高中数学2.1.2指数函数及其性质教案新人教版必修1

合集下载

新人教A版必修1高中数学2.1.2-3指数函数及其性质导学案

新人教A版必修1高中数学2.1.2-3指数函数及其性质导学案

高中数学 2.1.2-3指数函数及其性质导学案 新人教A 版必修1学习目标:深入学习指数函数的性质学习重点:能解决与指数函数有关的综合应用问题 学习过程:一、 关于定义域:求下列函数的定义域 1、1621-=xy2、191-⎪⎭⎫ ⎝⎛=xy3、x y 416-=二、 关于值域: 1、求下列函数的值域(1)3121+⎪⎭⎫ ⎝⎛=x y(2)xy ⎪⎭⎫⎝⎛=32(3)212225.0+-=x x y(4)231-=+x y ,[]0,2-∈x (5)121-=x y2、函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值大2a ,则a 的值为______三、 关于单调性:1、 求下列函数的单调区间 (1)12.01-=xy(2)322-+=x x a y )(1,0≠>a a2、 已知x x a a a a -++>++122)2()2(,则x 的取值范围是_____________四、 关于奇偶性 1、判断函数xx f 2121)(+-=的奇偶性2、已知函数x x eaa e x f +=)( )0(>a 是R 上的偶函数,求a 的值 一、选择题1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<<a B 、 -<<10a C 、 a =-1 D 、 a <-12、已知310x =,则这样的( )A 、 存在且只有一个B 、 存在且不只一个C 、 存在且x <2D 、 根本不存在 3、函数f x x ()=-23在区间()-∞,0上的单调性是( ) A 、 增函数 B 、 减函数C 、 常数D 、 有时是增函数有时是减函数4、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11115、函数f x x ()=-21,使f x ()≤0成立的的值的集合是( )A 、 {}x x <0B 、 {}x x <1C 、 {}x x =0D 、 {}x x =16、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤ 8、F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数 二、填空题9、 函数y x =-322的定义域是_________。

人教版高中数学必修一《指数函数及其性质》教案

人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案一、教学目的1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。

2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。

3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。

4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。

二、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。

三、教具、学具准备:多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。

四、教学方法遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。

依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

五、学法指导1.再现原有认知结构。

在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。

在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3.在互相交流和自主探究中获得发展。

在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。

在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

2.1.2 指数函数的概念与性质 (必修一 数学 优秀课件)

2.1.2 指数函数的概念与性质 (必修一 数学 优秀课件)

二、指数函数的图像和性质
1 x 1、在方格纸上画出: y2 ,y 1 ,y 3 ,y 2 3
x x x
的图像,并分析函数图象有哪些特点? 画函数图象的步骤:
列表 描点 连线
列表: x
y2
x
x
-2
1 4
-1
1 2
0
1
2
1
1 1
2
1 2
4
1 4
1 y 2
0.3 y a x3.1 1.R 3 上的减函数, 当0 a 1 时, 是 又∵ 2.5<3 1.7 0.9 ∴函数 y=a 为减函数
3 ∴ 又∵ 1.72.5 < 1.7 , x=1.3>0
a3 a2
∴0.81.3>0.61.3
比较指数幂大小的方法:
①同底异指:构造函数法(一个), 利用函数的单 调性,若底数是参变量要注意分类讨论。 ②异底同指:构造函数法(多个),利用函数图象在 y轴左右两侧的特点。 ③异底异指:寻求中间量
记忆方法
一撇,一捺
性质补充
• 1.底数互为倒数的两个指数函数,即 y=ax与y=(1/a)x的图象关于y轴对称。 • 2.当a>1时,a越大,曲线越靠近y轴。 当a<0时,a越小,曲线越靠近y轴。所 谓越靠近y轴,就是表明随着x的增大, y的值增长的速度越快。 • 3.指数函数都不具有奇偶性。
学以致用
x
定义:形如y a (a 0且a 1)的函数称为指数函数; 其中x是自变量,函数的定义域为R.
注意 :
(1)ax为一个整体,前面系数为1; (2)a>0,且 a≠1 ; (3)自变量x在幂指数的位置且为单个x;

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

《指数函数及其性质》一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书••数学(1)》(人教A版)$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。

作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用, 又对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,也为今后研究其他函数提供了方法和模式。

指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。

(二)课时划分指数函数的教学在中共分三个课时完成。

指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)。

这是第一课时“指数函数的图象及其性质”。

“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图象及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

二、学情分析(一)有利因素通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个层面:知识层面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能层面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

情感层面:学生对数学新内容的学习有相当的兴趣和积极性。

(二)不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。

2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。

过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。

情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。

认识到数学来源于生活,并且服务于生活。

二、教学重点和难点重点:指数函数的概念和性质。

难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。

三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。

(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。

引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。

老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

高中数学 2.1.2-1指数函数及其性质导学案 新人教A 版必修1学习目标:1、理解指数函数的定义 2、掌握指数函数的图象和性质 学习重点:指数函数性质的应用 学习过程:一、情景体验、获得新知1、一张纸对折1次,厚度变为原来的2倍;对折2次,厚度变为原来的 倍;对折3次,厚度变为原来的2倍;对折4次,厚度变为原来的____ 倍;对折次,厚度变为原来的______倍。

2、指数函数的概念____________________ 练习:1、下列函数中是指数函数的是________ ① ② ③ ④ ⑤ ⑥2、函数是指数函数,则a=_________二、指数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1)(2)2、指数函数的图象和性质练习:1、 若a>1,-1<b<0,则函数的图象一定在第_____象限 2、 比较大小(1) ,(2),(3) ,一、选择题(每小题5分,共20分)1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 22.若⎝ ⎛⎭⎪⎫142a +1<⎝ ⎛⎭⎪⎫143-2a,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.()1,+∞C .(-∞,1) D.⎝⎛⎭⎪⎫-∞,123.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)5.已知集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x +1<4,x∈Z,则M∩N 等于( )A .{-1,1}B .{-1}C .{0}D .{-1,0} 6.设14<⎝ ⎛⎭⎪⎫14b <⎝ ⎛⎭⎪⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a二、填空题(每小题5分,共10分)7.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =____8.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.9.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.10.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.三、解答题(每小题10分,共20分)11.根据下列条件确定实数x 的取值范围:a<⎝ ⎛⎭⎪⎫1a 1-2x(a >0且a ≠1).12.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性...13.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.。

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

课题:指数函数及其性质2.1.2 指数函数及其性质一、教学目标:1.理解指数函数的概念,掌握指数函数的图象和性质.2.通过教学,掌握研究函数性质的思路方法,如类比、从特殊到一般等,增强学生识图用图的能力.3.在指数函数的学习过程中,培养学生观察、分析、归纳等思维能力,体会分类讨论思想、数形结合等数学思想. 二、教学重点、难点:教学重点:指数函数的定义、图象和性质.教学难点:指数函数定义、图象和性质的发现总结。

三、教学过程:1.创设情境引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……以此类推,1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为y =2x ,*x N .引例2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”则截取x 次后,木棰剩余量y 与x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为1()2x y = ,*x N ∈.问题1: 观察函数12()2xxy y ==与的解析式,这两个函数是不是我们以前学习的一次、二次、反比例函数?这两个函数的解析式有何共同特征?生:不是以前学习的一次、二次、反比例函数,他们的共同特征都是xy a =的形式. 问题2: 你能模仿以前学习的一次、二次、反比例函数的定义,给出这一新型函数的定义吗?学生回答xy a =,若回答不出,教师因势利导,然后板书课题:指数函数及其性质. 2. 指数函数的定义一般地,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(归纳指数函数的定义,学生可能归纳不全,如想不到限制条件0a >且1a ≠,师直接说即可.)问题3: 在指数函数的定义中,为什么规定底数0a >且1a ≠呢? 生:(1)若0a =,则当0x >时,0xa =;当0x ≤时,xa 无意义;(2)若a <0,则对x 的某些值,可使xa 无意义,如12,2a x =-=; (3)若1a =,则无论x 取何值,它总是1,没有研究的价值.师:以上同学解释得都有一定道理但不够,底数a 范围的确定,是为了保证a 在这个范围内取值时,这一类函数的定义域永远是相同的.师:请大家来看下面一组练习:判断下列函数是不是指数函数?(学生回答)1(1)3x y += (2)3x y = (3)3x y =- 3(4)y x =(5)x y x =(6)x y π= (7)(3)x y =- ()()821xy a =-1(2a >且1)a ≠ 规律总结:指数函数的特征:(1)幂的系数为1;(2)底数是一个正的不等于1常数;(3)指数为自变量x .3. 指数函数的图象师:问题4:要研究一种新函数,如何研究?生:定义—图象—性质-应用师:问题5:研究一个函数,主要研究它的哪些性质呢? 生:定义域、值域、特殊点、单调性、最值、奇偶性.师:既然我们明晰了研究函数的思路和方法,那请你画指数函数(0,1)xy a a a =>≠且的图象.生:不知道底数a ,画不出来.师:那我们先画哪个指数函数的图象呢? 生:画12()2xxy y ==与的图象.师:请大家画出以下四个指数函数的图象.()()()()112 2()2133 4()3x x x xy y y y ==== 由学生分组上黑板画图,然后师生一起订正。

最新人教版高一数学《指数函数》教案15篇

最新人教版高一数学《指数函数》教案15篇

人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。

高中数学《指数函数-指数函数及其性质》说课稿1 新人教A版必修1

高中数学《指数函数-指数函数及其性质》说课稿1 新人教A版必修1

2.1.2 指数函数及其性质〔1〕从容说课指数函数是在学生系统的学习了函数概念、基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产中有着广泛的应用,所以指数函数应重点研究.指数函数对学生来说是完全陌生的一类函数,对于这样的函数应该怎样进行较为系统的研究是学生面临的重要问题.所以,从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到对其他函数的研究中去.本课主要学习指数函数的概念、图象,并根据图象归纳出指数函数的性质.指数函数是在把指数范围扩充到实数的基础上引入的,因此在教学指数函数之前,可以先扼要地复习一下指数范围的扩充过程,以便让学生理解指数函数的定义域.在指数函数的概念讲解过程中,既要说清楚指数函数的定义域是什么,又要向学生交待为什么要规定底数a 是一个大于0且不等于1的常量.函数图象是研究函数性质的直观工具,利用图象便于学生记忆函数的性质和变化规律.在用描点法画指数函数的图象时,首先要通过计算列出对应值表.因此,教学中可以指导学生借助计算机在同一坐标系内画出y =2x ,y =〔21〕x这两个具有典型意义的指数函数的图象,并引导学生借助于具体函数图象来分析它们的特征,得出指数函数的性质.引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a >1与0<a <1两种情形.本节课的整体设计是按照一般研究函数的规律设计的.由实例引入定义,再根据定义并利用描点法画出函数图象,通过图象得到函数的性质.学生在学习函数时,往往感到比较困难、抽象,不易理解和掌握,要让学生掌握学习函数的一般规律,再继续学习新的函数,学生就能顺理成章,而不会产生无所适从的感觉.本节的容量较大,为了提高效率,可采用现代化教学手段,利用投影仪或电脑.在引导学生观察分析了三种典型函数的图象性质之后,将得到的结论直接投影出来,课上的引例、例题、练习题、作业题也都可投影出来,但要注意一定要表达过程教学.比如画函数图象,不要一下就把图象投影出来,这样不利于学生掌握图象的画法,既使用了投影仪或电脑,也要将建立坐标系〔要强调三要素〕、描点、用光滑曲线将这些点连结起来的整个过程展现出来.又如函数性质的教学,一定先让学生观察图象,分析特点,从而提高学生观察归纳的能力和看图用图的意识,例题的解答也要让学生去分析,发现解法.这样有利于学生尽快掌握函数的性质,掌握比较两个数大小的方法,让学生在观察的过程中,发现的过程中,解决问题的过程中,建立起学好函数、学好数学的信心.三维目标一、知识与技能1.掌握指数函数的概念、图象和性质.2.能借助计算机或计算器画指数函数的图象.3.能由指数函数图象探索并理解指数函数的性质.二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段.教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体课件、投影仪、打印好的作业. 教学过程一、以生活实例,引入新课 〔多媒体显示如下材料〕材料1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x 次后,得到的细胞分裂的个数y 与x 的函数关系是什么?〔生思考,师组织学生交流各自的想法,捕捉学生交流中与以下结论有关的信息,并简单板书〕结论:材料1中y 和x 的关系为y =2x .材料2:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期〞.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?〔生思考〕生:P =〔21〕5730t.师:你能发现关系式y =2x ,P =〔21〕5730t有什么相同的地方吗?〔生讨论,师及时总结得到如下结论〕我们发现:在关系式y =2x和P =〔21〕5730t中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式y =2x 和P =〔21〕5730t都是函数关系式,且函数y =2x 和函数P =〔21〕5730t在形式上是相同的,解析式的右边都是指数式,且自变量都在指数位置上.师:你能从以上两个解析式中抽象出一个更具有一般性的函数模型吗? 〔生交流,师总结得出如下结论〕生:用字母a 来代替2与〔21〕57301.结论:函数y =2x 和函数P =〔21〕5730t都是函数y =a x 的具体形式.函数y =a x 是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.〔引入新课,书写课题〕 二、讲解新课〔一〕指数函数的概念〔师结合引入,给出指数函数的定义〕一般地,函数y =a x 〔a >0,a ≠1〕叫做指数函数,其中x 是自变量,函数的定义域是R .合作探究:〔1〕定义域为什么是实数集? 〔生思考,师适时点拨,给出如下解释〕知识拓展:在a >0的前提下,x 可以取任意的实数,所以函数的定义域是R . 〔2〕在函数解析式y =a x 中为什么要规定a >0,a ≠1?〔生思考,师适时点拨,给出如下解释,并明确指数函数的定义域是实数R 〕 知识拓展:这是因为〔ⅰ〕a =0时,当x >0,a x 恒等于0;当x ≤0,a x 无意义.〔ⅱ〕a <0时,例如a =-41,x =-41,那么a x=〔-41〕41无意义.〔ⅲ〕a =1时,a x 恒等于1,无研究价值.所以规定a >0,且a ≠1.〔3〕判断以下函数是否是指数函数:①y =2·3x ;②y =3x -1;③y =x 3;④y =-3x ;⑤y =〔-4〕x ;⑥y =πx ;⑦y =42x ;⑧y =x x ;⑨y =〔2a -1〕x 〔a >21,且a ≠1〕. 生:只有⑥⑨为指数函数.方法引导:指数函数的形式就是y =a x ,a x 的系数是1,其他的位置不能有其他的系数,但要注意化简以后的形式.有些函数貌似指数函数,实际上却不是,例如y =a x +k 〔a >0,且a ≠1,k ∈Z 〕;有些函数看起来不像指数函数,实际上却是指数函数,例如y =a -x 〔a >0,且a ≠1〕,这是因为它的解析式可以等价化归为y =a -x =〔a -1〕x ,其中a -1>0,且a -1≠1.如y =23x 是指数函数,因为可以化简为y =8x .要注意幂底数的范围和自变量x 所在的部位,即指数函数的自变量在指数位置上.〔二〕指数函数的图象和性质师:指数函数y =a x ,其中底数a 是常数,指数x 是自变量,幂y 是函数.底数a 有无穷多个取值,不可能逐一研究,研究方法是什么呢?〔生思考〕师:要抓住典型的指数函数,分析典型,进而推广到一般的指数函数中去.那么选谁作典型呢?生:函数y =2x 的图象.师:作图的基本方法是什么? 生:列表、描点、连线. 借助多媒体手段画出图象.师:研究函数要考虑哪些性质?生:定义域、值域、单调性、奇偶性等.师:通过图象和解析式分析函数y =2x 的性质应该如何呢?生:图象左右延伸,说明定义域为R ;图象都分布在x 轴的上方,说明值域为R +;图象上升,说明是增函数;不关于y 轴对称也不关于原点对称,说明它既不是奇函数也不是偶函数.师:图象在数值上有些什么特点?生:通过图象不难发现y 值分布的特点:当x <0时,0<y <1;当x >0时,y >1;当x =0时,y =1.合作探究:是否所有的指数函数的图象均与y =2x 的图象类似? 画出函数y =8x ,y =3.5x ,y =1.7x ,y =0.8x 的图象,你有什么发现呢?〔生思考,师适时点拨,给出如下结论〕结论:y =0.8x 的图象与其余三个图象差别很大,其余三个图象与y =2x 的图象有点类似,说明还有一类指数函数的图象与y =2x 有重大差异.师:类似地,从中选择一个具体函数进行研究,可选什么函数?生:我们选择函数y =〔21〕x的图象作典型. 作出函数y =〔21〕x的图象.合作探究:函数y =2x 的图象和函数y =〔21〕x的图象的异同点. 〔生思考,师适时点拨,给出如下结论〕 一般地,指数函数y =a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >10<a <1图象性质 〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕 〔2〕过点〔0,1〕,即x =0时,y =a 0=1〔3〕假设x >0,那么a x >1; 假设x <0,那么0<a x <1 〔3〕假设x >0,那么0<a x <1; 假设x <0,那么a x >1〔4〕在R 上是增函数〔4〕在R 上是减函数合作探究:函数y =2x 的图象和函数y =〔21〕x的图象有什么关系?〔生观察并讨论,给出如下结论〕 结论:函数y =2x 的图象和函数y =〔21〕x的图象关于y 轴对称. 师:理由是什么呢?能否给予证明?证明:因为函数y =〔21〕x =2-x,点〔x ,y 〕与〔-x ,y 〕关于y 轴对称,所以y =2x 的图象上的任意一点P 〔x ,y 〕关于y 轴的对称点P 1〔-x ,y 〕都在y =〔21〕x 的图象上,反之亦然.根据这种对称性就可以利用函数y =2x 的图象得到函数y =〔21〕x 的图象.方法引导:要证明两个函数f 〔x 〕与g 〔x 〕的图象关于某一直线成轴对称图形,要分两点证明:〔1〕f 〔x 〕图象上任意一点关于直线的对称点都在g 〔x 〕的图象上;〔2〕g 〔x 〕图象上的任意一点关于直线的对称点都在f 〔x 〕的图象上.合作探究:思考底数a 的变化对图象的影响. 例如:比较函数y =2x 和y =10x 的图象以及y =〔21〕x 和y =〔101〕x 的图象.〔生观察并讨论,给出如下结论〕结论:在第一象限内,底数a 越小,函数的图象越接近x 轴. 合作探究:如何快速地画出指数函数简图?〔学生讨论,交流各自的想法,师适时地归纳,得出如下注意点〕〔1〕要注意图象的分布区域:指数函数的图象知分布在第一、二象限;〔2〕注意函数图象的特征点:无论底数取符合要求的任何值,函数图象均过定点〔0,1〕;〔3〕注意函数图象的变化趋势:函数图向下逐渐接近x 轴,但不能和x 轴相交. 〔三〕例题讲解[例1] 求以下函数的定义域:〔1〕y =8121-x ;〔2〕y =x )21(1-.〔多媒体显示,师组织学生讨论完成〕 师:我们已经有过求函数定义域的一些实战经验,你觉得求函数定义域时哪些方面应该引起你的高度注意?〔生交流自己的想法,师归纳,得出如下结论〕 〔1〕分式的分母不能为0;〔2〕偶次根号的被开方数大于或等于0; 〔3〕0的0次幂没有意义.师:这些注意点在我们所要解决的问题中又没有出现,是否还有其他新的要求或限制条件?〔生讨论交流,并板演解答过程,师组织学生进行评析,规范学生解题〕解:〔1〕∵2x -1≠0,∴x ≠21,原函数的定义域是{x |x ∈R ,x ≠21}; 〔2〕∵1-〔21〕x ≥0,∴〔21〕x ≤1=〔21〕0.∵函数y =〔21〕x 在定义域上单调递减,∴x ≥0.∴原函数的定义域是[0,+∞〕.[例2] 比较以下各题中两个值的大小:〔1〕1.72.5,1.73;〔2〕0.8-0.1,0.8-0.2;〔3〕1.70.3,0.93.1. 师:你能发现题中所给的各式有哪些共同点和不同点吗?这些特点能否给你解答该题有所启示呢?〔生讨论,师适时点拨,得出如下解析过程〕 解:〔1〕1.72.5,1.73可看作函数y =1.7x 的两个函数值.由于底数1.7>1,所以指数函数y=1.7x在R上是增函数.因为2.5<3,所以1.72.5<1.73.〔2〕0.8-0.1,0.8-0.2可看作函数y=0.8x的两个函数值.由于底数0.8<1,所以指数函数y=0.8x在R上是减函数.因为-0.1>-0.2,所以0.8-0.1<0.8-0.2.〔3〕因为1.70.3、0.93.1不能看作同一个指数函数的两个函数值,所以我们可以首先在这两个数值中间找一个数值,将这一个数值与原来两个数值分别比较大小,然后确定原来两个数值的大小关系.由指数函数的性质知1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.师:问题解决了,通过解决这些问题,你有什么心得体会吗?〔生交流解题体会,师适时归纳总结,得出如下结论〕方法引导:在解决比较两个数的大小问题时,一般情况下是将其看作是一个函数的两个函数值,利用函数的单调性比较之.当两个数不能直接比较时,我们可以将其与一个数进行比较大小,从而得出该两数的大小关系.三、巩固练习课本P68练习1、2〔生完成后,同桌之间互相交流解答过程〕1.略.2.〔1〕{x|x≥2};〔2〕{x|x≠0}.四、课堂小结师:通过本节课的学习,你觉得你都学到了哪些知识?请同学们互相交流一下自己的收获,同时也让你们的同桌享受一下你所收获的喜悦.〔生交流,师简单板书,多媒体显示如下内容〕1.指数函数的定义以及指数函数的一般表达式的特征.2.指数函数简图的作法以及应注意的地方.3.指数函数的图象和性质.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>10<a<1图象性质〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕性质〔2〕过点〔0,1〕,即x=0时,y=a0=1〔3〕假设x>0,那么a x>1;假设x<0,那么0<a x<1〔3〕假设x>0,那么0<a x<1;假设x<0,那么a x>1 〔4〕在R上是增函数〔4〕在R上是减函数4.结合函数的图象说出函数的性质,这是一种重要的数学研究思想和研究方法——数形结合思想〔方法〕.5.a的取值范围是今后应用指数函数讨论问题的前提.五、布置作业课本P69习题2.1A组第5、6、7、8、10、11题.板书设计2.1.2 指数函数及其性质〔1〕一、1.指数函数的概念2.指数函数的图象和性质二、例题评析三、课堂小结四、布置作业。

教学设计:2.1.2 指数函数及其性质

教学设计:2.1.2 指数函数及其性质

2.1.2 指数函数及其性质(分2个课时讲解)第1课时指数函数的概念一.教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③体会具体到一般数学讨论方式及数形结合的思想;2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质.二.重、难点重点:指数函数的概念和性质及其应用.难点:指数函数性质的归纳,概括及其应用.三、学法与教具:①学法:观察法、讲授法及讨论法.②教具:多媒体.教学过程提出问题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x年后的剩留量y与x的关系式是_________.(y=0.84x)2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是_________.(y=2x)提出问题(1)你能说出函数y=0.84x与函数y=2x的共同特征吗?(2)你是否能根据上面两个函数关系式给出一个一般性的概念?(3)为什么指数函数的概念中明确规定a>0,a≠1?(4)为什么指数函数的定义域是实数集?(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤. 活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己的应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.问题(1)看这两个函数的共同特征,主要是看底数和自变量以及函数值. 问题(2)一般性的概念是指用字母表示不变化的量即常量. 问题(3)为了使运算有意义,同时也为了问题研究的必要性.问题(4)在(3)的规定下,我们可以把a x 看成一个幂值,一个正数的任何次幂都有意义. 问题(5)使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式.讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1,0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y .(2)对于两个解析式y =0.84x 和y =2x ,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 叫自变量,函数的定义域是实数集R . (3)a =0时,x >0时,a x 总为0;x ≤0时,a x 没有意义.a <0时,如a =-2,x =21,a x =(-2)21=2-显然是没有意义的.a =1时,a x 恒等于1,没有研究的必要.因此规定a >0,a ≠1.此解释只要能说明即可,不要深化.(4)因为a >0,x 可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数. 提出问题(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? (2)前面我们学习函数的时候,如何作函数的图象?说明它的步骤. (3)利用上面的步骤,作函数y =2x 的图象.(4)利用上面的步骤,作函数y =(21)x的图象. (5)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?(6)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗? (7)把y =2x 和y =(21)x的图象,放在同一坐标系中,你能发现这两个图象的关系吗? (8)你能证明上述结论吗? (9)能否用y =2x 的图象画y =(21)x的图象?请说明画法的理由. 活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,同时投影展示课本表21,22及图2.12,2.13及2.14,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识. 讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质.(2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象. (3)列表.作图如图1图1(4)列表.作图如图2图2(5)通过观察图1,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),且y 值分布有以下特点,x <0时0<y <1,x >0时y >1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数.通过观察图2,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),x <0时y >1,x >0时0<y <1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数. 可以再画下列函数的图象以作比较,y =3x ,y =6x ,y =(31)x ,y =(61)x .重新观察函数图象的特点,推广到一般的情形.(6)一般地,指数函数y =a x 在a >1和0<a <1的情况下,它的图象特征和函数性质如下表所示.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:(7)在同一坐标系中作出y=2x和y=(2)x两个函数的图象,如图3.经过仔细研究发现,它们的图象关于y轴对称.图3(8)证明:设点p(x1,y1)是y=2x上的任意一点,它关于y轴的对称点是p1(-x1,y1),它满足方程y=(21)x=2-x,即点p1(-x1,y1)在y=(21)x的图象上,反之亦然,所以y=2x和y=(21)x两个函数的图象关于y轴对称.(9)因为y=2x和y=(21)x两个函数的图象关于y轴对称,所以可以先画其中一个函数的图象,利用轴对称的性质可以得到另一个函数的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.应用示例例1判断下列函数是否是一个指数函数?y =x 2,y =8x ,y =2·4x ,y =(2a -1)x (a >21,a ≠1),y =(-4)x ,y =πx ,y =6x 3+2. 活动:学生观察,小组讨论,尝试解决以上题目,学生紧扣指数函数的定义解题,因为y =x 2,y =2·4x ,y =6x 3+2都不符合y =a x 的形式,教师强调y =a x 的形式的重要性,即a 前面的系数为1,a 是一个正常数(也可是一个表示正常数的代数式),指数必须是x 的形式或通过转化后能化为x 的形式. 解:y =8x ,y =(2a -1)x (a >21,a ≠1),y =(-4)x ,y =πx 是指数函数;y =x 2,y =2·4x ,y =6x 3+2不是指数函数. 变式训练函数y =23x ,y =a x +k ,y =a -x ,y =(a 2)-2x (a >0,a ≠1)中是指数函数的有哪些? 答案:y =23x =(23)x ,y =a -x =(a 1)x ,y =(a 2)-2x =[(a2)-2]x 是指数函数.例2比较下列各题中的两个值的大小: (1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的,再写出(最好用实物投影仪展示写得正确的答案),比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并及时评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y =1.7x 的图象,如图4.图4在图象上找出横坐标分别为2.5、3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91, 所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.7.3>0.93.1.解法三:利用函数单调性,①1.72.5与1.73的底数是1.7,它们可以看成函数y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73; ②0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y =0.8x ,当x =-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y =0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;③因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值. 思考在上面的解法中你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习,强化来实现. 变式训练1.已知a =0.80.7,b =0.80.9,c =1.20.8,按大小顺序排列a ,b ,c . 答案:b <a <c (a 、b 可利用指数函数的性质比较,而c 是大于1的). 2.比较a 31与a 21的大小(a >0且a ≠0).答案:分a >1和0<a <1两种情况讨论.当0<a <1时,a 31>a 21;当a >1时,a 31<a 21.例3求下列函数的定义域和值域:(1)y =241-x ;(2)y =(32)||x -;(3)y =10112-+x x .活动:学生先思考,再回答,由于指数函数y =a x ,(a >0且a ≠1)的定义域是R ,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式. 解:(1)令x -4≠0,则x ≠4,所以函数y =241-x 的定义域是{x ∈R ∈x ≠4},又因为41-x ≠0,所以241-x ≠1,即函数y =241-x 的值域是{y |y >0且y ≠1}.(2)因为-|x |≥0,所以只有x =0. 因此函数y =(32)||x -的定义域是{x ∈x =0}.而y =(32)||x -=(32)0=1,即函数y =(32)||x -的值域是{y ∈y =1}.(3)令12+x x ≥0,得12+x x ≥0,即11+-x x ≥0,解得x <-1或x ≥1, 因此函数y =10112-+x x 的定义域是{x ∈x <-1或x ≥1}.由于12+x x -1≥0,且12+x x≠2,所以112-+x x ≥0且112-+x x ≠1. 故函数y =10112-+x x的值域是{y ∈y ≥1,y ≠10}.点评:求与指数函数有关的定义域和值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性,特别是第(1)题千万不能漏掉y >0. 变式训练求下列函数的定义域和值域: (1)y =(21)22x x -;(2)y =91312--x ;(3)y =a x -1(a >0,a ≠1). 答案:(1)函数y =(21)22x x -的定义域是R ,值域是[21,+∞);(2)函数y =91312--x 的定义域是[21-,+∞),值域是[0,+∞);(3)当a >1时,定义域是{x |x ≥0},当0<a <1时,定义域是{x |x ≤0},值域是[0,+∞). 知能训练课本P 58练习 1、2. 【补充练习】1.下列关系中正确的是( )A .(21)32<(51)12<(21)31B .(21)31<(21)32<(51)32C .(51)32<(21)31<(21)32D .(51)32<(21)32<(21)31答案:D2.函数y =a x (a >0,a ≠1)对任意的实数x ,y 都有( ) A .f (xy )=f (x )·f (y ) B .f (xy )=f (x )+f (y )C.f(x+y)=f(x)·f(y) D.f(x+y)=f(x)+f(y)答案:C3.函数y=a x+5+1(a>0,a≠1)恒过定点________.答案:(-5,2)拓展提升探究一:在同一坐标系中作出函数y=2x,y=3x,y=10x的图象,比较这三个函数增长的快慢.活动:学生深刻回顾作函数图象的方法,交流作图的体会.列表、描点、连线,作出函数y=2x,y=3x,y=10x的图象,如图5.图5从表格或图象可以看出:(1)x<0时,有2x>3x>10x;(2)x>0时,有2x<3x<10x;(3)当x从0增长到10,函数y=2x的值从1增加到1 024,而函数y=3x的值从1增加到59 049.这说明x>0时y=3x比y=2x的函数值增长得快.同理y=10x比y=3x的函数值增长得快.因此得:一般地,a>b>1时,(1)x<0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x>0时,有a x>b x>1;(4)指数函数的底数越大,x>0时其函数值增长就越快.探究二:分别画出底数为0.2、0.3、0.5的指数函数的图象(图6),对照底数为2、3、5的指数函数的图象,研究指数函数y=a x(0<a<1)中a对函数的图象变化的影响.图5由此得:一般地,0<a<b<1时,(1)x>0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x<0时,有a x>b x>1;(4)指数函数的底数越小,x>0时,其函数值减少就越快.课堂小结1.指数函数的定义.2.指数函数的图象和性质.3.利用函数的图象说出函数的性质,即数形结合的思想(方法),它是一种非常重要的数学思想和研究方法.4.利用指数函数的单调性比较几个数的大小,特别是中间变量法.作业课本P59习题2.1 A组5、6、8、10.第2课时指数函数的应用一.教学目标:1.知识与技能①进一步熟练掌握指数函数的概念、图象、性质;②会求指数形式的函数定义域、值域、最值,以及能判断与证明单调性、奇偶性;③能够利用指数函数的图象和性质比较数的大小,解不等式.2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法能够解决指数函数有关的应用问题.二.重、难点重点:指数函数的概念和性质及其应用.难点:能够解决指数函数有关的应用问题.三、学法与教具:①学法:观察法、讲授法及讨论法.②教具:多媒体.教学过程1、复习指数函数的图象和性质提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:(4)x >0时,y >1;x <0时,0<y <1(4)x >0时,0<y <1;x <0时,y >1 (5)在R 上是增函数(5)在R 上是减函数(2)依据函数单调性的定义证明函数单调性的步骤是:①取值.即设x 1、x 2是该区间内的任意两个值且x 1<x 2. ②作差变形.即求f (x 2)-f (x 1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x 2-x 1的符号确定f (x 2)-f (x 1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y =f (g (x ))可以总结为:当函数f (x )和g (x )的单调性相同时,复合函数y =f (g (x ))是增函数;当函数f (x )和g (x )的单调性相异即不同时,复合函数y =f (g (x ))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考察式子f (x )与f (-x )的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y 轴对称,则函数具有奇偶性.2、例题讲解例1:(P 66例7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出 1.7xy =的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标1.7x y =为2.5的点的上方,所以 2.531.7 1.7<.解法2:用计算器直接计算: 2.51.7 3.77≈ 31.7 4.91≈所以, 2.531.7 1.7<解法3:由函数的单调性考虑因为指数函数 1.7x y =在R 上是增函数,且2.5<3,所以, 2.531.7 1.7< 仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .思考:1、已知0.70.90.80.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c .2. 比较1132a a 与的大小(a >0且a ≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用. 例2(P 67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿经过x 年 人口约为13(1+1%)x 亿经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 13(11%)x y =+当x =20时,2013(11%)16()y =+≈亿答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N ,平均增长率为P ,则对于经过时间x 后总量(1),(1)(x x x y N p y N p y ka K R =+=+=∈像等形如,a >0且a ≠1)的函数称为指数型函数 .思考:P 68探究:(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .(3)你看到我国人口数的增长呈现什么趋势?(4)如何看待计划生育政策?例3设a >0,f (x )=x x ea a e +在R 上满足f (-x )=f (x ). (1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.活动:学生先思考或讨论,如果有困难,教师提示,引导.(1)求单独一个字母的值,一般是转化为方程,利用f (-x )=f (x )可建立方程.(2)证明增减性一般用定义法,回忆定义法证明增减性的步骤,规范书写的格式.(1)解:依题意,对一切x ∈R 有f (-x )=f (x )成立,即x ae1+ae x =x x e a a e +. 所以)1)(1(x x ee a a --=0对一切x ∈R 成立.由此可得a a 1-=0,即a 2=1. 又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,f (x 1)-f (x 2)=212111x x x x e e e e -+-=)11)((2121--+x x x x e e e =)1(121--x x x e e ·2121)1(x x x x e e ++-. 由x 1>0,x 2>0,x 2-x 1>0,得x 2+x 1>0,12x x e ->0,112x x e +-<0,所以f (x 1)-f (x 2)<0,即f (x )在(0,+∞)上是增函数.点评:在已知等式f (-x )=f (x )成立的条件下,对应系数相等,求出a ,也可用特殊值求解.证明函数的单调性,严格按定义写出步骤,判断过程尽量明显直观.知能训练求函数y =(21)|1+2x |+|x -2|的单调区间.活动:教师提示,因为指数含有两个绝对值,要去绝对值,要分段讨论,同时注意底数的大小,分析出指数的单调区间,再确定函数的单调区间,利用复合函数的单调性学生思考讨论,然后解答.解:由题意可知2与21-是区间的分界点. 当x <21-时,因为y =(21)-1-2x -x +2=(21)1-3x =23x -1=21•8x , 所以此时函数为增函数. 当21-≤x <2时,因为y =(21)1+2x -x +2=(21)3+x =2-3-x =81•(21)x , 所以此时函数为减函数. 当x ≥2时,因为y =(21)1+2x +x -2=(21)3x -1=21-3x =2•(81)x , 所以此时函数为减函数.当x 1∈[21-,2),x 2∈[2,+∞)时,因为2•(81)x 2-81•(21)x 1=12222233x x •-•-- =1233122x x ----,又因为1-3x 2-(-3-x 1)=4-3x 2+x 1=4+x 1-3x 2<0,所以1-3x 2<-3-x 1,即2•(81)x 2<81•(21)x 1. 所以此时函数为减函数. 综上所述,函数f (x )在(-∞,21-]上单调递增,在[21-,+∞)上单调递减. 拓展提升设m <1,f (x )=244+x x,若0<a <1,试求: (1)f (a )+f (1-a )的值; (2))10011000()10013()10012()10011(f f f f ++++ 的值. 活动:学生思考,观察,教师提示学生注意式子的特点,做这种题目,一定要有预见性,即第(2)问要用到第(1)问的结果,联系函数的知识解决.解:(1)f (a )+f (1-a )=24424411+++--a a a a =24444244+++a a a a =aa a 4244244•+++=a a a 422244+++=2424++a a =1. (2))10011000()10013()10012()10011(f f f f ++++ =[)]1001501()1001500([)]1001999()10002([)]10011000()10001([f f f f f f ++++++ =500×1=500.点评:第(2)问是第(1)问的继续,第(1)问是第(2)问的基础,两个问号是衔接的,利用前一个问号解决后一个问号是我们经常遇到的情形,要注意问号与问号之间的联系.课堂小结本节课复习了指数函数的性质,借助指数函数的性质的运用,我们对函数的单调性和奇偶性又进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中升华提高.作业:P 69 A 组第 7 ,8 题 P 70 B 组 第 1,4题。

人教版高中数学必修一第二章教案和练习

人教版高中数学必修一第二章教案和练习

高中数学必修一第二章教案和练习§2.1.1 指数与指数幂的运算(1)学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a ,那么这个数叫做a 的 ,记作 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .二、新课导学※ 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后体内碳14的含量P 与死亡时碳14关系为57301()2t P . 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: 2(2)4±=,那么2±就叫4的 ;3327=,那么3就叫27的 ;4(3)81±=,那么3±就叫做81的 .依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根 ( n th root ),其中1n >,n *∈N .例如:328=2=.反思:当n 为奇数时, n 次方根情况如何?33=-, 记:x =当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是00=.试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).试试:计算2.反思:从特殊到一般,n结论:n a =. 当n a =;当n (0)||(0)a a a a a ≥⎧=⎨-<⎩.※ 典型例题例1求下类各式的值:(1) ; (2) ;(3; (4)a b <).变式:计算或化简下列各式.(1 (2推广:=(a ≥0).※ 动手试试练1.练2. 化简三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则;② 若01a <<,则01n a <<. 其中n ∈N *.1. ).A. 3B. -3C. ±3D. 812. 625的4次方根是( ).A. 5B. -5C. ±5D. 253. 化简2是( ).A. b -B. bC. b ±D. 1b4. = .5. 计算:31. 计算:(1(2)2. 计算34a a-⨯和3(8)a+-,它们之间有什么关系?你能得到什么结论?3. 对比()n n nab a b=与()n nna ab b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.一、课前准备(预习教材P50~ P53,找出疑惑之处)复习1:一般地,若n x a=,则x叫做a的,其中1n>,n*∈N. 简记为:.像的式子就叫做,具有如下运算性质:n= ;= ;= .(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学※ 学习探究探究任务:分数指数幂引例:a >01025a a ==,则类似可得= ;23a = = .新知:规定分数指数幂如下*(0,,,1)mna a m n N n =>∈>; *1(0,,,1)mnmn a a m n N n a -==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ; = ;= (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.反思:① 0的正分数指数幂为 ;0的负分数指数幂为 .② 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质: (0,0,,a b r s Q >>∈)r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.※ 典型例题例1 求值:2327;4316-; 33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b >:(1)2b b ; (2)533b b ; (3例3 计算(式中字母均正): (1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1334a a(0)a >; (2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?练1. 把851323x --⎫⎪⎪⎝⎭化成分数指数幂.练2. 计算:(1443327; (2三、总结提升 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m m n na a a ÷= B. m n mn a a a ⋅= C. ()nm m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算(122--⎡⎤⎢⎥⎣⎦的结果是( ).A B . C.2 D .2- 4. 化简2327-= .5. 若102,104m n ==,则3210m n -= .1. 化简下列各式:(1)3236()49; (2.2.1⎛-⎝.§2.1.1 指数与指数幂的运算(练习)1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.一、课前准备(复习教材P48~ P53,找出疑惑之处)复习1:什么叫做根式? 运算性质?像的式子就叫做,具有性质:n=;=;= .复习2:分数指数幂如何定义?运算性质?①mna=;mna-=. 其中*0,,,1a m n N n>∈>②r sa a =;()r sa=;()sab=.复习3:填空.①n为时,(0)||...........(0)xxx≥⎧==⎨<⎩.②求下列各式的值:= ;=;= ;= ;= ;=;= .二、新课导学典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a-+;(2)22a a-+;(3)33221122a aa a----.小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立. .变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:① 方法:摘要→审题;探究 → 结论; ② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值.(1)1122x x -+; (2)3322x x -+.练3. 已知12(),0x f x x x π=⋅>.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.1.).A. B. C. 3 D. 729 2. 354a a (a >0)的值是( ).A. 1B. aC. 15a D. 1710a3. 下列各式中成立的是( ).A .1777()n n m m= B .C 34()x y =+D .4. 化简3225()4-= . 5. 化简2115113366221()(3)()3a b a b a b -÷= .课后作业1. 已知32x a b --=+, .2. 2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P 54~ P 57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1)0a = ;(2)n a -= ;(3)m n a = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例:A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .反思:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?a >1 0<a <1图象性 质 (1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数典型例题例1函数()x f x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ;② 待定系数法.例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ;(3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟 满分:10分)计分:1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 . 课后作业1. 求函数y =1151x x --的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)学习目标1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识.学习过程一、课前准备(预习教材P 57~ P 60,找出疑惑之处)复习1:指数函数的形式是 ,复习2:在同一坐标系中,作出函数图象的草图:2x y =,1()2x y =,5x y =,1()5x y =, 10x y =,1()10x y =.思考:指数函数的图象具有怎样的分布规律?二、新课导学典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x 年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N ,每次的增长率为p ,则经过x 次增长后的总量y = . 我们把形如x y ka = (,0,1)k R a a ∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21x y =+; (2)y = (3)110.4x y -=.变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数y =.练1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小.(1)33m n <; (2)0.60.6m n >;(3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域;知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ).A. a >bB. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ).A. R , RB. R , (0,)+∞C. R ,(1,)-+∞D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a 2>a 21-,则a >1D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-(); 0.763() 0.753-(). 5. 在同一坐标系下,函数y =a x ,y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)学习目标1. 理解对数的概念;3. 掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P 62~ P 64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由1.01x m =,求x .新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数log N 简记为lg Nlog e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数?为什么?(3)log 1a = , log a a = .典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92.log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.课后作业1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-; (6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3);(3)(2log (2; (4).§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P 64~ P 66,找出疑惑之处)复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 .(2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答:(1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xy z ; (2) log a .例2计算:(1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m=;(2)1log log a b b a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b N N a=; ② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a n N N=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35ab x c= C .35ab x c= D .x =a +b 3-c 3 3. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+=;(2)2121log log 22+= . 5. 计算:15lg 23=.1. 计算:(1; (2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.一、课前准备(预习教材P 66~ P 69,找出疑惑之处)复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()a MN = ;(2)log a M N= ; (3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数(x P =,则t 关于P 的函数为 . ※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 25()a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ).A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15BC .D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5= ;1102= .1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++; (2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.一、课前准备(预习教材P 70~ P 72,找出疑惑之处)复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:((2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域: (1)2log a y x =;(2)log (3)a yx =-;变式:求函数y =的定义域.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)y .练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.一、课前准备(预习教材P 72~ P 73,找出疑惑之处)复习1:对数函数log (0,1)a y x a a =>≠且图象和性质.复习2:比较两个对数的大小.(1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域.(1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学※ 学习探究探究任务:反函数问题:如何由2x y =求出x ?反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思: (1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系? (2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数.(1) y =x (x ∈R );(2)y =log a 2x(a >0,a ≠1,x >0)三、总结提升※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2xy =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x => C. (0)y x x =-> D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x =, 4log a y x =的图象,则底数之间的关系为 .课后作业有占总数12的细胞每小时分裂一次,即由1个细1. 现有某种细胞100个,其中胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg20.301==).。

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2指数函数及其性质教学设计新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2指数函数及其性质教学设计新人教A版必修1

2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。

2.1.2指数函数及其性质(第一课时)

2.1.2指数函数及其性质(第一课时)
2.1.2指数函数及其性质
莘县一中 袁 迪
学习目标:
1、了解指数函数模型的实际背景 2、理解指数函数的概念,掌握指数函数的性质
3、会利用指数函数的单调性比较大小
一、情景引入
情景1、把一张厚度为1毫米的纸对折1次,2次,3次的厚 度分别是多少?对折30次呢?
2
2
223ຫໍສະໝຸດ 230那么,假设厚度为1,对折x次后,厚度y如何表示?
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =
(2 )
-2
1x
3
fx = 2 x
2
1
-4
2
4
y
y
y
1 y 2
x
1 y 3
x
x
y 3
x
y 2
x
ya
( a 1)
ya
x
( 0 a 1)
1 1
1 1
0
x
0
16
0
1
14
1
3
2
9
3
27 1/27

… …
y3

x
1/27 1/9 27 9
1/3 3
12 10
1 y 3

1
1/3 1/9
g x =
(3 )
1x
8
6
fx =
x 3
4
2
-10
-5
5
10
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =

必修1教案2.1.2指数函数及其性质(一)

必修1教案2.1.2指数函数及其性质(一)

2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。

2.1.2指数函数及其性质(第三课时)

2.1.2指数函数及其性质(第三课时)
当x<0时,0<y<1. 5.既不是奇函数也不是偶函数.
y=ax
0<a<1 y
y=1
(0,1)
0
x
3.在R上是减函数
4.当x>0时, 0<y<1; 当x<0时, y>1.
例1: 1 y=ax(a>0且 a≠1)图象必过
点___(_0_,_1_)
2 y=ax-2(a>0且 a≠1)图象必
过点__(_2_,_1_)_
高中数学新课标人教A版必修①
2.1.2指数函数及其性质
第三课时
第一课时
复习回顾:
(1) 指数概念:
一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函
数的定义域是R
指数函数的特征: 【提示】依据指数函数y=ax(a>0且a≠1)解析式的结构特征: ①底数:大于零且不等于1的常数;
3 y=ax+3-1(a>0且 a≠1)图象
必过点__(_-_3_,_0_)_
求定点,先令指数为0,再 计算x,y的值
练习
例2.求下列函数的定义域、值域:
1
(1) y 3x (2) y (0.25) 2x1
解 (1) 函数的定义域为{x|x 0},
值域为{y |y>0 ,且y1}.
(2)
由2x 1 0,得x 1 2

2.当x=0时,y=1
数 3.在R上是增函数 3.在R上是减函数


4.非奇非偶函数
在第一象限内,按逆时针方向旋
转,底数a越来越大
谢谢大家
函数的定义域为
[1 ,) 2
2x 1 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2指数函数及其性质(2个课时)一. 教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.第一课时一.教学设想: 1. 情境设置①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)xy x x =∈≤与问题(2)t 1中时间t和C-14含量P的对应关系P=[(2,请问这两个函数有什么共同特征.②这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).二.讲授新课 指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R.提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2xy =-(4)x y π= (5)2y x = (6)24y x = (7)xy x = (8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R.000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)xy a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图象再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律. 从图上看xy a =(a >1)与xy a =(0<a <1)两函数图象的特征.问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.5.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:(P 66 例6)已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.提问:要求出指数函数,需要几个条件? 课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2xf x =的定义域和值域分别是多少? 2、当[1,1],()32xx f x ∈-=-时函数的值域是多少? 解(1),0x R y ∈> (2)(-53,1) 例2:求下列函数的定义域: (1)442x y -= (2)||2()3x y =分析:类为(1,0)xy a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结作业:P 69 习题2.1 A 组第5、6题1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。

2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .第2课时教学过程:1、复习指数函数的图象和性质2、例题例1:(P 66例7)比较下列各题中的个值的大小 (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与0.93.1解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出 1.7xy =的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 2.531.71.7<.解法2:用计算器直接计算: 2.51.73.77≈ 31.74.91≈所以, 2.531.71.7<解法3:由函数的单调性考虑因为指数函数 1.7x y =在R 上是增函数,且2.5<3,所以, 2.531.7 1.7<仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .思考:1、已知0.70.90.80.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 2. 比较1132a a 与的大小(a >0且a ≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用. 例2(P 67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿 经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿 经过x 年 人口约为13(1+1%)x亿 经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则13(11%)x y =+当x =20时,2013(11%)16()y =+≈亿答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N ,平均增长率为P ,则对于经过时间x 后总量(1),(1)(x x x y N p y N p y ka K R =+=+=∈像等形如,a >0且a ≠1)的函数称为指数型函数 .思考:P 68探究:(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 . (3)你看到我国人口数的增长呈现什么趋势? (4)如何看待计划生育政策? 3.课堂练习(1)右图是指数函数①xy a = ②xy b = ③x y c = ④xy d =的图象,判断,,,a b c d 与1的大小关系;(2)设31212,,x xy a y a +-==其中a >0,a ≠1,确定x 为何值时,有:①12y y = ②1y >2y (3)用清水漂洗衣服,若每次能洗去污垢的34,写出存留污垢y 与漂洗次数x 的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B 版101页第6题).归纳小结:本节课研究了指数函数性质的应用,关键是要记住a >1或0<a <时xy a=的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如xy ka =(a >0且a ≠1).作业:P 69 A 组第 7 ,8 题 P 70 B 组 第 1,4题。

相关文档
最新文档