北师大版数学六年级(下册)圆柱与圆锥经典易错题型

合集下载

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

3.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。

【答案】(1)答:①上下两个底面的大小和形状完全相同,并且它们相互平行。

②侧面与底面垂直,两个底面之间的距离就是直柱体的高。

③直柱体的侧面展开图是长方形。

④当底面周长与高相等时,侧面展开图是正方形。

(2)答:我们学过的长方体,正方体和圆柱体的体积都可以用“底面积×高”来计算.因为三棱柱也是直柱体,所以我精测,三棱柱的体积计算方法也可以用“底面积x高”来计算。

三棱柱的体积:2×3÷2×5=15cm3【解析】【分析】(1)根据每种直柱体的特征总结出它们共同的特征即可,例如:①它们的上下两个底面的大小和形状完全相同,并且它们相互平行;②它们的侧面与底面垂直,两个底面之间的距离就是直柱体的高;③它们的侧面展开图是长方形;④当底面周长与高相等时,侧面展开图是正方形;(2)长方体、正方体的体积都可以用“底面积×高”来计算,而三棱柱也是直柱体,所以三棱柱的体积也可以用“底面积×高”来计算,直角三角形的面积等于两条直角边乘积的一半,据此作答即可。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.具有近600年历史的北京天坛祈年殿为砖木结构,殿高38米,底层直径32米,三层重檐向上逐层收缩作伞状。

殿内有28根金丝楠木大柱,里圈的4根寓意春、夏、秋、冬四季,每根高约19米,直径1.2米。

因为它们是殿内最高的柱子,所以也叫通天柱,取的是和上天互通声息的意思。

(x取整数3)(1)请你根据上面信息,计算祈年殿的占地面积是多少平方米?(2)如果要给4根通天柱刷油漆,则刷漆面积一共是多少平方米?【答案】(1)解:3×(32÷2)2=768(平方米)答:计算祈年殿的占地面积是768平方米。

(2)解:3×1.2×19×4=273.6(平方米)答:刷漆面积一共是273.6平方米。

【解析】【分析】(1)根据圆面积公式计算占地面积,底面直径是32米;(2)通天柱是圆柱形,刷漆的部分是侧面积,侧面积=底面周长×高,根据公式计算一个侧面积,再乘4就是刷漆的总面积。

3.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。

【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.下面各题只列综合算式或方程,不计算。

(1)四、五年级一共要栽220棵树。

四年级有3个班,每班栽28棵,剩下的分给五年级四个班,平均每班栽多少棵?(2)一种华为牌手机原价每部2580元,网上限时抢购每部1680元,网购每部手机降价百分之多少?(3)做一节底面直径为0.35m,长为3.5m的圆柱形通风管,需要多少平方米铁皮?【答案】(1)解:方法一:解:设平均每班栽x棵。

28×3+4x=220方法二:(220-28×3)÷4(2)解:(2580-1680)÷2580×100%(3)解:3.14×0.35×3.5【解析】【分析】(1)根据题意可知,此题可以用方程解答,设平均每班栽x棵,用四年级每班栽的棵数×四年级的班数+五年级每班栽的棵数×五年级的班数=四年级和五年级一共栽的总棵数,据此列方程;还可以用(四年级、五年级一共栽的棵数-四年级每班栽的棵数×四年级的班数)÷五年级的班数=五年级每班栽的棵数,据此列式解答;(2)根据题意可知,用(原价-现价)÷原价×100%=降价百分之几,据此列式解答;(3)圆柱形通风管没有上下底面,已知圆柱的底面直径和高,求圆柱的侧面积,用公式:圆柱的侧面积=底面周长×高,据此列式解答.3.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。

【答案】(1)答:①上下两个底面的大小和形状完全相同,并且它们相互平行。

②侧面与底面垂直,两个底面之间的距离就是直柱体的高。

③直柱体的侧面展开图是长方形。

④当底面周长与高相等时,侧面展开图是正方形。

(2)答:我们学过的长方体,正方体和圆柱体的体积都可以用“底面积×高”来计算.因为三棱柱也是直柱体,所以我精测,三棱柱的体积计算方法也可以用“底面积x高”来计算。

三棱柱的体积:2×3÷2×5=15cm3【解析】【分析】(1)根据每种直柱体的特征总结出它们共同的特征即可,例如:①它们的上下两个底面的大小和形状完全相同,并且它们相互平行;②它们的侧面与底面垂直,两个底面之间的距离就是直柱体的高;③它们的侧面展开图是长方形;④当底面周长与高相等时,侧面展开图是正方形;(2)长方体、正方体的体积都可以用“底面积×高”来计算,而三棱柱也是直柱体,所以三棱柱的体积也可以用“底面积×高”来计算,直角三角形的面积等于两条直角边乘积的一半,据此作答即可。

2.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?【答案】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3=3.14×100×(22+3)=3.14×100×25=7850(立方厘米)7850立方厘米=7.85升答:这个纯净水水桶的容积是7.85升。

【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。

3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

六年级数学下册试题圆柱圆锥易错题(含答案)北师大版

六年级数学下册试题圆柱圆锥易错题(含答案)北师大版

北师大六年级数学圆柱、圆锥易错题一、填空题。

1、一个圆柱的底面积扩大5倍,高不变,体积就()。

2、一个圆柱的底面半径扩大2倍,高不变,它的底面周长就();底面积就();体积就()。

3、一个圆柱的底面半径不变,高扩大a倍,它的体积就()。

4、一个圆柱的底面半径扩大2倍,高扩大2倍,它的底面周长就();底面积就();体积就()。

1,侧面积就5、一个圆柱的底面半径扩大到原来的4倍,高缩小到原来的2()。

6、一个圆锥的底面直径扩大3倍,高不变,它的底面周长就();底面积就();体积就()。

7、一个圆锥的底面半径扩大3倍,高扩大2倍,它的底面周长就();底面积就();体积就()。

8、如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是圆柱底面半径的()倍。

9、边长是6分米的正方形纸围成一个圆柱形纸筒(接头处不计),这个纸筒的侧面积是( )平方分米。

二、单位换算3.5米² = ()分米² 3400厘米² = ()分米²2300分米³ = ()米³ 6.5升 = ()毫升0.083米³ = ()分米³()厘米³ = 4.5分米³4000毫升 = ()厘米³ = ()分米³7.2升 = ()升()毫升 =()毫升三、判读题。

10、等底等高的长方体和圆柱体体积不相等。

( )11、圆锥的体积总是比圆柱的体积要小。

()12、一个圆锥与一个圆柱的体积比是1:3,圆锥和圆柱一定等底等高。

()13、圆柱的侧面展开,也可以得到一个梯形。

()14、圆柱底面直径是3厘米,高9.42厘米,侧面沿高展开后是一个正方形。

( )四、选择题。

15、 等底等高的圆柱、正方体、长方体的体积相比较( )。

A 正方体体积大B 长方体体积大C 圆柱体体积大D 一样大五、解决问题。

1、 一个圆柱形的油桶,底面半径3分米,高12分米,内装汽油的高度为桶高的43,如果每升汽油重0.5千克,这些汽油重多少千克?2、如图所示,求出下面物体的体积。

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【数学】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.计算下面圆柱的表面积和体积,圆锥的体积。

(1)(2)【答案】(1)解:表面积:3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2) ×3.14×82×15= ×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。

2.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米.每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)【答案】解:圆锥的体积: ×[3.14×(4÷2)2]×1.5= ×1.5×12.56=6.28(立方米)这堆沙的吨数:1.7×6.28=10.676(吨)≈11(吨)答:这堆沙约重11吨。

【解析】【分析】这堆沙大约的重量=这堆沙的体积×每立方米大约的重量,其中这堆沙的体积=圆锥的体积=πr2h,得数要保留整数,就是把得出的数的十分位上的数进行“四舍五入”即可。

3.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了4厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了 4.5厘米.求圆锥的高.【答案】解:3.14×22×2÷4=3.14×4×2÷4=6.28(平方厘米)6.28×4.5×3÷[3.14×(6÷2)2]=3.14×27÷[3.14×9]=3(厘米)答:圆锥的高是3厘米。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.2.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.3.一个圆柱形的汽油桶,底面半径是2分米,高是5分米,做这个桶至少要用多少平方分米的铁皮?它的容积是多少升?【答案】解:3.14×22×2+3.14×2×2×5=3.14×4×2+3.14×4×5=25.12+62.8=87.92(dm2)3.14×22×5=62.8(dm3)62.8dm3=62.8L答:做这个桶至少要用87.92平方分米的铁皮。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。

【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。

用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。

2.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。

把瓶口塞紧后使其瓶口向下倒立,这时酒深25cm。

求酒瓶的容积。

【答案】解:3.14×(10÷2)2×[15+(30-25)]=1570(cm3)答:酒瓶的容积是1570 cm3。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.看图计算.1〕求圆柱的表面积〔单位:dm〕2〕求部件的体积〔单位:cm〕【答案】〔1〕解:×10×〔×10÷2〕2×2×25×2628+157785〔平方分米〕答:圆柱的表面积是785平方分米。

〔2〕解:×〔×2÷2〕2×〔×2÷2〕2×4=××1××1×4〔立方厘米〕答:部件的体积是立方厘米。

【分析】【剖析】〔1〕圆柱的表面积是两个底面积加上一个侧面积,依据圆面积公式计算出底面积,用底面周长乘高求出侧面积;2〕圆柱的体积=底面积×高,圆锥的体积=底面积×高×,依据公式计算,用圆柱的体积加上圆锥的体积就是整体积。

2.如图,一个内直径是 20cm的贞洁水水桶里装有贞洁水,水的高度是22cm.将水桶倒放时,空余局部的高度是3cm,无水局部是圆柱形.这个贞洁水水桶的容积是多少升?【答案】解:×〔20÷2〕2×〔×20÷2〕2×3×100×〔22+3〕×100×257850〔立方厘米〕7850立方厘米=升答:这个贞洁水水桶的容积是升。

【分析】【剖析】水桶的容积包含水的体积和空余局部的体积,依据圆柱的体积公式分别计算后再相加即可求出水桶的容积。

3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,杯中水面距杯口厘9厘米的圆锥形铅锤完整浸入水中,水会溢出314立方厘米.求铅锤米.假定将一个半径为的高.【答案】解:×〔20÷2〕2×2.24+314×100×2.24+314703.36+314〔立方厘米〕,2〕÷〔×9×3÷÷12〔厘米〕,答:铅锤的高是12厘米。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。

【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。

用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。

3.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。

如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?【答案】解:30×2.7× ×1.7÷8≈6(次)答:至少需要运6次。

【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。

4.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。

【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。

如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?【答案】解:30×2.7× ×1.7÷8≈6(次)答:至少需要运6次。

【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。

【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。

用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。

2.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

3.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。

【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。

用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。

2.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。

(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?【答案】(1)解:40cm=0.4m3.14×0.4×2.5=3.14(m2)答:做一节烟囱一共需要铁皮3.14平方米。

(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)答:一节烟囱中最多可以容纳废气0.314立方米。

【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。

据此代入数据作答即可。

3.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?【答案】解:3厘米=0.03米×45.9×1.2÷(12×0.03)=18.36÷0.36=51(米)答:能铺51米。

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。

【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

3.一根圆柱形木材长20分米,把它截成3段,表面积增加了12.56平方分米。

这根木材体积是多少立方米?【答案】解:12.56÷4×20=62.8(立方分米)=0.0628(立方米)答:这根木材体积是0.0628立方米。

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。

【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。

用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。

2.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。

如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?【答案】解:30×2.7× ×1.7÷8≈6(次)答:至少需要运6次。

【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。

3.一根圆柱形木材长20分米,把它截成3段,表面积增加了12.56平方分米。

这根木材体积是多少立方米?【答案】解:12.56÷4×20=62.8(立方分米)=0.0628(立方米)答:这根木材体积是0.0628立方米。

【解析】【分析】将圆柱形木材截成3段,增加了4个底面积,用增加的表面积除以4即可求出圆柱的底面积,然后用底面积乘高即可求出这根圆柱形木材的体积。

4.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。

【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

2.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14×6×5=94.2(cm²)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

3.计算下列图形的体积.(1)(2)【答案】(1)6÷2=32÷2=13.14×(3×3﹣1×1)×5=3.14×(9﹣1)×5=3.14×8×5=125.6(2) ×3.14×(2÷2)2×3+3.14×(2÷2)2×4=3.14×1+3.14×4=3.14×5=15.7(立方厘米)【解析】【分析】(1)图形体积=π×(大圆柱半径的平方-小圆柱半径的平方)×高;(2)图形体积=圆锥体积+圆柱体积。

4.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?【答案】解:×3.14×42×6=×3.14×16×6=3.14×16×2=50.24×2=100.48(立方厘米)答:有100.48立方厘米的水溢出.【解析】【分析】根据题意可知,将圆锥放入盛满水的桶里,溢出的水的体积等于圆锥的体积,依据圆锥的体积=×底面积×高,据此列式解答.5.一个圆锥形沙滩,底面周长是25.12m,高是3m,如果每立方米沙重1.7吨,这椎沙重多少吨?(得数保留整数)【答案】解:==50.24×1.7≈85(吨)答:这堆沙重约85吨。

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型

2020-2021北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.3.计算圆锥的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?【答案】解:24÷4=6(平方分米)16×6=96(立方分米)答:这根钢材原来的体积是96立方分米。

【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。

2.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。

【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。

用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。

3.计算下面圆柱的表面积。

(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。

4.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?【答案】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米。

【解析】【分析】抹水泥的面积 =池子的底面积+池子的侧面积=π×半径²+π×直径×高。

5.把两根底面积相等高为 2.5m的圆柱形钢材拼成一根圆柱形钢材,表面积减少了16dm2,如果每立方分米的钢材的质量为7.9kg,拼成的这根钢材的质量为多少千克? 【答案】解:2.5m=25dm16÷2×(25+25)×7.9=8×50×7.9=400×7.9=3160(千克)答:拼成的这根钢材的质量为3160千克。

【解析】【分析】把两根钢材拼在一起,表面积会减少两个底面积,因此用表面积减少的部分除以2求出一个底面积,用一个底面积乘钢材的总长度求出总体积,用体积乘每立方分米钢材的重量求出总重量。

注意统一单位。

6.下图是一个圆柱体“牛肉罐头”的表面展开图。

请你算一算,这个圆柱体“牛肉罐头”的容积是多少?(铁皮的厚度忽略不计)【答案】解:25.12÷3.12÷2=4(厘米)3.14×4²×10=3.14×160=502.4(立方厘米)答:这个圆柱体“牛肉罐头”的容积是502.4立方厘米。

【解析】【分析】圆柱的底面周长是25.12厘米,用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高求出容积。

7.一个圆柱形铁皮水桶(无盖),高6分米,底面周长12.56分米。

做这个水桶需要铁皮多少平方分米?(得数保留整数)【答案】解:底面半径:12.56÷(2×3.14),=12.56÷6.28,=2(分米)需要的铁皮面积:12.56×6+3.14×22=75.36+3.14×4=75.36+12.56=87.92≈88(平方分米)答:做这个水桶需要铁皮88平方分米。

【解析】【分析】已知圆柱的底面周长和高,要求圆柱的表面积,先求出圆柱的底面半径,用公式:C÷π÷2=r,然后用公式:圆柱的表面积=底面积×2+侧面积,据此列式解答.8.养殖场要建一个圆柱形蓄水池,底面周长是25.12米,高是4米,沿着这个蓄水池的周围及底面抹水泥。

如果每平方米用水泥2千克,买400千克水泥够吗?【答案】解:25.12÷3.14÷2=4(米)3.14×4×4+25.12×4=150.72(平方米)150.72×2=301.44(千克)301.44<400答:买400千克水泥够了。

【解析】【分析】已知圆柱的底面周长,可以求出圆柱的底面半径,用公式:C÷π÷2=r,然后用圆柱的侧面积+底面积=这个圆柱形蓄水池抹水泥的面积,然后用每平方米用的水泥质量×抹水泥的面积=一共需要的水泥质量,最后与买的水泥的总重量对比,小于买的水泥总质量,就够,否则,不够,据此列式解答.9.一个圆柱形水池,在水池内壁和底部都镶上瓷砖,水池内部底面周长25.12m,池深2m,镶瓷砖的面积是多少平方米?【答案】解:底面半径:25.12÷3.14÷2=4(m),3.14×4²+25.12×2=50.24+50.24=100.48(平方米)答:镶瓷砖的面积是100.48平方米。

【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积加上侧面积就是镶瓷砖的面积,侧面积=底面周长×高。

10.在一个底面半径为10厘米的圆柱形杯里装满水,水里放了一个底面半径为5厘米的圆锥形铅锤,当铅锤从水中完全取出后,杯里的水面下降了0.5厘米,这个铅锤的体积是多少?【答案】 3.14×102×0.5=157(立方厘米)答:这个铅锤的体积是157立方厘米。

【解析】【分析】根据题意得出这个铅锤的体积等于,底面半径为10厘米,高为0.5厘米圆柱的体积,根据圆柱的体积=底面积×高即可解答。

11.一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米.这种压路机每分钟向前滚动5周.这种压路机1分钟压路多少平方米?【答案】解:3.14×0.8×5×1.5=2.512×7.5=18.84(平方米)答:这种压路机1分钟压路18.84平方米。

【解析】【分析】滚动一周压路的面积就是滚筒的侧面积,因此用底面周长乘高即可求出侧面积,再乘5即可求出1分钟压路的面积。

12.一个圆锥形沙堆,底面周长是18.84m,高是0.6m。

(1)这个沙堆的占地面积是多少?(2)这个沙堆的体积是多少立方米?【答案】(1)28.26m2(2)5.652m2【解析】【解答】(1)3.14×(18.84÷3.14÷2)2=3.14×32=3.14×9=28.26(平方米)答:这个沙堆的占地面积是28.26平方米.(1)×28.26×0.6=×28.26×0.6=28.26×0.2=5.652(立方米)答:这个圆锥沙堆的体积是5.652立方米.【分析】要求这个沙堆的占地面积,就是求底面圆的面积;沙堆的形状是圆锥形的,利用圆锥的体积计算公式V=Sh.求得体积,问题得解.13.一个圆柱形水池直径20米,深5米.(1)这个水池的占地面积是多少平方米?(2)挖成这个水池,共需挖土多少立方米?(3)在水池的侧面和池底抹一层水泥,水泥面的面积是多少平方米?【答案】(1)解:20÷2=10(米)3.14×102=3.14×100=314(平方米)答:水池的占地面积是314平方米(2)解:3.14×102×5=3.14×100×5=1570(立方米)答:需要挖土1570立方米(3)解:3.14×20×5+314=314+314=628(平方米)答:水泥面的面积是628平方米【解析】【分析】(1)要求这个水池占地面积是多少,就是求这个圆柱的底面积,利用圆的面积=πr2计算即可解答;(2)要求共需挖土多少立方米,就是求这个圆柱的体积,利用圆柱的体积=πr2h计算即可;(3)在水池的侧面和池底抹一层水泥,要求水泥面的面积是多少平方米,就是求这个水池的表面积(只有一个底面),据此利用表面积=侧面积+底面积计算即可解答问题.14.如图是一个无盖圆柱形塑料桶示意图(单位:分米)(1)画出它的侧面展开图的示意图;这个展开图的面积是________平方分米.(2)若桶的厚度不计,用它来装水,最多能装________升(得数用“去尾法”保留整升)【答案】(1)62.8(2)62【解析】【解答】解:(1)圆柱的底面周长:3.14×2×2=12.56(平方分米),圆柱的侧面积:12.56×5=62.8(平方分米);圆柱的侧面展开后,如下图所示:(2)3.14×22×5,=3.14×4×5,=12.56×5,=62.8(立方分米),≈62(升);答:圆柱的侧面展开后的面积是62.8平方分米,这个桶最多能装水62升.故答案为:62.8,62.【分析】(1)由圆柱的侧面展开图的特点可知:圆柱的侧面展开后是一个长方形,长方形的长等于等于圆柱的底面周长,宽等于圆柱的高,利用长方形的面积公式即可求解;(2)此题实际上是求圆柱的容积,利用圆柱的体积V=Sh,即可求出这个塑料桶的容积.此题主要考查圆柱的侧面展开图的特点以及圆柱的体积的计算方法.15.阅读材料,回答问题:材料一:张师傅用如图所示的两块铁皮制造了一个无盖的最大圆柱体(铁皮厚度和接头忽略不计),做为某小学简易水池.材料二:某小学四月份平均每天用水一池.材料三:如图折线统计图是表示自来水厂规定的月用水量与水费总价的关系.(1)某小学四月份用水________吨(每立方米水重1吨).(2)从折线统计图中可以看出月用水量少于或等于________吨,每吨按________元收费,多于________吨的,其多出的吨数每吨按________元收费.(3)某小学四月份应交水费多少元?(写出计算过程)【答案】(1)188.4(2)100;2;100;3(3)解:4月份应缴的水费:100×2+(188.4﹣100)×3,=200+265.2,=465.2(元);答:4月份应交水费465.2元.【解析】【解答】解:(1)水池底面半径:6.28÷2÷3.14=1(米),水池体积:3.14×12×2=6.28(立方米),一水池水的重量:6.28×1吨=6.28(吨);4月份的用水量:6.28×30=188.4(吨);(2)由图意可知:月用水量少于或等于100吨,每吨的价格是200÷100=2(元);多于100吨的,多出部分的价格是[(500﹣200)÷(200﹣100)]=300÷100=3(元);故答案为:(1)188.4;(2)100,2,100,3.【分析】(1)由题意可知:此简易水池的底面直径应等于正方形铁皮的边长,这样才能保证做成的圆柱体最大;利用圆柱体的体积公式即可求出此水池的体积,进而求得一水池水的重量;4月份的天数是30天,则可以求得4月份的用水总量;(2)由图意可知:月用水量少于或等于100吨,每吨的价格是(200÷100)元;多于100吨的,多出部分的价格是[(500﹣200)÷(200﹣100)]元;(3)把4月份的用水量分成小于或等于100吨和多于100吨两部分,分别用两种价格计算出各自的费用,加在一起,即为4月份应缴的水费.解答此题的关键是:求出水池的体积,再计算每天的用水量;多出部分水的价格应是多出的总价除以多出的水量;要求4月的水费,要按照两种价格计算.。

相关文档
最新文档