2013华师大七年级上第4章图形的初步认识检测题含答案解析
华师大版七年级上册《第4章+图形的初步认识》2013年单元测试卷
华师大版七年级上册《第4章 图形的初步认识》2013年单元测试卷一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F ,E,V 分别表示正多面体的面数、. C D .CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是( ).C D .8.(3分)下列平面图形不能够围成正方体的是( ).CD .10.(3分)在直线l 上顺次取A 、B 、C 三点,使得AB=5cm ,BC=3cm ,如果O 是线段AC 的中点,那么线段OB二、填空题(每小题3分,共24分) 11.(3分)如图,直线AB ,CD 相交于点0,OE 平分∠AOD ,若∠BOC=80°,则∠AOE= _________ °.12.(3分)直线上的点有 _________ 个,射线上的点有 _________ 个,线段上的点有 _________ 个. 13.(3分)两条直线相交有 _________个交点,三条直线相交最多有 _________ 个交点,最少有 _________ 个交点. 14.(3分)如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON=50°,∠BOC=10°,则∠AOD= _________ 度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是 _________ .16.(3分)下列表面展开图的立体图形的名称分别是: _________ 、 _________ 、 _________ 、 _________ .17.(3分)如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC= _________ .18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.华师大版七年级上册《第4章图形的初步认识》2013年单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、.C D,进而得到再利用等量代换可得∴==.CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是()∠.C D..C D.10.(3分)在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB二、填空题(每小题3分,共24分)11.(3分)如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40°.12.(3分)直线上的点有无数个,射线上的点有无数个,线段上的点有无数个.13.(3分)两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.14.(3分)如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD=90度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是(1)(3).16.(3分)下列表面展开图的立体图形的名称分别是:圆柱、圆锥、四棱锥、三棱柱.17.(3分)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC=6cm.18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.EF=BC+(EF=BC+(×22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?是直角,不改变,可得∴∵∴24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.DC=AC=25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.。
华师大版七年级数学上册-第四章-图形的初步认识-章末测试(一)(含答案解析)
第四章图形的初步认识章末测试〔一〕一.选择题〔共10小题,每题3分〕1.下列立体图形中,是多面体的是〔〕A.B.C D.2.下面的几何体中,主视图为三角形的是〔〕A.B.C.D.3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是〔〕A.B.C.D.4.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形〔〕A.B.C.D.5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是〔〕A.B.C.D.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为〔〕A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短7.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于〔〕A.11cm B.5cm C.11cm或5cm D. 8cm或11cm8.用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″D. 91°3′4″9.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为〔〕A.30°B.45° C.50° D. 60°10.已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是〔〕A.56°34′B.47°34′C.136°34′D. 46°34′二.填空题〔共7小题,每题3分〕11.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________.12.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是_________.13.现在是9点21分,钟面上的时针与分针的夹角是_________.14.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.其中,可以用“两点之间,线段最短〞来解释的现象是_________〔填序号〕.15.班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条还任意转动;钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为_________.16.如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有_________种.17.如图是某几何体的三视图与相关数据,则该几何体的侧面积是_________三.解答题〔共9小题〕18.〔6分〕按要求作图:平面上有A,B,C三点,如图所示,画直线AC,射线BC,线段AB,在射线BC上取点D,使BD=AB.19.〔6分〕已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.〔如图所示〕20〔6分〕.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.21.〔7分〕如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.〔1〕求线段MN的长度;〔2〕根据〔1〕的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.22.〔8分〕计算:〔1〕13°29′+78°37″;〔2〕61°39′﹣22°5′32″;〔3〕23°53′×3;〔4〕107°43′÷5.23.〔9分〕已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,〔1〕如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;〔2〕当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.24.〔9分〕如图,∠AOC:∠COD:∠BOD=2:3:4,OE、OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数.25.〔9分〕如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB 与∠COM互补,求∠BON的度数.26.〔9分〕一个角的余角的补角是这个余角的倍,那么这个角的余角是多少度?第四章图形的初步认识章末测试〔一〕参考答案与试题解析一.选择题〔共10小题〕1.下列立体图形中,是多面体的是〔〕A.B.C.D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.2.下面的几何体中,主视图为三角形的是〔〕A.B.C.D.考点:简单几何体的三视图.专题:常规题型.分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图与可选出答案.解答:解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是〔〕A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠与正方体的展开图解题.解答:解:A、折叠后有个侧面重叠,而且上边没有面,不能折成正方体;B、折叠后缺少上底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一下面,所以也不能折叠成一个正方体.故选C.点评:本题考查了展开图折叠成几何体,注意正方体的展开图中每个面都有对面.4.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形〔〕A.B.C.D.考点:展开图折叠成几何体.分析:根据相邻面、对面的关系,可得答案.解答:解:圆面的临面是长方形,长方形不指向圆,故选;B.点评:本题考查了展开图折成几何体,相邻面间的关系是解题关键.5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是〔〕A.B.C. D.考点:认识平面图形.分析:本题可由圆柱体的基本性质入手,结合图中图形进行分析即可.解答:解:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A.点评:本题考查平面图形的基本知识,看清题中图形即可.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为〔〕A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.解答:解:图中A和B处在同一条直线上,根据两点之间线段最短,知其路程最短.故选A.点评:此题为数学知识的应用,考查知识点两点之间线段最短.7.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于〔〕A.11cm B.5cm C.11cm或5cm D.8cm或11cm考点:比较线段的长短.专题:分类讨论.分析:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解答:解:由于C点的位置不确定,故要分两种情况讨论:〔1〕当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;〔2〕当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.点评:本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.8.用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″D.91°3′4″考点:度分秒的换算.分析:根据度分秒的进率,可得答案.解答:解:91.34°=91°+0.34×60′=91°20′+0.4×60″=91°20′24″,故选A.点评:本题考查了度分秒的换算,度化成分乘以60,分化成秒乘以60.9.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为〔〕A.30°B.45°C.50°D.60°考点:角的计算.专题:计算题.分析:由∠AOC=∠BOD=90°,∠AOD=150°,可求出∠BOC的度数,再根据角与角之间的关系求解.解答:解:∵∠AOC=∠BOD=90°,∠AOD=150°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣150°=30°,故选:A.点评:此题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC 一次.10.已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是〔〕A.56°34′B.47°34′C.136°34′D.46°34′考点:余角和补角.专题:计算题.分析:若两个角的和为90°,则这两个角互余.解答:解:∠α与∠β互余,若∠α=43°26′,则∠β的度数是90°﹣∠α=90°﹣43°26′=46°34′.故选D.点评:此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.二.填空题〔共7小题〕11.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.12.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.考点:角平分线的定义.分析:根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.解答:解:∵EF是∠BED的角平分线,∠DEF=70°,∴∠DEB=2∠DEF=2×70°=140°,∴∠AED=180°﹣∠DEB=180°﹣140°=40°.故答案为:40°.点评:本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.13.现在是9点21分,钟面上的时针与分针的夹角是154.5°.考点:钟面角.分析:根据钟表上每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.解答:解:时针超过21分所走的度数为21×0.5=10.5°,分针每分钟走6°,分针与9点之间的夹角为:30°×5﹣6°=144°,故此时时钟面上的时针与分针的夹角是144°+10.5°=154.5°.故答案为:154.5°.点评:此题考查了钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度,分针每分钟走6°.14.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.其中,可以用“两点之间,线段最短〞来解释的现象是②〔填序号〕.考点:线段的性质:两点之间线段最短.分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.解答:解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为:②.点评:此题主要考查了线段的性质,关键是掌握两点之间,线段最短.15.班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条还任意转动;钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为两点确定一条直线..考点:直线的性质:两点确定一条直线.分析:两个钉子代表两个点,木条代表直线,直接根据直线公理填空即可.解答:解:钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为两点确定一条直线.故应填:两点确定一条直线.点评:理解“两点确定一条直线〞这一直线公理是解决此类实际问题的关键.16.如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有6种.考点:直线、射线、线段.专题:方案型.分析:根据题意,结合图形求解即可.解答:解:从A地上面一条路线到C地有2条路线,从A地中间一条路线到C地有2条路线,从A地下面一条路线到C地有2条路线.∴从A地到C地可供选择的方案有2×3=6种.故答案为6.点评:此题在线段的基础上,着重培养学生的观察能力,应注重分类讨论的方法计数,做到不遗漏,不重复.17.如图是某几何体的三视图与相关数据,则该几何体的侧面积是ac考点:由三视图判断几何体;几何体的表面积.分析:根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=可计算出结果.解答:解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故答案为:.点评:此题主要考查了由三视图判断几何体,以与圆锥的侧面积公式的应用,关键是找到等量关系里相应的量.三.解答题〔共9小题〕18.按要求作图:平面上有A,B,C三点,如图所示,画直线AC,射线BC,线段AB,在射线BC上取点D,使BD=AB.考点:直线、射线、线段.专题:作图题.分析:直线是向两方无限延伸的,射线是向一方无限延伸的,线段有2个端点,根据三线的性质画出图形即可.解答:解:如图所示:.点评:此题主要考查了直线、射线、线段,关键是掌握三线的性质.19.已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.〔如图所示〕考点:线段的性质:两点之间线段最短.专题:作图题.分析:显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.解答:解:连接两点与直线的交点即为所求作的点P,这样PA+PB最小,理由是两点之间,线段最短.点评:本题考查了求两点之间的距离,线段最短,比较简单.20.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC 的长.考点:比较线段的长短.分析:因为M为AB的中点,N为MC的中点,则可求AM=BM=AB=3cm,BN=MN﹣BM=5cm,故BC=BN+NC可求.解答:解:∵M为AB的中点,∴AM=BM=AB=3cm,∵N为MC的中点,∴MN=NC=8cm.∴BN=MN﹣BM=5cm,∴BC=BN+NC=5+8=13〔cm〕.答:BC长为13cm.点评:此题主要考查了线段的中点,关键是能根据线段的中点写出正确的表达式,从而求出有关的一些线段的长.21.如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.〔1〕求线段MN的长度;〔2〕根据〔1〕的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.考点:比较线段的长短.专题:计算题.分析:点M是AC的中点,点N是BC的中点,则有MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=〔AC+BC〕=AB.解答:解:〔1〕∵AC=6厘米,BC=4厘米,∴AB=AC+BC=10厘米,又∵点M是AC的中点,点N是BC的中点,∴MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=〔AC+BC〕=AB=5厘米;〔2〕由〔1〕中已知AB=10厘米,求出MN=5厘米,分析〔1〕的推算过程可知MN=AB,故当AB=a时,MN=a,从而得到发现的规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.点评:本题通过计算MN的长度,进而推导了“线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半〞.22.计算:〔1〕13°29′+78°37″;〔2〕61°39′﹣22°5′32″;〔3〕23°53′×3;〔4〕107°43′÷5.考点:度分秒的换算.分析:类比于小数的四则运算的计算方法计算,注意满60进一即可.解答:解:〔1〕13°29′+78°37″=91°29′37″;〔2〕61°39′﹣22°5′32″=39°33′28″;〔3〕23°53′×3=71°39′;〔4〕107°43′÷5=21°32′36″.点评:此题考查度分秒之间的换算和计算,注意掌握1°=60′,1′=60″这一基本的换算.23.已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,〔1〕如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;〔2〕当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.考点:角的计算;角平分线的定义.分析:〔1〕根据角平分线的性质,可得∠NOC与∠BOC的关系,∠COM与∠COA的关系,根据角的和差,可得答案;〔2〕根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COM的度数,∠CON的度数,根据角的和差,可得答案.解答:解:〔1〕∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=,∠COM=∠COA.∵∠CON+∠COM=∠MON,∴∠MON=〔BOC+AOC〕=α;〔2〕如图:,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=〔∠AOB+∠BOC〕,∠CON=BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC﹣∠CON=〔AOB+∠BOC〕﹣∠BOC=∠AOB=α.点评:本题考查了角的计算,利用了角平分线的性质,角的和差.24.如图,∠AOC:∠COD:∠BOD=2:3:4,OE、OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF 的度数.考点:角的计算;角平分线的定义.分析:根据补角和为180°和角平分线的性质即可求得∠EOF的大小,即可解题.解答:解:∵∠AOC:∠COD:∠BOD=2:3:4,∠AOC+∠COD+∠BOD=180°,∴∠AOC=40°,∠BOD=80°,∵OE、OF分别平分∠AOC和∠BOD,∴∠AOE=∠COE=20°,∠BOF+∠DOF=40°,∴∠EOF=180°﹣20°﹣40°=120°,∵OG平分∠EOF,∴∠GOF=60°.点评:本题考查了补角和为180°的性质,考查了角平分线平分角的性质,本题中求∠EOF是解题的关键.25.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM 互补,求∠BON的度数.考点:余角和补角.分析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.解答:解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=∠AOB,即∠AOB+∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得,∠AON=∠AOC=×150°=75°,由角的和差,得∠BON=∠AON﹣∠AOB=75°﹣60°=15°.点评:本题考查了余角与补角,利用了补角的性质,角的和差,角平分线的性质.26.一个角的余角的补角是这个余角的倍,那么这个角的余角是多少度?考点:余角和补角.分析:根据一个锐角的余角加加90°等于它的补角,可得方程,根据解方程,可得答案.解答:解:设:这个角的余角是x°,由题意得x+90°=x.解得x=135°,答:这个角的余角是135度.点评:本题考查了余角和补角,利用了一个锐角的余角加加90°等于它的补角.。
华师大版七年级上册数学第4章 图形的初步认识 含答案
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、由4个相同的立方体搭成的几何体如图所示.则它的主视图是()A. B. C. D.2、如图,用大小一样的正方体搭建一个几何体,该几何体的主视图是( )A. B. C. D.3、如图,圆柱体的表面展开后得到的平面图形是( )A. B. C. D.4、一个几何体的三视图如下:其中主视图与左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为()A.2πB.C.8πD.4π5、如图,顽皮的小聪课间把老师的直角三角板的直角顶点放在黑板上的两条平行线a、b上,若∠1=55°,则∠2的度数是 ( )A.35°B.45°C.55°D.65°6、用一个平面去截下列几何体,所得截面与其他三个不同的是()A. B. C.D.7、如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A. B. C. D.8、在时刻8:30分时,时钟上的时针与分针之间所成的夹角是()A.60°B.65°C.70°D.75°9、如图中几何体由一些完全相同的小立方体组成,从上面看到图形的形状是()A. B. C. D.10、某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个11、已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°12、下列说法中正确的是()A.两条射线所组成的图形叫做角B.一条直线可以看成一个平角C.角的两边越长,角就越大D.角的大小和它的度数大小是一致的13、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A1B1C,连接AA1,若∠AA1B1=15°,则∠B的度数是()A.75°B.60°C.50°D.45°14、如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.15、如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放,若∠2=25°,则∠1=________.17、已知A,B,C是数轴上的三个点,点A,B表示的数分别是1,3.如图所示,若BC=2AB,则点C表示的数是________.18、在平面上有三点,过其中任意两点画直线,可画直线的条数为________条。
【华东师大版】数学七年级上第4章《图形的初步认识》章末检测及答案
【华东师大版】数学七年级上第4章《图形的初步认识》章末检测及答案华东师大版数学七年级上第4章检测卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( ) A .圆柱体 B .球体 C .圆 D .圆锥体2.如图所示的图形中,属于棱柱的有( )A .2个B .3个C .4个D .5个3.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )4.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图( )5.如图,OC 平分∠AOB ,OD 平分∠AOC ,∠AOD =35°,则∠AOB 为( ) A .80° B .100° C .120° D .140°第5题图第6题图6.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为( )A .6πB .8πC .10πD .12π7.若∠α和∠β互为余角,∠α和∠γ互为补角,∠β与∠γ的和等于周角的13,则∠α,∠β,∠γ这三个角分别是( )A .75°,15°,105°B .60°,30°,120°C .50°,40°,130°D .70°,20°,110°8.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm9.如图,某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14圆周,则结果指针的指向是( )A .南偏东50°方向B .北偏西40°方向C .南偏东40°方向D .东南方向10.图中是左面正方体的展开图的是( )二、填空题(每小题3分,共18分)11.如图,小明到小颖家有四条路,小明想尽快到小颖家,他应该走第________条路,其中的道理是____________________.第11题图第15题图12.3.76°=______°______′______″.13.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为________.14.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.15.如图是一个正方体的展开图,在a ,b ,c 处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则cab的值为________.16.如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有________块.三、解答题(共72分) 17.(12分)计算:(1)153°19′42″-26°40′28″;(2)90°3″-57°21′44″;(3)33°15′16″×5;(4)175°16′30″-47°30′÷6.18.(8分)5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是____________(立方单位),表面积是____________(平方单位); (2)分别画出这个几何体的主视图和左视图.19.(10分)一艘客轮沿东北方向OC 行驶,在海上O 处发现灯塔A 在北偏西30°方向上,灯塔B 在南偏东60°的方向上.(1)在图中画出射线OA ,OB ,OC ;(2)求∠AOC 与∠BOC 的度数,你发现了什么?20.(10分)如图,AD =12DB ,E 是BC 的中点,BE =15AC =2cm ,求线段DE 的长.21.(10分)如图,OE为∠COA的平分线,∠AOE=60°,∠AOB =∠COD=16°.(1)求∠BOC的度数;(2)比较∠AOC与∠BOD的大小.22.(10分)小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方体的表面积.23.(12分)如图,B是线段AD上一动点,沿A→D→A以2cm/s 的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=________cm.②求线段CD的长度;(2)用含t的代数式表示运动过程中AB的长;(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.参考答案与解析1.A 2.C 3.D 4.C 5.D 6.B 7.A 8.C 9.C 10.D 11.② 两点之间,线段最短 12.3 45 36 13.69°45′ 14.18 15.-715 16.917.解:(1)原式=126°39′14″;(3分) (2)原式=32°38′19″;(6分) (3)原式=166°16′20″;(9分) (4)原式=167°21′30″.(12分) 18.解:(1)5 22(4分) (2)如图所示.(8分)19.解:(1)如图所示;(5分)(2)∠AOC =∠BOC =75°,(8分)发现OC 为∠AOB 的平分线.(10分)20.解:因为BE =15AC =2cm ,所以AC =10cm.(2分)因为E 是BC 的中点,所以BE =EC =2cm ,BC =2BE =2×2=4(cm),(4分)则AB =AC -BC =10-4=6(cm).(6分)又因为AD =12DB ,所以AB =AD +DB =AD +2AD =3AD =6cm ,(8分)所以AD =2cm ,DB =4cm ,所以DE =DB +BE =4+2=6(cm).(10分)21.解:(1)因为OE 平分∠AOC ,所以∠COA =2∠AOE =120°,(2分)所以∠BOC =∠AOC -∠AOB =120°-16°=104°;(5分)(2)因为∠BOD =∠BOC +∠COD =104°+16°=120°,所以∠AOC =∠BOD .(10分) 22.解:(1)多余一个正方形,如图所示:(5分)(2)表面积为52×2+8×5×4=50+160=210(cm)2.(10分) 23.解:(1)①4(2分)②因为AD =10cm ,AB =4cm ,所以BD =10-4=6(cm).因为C 是线段BD 的中点,所以CD =12BD =12×6=3(cm);(4分)(2)因为B 是线段AD 上一动点,沿A →D →A 以2cm/s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;(6分)当5<t ≤10时,AB =10-(2t -10)=(20-2t )cm ;(8分)(3)不变.(10分)因为AB 的中点为E ,C 是线段BD 的中点,所以EC =12(AB +BD )=12AD=12×10=5(cm).(12分)。
数学华师版七年级上第4章图形的初步认识单元检测(附答案)
数学华师版七年级上第4章图形的初步认识单元检测一、选择题1.若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则( ).A.∠A>∠B>∠C B.∠B>∠A>∠CC.∠A>∠C>∠B D.∠C>∠A>∠B2.下图中的线段有( ).(第2题图)A.5条B.7条C.9条D.10条3.已知∠1=30°,则∠1的余角度数是( ).A.160°B.150°C.70°D.60°4.将如图所示的正方体沿某些棱展开后,能得到的图形是( ).(第4题图)5.已知∠AOB=30°,∠BOC=45°,则∠AOC等于( ).A.15°B.75°C.15°或75°D.不能确定6.如图所示,将五角星沿着虚线折叠,使得A,B,C,D,E五个点重合,得到的立体图形是( ).(第6题图)A.棱柱B.圆锥C.圆柱D.棱锥7.如图,下面四个几何体中,左视图是四边形的几何体共有( ).(第7题图)A.1个B.2个C.3个D.4个8.(吉林中考)如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图...是( ).(第8题图)9.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE等于( ).(第9题图)A.70°B.65°C.60°D.50°10.下图所示,从A地到达B地,最短的路线是( ).(第10题图)A.A→C→E→B B.A→F→E→BC.A→D→E→B D.A→C→G→E→B二、填空题11.计算:98°45′36″+71°22′34″=__________.12.如图是某工件的三视图,其中正视图、左视图均是边长为20 cm的正方形,则此工件的侧面积是__________ cm2.(第12题图)13.如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC=__________.(第13题图)14.九点钟,时钟上的时针和分针组成的角是__________度.15.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能__________.(第15题图)16.如图,AB⊥CD于点B,BE平分∠ABD,则∠CBE的度数为__________.(第16题图)三、解答题17.如图所示,已知点A,B,C.按下列要求作图:(第17题图)(1)连接AB,BC;(2)作直线AC.18.请画出下面立体图形的三视图.(第18题图)19.如图所示,小亮从A点出发,沿直线向前走10 m后向左转30°,再沿直线前进10 m,又向左转30°,…,照这样走下去,求当小亮第一次回到出发点A时所走的路程.(第19题图)20.如图所示,点B,C在线段AD上,E是AB的中点,F是CD的中点,若EF=10,BC=3,求AD的长.(第20题图)21.如图,已知∠AOB=90°,∠BOC=60°,OE平分∠AOC,OF平分∠BOC,求∠EOF 的度数.(第21题图)22.如图所示,把一幅三角尺的直角顶点O重叠在一起.(第22题图)(1)如图①,当OB平分∠COD时,∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?课后训练1.A 点拨:20.25°=20°15′.2.D 点拨:上面有AB ,AC ,AD ,AE,4条,下面有BC ,BD ,BE ,CD ,CE ,DE,6条,所以共10条.3.D 点拨:∠1的余角为90°-∠1=90°-30°=60°.4.C 点拨:可将所给的表面展开图“还原”成立体图形,然后与给出的正方体进行对比,解决问题.5.C 点拨:本题没有给出图形,所以∠AOB 和∠BOC 的位置不确定,有两种情况.6.D 点拨:展开图中有五个三角形,可以确定这个几何体是锥体,且有一个五边形,故这个几何体是五棱锥.7.B8.D 点拨:选项A 是它的正视图,选项C 是它的左视图,选项D 是它的俯视图.9.B 点拨:根据折叠后的两个角相等,可知∠BFE =(180°-∠1)÷2=65°.10.B 点拨:在4条供选择的路线中,每条路线的最后一段都是线段EB ,而从A 到E 的路线中,根据两点之间线段最短,线段AE 是最短的.11.170°8′10″ 点拨:让度、分、秒分别相加,然后根据度、分、秒之间的进率进行换算.12.400π 点拨:从三视图可知是一个圆柱体,上下底面圆的直径为20 cm ,高为20 cm ,所以侧面积为:2π×10×20=400π(cm 2).13.6 cm 点拨:因为DC =BD -BC =3 cm ,所以AC =2DC =6 cm.14.90 点拨:九点钟,时针指向9,分针指向12,所以组成的角的度数是3×30°=90°. 15.4或5 点拨:由正视图知,这个几何体有两层构成,再根据俯视图可知,第二层可能有一个小正方体,也可以有两个小正方体.16.135° 点拨:因为BE 平分∠ABD ,所以∠EBD =12∠ABD =12×90°=45°,所以∠CBE =180°-∠EBD =180°-45°=135°.17.解:如图.(第17题图)18.解:如图.(第18题图)19.解:小亮回到A 点说明小亮转了一周, 所以小亮左转的次数:36030=12(次). 每转一次,小亮都走了10米,因此小亮第一次回到出发点A 时所走的路程为12×10=120(米).20.解:因为E ,F 分别为AB ,CD 的中点,所以AE=BE=12AB,CF=DF=12CD.所以AD=AE+EF+FD=12(AB+CD)+EF=12(AD-BC)+EF,即AD=2EF-BC.又EF=10,BC=3,所以AD=2×10-3=17.21.解:因为∠AOB=90°,∠BOC=60°,所以∠AOC=∠AOB+∠BOC=150°.因为OE平分∠AOC,所以∠EOC=12∠AOC=12×150°=75°.又因为OF平分∠BOC,所以∠FOC=12∠BOC=12×60°=30°.所以∠EOF=∠EOC-∠FOC=75°-30°=45°.22.解:(1)因为∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,所以∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+∠BOD+∠BOC=∠AOB+∠COD=90°+90°=180°.。
华师大版七年级上册数学第4章 图形的初步认识含答案(精练)
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是:()A.50 °B.60 °C.80 °D.70 °2、一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100πB.50πC.20πD.10π3、下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4、如图是由5个小立方块搭建而成的几何体,它的俯视图是()A. B. C. D.5、如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6、如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B. C. D.7、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中截面不可能是长方形的几何体是()A. B. C.D.8、下面如图所示的几何体的俯视图是()A. B. C. D.9、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④10、将坐标的正方体展开能得到的图形是()A. B. C. D.11、下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.12、如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错13、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm 3B.100 cm 3C.92cm 3D.84cm 314、如图是几何体的三视图及相关数据,则下列判断错误的是()A. B. C. D.15、小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定二、填空题(共10题,共计30分)16、若一个角等于53°17′,则这个角的余角等于________.17、如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,该图中不同的线段数共有________条.20、一个人从A点出发向北偏西30° 方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC=________。
华师大七上第4章试卷 图形的初步认识单元测试题(1)(含答案)
21第四章 图形的初步认识单元测试一、判断:1.如果AB=BC,则B 是线段AC 的中点.( )2.已知∠BAD=∠CAD=90°,则AD 是∠BAC 的角平分线.( )3.顶点相同,角相等的两个角是对顶角.( )4.钝角与锐角的和是180°.( )5.过直线外一点,有且只有一条直线与已知直线平行.( )6.两条直线被第三条直线所截,同位角相等.( )7.不相交的两条直线是平行线.( )8.如果线段AB=7cm,BC=4cm,AC=3cm,则A,B.C 在同一直线上.( ) 9.如图,∠1和∠2是同旁内角.( )10.同一平面内,两条直线的位置关系是:垂直或相交.( ) 二、选择:11.下列图形中,( )不是多面体A.(1)(2)(4)B.(2)(4)(5)C.(2)(5)(6)D.(1)(3)(6)12.下列图形中,( )是四边形.13.有下列作法:(1)延长直线AB 到C;(2)延长射线OC 至D;(3)反向延长射线OC 至D;(4)延长线段AB 至C,其中正确的是( )A.(1)B.(1)(2)C.(1)(2)和(3)D.(3)(4) 14.平行于同一直线的两条直线( )A.平行B.垂直C.相交D.平行或重合15.将线段AB 延长至C,再将AB 反向延长至D,则图中共有( )条线段. A.3 B.4 C.5 D.6 16.两个锐角的和( )A.一定是锐角B.一定是直角C.一定是钝角D.可能是锐角 17.下列各角中,是钝角的为( ) A.14周角 B.56平角 C.23周角 D.12平角 18.已知∠AMB=45°,∠BMC=30°,则∠AMC=( )A.45°B.15°或30°C.75°D.15°或75°19.若∠A 和∠B 的两条边分别平行,且∠A 比∠B 的2倍少30°,则∠B 是( ) A.30° B.150° C.30°或70° D.100°20.如图,已知∠1:∠2:∠3=2:3:4,EF ∥BC,FD ∥EB,则∠A:∠B:∠C=( ) A.2:3:4 B.3:2:4 C.2:4:3 D.4:2:3第20题FC A ED B第29题A ED 第30题OFAE B第31题C AB三、填空21.直线外一点与直线上各点连结的所有线段中,以_______为最短. 22.已知直线上有A,B,C 三点,其中AB=5cm,BC=2cm,则AC=_______. 23.已知直线AB,CD 相交于O,且∠AOD:∠DOB=3:2,则∠AOC=_______. 24.同一平面上的三点可能确定_______条直线. 25.计算:180°-23°13′6″×4=__________.26.已知角a 余角的3倍等于它的补角,则a=_________.27.已知∠AOB=60°,∠BOC=30°,OE,OF 分别为∠AOB,∠BOC 的角平分线, 则∠EOF=_____. 28.如果一个角的两边和另一个角的两边分别平行,则这两个角_______. 29.如图,AD ∥BC,∠DAC=40°,∠EAD=70°,则∠C=_______,∠B=______. 30.如图,EF ∥OB,∠F=∠EOF,则OF 是∠AOB 的______. 四、作图:31.如图,过A,B,C 三点分别作对边的垂线. 五、计算和证明:32.已知线段AB,延长AB 至C,使BC=13AB,D 是AC 的中点,如果DC=2cm,求AB 的长.33.从一点引出的五条射线,它们所成的四个依次相邻的角中后面一个是前面一个的2倍,且它们的和为360°,求这四个角.34.如图,OC 平分∠AOB,∠AOB=60°,∠AOD=50°,求∠COD 的度数.OCA DB35.如图,已知∠AOB=150°,∠AOC=∠BOD=90°,求∠COD 的大小.OCADB36.如图,已知AD ⊥BC,EF ⊥BC,∠1=∠2,求证:DG ∥BA.21CA ED BG37.如图,已知CB ⊥BA,CE 平分∠BCD,DE 平分∠CDA,∠1+∠2=90°, 求证:AD ⊥AB 。
华师大版七年级上册数学第4章 图形的初步认识含答案(考试真题)
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图是由几个相同的正方体搭成的一个几何体,它的俯视图是()A. B. C. D.2、一个正方体的每个面都有一个汉字,其平面展开图如图,那么在该正方体中和“毒”字相对的字是()A.卫B.防C.讲D.生3、下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体4、如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A. B. C. D.5、某物体的三视图如图所示,那么该物体是()A.长方体B.圆锥体C.正方体D.圆柱体6、如图所示几何体的左视图是()A. B. C. D.7、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个8、在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国9、如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A. B. C. D.10、如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对11、下列图形中,不能折叠成一个正方体的是()A. B. C.D.12、一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的().A.①②B.③④C.①④D.③②13、下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A. B. C.D.14、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.圆上任意两点间的部分叫做圆弧15、过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为A. B. C. D.二、填空题(共10题,共计30分)16、数轴上和表示-1的点的距离等于4的点表示的有理数是________17、近日,以“奋斗40载”为主题的大型无人机灯光表演在深圳龙岗上演,小刚把其中一句祝福“致敬奋斗的你”写在了正方体的各个面上,展开图如图所示,请问“敬”的相对面是________。
华师大版七年级上册数学第4章 图形的初步认识 含答案
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C. D.2、如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF等于()A.35°B.45°C.55°D.65°3、如图,空心圆柱的主视图是()A. B. C. D.4、如图,下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠DGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠CBD是同一个角。
其中正确的说法有()A.1个B.2个C.3个D.4个5、如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为( )A. B. C. D.6、如图是由5个相同的小正方体构成的几何体,其主视图是()A. B. C. D.7、直六棱柱如图所示,它的俯视图是()A. B. C. D.8、下列说法中正确的是A. 是分数B.实数和数轴上的点一一对应C. 的系数为D. 的余角9、下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离10、已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3π C. D.6π11、如图,已知.则结论①;②平分;③;④.正确的是()A.①②③B.①②④C.①③④D.②③④12、下列说法中正确的有()①延长直线AB ②延长线段AB ③延长射线AB④画直线AB=5cm ⑤在射线AB上截取线段AC,使AC=5cmA.1个B.2个C.3个D.4个13、现实生活中,总有人乱穿马路(如图中AD),却不愿从天桥(如图中)通过,请用数学知识解释这一现象,其原因是()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线 C.两点确定一条直线 D.两点之间,线段最短14、下列语句正确的个数为 ( )①圆是立体图形:②射线只有一个端点;③线段AB就是A、B两点之间的距离:④等角的余角相等A.1个B.2个C.3个D.4个15、如图所示的几何体,它的左视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将三个相同正方形的一个顶点重合放置,且∠COE=40°,∠BOF=30°,则∠AOD=________°.17、如图,把长方形纸片ABCD沿纸片EF折叠后,点B与点B’重合,点A恰好落BC边上的点A’的位置,若,则的度数为________.18、已知线段AB长为8,P为直线AB上一点,BP长为2,则AP的长为________.19、如图,在边长为2的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB 上一动点(不与A、B重合),将△AMN沿MN所在直线翻折得到△A1MN,连接A 1C, A1C的最小值为________.20、画三视图时,要使主视图与俯视图的________对正,主视图与左视图的________平齐,左视图与俯视图的________相等.21、如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是________.22、如图,A是直线BC外一点,可知AB+AC > BC,解释这种现象,是根据公理:________.23、如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为________.24、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是________.25、钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,△ABC的三个顶点的坐标分别为A(0,2),B(4,0),C(6,4),求△ABC的周长与面积.28、如图,已知、、三点在一条直线上,平分,,判断和之间有怎样的关系,并说明理由.29、如图,E、F分别在、上,,与互余,.求证:.30、(1)阅读合作学习内容,解答其中的问题;合作学习如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函的图象分别相交于点E,F,且DE=2,过点E作EH⊥轴于点H,过点F作FG⊥EH于点G。
数学华师版七年级上第4章 图形的初步认识单元检测(附答案) (1)
数学华师版七年级上第4章图形的初步认识单元检测(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.下列图形中,________不是多面体.().A.(2)(4)(5) B.(1)(2)(4)C.(2)(5)(6) D.(1)(3)(6)2.下图是由八个相同的小正方体组合而成的几何体,则其左视图(从左面看到的图形)是().3.如图,下列说法正确的是().A.∠α与∠O是同一个角B.∠BOC与∠α是同一个角C.∠AOB与∠BOA是同一个角D.图中共有两个角4.下列语句中,正确的个数是().①两条直线相交,只有一个交点②在∠ABC的边BC的延长线上取一点D③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余④一个角的余角比这个角的补角小A.1 B.2 C.3 D.45.下列图形中,不是正方体的表面展开图的是().6.若两个角互为补角,那么这两个角一定是().A.一个直角和一个锐角B.一个钝角和一个锐角C.两个直角D.一个钝角和一个锐角或两个直角7.下列四个角中,最有可能与70°角互补的角是().8.小明的家在车站O的北偏东72°方向300米A处,学校B在车站O的南偏西10°方向200米处,小明上学经车站所走的角∠AOB=().A.28°B.108°C.98°D.118°二、填空题(每小题4分,共20分)9.计算:180°-23°13′6″×4=__________.10.如图所示,C是线段AB外一点,那么AC+BC__________AB(填“>”“=”或“<”),理由是__________________.11.如图,O是直线l上一点,∠AOB=100°,则∠1+∠2=__________.12.如图所示,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=________.13.一个长方体的主视图和左视图如图所示(单位: cm),则俯视图的面积是__________ cm 2.三、解答题(共48分)14.(9分)如图所示,这是一个由小立方块搭成的几何体的俯视图,正方形中的数字表示在该位置小立方块的个数,请画出它的主视图和左视图.15.(9分)如图所示的是一个正方体纸盒的表面展开图,请你把1,2,3,4,5,6这6个数字填到每个正方形中,使折叠成正方体后相对的两个面上的数字和相等,试试看,你能做到吗?16.(10分)如图是某几何体的展开图.(1)这个几何体的名称是____________;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)17.(10分)已知线段AB ,延长AB 至C ,使BC =13AB ,D 是AC 的中点,如果DC =2 cm ,求AB 的长.18.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线.若∠AOC =120°,∠BOC =30°,求∠DOE .参考答案1答案:A 2答案:B 3答案:C 4答案:B 5答案:D 6答案:D 7答案:D 8答案:D 9答案:87°17′36″10答案:> 两点之间,线段最短 11答案:80° 12答案:180° 13答案:614解:如图所示.15分析:因为1+2+3+4+5+6=21,21÷3=7,所以1~6这6个数字分成和相等的三组,每组里的两数之和是7.答案不唯一,下面仅给出两例以供参考.解:如图所示.16解:(1)圆柱 (2)三视图为:(3)体积为πr 2h ≈3.14×52×20=1 570. 17解:∵D 是AC 的中点,又∵BC =13AB , ∴DC =11()22AC AB BC =+=112 ()233AB AB AB+=.∵DC=2 cm,∴AB=332322DC=⨯=(cm).18解:∵OE为∠AOC的角平分线,∠AOC=120°,∴∠COE=12∠AOC=12×120°=60°.∵OD是∠BOC的角平分线,∠BOC=30°,∴∠COD=12∠BOC=12×30°=15°.∴∠DOE=∠COE-∠COD=60°-15°=45°.。
华师大版七年级上册数学第4章 图形的初步认识 含答案
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)()A.9B.13C.14D.252、如图所示的几何体的左视图为()A. B. C. D.3、12点15分,时针与分针所夹的小于平角的角为()A. B. C. D.4、图中所示的几何体的左视图是()A. B. C. D.5、如图,直线是一条河,、是两个新农村定居点.欲在上的某点处修建一个水泵站,直接向、两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A. B. C. D.6、如图,把矩形ABCD沿EF对折,若∠1 = 500,则∠AEF等于().A.150 0B.80 0C.100 0D.115 07、如图,是一个正方体的表面积展开图,相对面上所标的两个数互为倒数,那么()A. B. C. D.8、如图,是某几何体的俯视图,该几何体可能是()A.圆柱B.圆锥C.球D.正方体9、下列说法正确的是()A.|a|一定是正数B.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线C.两个无理数的和仍是无理数D.如果两个角互补,那么一个是锐角,一个是钝角10、数轴上A、B两点表示的数分别为﹣2和,数轴上点C在点A的左侧,到点A的距离等于点B到点A的距离,则点C所表示的数为()A.﹣3+B.﹣3﹣C.﹣4+D.﹣4﹣11、下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点.A.1个B.2个C.3个D.4个12、下列各直线的表示法中,正确的是()A.直线AB.直线ABC.直线abD.直线aB13、如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.14、用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱体C.圆柱D.圆锥15、下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体二、填空题(共10题,共计30分)16、在时钟的钟面上,三点半时的分针与时针夹角是________度.17、如图,点C是线段AB的中点,AB=6cm,如果点D是线段AB上一点,且BD=1cm,那么CD=________ cm.18、俯视图为圆的几何体是________,________.19、如图2,在AABC中,AD,AE分别是△ABC的高和角平分线,,则=________.20、如果圆柱的侧面展开图是相邻两边长分别为8,8π的长方形,那么这个圆柱的体积等于________.21、一个几何体的三种视图如图所示,这个几何体的表面积是________.(结果保留π)22、如图,直线,将三角尺的直角顶点放在直线b上,若,则等于________23、在平面直角坐标系中,点O为坐标原点,点A(0,﹣2),抛物线y=﹣2x+2的顶点为P,AP+OP的最小值为________.24、一个角的补角比它的余角的3倍还多10°,则这个角的度数为________.25、已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=________.三、解答题(共5题,共计25分)26、如图,∠AOB=∠COD=90°,∠1=23°,求∠2的度数.27、如图,为直线上的一个点,,是的平分线,,求和的度数.28、如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸单位(毫米),求这个几何体的表面积.29、如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD与∠DOE之间有怎样的关系?说明理由.30、一个角,它的补角与余角的和,比它的补角与余角的差大60°.求这个角的余角的度数.参考答案一、单选题(共15题,共计45分)1、B2、C4、A5、D6、D7、A8、B9、B10、D11、B12、B13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 图形的初步认识
选择题
1.下列物体的形状类似于球的是( )
A.茶杯
B.羽毛球
C.乒乓球
D.白炽灯泡
2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用分别表示正多面体的面数、棱数、顶点数,则有,现有一个正多面体共有12条棱,6个顶点,则它的面数等于( )
A.6
B.8
C.12
D.20
3.如果与是邻补角,且,那么的余角是( ) A. B. C. D.不能确定
4.下列四个立体图形中,主视图为圆的是( )
A .
B .
C .
D .
5.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )
A.文
B.明
C.城
D.市
6.如图,已知直线相交于点,平分,,则的大小 为( ) A. B. C. D.
7.圆柱的侧面展开图可能是( )
8.下列平面图形不能够围成正方体的是( )
9.过平面上三点中的任意两点作直线,可作( )
A B
D C A B C D
A.1条
B.3条
C.1条或3条
D.无数条 10.在直线上顺次取三点,使得,,如果
是线段的中点,那么线段的长度是( ) A. B. C. D.
填空题 11.如图,直线相交于点,平分,若则____. 12.直线上的点有____个,射线上的点有____个,线段上的点有____个.
13.两条直线相交有____个交点,三条直线相交最多有____个交点,最少有____个交点.
14.如图,平分平分若则 __.
15.如图给出的分别有射线、直线、线段,其中能相交的图形有 个.
16.下列表面展开图的立体图形的名称分别是:______、______、______、______.
17.如图,是线段上两点,若,,且是的中点,则_____.
18.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为______.
D A B C b a ① ② ③
④
A B
D C 第15题图
第17题图
B D C
解答题
19.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).
20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:
(1)如果面在长方体的底部,那么哪一个面会在上面?
(2)如果面在前面,面在左面,那么哪一个面会在上面?(字母朝外)
21.(6分)如图,线段,线段,分别是线段的中点,求线段的长.
22.(6分)如图,直线相交于点,平分,求
∠2和∠3的度数.
第19题图
第21题图
23.(7分)已知:如图,是直角,,是的平分线,是
的平分线.
(1)求的大小.
(2)当锐角的大小发生改变时,的大小是否发生改变?为什么?
24.(7分)如图,已知点是线段的中点,点是线段的中点,点是线段的中点.(1)若线段,求线段的长.
(2)若线段,求线段的长.
25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1
顶点数())棱数()
你发现顶点数()、面数()、棱数()之间存在的关系式是______;
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为个,八边形的个数为个,求的值.。