同的震中距都会产生不同的地面运动。

据观测,在岩石等坚硬地基中,地震波的卓越周期大约是0.1—0.3秒左右,而在深层软土地基中,其卓越周期可能达到1.5—2秒。

这样的周期与一般的建筑物周期(0.3-3秒)相当接近,因而一般建筑物的地震反应比较明显,在达到一定震动强度时,很容易引起震害。

一般情况下,结构较柔,周期加长时,地震力减小。

高层建筑具有较长的自振周期,容易跟地震波中的长周期分量发生共振。

且地震波在土中传播时,短周期分量衰减迅速,长周期分量则传播较远。

大量震害表明:与低层建筑相比,高层建筑受地震影响的范围更广一些,振害后果也更严重一些,特别在软土地基上,更是如此。

所以较确切地估计高层建筑的地震作用,是十分必要的。

4、结语
高层建筑结构设计中应根据实际情况做好结构分析,多做方案比较,建筑设计者必须从当今经济现状和发展趋势出发,建立一个合理的结构设计理念,合理确定建筑设计标准、经济性措施和原则,这样不仅满足设计各类需求,同时改善人类的居住环境。

相关文档
最新文档