安徽省宿州市泗县二中高一数学上学期期中试题新人教A版
人教A版数学必修一高一上学期期中考试数学(A版)测试题.doc

高中数学学习材料唐玲出品高一上学期期中考试数学(必修1A 版)测试题班级: 姓名:一、选择题:(5分*10)1、不等式453x -<的解集为( )(A )2x > (B ) 2 x < (C )()2,+∞ (D )(),2-∞ 2、设集合{}24A x x =≤<,{}3782B x x x =-≥-,则A B ⋃=( ) (A )(3,4) (B )[)2,+∞ (C )[)2,4 (D )[]2,3 3、函数1y x=-的定义域为( ) (A )(),0-∞ (B )()0,+∞ (C )()(),00,-∞⋃+∞ (D )R 4、函数2y x =-的单调区间为( )(A )(),0-∞为减区间 (B )()0,+∞为增区间(C )(),-∞+∞ (D )(),0-∞为增区间,()0,+∞为减区间5、计算341681-⎛⎫⎪⎝⎭的值为( )(A )278 (B )278- (C )32 (D )32-6、已知4个数:32,412-⎛⎫⎪⎝⎭,ln 3,ln 2,其中最小的是( )(A )32 (B )412-⎛⎫⎪⎝⎭(C )ln 3 (D )ln 27、函数232y x x =-+的零点是( )(A )()1,0 (B )()2,0 (C )()1,0,()2,0 (D )1,2 8、函数()0.5log 43y x =-的定义域为( )(A )[)1,+∞ (B )3,04⎛⎫ ⎪⎝⎭ (C )3,4⎛⎫-∞ ⎪⎝⎭ (D )3,14⎛⎤⎥⎝⎦9.函数6x )5a (2x y 2--+=在]5,(--∞上是减函数,则a 的范围是 A .0a ≥ B .0a ≤ C .10a ≥ D .10a ≤10.指数函数x x x x d y c y b y a y ====,,,在同一坐标系内的图象如右图所示,则d c b a ,,,的大小顺序是 ( ) A .c d a b <<<B .c d b a <<<C .d c a b <<<D .d a c b <<<二、填空题: (5分*4)11、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 .12、已知函数1log ey x = 1,x e e ⎡⎤∈⎢⎥⎣⎦, 则函数的最小值为 最大值为13、函数2x y =的图象关于直线y x =对称所得图象对应的函数解析式为 14、以下五个函数中:①21y x =,②22y x =,③2y x x =+,④1y =,⑤1y x=,幂函数的是 (填写符合的序号)三、解答题:(共80分)15、设平面内直线1l 上的点的集合为1L ,直线2l 上的点的集合为2L ,试用集合的运算表示1l ,2l 的位置关系:(12分)o1 y xx a y =x dy =x by = xc y =16、(14分)已知函数y x = (1)作出函数图象(2)判断函数的奇偶性。
新人教A版高一上学期数学期中试卷(含答案解析)

新人教A 版高一上学期摸底试卷数 学 试 卷 (十九)A 卷第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 设全集=U R ,{}0342<+-=x x x A ,{}032<-=x x B ,则 A (C U B )= 【 】 (A )⎪⎭⎫ ⎝⎛23,1 (B )⎪⎭⎫⎢⎣⎡3,23 (C )()+∞,1 (D )⎪⎭⎫ ⎝⎛∞-23,2. 命题“所有的正数都有算术平方根”的否定是 【 】 (A )所有的正数都没有算术平方根 (B )所有的非正数都有算术平方根 (C )至少存在一个正数有算术平方根 (D )至少存在一个正数没有算术平方根3. 已知函数()⎩⎨⎧<+≥=0,10,2x x x x x f ,若()()32=+-a f f ,则实数a 的值为 【 】(A )2- (B )2或3 (C )2 (D )2-或34. 已知实数n m x x ,,,21满足n m x x <<,21,且()()011<--x n x m ,()()022<--x n x m ,则下列说法正确的是 【 】 (A )n x x m <<<21 (B )21x n x m <<< (C )n x m x <<<21 (D )21x n m x <<<5. 不等式122322++++x x x x ≥m 对任意实数x 都成立,则实数m 的取值范围是 【 】(A )(]2,∞- (B )⎪⎭⎫⎢⎣⎡+∞,310 (C )⎥⎦⎤⎢⎣⎡310,2 (D )(]⎪⎭⎫⎢⎣⎡+∞∞-,3102,6. 已知()x f 是定义在R 上的增函数,若()x f y =的图象过点()1,2--A 和点()1,3B ,则满足()111<+<-x f 的x 的取值范围是 【 】(A )()3,2- (B )()2,3- (C )()4,1- (D )()1,1-7. 若b a ,为正数,111=+b a ,则1811-++-b b a 的最小值为 【 】 (A )2 (B )7 (C )10 (D )178. 函数()x x x x x f -++--=22212的最大值为 【 】(A )2 (B )23 (C )25(D )2二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知方程0542=+--m x x 的两个根一个大于1,一个小于1,则下列选项中满足要求的实数m 的值为 【 】 (A )2 (B )3 (C )4 (D )510. 下列函数中,是偶函数,且在区间()1,0上为增函数的是 【 】 (A )x y = (B )21x y -= (C )xy 1-= (D )422+=x y 11. 若下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2-(B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+ (C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 12. 函数()xax x f -=(∈a R )的大致图象可能是 【 】(A ) (B ) (C ) (D )第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知全集{}1,2,12++-=a a U ,{}2,1+=a A ,C U A {}3=,则=a __________.14. 函数()⎩⎨⎧<<≥=tx x tx x x f 0,,2是区间()+∞,0上的增函数,则实数t 的取值范围是__________.15. 已知幂函数()()m x m m x f 12--=为奇函数,则=m __________,函数()m x x g n m +=+2(∈n R )的图象必过点__________.(第一个空2分,第二个空3分)16. 已知函数()2+=x f y 为偶函数,()142+-=x x x g ,且()x f 与()x g 图象的交点为A 、B 、C 、D 、E ,则交点的横坐标之和为__________.四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}73<≤=x x A ,{}102<<=x x B ,{}a x a x C <<-=5. (1)求B A ;(2)若()B A C ⊆,求实数a 的取值范围.18.(本题满分12分)设命题:p 实数x 满足03422<+-a ax x ,命题q :实数x 满足9125<+<x . (1)若1=a ,且q p ,同为真命题,求实数x 的取值范围;(2)若0>a ,且q 是p 的充分不必要条件,求实数a 的取值范围.19.(本题满分12分)已知幂函数()x f 的图象经过点()27,3--. (1)求()x f 的解析式;(2)判断()x f 的单调性并用定义法证明.20.(本题满分12分)某厂家拟举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足13+-=m kx (k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定位每件产品平均成本的1. 5倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数; (2)该厂家年促销费用投入多少万元时,厂家的利润最大?21.(本题满分12分)已知函数()xax x f +=2,且()21=f .(1)判断并证明函数()x f 在其定义域上的奇偶性; (2)证明:函数()x f 在()+∞,1上是增函数; (3)求函数()x f 在区间[]5,2上的最值.22.(本题满分12分)若函数()x f 在[]b a x ,∈时,函数值y 的取值区间恰为⎥⎦⎤⎢⎣⎡a b 1,1,就称区间[]b a ,为()x f 的一个“倒域区间”.定义在[]2,2-上的奇函数()x g ,当[]2,0∈x 时,()x x x g 22+-=. (1)求()x g 的解析式;(2)求函数()x g 在[]2,1内的“倒域区间”;(3)如果将函数()x g 在定义域内所有所有“倒域区间”上的图象作为函数()x h y =的图象,那么是否存在实数m ,使集合()(){}(){}m x y y x x h y y x +==2,, 恰含有2个元素?新人教A 版高一上学期摸底试卷数 学 试 卷 (十九)A 卷 答 案 解 析第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 设全集=U R ,{}0342<+-=x x x A ,{}032<-=x x B ,则 A (C U B )= 【 】 (A )⎪⎭⎫ ⎝⎛23,1 (B )⎪⎭⎫⎢⎣⎡3,23 (C )()+∞,1 (D )⎪⎭⎫ ⎝⎛∞-23,答案 【 B 】解析 本题考查集合的基本运算.{}{}310342<<=<+-=x x x x x A ,{}⎭⎬⎫⎩⎨⎧<=<-=23032x x x x B . ∴C U B =⎪⎭⎫⎢⎣⎡+∞,23.∴ A (C U B )=⎪⎭⎫⎢⎣⎡3,23.∴选择答案【 B 】.2. 命题“所有的正数都有算术平方根”的否定是 【 】 (A )所有的正数都没有算术平方根 (B )所有的非正数都有算术平方根 (C )至少存在一个正数有算术平方根 (D )至少存在一个正数没有算术平方根 答案 【 D 】解析 本题考查全程量词命题的否定.对含有一个量词的命题进行否定的方法是:改变量词,否定结论.全称量词命题的否定一般来说,对含有一个量词的全称量词命题进行否定,我们只需把“所有的” “任意一个”等全称量词,变成“并非所有的”“并非任意一个”等短语即可.也就是说,假定全称量词命题为“()x p M x ,∈∀”,则它的否定为“并非()x p M x ,∈∀”,也就是“M x ∈∃,()x p 不成立”.用“⌝()x p ”表示“()x p 不成立”. 对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:()x p M x ,∈∀,它的否定:M x ∈∃,⌝()x p .也就是说,全称量词命题的否定是存在量词命题.∴选择答案【 D 】.3. 已知函数()⎩⎨⎧<+≥=0,10,2x x x x x f ,若()()32=+-a f f ,则实数a 的值为 【 】(A )2- (B )2或3 (C )2 (D )2-或3 答案 【 C 】解析 本题考查分段函数的知识.()1122-=+-=-f∵()()32=+-a f f ,∴()31=+-a f ,∴()4=a f .∴⎩⎨⎧=≥402a a 或⎩⎨⎧=+<410a a ,解之得:2=a 或无解. ∴实数a 的值为2. ∴选择答案【 C 】.4. 已知实数n m x x ,,,21满足n m x x <<,21,且()()011<--x n x m ,()()022<--x n x m ,则下列说法正确的是 【 】 (A )n x x m <<<21 (B )21x n x m <<< (C )n x m x <<<21 (D )21x n m x <<< 答案 【 A 】解析 本题考查三个“二次”之间的关系.由题意可知,21,x x 是一元二次不等式()()0<--x n x m ,即()()0<--n x m x 的两个解. ∵n m x x <<,21,∴n x m <<. ∴n x x m <<<21. ∴选择答案【 A 】.5. 不等式122322++++x x x x ≥m 对任意实数x 都成立,则实数m 的取值范围是 【 】(A )(]2,∞- (B )⎪⎭⎫⎢⎣⎡+∞,310 (C )⎥⎦⎤⎢⎣⎡310,2 (D )(]⎪⎭⎫⎢⎣⎡+∞∞-,3102,答案 【 A 】解析 本题考查与不等式有关的恒成立问题.∵∈∀x R ,有04321122>+⎪⎭⎫ ⎝⎛+=++x x x∴不等式122322++++x x x x ≥m 可化为2232++x x ≥()12++x x m .整理得:()()m x m x m -+-+-2232≥0当03=-m ,即3=m 时,1--x ≥0,解之得:x ≤1-,不符合题意;当3≠m 时,则有()()()⎪⎩⎪⎨⎧≤----=∆>-02342032m m m m ,解之得:m ≤2. 综上所述,实数m 的取值范围是(]2,∞-. ∴选择答案【 A 】.6. 已知()x f 是定义在R 上的增函数,若()x f y =的图象过点()1,2--A 和点()1,3B ,则满足()111<+<-x f 的x 的取值范围是 【 】(A )()3,2- (B )()2,3- (C )()4,1- (D )()1,1- 答案 【 B 】解析 本题考查利用函数的单调性解抽象不等式. 由题意可知:()12-=-f ,()13=f .∵()x f 是定义在R 上的增函数,()111<+<-x f ∴()()()312f x f f <+<-.∴312<+<-x ,解之得:23<<-x . ∴x 的取值范围是()2,3-. ∴选择答案【 B 】. 7. 若b a ,为正数,111=+b a ,则1811-++-b b a 的最小值为 【 】 (A )2 (B )7 (C )10 (D )17 答案 【 B 】解析 本题考查利用基本不等式求最值. ∵111=+b a ,∴1-=b ba . ∵b a ,为正数,∴1>b .11911911111811+-+-=-+-+--=-++-b b b b b b b b a ≥()711912=+--b b . 当且仅当191-=-b b ,即34,4==a b 时,等号成立.∴1811-++-b b a 的最小值为7. ∴选择答案【 B 】.8. 函数()x x x x x f -++--=22212的最大值为 【 】(A )2 (B )23 (C )25(D )2答案 【 B 】解析 本题考查用换元法确定函数的最值.注意换元后标明新元的取值范围. 函数()x f 的定义域为[]2,0.设x x t -+=2,则22222x x t -+=,∴121222-=-t x x . ∵()1122222222+--+=-+=x x x t ,∈x []2,0∴[]4,22∈t ,∴[]2,2∈t (t ≥0).∵()()()23241214112121222+--=++-=+⎪⎭⎫ ⎝⎛--==t t t t t t g x f ,[]2,2∈t∴()()()232max max ===g t g x f . ∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知方程0542=+--m x x 的两个根一个大于1,一个小于1,则下列选项中满足要求的实数m 的值为 【 】 (A )2 (B )3 (C )4 (D )5 答案 【 BCD 】解析 本题考查一元二次方程的实数根的分布. 令()542+--=m x x x f由题意可知:()025411<+-=+--=m m f ,解之得:2>m . ∴选择答案【 BCD 】.10. 下列函数中,是偶函数,且在区间()1,0上为增函数的是 【 】 (A )x y = (B )21x y -= (C )xy 1-= (D )422+=x y 答案 【 AD 】解析 本题考查函数的奇偶性和单调性.对于(A ),函数x y =为绝对值函数,它是偶函数,且在[)+∞,0上为增函数; 对于(B ),函数21x y -=是偶函数,且在[)+∞,0上为减函数; 对于(C ),函数xy 1-=是奇函数,且在()+∞,0上为增函数; 对于(D ),函数422+=x y 是偶函数,且在[)+∞,0上为增函数. ∴选择答案【 AD 】.11. 若下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2- (B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+(C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 答案 【 BCD 】解析 本题考查基本不等式的应用. 对于(A ),显然正确;对于(B ),当1>x 时,01>-x ,∴112112+-+-=-+x x x x ≥()12211212+=+-⋅-x x . 当且仅当121-=-x x ,即12+=x 时,等号成立. ∴当1>x 时,12-+x x 的最小值为122+.故(B )错误;对于(C ),等号成立的条件是49422+=+x x ,得到12-=x ,无解,∴4922++x x 的最小值不是2.故(C )错误;实际上,设42+=x t ,则[)+∞∈,4t ,494922-+=++=tt x x y . ∵函数49-+=tt y 在[)+∞,3上为增函数 ∴当4=t ,即0=x 时,494494min =-+=y ,即4922++x x 的最小值是49.对于(D ),当连续两次使用基本不等式求最值时,要保证两个等号成立的条件一致.由此可以确定(D )错误.∴选择答案【 BCD 】.12. 函数()xax x f -=(∈a R )的大致图象可能是 【 】(A ) (B ) (C ) (D )答案 【 ABD 】解析 本题考查根据函数的图象确定函数的图象. 显然,函数()x f 的定义域为{}0≠x x . 当0=a 时,()x x f =(0≠x ).故(A )正确;当0>a 时,()⎪⎪⎩⎪⎪⎨⎧<-->-=0,0,x xa x x x a x x f ,显然,()x f 在()+∞,0上单调递增;当[)0,a x -∈时,()x f 单调递增;当(]a x -∞-∈,时,()x f 单调递减.故(D )正确; 当0<a 时,若0>x ,则()xax x f -+=,函数()x f 在(]a -,0上单调递减,在[)+∞-,a 上单调递增.若0<x ,则函数()x f 在()0,∞-上单调递减.故(B )正确. ∴选择答案【 ABD 】.第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知全集{}1,2,12++-=a a U ,{}2,1+=a A ,C U A {}3=,则=a __________. 答案 2-解析 本题考查集合的基本运算. 由题意可知:312=++a a .∴022=-+a a ,解之得:2-=a 或1=a . 当2-=a 时,{}2,1-=A ,符合题意;当1=a 时,{}2,2=A ,不满足集合元素的互异性且不符合题意. 综上所述,2-=a .14. 函数()⎩⎨⎧<<≥=tx x tx x x f 0,,2是区间()+∞,0上的增函数,则实数t 的取值范围是__________.答案 [)+∞,1解析 本题考查分段函数的单调性. 令x x =2,解之得:0=x 或1=x .由题意并结合函数()x f 的图象可知:t ≥1. ∴实数t 的取值范围是[)+∞,1.15. 已知幂函数()()m x m m x f 12--=为奇函数,则=m __________,函数()m x x g n m +=+2(∈n R )的图象必过点__________.(第一个空2分,第二个空3分) 答案 ()1,1,1-解析 本题考查幂函数的定义. ∵函数()()m x m m x f 12--=是幂函数 ∴112=--m m ,解之得:1-=m 或2=m . ∵函数()x f 为奇函数,∴1-=m . ∴()121-=+-n x x g . 令1=x ,则()112=-=x g . ∴函数()x g 的图象必过点()1,1.16. 已知函数()2+=x f y 为偶函数,()142+-=x x x g ,且()x f 与()x g 图象的交点为A 、B 、C 、D 、E ,则交点的横坐标之和为__________. 答案 10解析 本题考查偶函数的性质、函数图象的对称性和中点坐标公式. ∵函数()2+=x f y 为偶函数∴()()x f x f -=+22,函数()x f 的图象关于直线2=x 对称. ∵()()321422--=+-=x x x x g ∴函数()x g 的图象关于直线2=x 对称.设()x f 与()x g 图象的交点从左到右依次为A 、B 、C 、D 、E ,根据中点坐标公式则有:422,422=⨯=+=⨯=+D B E A x x x x ,且2=C x .∴10244=++=++++E D C B A x x x x x .四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}73<≤=x x A ,{}102<<=x x B ,{}a x a x C <<-=5. (1)求B A ;(2)若()B A C ⊆,求实数a 的取值范围. 解:(1)∵{}73<≤=x x A ,{}102<<=x x B ∴{}102<<=x x B A ;(2)当∅=C 时,满足()B A C ⊆,此时a -5≥a ,解之得:a ≤25; 当∅≠C 时,则有⎪⎩⎪⎨⎧≤≥-<-10255a a aa ,解之得:a <25≤3.综上所述,实数a 的取值范围是(]3,∞-. 18.(本题满分12分)设命题:p 实数x 满足03422<+-a ax x ,命题q :实数x 满足9125<+<x . (1)若1=a ,且q p ,同为真命题,求实数x 的取值范围;(2)若0>a ,且q 是p 的充分不必要条件,求实数a 的取值范围. 解:(1)当1=a 时,0342<+-x x ,解之得:31<<x . 解不等式9125<+<x 得:42<<x . ∵q p ,同为真命题∴实数x 的取值范围是32<<x ;(2)∵03422<+-a ax x ,∴()()03<--a x a x . ∵0>a ,∴a x a 3<<. ∴a x a p 3:<<(0>a ).∵q 是p 的充分不必要条件,∴{}42<<x x {}a x a x 3<<≠⊂.∴⎩⎨⎧≥≤432a a ,解之得:34≤a ≤2.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡2,34.19.(本题满分12分)已知幂函数()x f 的图象经过点()27,3--. (1)求()x f 的解析式;(2)判断()x f 的单调性并用定义法证明.解:(1)设幂函数()αx x f =,把()27,3--代入()αx x f =得:()()33273-=-=-α.∴3=α. ∴()3x x f =;(2)函数()x f 的定义域为R . 任取∈21,x x R ,且21x x <,则有()()()()22212121323121x x x x x x x x x f x f ++-=-=- ()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-=2221214321x x x x x .∵21x x <,∴021<-x x ,043212221>⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+x x x .∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在R 上为增函数. 20.(本题满分12分)某厂家拟举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足13+-=m kx (k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定位每件产品平均成本的1. 5倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数; (2)该厂家年促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当0=m 时,1=x .∴13=-k ,解之得:2=k ,∴123+-=m x . 每件产品的销售价格为()xx 8165.1+元.∴()281168168165.1+⎪⎭⎫ ⎝⎛++-=---+⋅=m m m x x x x y ;(2)由(1)可知:2911612811161+⎪⎭⎫ ⎝⎛+++-=+⎪⎭⎫ ⎝⎛-+++-=m m m m y ≤()212911612=++⋅+-m m . 当且仅当1161+=+m m ,即3=m 时,等号成立. ∴当3=m 时,y 取得最大值为21max =y .答: 该厂家年促销费用投入3万元时,厂家的利润最大. 21.(本题满分12分)已知函数()xax x f +=2,且()21=f .(1)判断并证明函数()x f 在其定义域上的奇偶性; (2)证明:函数()x f 在()+∞,1上是增函数; (3)求函数()x f 在区间[]5,2上的最值. 解:(1)∵()211=+=a f ,∴1=a .∴()xx x x x f 112+=+=.函数()x f 为奇函数,理由如下:易知函数()x f 的定义域为()()+∞∞-,00, ,关于原点对称. ∵()()x f x x x x x f -=⎪⎭⎫ ⎝⎛+-=--=-11 ∴函数()x f 为奇函数;(2)任取()+∞∈,1,21x x ,且21x x <,则有()()()()212121221121111x x x x x x x x x x x f x f --=--+=-. ∵()+∞∈,1,21x x ,21x x <∴01,1,0,021212121>->><-x x x x x x x x ∴()()01212121<--x x x x x x .∴()()021<-x f x f ,()()21x f x f <. ∴函数()x f 在()+∞,1上是增函数;(3)由(2)知,函数()x f 在区间[]5,2上单调递增 ∴()()5265max ==f x f ,()()252min ==f x f . 22.(本题满分12分)若函数()x f 在[]b a x ,∈时,函数值y 的取值区间恰为⎥⎦⎤⎢⎣⎡a b 1,1,就称区间[]b a ,为()x f 的一个“倒域区间”.定义在[]2,2-上的奇函数()x g ,当[]2,0∈x 时,()x x x g 22+-=. (1)求()x g 的解析式;(2)求函数()x g 在[]2,1内的“倒域区间”;(3)如果将函数()x g 在定义域内所有所有“倒域区间”上的图象作为函数()x h y =的图象,那么是否存在实数m ,使集合()(){}(){}m x y y x x h y y x +==2,, 恰含有2个元素? 解:(1)设[)0,2-∈x ,则(]2,0∈-x ,∴()()x x x x x g 2222--=---=-.∵函数()x g 是定义在[]2,2-上的奇函数 ∴()()x x x g x g 22--=-=- ∴()x x x g 22+=,[)0,2-∈x .∴()[)[]⎪⎩⎪⎨⎧∈+--∈+=2,0,20,2,222x x x x x x x g ;(2)当[]2,1∈x 时,()()11222+--=+-=x x x x g .∴函数()x g 在[]2,1上单调递减.∵在[]2,1内,当[]b a x ,∈时,函数()x g 的值域为⎥⎦⎤⎢⎣⎡a b 1,1∴()()⎪⎪⎩⎪⎪⎨⎧=+-==+-=bb b b g a a a a g 121222. ∴b a ,是方程xx x 122=+-的两个实数根,且[]2,1,∈b a . 方程xx x 122=+-,即()()011112222323=---=+--=+-x x x x x x x x . 解之得:251,251,1321-=+==x x x . ∵[]2,1,∈b a ,且b a < ∴251,1+==b a . ∴函数()x g 在[]2,1内的“倒域区间”为⎥⎦⎤⎢⎣⎡+251,1; (3)2-=m .(过程略)。
学高一数学上学期期中试题(普通班)及答案(新人教A版套)

高一上学期期中考试数学试卷(普通班)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{}0A x x =>,且A B B =,则集合B 可以是( )A.{}1,2,3,4,5 B.{y y = C.(){}2,,x y y x x R =∈D.{}0x x y +≥ 2. 已知函数⎩⎨⎧≤+>=0,10,2)(x x x x x f ,若0)1()(=+f a f ,则实数a 的值等于( )A. -1B. -3 C .1 D .33. 给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(01),上单调递减的函数序号是( )A .①②B.②③C.③④ D.①④5. 若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,参考数据那么方程220x x x +--=的一个近似根(精确到0.1)为()A .1.2B .1.3C .1.4D .1.5 6. 若函数()11x mf x e =+-是奇函数,则m 的值是() A .0 B .21C .1D .2 7. 已知0.1 1.32log 0.3,2,0.2ab c ===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<8. 已知方程2lg (lg 2lg 3)lg lg 2lg 30x x +++⋅=的两根为12,x x ,则12x x ⋅=()A.lg 6-B.lg 2lg 3⋅C.6D.169. 函数3,(1)()11,(1)ax x f x x x+≤⎧⎪=⎨+>⎪⎩,满足对任意定义域中的21,x x )(21x x ≠,))](()([2121x x x f x f --0<总成立,则实数a 的取值范围是( )A.()0,∞-B.)0,1[-C.)0,1(-D.),1[+∞-安庆一中2013—2014学年度上学期期中考试高一数学答题卷第Ⅱ卷(非选择题,共70分)5小题,每小题4分,共20分。
安徽省泗县二中高一数学12月月考试题(无答案)新人教A版

安徽省泗县二中2013-2014学年高一数学12月月考试题(无答案)新人教A 版本试卷考试时间120分钟,满分150分一、选择题(本题共10小题,每小题5分,共50分。
每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合{}b a A ,=,集合{}51,+=a B ,若{}2=B A ,则=B AA .{}2,1 B. {}5,1 C. {}5,2 D. {}5,2,1 2. =︒300cos A. 23 B. 23- C. 21 D. 21- 3. 已知集合{}锐角=A ,{}角小于︒=90B ,{}第一象限角=C ,则下列结论正确的是A .CB A == B. AC B = C. B C ⊆ D. B B A ⊆4. 在ABC ∆中,0cos cos <⋅B A ,则ABC ∆形状为A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不能确定 5. 已知函数⎪⎩⎪⎨⎧--=10)(2x x f π )0()0()0(<=>x x x ,则))((π-f f 的值等于A .12-π或0 B. 12-π C. 0 D. π- 6. 设52)53(=a ,53)52(=b ,52)52(=c ,则a ,b ,c 大小关系为 A .c b a >> B. b c a >> C. b a c >> D. a c b >>7. 若21)2cos(=-απ,)0,2(πα-∈,则=-)23cos(πα A. 23 B. 23- C. 21- D. 23± 8.已知 )lg (lg 21)2lg(y x y x +=-,则=y x 2log A .2或0 B. 2 C. 0 D. 2-9. 已知函数x y sin =定义域为],[b a ,值域为]21,1[-,则a b -的值不可能是A .3π B. 32π C. π D. 34π 10. 0x 是函数x x f x 2log )21()(-=的一个零点,若),0(01x x ∈,),(02+∞∈x x ,则 A .0)(1<x f ,0)(2<x f B. 0)(1<x f ,0)(2>x fC .0)(1>x f ,0)(2<x f D. 0)(1>x f ,0)(2>x f二、填空题(本大题共5小题,没小题5分,共25分)11. 若Z k k ∈︒+︒⋅=,45180α,则α为 象限角;12. 设3643==y x ,则=+yx 12 ; 13. 已知)cos()sin()(βπαπ-++=x b x a x f ,其中a ,b ,α,β均为非零实数,若1)2012(-=f ,则=)2013(f ;14. 已知2))(()(---=b x a x x f ,)(b a <,并且α,β是方程0)(=x f 的两根,(α<β),则实数a ,b ,α,β大小关系为 ;15. 已知]2,0[π∈x ,则1tan -≥x 解集为 .三、解答题:(本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤)16. (本题满分12分)已知角α终边经过点P )4,3(a a ,)0(≠a . 求αsin ,αcos ,αtan 值.已知函数2244)(22+-+-=a a ax x x f 在区间]2,0[上有最小值3,求a 的值.19. (本题满分12分)已知1cos sin 22=+x x ,函数3sin 2cos 2++=x x y 且]32,6[ππ∈x ,求函数值域.20. (本题满分13分)已知函数)sin()(ϕω+=x A x f ,)2,0,0(πϕω<>>A 部分图像如图所示:(1).求出)(x f 解析式;(2)写出)(x f 对称轴方程,对称中心及递增区间.设函数)(x f 是定义在R 上的奇函数,且对任意实数x ,都有)()2(x f x f -=+,当]2,0[∈x 时,22)(x x x f -=.(1)求证:)(x f 是周期函数,并求出最小正周期;(2)当]4,2[∈x 时,求)(x f 解析式;(3)求)2012()2()1()0(f f f f ++++ 值.。
安徽省宿州市高一数学上学期期中试题新人教版

高一期中数学试题注意:本卷满分150分,考试时间120分钟;一.填空题(共70分,每题5分) 1、若{{}|0,|12A x x B x x =<<=≤<,则A B ⋃=____________.2、已知 f(x)=3x-1, 则f(1)= .3、若函数f (x) = 11x +- f (x)的定义域是 4、函数11y x =-的单调减区间为 . 5、= .(结果用分数指数幂表示) 6、已知5log 3a =,5log 2b =,则25a b+= .7、若函数y=x 2+(2a -1)x+1在区间(-∞,2]上是减函数,则实数a 的取值范围是 . 8、. 函数log (3)x y x =-的定义域为 ___________________9、已知f(x)=⎪⎩⎪⎨⎧≥<<--≤+)2(2)21()1(12x x x x x x ,若f(x)=3, 则x 的值是 .10、若0.452log 0.3log 4log 0.8a b c ===,,,用“<”将,,a b c 连结起来 .11、若函数()(0,1)xf x a a a =>≠的图象过点1(2,)16-,则3()2f -= . 12、已知函数ln(1)29y x x =-+-存在唯一零点0x ,则大于0x 最小整数为 . 13、若)(x f 是满足14)]([-=x x f f 的一次函数,且在),(+∞-∞上是单调递减函数,则)(x f = .14、 若函数log (1)a y ax =-(0,1)a a >≠在区间(0,2)上是单调增函数,则常数a 的取值范围是 .二.解答题(总计80分)15、(本题满分12分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃16.(本小题满分12分)(1)化简+-21)925(log 85 ⨯ log 2516 + log 324 .(2)若log 2(3x-2)<2,试求x 的取值范围.17、(本题满分14分)已知函数x x x f --=1)(. (1)用分段函数的形式表示该函数;(2)在右边所给的坐标第中画出该函数的图象;(3)写出该函数的定义域、值域、单调区间(不要求证明).18.(本题满分14分)(1)已知(3)lg 9xf x =,求(2)(5)f f +的值; (2)若35ab ==A (0)ab ≠,且112a b+=,求A 的值. 19.(本题满分14分)甲、乙两地相距12km.A 车、B 车先后从甲地出发匀速驶向乙地.A 车从甲地到乙地需行驶15min ;B 车从甲地到乙地需行驶10min.若B 车比A 车晚出发2min : (1)分别写出A 、B 两车所行路程关于A 车行驶时间的函数关系式; (2) A 、B 两车何时在途中相遇?相遇时距甲地多远?20.(本题满分14分) 已知函数1()93xx f x c +=-+(其中c 是常数).(1)若当[0,1]x ∈时,恒有()0f x <成立,求实数c 的取值范围; (2)若存在0[0,1]x ∈,使0()0f x <成立,求实数c 的取值范围;高一数学试题参考答案一、填空题:1.{1,2,4}2.1{0,1,}2--3.(0,1]4.1(,)2-∞ 5. a 436.127. a 23-≤ 8.19. 3, (0.5,1) 10. c b a << 1811.4 12.15 13. -2x +11(0,]2 14.二、解答题:15.(1){-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}…………………6分 (2) {-6,-5,-4,-3,-2,-1,0}……………… …6分 16.解:(1)原式=53+2+52………………………5分(化简对一个给2分) =3 …………………………………1分(2)由log 2(3x-2)<2得0<3x-2<4 …………………………………………4分故x 的取值范围为2x 32<< ……………………………………2分 (没考虑真数>0,总共扣2分) 17 .(1) …………………5分(2) 图中所描的点应标坐标,少一个扣一分…………………5分 (3) …………………4分18.解 (1)由(3)lg 9xf x =得(3)2lg3xxf =,于是()2lg f x x =. ……2分(2)(5)f f +2lg 22lg52lg102=+==. ……5分(2)由35ab==A (0)ab ≠得lg3lg5lg 0a b A ==≠, ……2分 于是1lg 3lg a A =,1lg 5lg b A=. 代入112a b+=得lg 3lg A +lg 5lg A =2, ……3分所以lg3lg52lg A +=,A =……2分17.解 (1)设A 车行驶时间为x(min),A 车、B 车所行路程分别为f(x)(km)、g(x)(km). 则A 车所行路程关于行驶时间的函数为f(x)=1215x ,即f(x)=0.8x (015)x <≤; …3分B 车所行路程关于A 车行驶时间的函数关系式为g(x)=0,02,1.2(2),212,12,1215.x x x x <≤⎧⎪-<≤⎨⎪<≤⎩…5分(2)设A 、B 两车在A 车出发x(min)时途中相遇,则212x <≤. 于是0.8 1.2(2)x x =-,6x =(min),(6) 4.8f =(km).即A 、B 两车在A 车出发6min 时途中相遇,相遇时距甲地4.8km. …6分20.解 (1)2()(3)33x xf x c =-⨯+,令3x t =,当[0,1]x ∈时,[1,3]t ∈.问题转化为当[1,3]t ∈时,2()30g t t t c =-+<恒成立. …3分 于是,只需()g t 在[1,3]上的最大值(3)0g <,即23330c -⨯+<,解得0c <.∴实数c 的取值范围是(,0).-∞ …4分(2)若存在0[0,1]x ∈,使0()0f x <,则存在[1,3]t ∈,使2()30g t t t c =-+<. …3分 于是,只需()g t 在[1,3]上的最小值3()02g <,即233()3022c -⨯+<,解得9.4c <∴实数c 的取值范围是9(,).4-∞ …………………4分。
2023-2024学年安徽省宿州市省、市示范高中高一上学期期中教学质量检测数学试题+答案解析(附后)

2023-2024学年安徽省宿州市省、市示范高中高一上学期期中教学质量检测数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集,集合A满足,则( )A. B. C. D.2.命题“,”的否定是( )A. ,B. ,C. ,D. ,3.若幂函数在单调递减,则( )A. B. 3 C. 1 D. 84.若函数在区间上是减函数,则实数a的取值范围是( )A. B. C. D.5.函数的图象是( )A. B.C. D.6.“”是“”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件7.已知函数的值域为R ,则m 的取值范围是( )A. B.C. D.8.已知函数,若,则实数a 的取值范围是( )A. B.C.D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知集合,则下列式子表示正确的有( )A.B.C.D.10.对于实数a ,b ,c ,下列说法正确的是( ) A. 若,则 B. 若,则C. 若,则D. 若,则11.已知正数a ,b 满足,则( )A. ab 的最大值为B. 的最小值为4C. 的最小值为D.的最大值为12.设函数满足,则下列结论正确的是( )A. B.C. 若,则D. 若,则三、填空题:本题共4小题,每小题5分,共20分。
13.已知函数是定义在R 上的偶函数,当时,,则__________.14.函数的定义域为__________.15.已知集合,,若,则__________.16.最早发现勾股定理的人是我国西周时期的数学家商高。
《周髀算经》中记录着商高同周公的一段对话。
商高说:“故折矩,勾广三,股修四,径隅五。
”意为:当直角三角形的两条直角边分别为勾和股时,径隅弦则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”,后来人们还把它推广到一般情况,即直角三角形的两条直角边的平方和等于斜边的平方,这就是著名的勾股定理。
2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。
2013-2014学年高一数学上学期期中试题及答案(新人教A版 第34套)

泗县二中2013-2014年度第一学期高一期中考试数学试卷第I 卷(选择题)一、选择题1.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( ) A. a>b>c B. a>c>b C. b>c>a D. c>b>a2.对于函数k x x f +-=23)(,当实数属于下列选项中的哪一个区间时,才能确保一定..存在..实数对(),使得当函数的定义域为时,其值域也恰好是( )A .B .⎪⎭⎫⎢⎣⎡--121,2 C .),121(+∞- D .)0,121(-3.设a b c ,,分别是方程11222112=log ,()log ,()log ,22xxxx x x == 的实数根 , 则有( )A.a b c <<B.c b a <<C.b a c <<D.c a b <<4.已知函数2()2f x x x =-,()2g x ax =+(a>0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得f(x 1)= g(x 2),则实数a 的取值范围是( ) (A) 1(0,]2 (B) 1[,3]2(C) (0,3] (D) [3,)+∞5.设函数1||,0()0,0x x f x xx ⎧+≠⎪=⎨⎪=⎩,g(x)=[]2()f x +b ()f x +C,如果函数g(x)有5个不同的零点,则( )A. b <-2且C >0B. b >-2且C <0C. b <-2且C=0D. b ≥-2且C >06.若函数2()f x x ax b =++有两个零点cos ,cos αβ,其中,(0,)αβπ∈,那么在(1),(1)f f -两个函数值中 ( ) A .只有一个小于1 B .至少有一个小于1 C .都小于1 D .可能都大于17.已知函数⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈+-⎥⎦⎤⎝⎛∈+=.21,0,6131,1,21,12)(3x x x x x x f 函数)0(22)6sin()(>+-=a a x a x g π,若存[)2,0-k ,a b 0a b <<()f x [],a b [], a b在[]1,0,21∈x x ,使得)()(21x g x f =成立,则实数a 的取值范围是A.⎥⎦⎤⎢⎣⎡34,21B.⎥⎦⎤ ⎝⎛21,0 C.⎥⎦⎤⎢⎣⎡34,32 D.⎥⎦⎤⎢⎣⎡1,218.如图,有一直角墙角,两边的长度足够长,在处有一棵树与两墙的距离分别是米、4米,不考虑树的粗细.现在想用米长的篱笆,借助墙角围成一个矩形的花圃.设此矩形花圃的面积为平方米,的最大值为,若将这棵树围在花圃内,则函数的图象大致是9.函数在定义域内零点的个数为 A .0B .1C .2D .310.已知函数1()()2(),f x f x f x x =∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有3个不同的交点,则实数a 的取值范围是( )A 、1(0,)eB 、1(0,)2e C 、ln 31[,)3e D 、ln 31[,)32e11.下列大小关系正确的是( ) A. 3log 34.044.03<< B. 4.03434.03log <<C. 4.04333log 4.0<< D. 34.044.033log <<12.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -()|2|ln f x x x =--)(a f u =)(a f SSABCD 16(012)a <<a P的图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,x x f x x x -⎧≤=⎨->⎩则方程 1()2f x =有2个实数根,其中正确命题的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D )413.已知偶函数()f x 对x R ∀∈满足(2+)=(2-)f x f x ,且当-20x ≤≤时,2()=log (1)f x x -,则(2013)f 的值为( )A.2011B.2C.1D.014.)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥15.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( ) A .(12)--, B .(12)-,C .(12)-,D .(12),第II 卷(非选择题)二、填空题16.若函数f(x)=(1-x 2)(x 2+ax +b)的图像关于直线x=-2对称,则f(x)的最大值是______. 17.已知函数y=f(x)和y=g(x)在[-2,2]的图像如图所示,给出下列四个命题: ①方程f[g(x)]=0有且仅有6个根 ②方程g[f(x)]=0有且仅有3个根 ③方程f[f(x)]=0有且仅有5个根 ④方程g[g(x)]=0有且仅有4个根其中正确的命题是18.已知集合,其中,表示和中所有不同值的个数.设集合 ,则=)(P l .}8,6,4,2{=P )1(n j i a a j i ≤<≤+)(A l )2,1(>≤≤∈n n i R a i },,,,{321n a a a a A =19.函数的单调递减区间是 .三、解答题20.已知集合2{|230}A x x x =-->,2{|40,}B x x x a a R =-+=∈. (1)存在B x ∈,使得φ≠B A ,求a 的取值范围; (2)若B B A = ,求a 的取值范围21.已知集合2{|230}A x x x =-->,2{|40,}B x x x a a R =-+=∈.(1)存在B x ∈,使得φ≠B A ,求a 的取值范围; (2)若B B A = ,求a 的取值范围22.(本小题满分13分)已知函数()在区间上有最大值和最小值.设. (1)求、的值; (2)若不等式在上有解,求实数的取值范围.23.(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且)(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由) (2)若,,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.参考答案16.16; 17.①③④ 18.519.(-∞,-3]20.(1)(,3)-∞;(2)(,5)(4,)-∞-+∞. 21.(1)(,3)-∞;(2)(,5)(4,)-∞-+∞.1x =0x =[0,5]()f x (2)6f =(0)4f =1q >,p q2()()f x x x q p=-+2()1f x px qx =++()xf x p q =⋅k]1,1[-∈x 02)2(≥⋅-x x k f b a xx g x f )()(=14]3,2[0>a bax ax x g ++-=12)(2()f x =22.(1)(2)23.(1);(2);(3)在9月,10月两个月内价格下跌.32()694(05)f x x x x x =-++≤≤2()()f x x x q p=-+]1,(-∞⎩⎨⎧==01b a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泗县二中2013-2014年度第一学期高一期中考试
数学试卷
第I 卷(选择题)
一、选择题
1.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( ) A. a>b>c B. a>c>b C. b>c>a D. c>b>a
2.对于函数k x x f +-=23)(,当实数属于下列选项中的哪一个区间时,才能确保一定存...
在.实数对
(),使得当函数的定义域为时,其值域也恰好是( )
A .
B .⎪⎭
⎫
⎢⎣⎡
-
-121,2 C .),121(+∞- D .)0,121(-
3.设a b c ,,分别是方程1122
2
112=log ,()log ,()log ,2
2
x
x
x
x x x == 的实数根 , 则有( )
A.a b c <<
B.c b a <<
C.b a c <<
D.c a b << 4.已知函数2
()2f x x x =-,()2g x ax =+(a>0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,
使得f(x 1)= g(x 2),则实数a 的取值范围是( )
(A) 1
(0,]2 (B) 1[,3]2
(C) (0,3] (D) [3,)+∞
5.设函数1||,0()0,0
x x f x x
x ⎧+≠⎪
=⎨⎪=⎩,g(x)=[]2()f x +b ()f x +C,如果函数g(x)有5个不同的零点,则( )
A. b <-2且C >0
B. b >-2且C <0
C. b <-2且C=0
D. b ≥-2且C >0
6.若函数2()f x x ax b =++有两个零点cos ,cos αβ,其中,(0,)αβπ∈,那么在(1),(1)f f -两个函数值中 ( ) A .只有一个小于1 B .至少有一个小于1 C .都小于1 D .可能都大于1
7.已知函数⎪⎪⎩⎪⎪⎨
⎧⎥⎦⎤⎢⎣⎡∈+-⎥⎦⎤
⎝⎛∈+=.
21,0,613
1,1,21,12)(3x x x x x x f 函数)0(22)6sin()(>+-=a a x a x g π,若存[)
2,0-k ,a b 0a b <<()f x [],a b [], a b
在[]1,0,21∈x x ,使得)()(21x g x f =成立,则实
数a 的取值范围是
A.⎥⎦⎤⎢⎣⎡34,21
B.⎥⎦⎤ ⎝
⎛
21,0 C.⎥⎦⎤⎢⎣⎡34,32 D.⎥⎦
⎤
⎢⎣⎡1,2
1
8.如图,有一直角墙角,两边的长度足够长,在处有一棵树与两墙的距离分别是米
、4米,不考虑树的粗细.现在想用
米长的篱笆,借助墙角围成一个矩形的花
圃
.设此矩形花圃的面积为
平方米,
的最大值为
,若将这棵树围在花圃内,
则函数
的图象大致是
9.函数在定义域内零点的个数为 A .0
B .1
C .2
D .3
10.已知函数1
()()2(),f x f x f x x =∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数
()()g x f x ax =-与x 轴有3个不同的交点,则实数a 的取值范围是( )
A 、1
(0,)e
B 、1(0,
)2e C 、ln 31[,)3e D 、ln 31[,)32e
11.下列大小关系正确的是( ) A. 3log 3
4.044
.03
<< B. 4.03434.03log <<
C. 4
.043
33log 4.0<< D. 34
.044.03
3log <<
12.给出下列命题:①在区间(0,)+∞上,函数1
y x -=,1
2
y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -的
()|2|ln f x x x =-
-)
(a f u =)
(a f S
S
ABCD
16
(012)
a <<a P
图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,
x x f x x x -⎧≤=⎨->⎩则方程 1
()2f x =有2个实
数根,其中正确命题的个数为 ( )
(A ) 1 (B ) 2 (C ) 3 (D )4
13.已知偶函数()f x 对x R ∀∈满足(2+)=(2-)f x f x ,且当-20x ≤≤时,2()=log (1)f x x -,则(2013)f 的值为( ) A.2011 B.2 C.1 D.0
14.)
函数0)y x =≥的反函数为
(A )2()4x y x R =∈ (B )2
(0)4
x y x =≥ (C )2
4y x =()x R ∈ (D )24(0)y x x =≥
15.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( ) A .(12)--, B .(12)-,
C .(12)-,
D .(12),
第II 卷(非选择题)
二、填空题
16.若函数f(x)=(1-x 2)(x 2
+ax +b)的图像关于直线x=-2对称,则f(x)的最大值是______. 17.已知函数y=f(x)和y=g(x)在[-2,2]的图像如图所示,给出下列四个命题: ①方程f[g(x)]=0有且仅有6个根 ②方程g[f(x)]=0有且仅有3个根 ③方程f[f(x)]=0有且仅有5个根 ④方程g[g(x)]=0有且仅有4个根
其中正确的命题是
18.已知集合
,其中
,
表示和
中所有不同值的个数.设集合 ,则=)(P l .
19.函数
的单调递减区间是
. ()f x =}
8,6,4,2{=P )
1(n j i a a j i ≤<≤+)
(A l )
2,1(>≤≤∈n n i R a i }
,,,,{321n a a a a A =
三、解答题
20.已知集合2{|230}A x x x =-->,2{|40,}B x x x a a R =-+=∈. (1)存在B x ∈,使得φ≠B A ,求a 的取值范围; (2)若B B A = ,求
a 的取值范围21.已知集合2{|230}
A x x x =-->,2{|40,}
B x x x a a R =-+=∈.
(1)存在B x ∈,使得φ≠B A ,求a 的取值范围; (2)若B B A = ,求
a 的取值范围22.(本小题满分13分)已知函数
()在区间上有最大值和最小值.设. (1)求、的值;
(2)若不等式
在
上有解,求实数的取值范围.
23.(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上
市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①
;②;③
.(以上三式中
均为常数,且
)
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由) (2)若
,
,求出所选函数
的解析式(注:函数定义域是
.其
中表示8月1日,表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
16.16; 17.①③④ 18.5
19.(-∞,-3]
20.(1)(,3)-∞;(2)(,5)(4,)-∞-+∞. 21.(1)(,3)-∞;(2)(,5)
(4,)-∞-+∞.
22.(1)(2)
]1,(-∞⎩
⎨⎧==01b a 1x =0x =[0,5]
()
f x (2)6
f =(0)4
f =1
q >,p q
2()()f x x x q p
=-+2()1
f x px qx =++()x
f x p q =⋅k ]
1,1[-∈x 02)2(≥⋅-x x k f b a x
x g x f )()(=14]3,2[0>a b ax ax x g ++-=12)(2
23.(1)
;(2)
;(3)在9月,10
月两个月内价格下跌.
32()694(05)
f x x x x x =-++≤≤2()()f x x x q p
=-+。