第三章 导数综合练习二

合集下载

北师大数学选修22配套作业:第三章 导数应用 §2 第1课时 含解析

北师大数学选修22配套作业:第三章 导数应用 §2 第1课时 含解析

第3章§2 第1课时实际问题中导数的意义A级基础巩固一、选择题1.某人拉动一个物体前进,他所做的功W是时间t的函数W=W(t),则W′(t0)表示(D)A.t=t0时做的功B.t=t0时的速度C.t=t0时的位移D.t=t0时的功率[解析]W′(t)表示t时刻的功率.2.一个物体的运动方程为s=1-t+t2,(s的单位是s,t的单位是s),那么物体在3 s末的瞬时速度是(C)A.7米/秒B.6米/秒C.5米/秒D.8米/秒[解析]s′(t)=2t-1,∴s′(3)=2×3-1=5.3.如果质点A按规律s=3t2运动,则在t=3时的瞬时速度为(B)A.6B.18C.54D.81[解析]瞬时速度v=limΔt→0ΔsΔt=limΔt→03(3+Δt)2-3×32Δt=limΔt→03(6+Δt)=18.4.下列四个命题:①曲线y=x3在原点处没有切线;②若函数f(x)=x,则f′(0)=0;③加速度是动点位移函数s(t)对时间t的导数;④函数y=x5的导函数的值恒非负.其中真命题的个数为(A)A.1 B.2C.3 D.4[解析]①中y′=3x2,x=0时,y′=0,∴y=x3在原点处的切线为y=0;②中f(x)在x=0处导数不存在;③中s(t)对时间t的导数为瞬时速度;④中y ′=5x 4≥0.所以命题①②③为假命题,④为真命题.5.设一辆轿车在公路上做加速直线运动,假设速度v (单位:m /s)与时间t (单位:s)的函数关系为v =v (t )=t 3+3t ,则t =t 0s 时轿车的加速度为________m/s 2( B )A .t 30+3t 0B .3t 20+3C .3t 30+3t 0D .t 30+3[解析] ∵v ′(t )=3t 2+3,则当t =t 0s 时的速度变化率为v ′(t 0)=3t 20+3(m/s 2).即t =t 0s 时轿车的加速度为(3t 20+3)m/s 2. 二、填空题6.人体血液中药物的质量浓度c =f (t )(单位:mg /mL)随时间t (单位:min)变化,若f ′(2)=0.3,则f ′(2)表示服药后2分钟时血液中药物的质量浓度以每分钟0.3mg/mL 的速度增加.7.假设某国家在20年间的平均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系:p (t )=p 0(1+5%)t ,其中p 0为t =0时的物价.假定某种商品的p 0=1,那么在第10个年头,这种商品价格上涨的速度大约是0.08元/年(精确到0.01).[解析] 因为p 0=1,所以p (t )=(1+5%)t =1.05t ,在第10个年头,这种商品价格上涨的速度,即为函数的导函数在t =10时的函数值.因为p ′(t )=(1.05t )′=1.05t ·ln1.05,所以p ′(10)=1.0510×ln1.05≈0.08(元/年).因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.三、解答题8.某机械厂生产某种机器配件的最大生产能力为每日100件,假设日产品的总成本C (元)与日产量x (件)的函数关系式为C (x )=14x 2+60x +2050.求: (1)日产量75件时的总成本和平均成本;(2)当日产量由75件提高到90件,总成本的平均改变量;(3)当日产量为75件时的边际成本.[解析] (1)当x =75时,C (75)=14×752+60×75+2050=7956.25(元),∴C (75)75≈106.08(元/件).故日产量75件时的总成本和平均成本分别为7956.25元,106.08元/件.(2)当日产量由75件提高到90件时,总成本的平均改变量ΔC Δx =C (90)-C (75)90-75=101.25(元/件).(3)当日产量为75件时的边际成本∴C ′(x )=12x +60, ∴C ′(75)=97.5(元).B 级 素养提升一、选择题1.质点运动的速度v (单位:m/s)是时间t (单位:s)的函数,且v =v (t ),则v ′(1)表示( B )A .t =1s 时的速度B .t =1s 时的加速度C .t =1s 时的位移D .t =1s 时的平均速度[解析] v (t )的导数v ′(t )表示t 时刻的加速度.2.设球的半径为时间t 的函数R (t ).若球的体积以均匀速度C 增长,则球的表面积的增长速度与球半径( D )A .成正比,比例系数为CB .成正比,比例系数为2CC .成反比,比例系数为CD .成反比,比例系数为2C[解析] 本题主要考查导数的有关应用.根据题意,V =43πR 3(t ),S =4πR 2(t ), 球的体积增长速度为V ′=4πR 2(t )·R ′(t )球的表面积增长速度S ′=2·4πR (t )·R ′(t ),又∵球的体积以均匀速度C 增长,∴球的表面积的增长速度与球半径成反比,比例系数为2C .二、填空题3.一质点沿直线运动,如果由始点起经过t s 后的位移为s =3t 2+t ,则速度v =10时的时刻t =32.[解析] s ′=6t +1,则v (t )=6t +1,设6t +1=10,则t =32. 4.(2019·杭州高二检测)炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是-1.[解析] 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5], 故x =1时,f ′(x )min =-1.三、解答题5.一杯80 ℃的热红茶置于20 ℃的房间里,它的温度会逐渐下降.温度T (单位:℃)与时间t (单位:min)间的关系,由函数T =f (t )给出.请问:(1)f ′(t )的符号是什么?为什么?(2)f ′(3)=-4的实际意义是什么?如果f (3)=65 ℃,你能画出函数在点t =3 min 时图像的大致形状吗?[解析] (1)f ′(t )是负数.因为f ′(t )表示温度随时间的变化率,而温度是逐渐下降的,所以f ′(t )为负数.(2)f ′(3)=-4表明在3 min 附近时,温度约以4 ℃/min 的速度下降,如图所示.6.当销售量为x ,总利润为L =L (x )时,称L ′(x )为销售量为x 时的边际利润,它近似等于销售量为x 时,再多销售一个单位产品所增加或减少的利润.某糕点加工厂生产A 类糕点的总成本函数和总收入函数分别是C (x )=100+2x +0.02x 2,R (x )=7x +0.01x 2.求边际利润函数和当日产量分别是200 kg,250 kg 和300 kg 时的边际利润.[解析] (1)总利润函数为L (x )=R (x )-C (x )=5x -100-0.01x 2,边际利润函数为L ′(x )=5-0.02 x .(2)当日产量分别是200 kg 、250 kg 和300 kg 时的边际利润分别是L ′(200)=1(元),L ′(250)=0(元),L ′(300)=-1(元).C 级 能力拔高现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35 nmile/h ,A 地至B 地之间的航行距离约为500 nmile ,每小时的运输成本由燃料费用和其余费用组成,轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (nmile/h)的函数:y =f (x );(2)求x 从10变到20的平均运输成本;(3)求f ′(10)并解释它的实际意义.[解析] (1)依题意得y =500x (960+0.6x 2)=480000x+300x ,函数的定义域为0<x ≤35,所以y =480000x+300x (0<x ≤35). (2)Δy =f (20)-f (10)=48000020+300×20-(48000010+300×10)=-21000,∴Δy Δx =-2100020-10=-2100.即x 从10变到20的平均运输成本为-2100元,即每小时减少2100元.(3)f ′(x )=-480000x 2+300, ∴f ′(10)=-4800010+300=-4500. f ′(10)表示当速度x =10 nmile /h ,速度每增加1 nmile/h ,每小时的运输成本就要减少4500元.。

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

一、选择题1.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-3.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为()A .1B .2C D 5.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点6.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃ B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( )A .B .C .D .9.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞10.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 15.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.16.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.17.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.18.已知函数()ln g x a x =,若对[1,]x e ∀∈,都有2()(2)g x x a x ≥-++恒成立,则实数a 的取值范围是________.19.已知函数()3223121x x f x x =+--在[],1m 上的最大值为17,则m =______.20.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 三、解答题21.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.22.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值. 23.已知函数()f x 的图象在[,]a b 上连续不断,定义:1()min{()|}f x f t a t x =≤≤([,])x a b ∈, 2()max{()|}f x f t a t x =≤≤([,])x a b ∈.其中,min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数()f x 为[,]a b 上的“k 阶收缩函数”.(Ⅰ)若()cos f x x =,[0,]x π∈,试写出1()f x ,2()f x 的表达式;(Ⅱ)已知函数2()f x x =,[1,4]x ∈-,试判断()f x 是否为[1,4]-上的“k 阶收缩函数”,如果是,求出对应的k ;如果不是,请说明理由;(Ⅲ)已知0b >,函数32()3f x x x =-+是[0,]b 上的2阶收缩函数,求b 的取值范围. 24.已知函数()xf x mx e =-(e 为自然对数的底数).(1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围.25.已知函数()xf x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值; (2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值.26.设函数2()(41)43x f x e ax a x a ⎡⎤=-+++⎣⎦.(1)0a >时,求()y f x =的单调增区间;(2)若()f x 在2x =处取得极小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.2.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围.设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.3.D【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.4.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.5.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减, 由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.6.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<, 所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.9.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔>10.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值.()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x =, 则()21ln xf x x -'=,由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果.【详解】由题意得:()()2sin2xx f x ee xf x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.16.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.17.【分析】求导得到讨论和两种情况计算时函数在上单调递减故不符合排除得到答案【详解】因为所以因为所以当即时则在上单调递增从而故符合题意;当即时因为在上单调递增且所以存在唯一的使得令得则在上单调递减从而故 解析:[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案。

广东专用2023版高考数学一轮总复习第三章一元函数的导数及其应用综合突破一导数的综合问题第2课时导数

广东专用2023版高考数学一轮总复习第三章一元函数的导数及其应用综合突破一导数的综合问题第2课时导数
综上,a 的取值范围是1e,+∞.
【点拨】 根据函数零点的情况求参数值或取值范围的基本方法:①利用零点存在 的判定定理构建不等式求解;②分离参数后转化为函数的值域(最值)问题求解;③转化 为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.
(2021 重庆南开中学高三月考)已知函数 f(x)=ax2+x-lnx(a∈R).
第2课时 导数与函数零点
考点一 讨论零点个数
(2021 湖北高二期末)已知函数 f(x)=x-ex+a,讨论函数 f(x)零点的个数.
解:f′(x)=1-ex. 当 x<0 时,f′(x)>0;当 x>0 时,f′(x)<0, 所以函数 f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以, 当 x=0 时,f(x)有最大值 f(0)=a-1. 当 a<1 时,f(0)=a-1<0,函数 f(x)无零点; 当 a=1 时,f(0)=a-1=0,函数 f(x)有 1 个零点; 当 a>1 时,f(0)=a-1>0,f(-a)=-e-a<0,
所以 f(1)=-e<0 是 f(x)的极小值,也是最小值,f(2)=a>0, 取 b<0 且 b<lna2,则 f(b)=(b-2)eb+a(b-1)2>a2(b-2)+a(b-1)2=a2b(2b-3)>0, 所以 f(x)在(b,1)和(1,2)上各有一个零点; ②a=0 时,f(x)=(x-2)ex,只有一个零点 x=2. 综上,a>0 时,f(x)有两个零点;a=0 时,f(x)有一个零点.
考点三 与零点有关的不等式问题
命题角度 1 比值代换 (2020 四川南充模拟)已知函数 f(x)=lnx+mx -s(s,m∈R).

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(2)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(2)

一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()3sin f x x x ax =+-,则下列结论错误的是( ) A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点 3.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .4.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞ B .()2,2e -C .(),2e -D .[),e -+∞5.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞6.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣∞,﹣3)∪(0,3) 7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.若函数2()x f x mx e -=-+恰有两个不同的零点,则实数m 的取值范围为( ) A .1,1e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .(1,)eD .(,)e +∞9.若函数1()21x f x e x =--(e 为自然对数的底数),则()y f x =图像大致为( )A .B .C .D .10.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .32,02⎡⎤-⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .322,32⎡⎤--⎢⎥⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦二、填空题13.已知()2ln 1f x x x mx =++-在区间()1,2上为单调递增函数,则实数m 的取值范围是__________.14.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,,,DBC ECA FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起,,DBC ECA FAB ,使得D ,E ,F 重合,得到三棱锥.当所得三棱锥体积(单位:3cm )最大时,ABC 的边长为_________(cm ).15.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.16.已知函数()2221,204ln 2,0x mx m x f x x m x xe ⎧----<≤⎪=⎨+->⎪⎩在区间()2,-+∞上有且只有三个零点,则实数m 的取值范围为______.17.设函数()22ln f x x x x =+-,若关于x 的方程()2f x x x a =++在(]0,2上恰有两个相异实根,则实数a 的范围是______.18.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 19.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________.20.若函数()2ln 12f x x mx x -+=有极值,则函数()f x 的极值之和的取值范围是________. 三、解答题21.已知函数()()211ln ,022f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 22.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数).(1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.23.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 24.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式; (2)求函数g (x )=()f x x-4ln x 的零点个数.26.已知函数()(2)()x f x x e alnx ax a R =-+-∈. (1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.C解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 3.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解;解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x x x++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 5.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.6.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C8.B解析:B 【分析】根据题意,得到方程有两不等实根,构造函数2()x e g x x-=,0x ≠,对其求导,判定函数单调性,求出极值,画出函数大致图像,结合图像,即可得出结果.【详解】显然,0x =不是函数()f x 的零点,令2()0x f x mx e-=-+=,得2x e m x-=, 构造函数2()x e g x x -=,0x ≠,则22(1)()x e x g x x--'=, 令()0g x '>得到1x >,令()0g x '<得到1x <且0x ≠,即函数2()x e g x x -=在(),0-∞上单调递减,在()0,1上单调递减,在()1,+∞上单调递增;所以函数2()x e g x x-=有极小值1(1)g e =;画出函数()g x 的图象,如图所示,由图像可知,当0m ≤时,直线y m =与()g x 的图象不可能有两个交点, 当0m >,只需1m e>,()g x 的图象与直线y m =即有两个不同的交点, 即函数2()x f x mx e -=-+恰有两个不同的零点, ∴m 的取值范围为1,e⎛⎫+∞ ⎪⎝⎭.故选:B. 【点睛】本题主要考查导数的方法研究函数的零点,利用数形结合的方法即可求解,属于常考题型.9.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<, 所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.10.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x -'=-+=>,所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得2x =,列表如下:()2max2f x ⎛=-= ⎝⎭3a ∴≥2a ≥-.综上所述,实数a 的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】求出导函数由在上恒成立可得的范围【详解】由题意在时恒成立即在时恒成立由对勾函数性质知在单调递增所以所以即故答案为:【点睛】本题考查用函数在某个区间上单调性解题方法是把问题转化为不等式恒成立再 解析:3m ≥-【分析】求出导函数()'f x ,由()0f x '≥在(1,2)上恒成立可得m 的范围. 【详解】2121()2x mx f x x m x x ++'=++=,由题意()0f x '≥在(1,2)x ∈时恒成立, 即2210x mx ++≥在(1,2)x ∈时恒成立,22112x m x x x+-≤=+,由对勾函数性质知12y x x=+在(1,2)单调递增,所以123x x +>,所以3m -≤,即3m ≥-. 故答案为:3m ≥-. 【点睛】本题考查用函数在某个区间上单调性,解题方法是把问题转化为不等式恒成立,再转化为求函数的最值.解题基础求出导函数.14.【分析】连接交于点设求出构造函数利用导数研究函数的单调性从而得出时所得三棱锥体积最大时进而得解【详解】如图连接交于点连接由题意知所以所以设则三棱锥的高则三棱锥的体积令则令即解得所以当时在上单调递增; 解析:43【分析】连接OD ,交BC 于点G ,设OG x =,求出23BC x =,4532510V x x =⨯-,构造函数,利用导数研究函数的单调性,从而得出2x =时,所得三棱锥体积最大时,进而得解. 【详解】如图,连接OD ,交BC 于点G ,连接OB ,由题意,知ODBC ,12BG BC =,30OBG ∠=︒, 所以,133tan 302OG BG BC BC =⨯︒==,所以23BC OG =, 设OG x =,则23BC x =,5DG x =-, 三棱锥的高()222252510h DG OG x x x =-=--=-21233332ABC S x x x =⨯⨯=△,则三棱锥的体积245113325103251033ABC V S h x x x x =⨯=⨯-=-△, 令()452510f x x x =-502x ⎛⎫<<⎪⎝⎭, 则()3410050f x x x =-′,令()0f x '=,即34100500x x -=,解得2x =,所以,当02x <<时,()0f x >′,()f x 在()0,2上单调递增; 当522x <<时,()0f x <′,()f x 在52,2⎛⎫⎪⎝⎭上单调递减, 所以,当2x =时,()f x 取得极大值,也是最大值,此时,BC ==,所以,当所得三棱锥体积最大时,ABC 的边长为故答案为: 【点睛】本题考查三棱锥体积的计算及利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求极值的方法,属于中档题.15.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x -+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.16.【分析】当时函数的图像是函数的图像进行上下平移而得到的求出的单调区间作出其图像可得在上函数至多有2个零点又当时则在上函数至多有1个零点根据条件所以在上有一个零点在上有2个零点则从而可得答案【详解】当解析:()22【分析】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的,求出4ln xy x=的单调区间,作出其图像,可得在()0+∞,上,函数()f x 至多有2个零点,又当20x -<≤时,()2010f m =--<,则在()20-,上,函数()f x 至多有1个零点,根据条件所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点,则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,从而可得答案. 【详解】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的. 又由函数4ln x y x =有()241ln x y x-'=.由()241ln 0x y x -'=>,得x e <,()241ln 0x y x-'=<,得x e >. 所以函数4ln xy x=在()0,e 上单调递增,在(),e +∞上单调递减,图像如图. 当1x >时,4ln 0xy x=>.所以在()0+∞,上,函数()f x 至多有2个零点. 当20x -<≤时,()2221f x x mx m =---,()2010f m =--<,其对称轴为x m =.此时二次方程22210x mx m ---=有两相异号的实根.所以在()20-,上,函数()f x 至多有1个零点. 因为函数()f x 在区间()2,-+∞上有且只有三个零点.所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点.则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,解得:272m <故答案为:()27,2 【点睛】本题考查根据函数的零点个数求参数的取值范围,属于中档题.17.【分析】根据题意得转化为直线和函数的图像有两个不同的交点利用导数研究函数的单调性和最值即可得出实数a 的范围【详解】由及得令根据题意可得:直线和函数的图像有两个不同的交点令得此时函数单调递减令得此时函 解析:(]1,2ln 2-【分析】根据题意得ln a x x =-,转化为直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,利用导数研究函数()g x 的单调性和最值,即可得出实数a 的范围. 【详解】由()22ln f x x x x =+-及()2f x x x a =++,得ln a x x =-,令()ln g x x x =-,根据题意可得:直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,1()1g x x'=-, 令()0g x '<,得01x <<,此时函数()g x 单调递减, 令()0g x '>,得12x <≤,此时函数()g x 单调递增,所以,当1x =时,函数()ln g x x x =-,(]0,2x ∈取得最小值,值为(1)1g =, 又(2)2ln 2g =-,且当210x e <<时, 2211()22ln 2g x g e e⎛⎫>=+>- ⎪⎝⎭,故当12ln 2a <≤-时,直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,所以实数a 的范围是(]1,2ln 2-. 故答案为:(]1,2ln 2-. 【点睛】本题主要考查的是函数零点问题,本题解题的关键是转化为两函数图像的交点问题,利用导数研究函数的单调性和最值,考查学生的分析问题能力,是中档题.18.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.19.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】 变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案.【详解】由题可知函数()f x 的定义域为()0,∞+ 函数()ln 1f x ax x =--有零点, 等价于()ln 10f x ax x =--=有实数根()ln 10f x ax x =--=,即ln 1x a x+=, 设()ln 1x g x x +=,则()2ln 'xg x x-=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =, 画出图像,如图所示:根据图像知1a ≤. 故答案为:(,1]-∞. 【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.20.【分析】先求导方程在上有根求出的范围根据韦达定理即可化简根据的范围即可求出【详解】解:的定义域是存在极值在上有根即方程在上有根设方程的两根为即故函数的极值之和的取值范围是故答案为:【点睛】本题考查了 解析:(,3)-∞-【分析】先求导,方程210x mx -+=在(0,)+∞上有根求出m 的范围,根据韦达定理即可化简12()()f x f x +,根据m 的范围即可求出.【详解】 解:()f x 的定义域是(0,)+∞,211()x mx f x x m x x-+'=-+=,()f x 存在极值,()0f x ∴'=在(0,)+∞上有根,即方程210x mx -+=在(0,)+∞上有根. 设方程210x mx -+=的两根为1x ,2x ,∴240m ∆=->,120x x m +=>,121=x x即2m >22121212121()()()()()2f x f x x x m x x lnx lnx ∴+=+-+++,2121212121()()2x x x x m x x lnx x =+--++, 22112m m =--, 21132m =--<-, 故函数()f x 的极值之和的取值范围是(,3)-∞-故答案为:(,3)-∞- 【点睛】本题考查了导数函数极值的关系,以及韦达定理及二次函数的性质,考查了分析问题解决问题的能力,属于中档题三、解答题21.(1)22y x =-+;(2)答案见解析;(3)()(],00,1-∞.【分析】(1)求出切点坐标和切线的斜率即得解; (2)先求导再对a 分类讨论即得函数的单调区间;(3)任意的[)1,x ∈+∞,()min 0f x ≥,再对a 分类讨论即得解. 【详解】(1)3a =时,()2113ln 22f x x x =--,()10f = ()3f x x x'=-,()12f '=-∴()y f x =在点()()1,1f 处的切线方程为22y x =-+ 所以所求的切线方程为22y x =-+;(2)()()20a x af x x x x x-'=-=>①当0a <时,()20x af x x-'=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令()0f x '=,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为(当0a <时,()20x af x x-'=>恒成立,函数()f x 的递增区间为()0,∞+;当0a >时,函数()f x 的递增区间为)+∞,递减区间为(.(3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数,所以只需()10f ≥, 而()111ln1022f a =--=, 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[)1,+∞上是增函数, 所以只需()10f ≥ 而()111ln1022f a =--=, 所以01a <≤满足题意;③当1a >1>,()f x 在⎡⎣上是减函数,)+∞上是增函数,所以只需0f ≥即可,而()10ff <=,从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】方法点睛:用导数求函数的单调区间的步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.求函数的单调区间是函数的必备基本功,要熟练掌握灵活运用. 22.(1)见解析;(2)1. 【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231exx ax a ++-≤在[)1,-+∞上恒成立,令()223,1xx ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解. 【详解】(1)当0a ≤时,()f x 在R 上单调递减; 当0a >时,()xf x a e '=-,故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增; 当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减; 所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减;(2)因为当1x ≥-时,()232f x a x ≤--恒成立,所以2231e xx ax a ++-≤在[)1,-+∞上恒成立, 令()223,1xx ax a g x x e++-=≥-, 则()()()()22313e exx x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==,①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减, 则要使()()121g a e -=-≤,解得12a e≤+(不合题意); ②当31a ->-即4a <时,则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增; 当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减; 则要使()()()()233max3323631aa a a a a ag x g a e e ---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1tt h t t e +=>-,则要使()1h t ≤, 因为()20etth t --'=<,所以()h t 在()1,-+∞单调递减, 而()11h >,()21h <,所以整数t 的最小值为2, 故整数a 的最大值为1. 【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.23.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e =-,所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减, 21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-< ⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤=显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤24.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-. 【分析】(1)先求出()21xf x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x>对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2xf x e x a =-+,则()2xf x e x '=-,则()01f b '==,由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21xf x e x =--,则()()21xg x f x x x e x =+-=--,则()10xg x e '=-=,得0x =,当(),0x ∈-∞,0g x ,函数y g x 单调递减; 当()0,x ∈+∞,0g x,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+. (2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x>对任意的0,恒成立, 令()()f x x xϕ=,0x >, 得()()()()()()()22222111x x xx e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立, 令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<, 所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平. 25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表: x (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) +-+g (x )极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用. 26.(1)a e >;(2)()f x 有唯一零点;证明见解析. 【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求. 【详解】解:(1)()(1)x e x af x x x-'=-,0x >,设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增,故存在0x 使得0()0g x =,当a e =时,()(1)0x e x af x x x-'=-恒成立,故()f x 单调递增无极值,a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增, 当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点 综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点. 【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。

北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

一、选择题1.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫⎪⎝⎭2.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2 B .1(2,2) C .(1,2)- D .(1,3)-4.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞5.函数()2e e x x f x x--=的图像大致为 ( ) A . B .C .D .6.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个7.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D . 8.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-a x 在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( )A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤ 9.函数()21x y x e =-的图象大致是( )A .B .C .D .10.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2e B .e C .1 D .1211.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( )A .1B .2C .eD .2e12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 16.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____ 19.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件;②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.20.设函数()2()1x f x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.22.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围. 23.已知函数()x f x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值;(2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值.24.已知函数()ln ()a f x x a R x=+∈. (1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=()f x x-4ln x 的零点个数. 26.已知函数()(2)()x f x x e alnx ax a R =-+-∈.(1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】 由题意得2ln x x a x+=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x x a x+=在(0,1)上为增函数, 可得),(1a ∈-∞, 当(1,),()0,0x g x a ∈+∞<<',2ln x x a x +=在(1,)+∞上单调递减,可得(0,1)∈a , 即要2ln x x a x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 2.A解析:A【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增;故选A .3.C解析:C【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围.【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=, 整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.D解析:D【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln x a x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解.【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=,()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x ∴=-()1x >, 不等式()f x ax ≤对任意()1,x ∈+∞恒成立, ∴2ln x ax x-≤对任意()1,x ∈+∞恒成立, 即ln x a x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln e g x g e e e==-=-, a e ∴≥-, ∴实数a 的取值范围是[),e -+∞.故选:D.【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥.5.B解析:B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.B解析:B【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论.【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)x g x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数,于是222x e x x -=+,化为2220(0)x e x x x ++=<,令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解,由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>,∴存在0(2,1)x ∈--使得0()0x ϕ'=,当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>, ∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个.故选:B .【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题. 7.D解析:D【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项【详解】 解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=,所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x =-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足.故选:D【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题8.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2a g x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果.【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减, 所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立, 得23,3x a a -≤∴≥-,又因为()2a g x x x =-在区间(]1,2上既有最大值,又有最小值,所以,可知()2'2a g x x x =+在(]1,2上有零点, 也就是极值点,即有解220a x x +=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C.【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.9.A解析:A【分析】 根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21x y x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.10.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x +=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.11.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论.【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()x f x e '=,切线方程为000()-=-x x y e e x x ,切线过原点,∴000x x e e x -=-⋅,01x =,∴(1)k f e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2a x =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2a x =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <, 综上:a 的取值范围为28a <<故选:D【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调 解析:1,e ⎛⎤-∞ ⎥⎝⎦ 【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x=, 则()21ln x f x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确.故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【 解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围.【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+, 令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e≥, 当()0g x '<,即ln 10x +<,解得10x e <<所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤- 故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.16.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数 解析:2【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=,所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去).所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--,所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内,所以2m =.故答案为:2【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围.【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln a g x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立, 只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞.【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.19.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数,函数最多一个零点;③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围.【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的.故答案为:①③⑤【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围.【详解】函数()2()1x f x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x x x e x =--+⋅≥,令'0f x ,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f =,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)1,1a b ==;(2)证明见解析.【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减, 当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增. ∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 22.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-. ∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =, 结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 23.(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122x h x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=,令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立,∴2151022x e x x k +---≥对任意x ∈R 恒成立, ∴215122xk e x x ≤+--对任意x ∈R 恒成立. 令()215122xh x e x x =+--,则()52x h x e x '=+-. 由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增. ∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502xe x +-=,∴0052x e x =-. ∴()()2200000051511732222h x x x x x x =-+--=-+. ∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型.24.(1)见解析;(2),a e =. 【分析】 (1)求得()2x af x x='-,分类讨论,即可求解函数的单调性;(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解. 【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增 所以()()min ln 12f x f a a ==+=,解得a e = (舍去), 当a e ≥时,由(1)知()f x 在[]1,e 单调递减, 所以()()min ln 12a af x f e e e e==+=+=,解得a e = , 综上所述,a e =. 【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表: x (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) +-+g (x )极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用. 26.(1)a e >;(2)()f x 有唯一零点;证明见解析. 【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求. 【详解】解:(1)()(1)x e x af x x x-'=-,0x >,设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增, 故存在0x 使得0()0g x =,当a e =时,()(1)0x e x af x x x-'=-恒成立,故()f x 单调递增无极值,a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增, 当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点 综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点. 【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)(2)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)(2)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或23.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .5.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞6.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞7.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)8.函数2()(3)x f x x e =-的单调递增区间是( ) A .(,0)-∞B .(0)+∞,C .(,3)-∞和(1)+∞, D .(-3,1) 9.函数()2cos f x x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最大值为( ) A .2B .36π+C .13π+ D .33π+10.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞11.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭12.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知函数1()cos ,()(0)2axf x xg x e a a π==-+≠,若1x ∃、2[0,1]x ∈,使得()()12f x g x =,则实数a 的取值范围为________.14.已知定义域为R 的函数()f x 满足1122f ⎛⎫=⎪⎝⎭,()40f x x '+>,其中()f x '为()f x 的导函数,则不等式()sin cos20f x x -≥的解集为______.15.已知函数()f x 是定义在R 上的增函数,()()2f x f x '+>,()01f =,则不等式()ln 2ln 3f x x +>+⎡⎤⎣⎦的解集为______.16.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.17.已知a R ∈,设函数()2,1,1x x ax a x f x ae x x ⎧-+≥=⎨-<⎩(其中e 是自然对数的底数),若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为______.18.设m R ∈,若函数()332f x x x m =-+在0,3⎡⎤⎣⎦上的最大值与最小值之差为2,则实数m 的取值范围是______.19.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________. 20.若函数()2122f x x x aInx =-+有两个不同的极值点,则实数a 的取值范围是__________.三、解答题21.有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大.22.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.23.已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值. (1)求,a b 的值及函数()f x 的单调区间; (2)若对[2,3]x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围. 24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围.26.已知函数()ln 1f x ax x =++. (1)讨论函数()f x 的单调性;(2)对任意的0x >,不等式()x f x e ≤恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数. 【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+, 当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()y F x =的零点个数为0. 故选:A. 【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x -+在[]1,2上单调递减,所以724xx -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .5.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.6.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增,则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.7.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.8.D解析:D 【解析】∵函数f(x)=(3-x 2)e x , ∴f′(x)=-2xe x +(3-x 2)e x =(3-2x-x 2)e x . 由f′(x)>0,得到f′(x)=(3-2x-x 2)e x >0, 即3-2x-x 2>0,则x 2+2x-3<0,解得-3<x <1, 即函数的单调增区间为(-3,1). 本题选择D 选项.9.B解析:B 【分析】利用导数分析函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值. 【详解】()2cos f x x x =+,则()12sin f x x '=-,0,2x π⎡⎤∈⎢⎥⎣⎦,当()0f x '>时,则12sin 0x ->,解得06x π≤<;当()0f x '<时,12sin 0x -<,解得62x ππ<≤.所以,函数()y f x =在区间0,6π⎡⎫⎪⎢⎣⎭上单调递增,在区间,62ππ⎛⎤ ⎥⎝⎦上单调递减,因此,函数()y f x =在6x π=处取得极大值,亦即最大值,即()max 66f x f ππ⎛⎫== ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数求解函数的最值,考查计算能力,属于中等题.10.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D11.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调,令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.12.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 二、填空题13.【分析】根据余弦型函数的性质求出当时函数的值域分类讨论利用指数型函数的性质求出函数在时的值域然后根据存在的定义进行求解即可【详解】因为所以因此在时单调递减所以有当时函数是单调递增函数当时即因为使得所 解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】根据余弦型函数的性质求出当1[0,1]x ∈时,函数()1y f x =的值域,分类讨论利用指数型函数的性质,求出函数()2y g x =在2[0,1]x ∈时的值域,然后根据存在的定义进行求解即可.【详解】因为1[0,1]x ∈,所以1[0,]x ππ∈,因此1()f x 在1[0,1]x ∈时,单调递减,所以有11(1)()(0)1()1f f x f f x ≤≤⇒-≤≤.当0a >时,函数1()2ax g x e a =-+是单调递增函数,当2[0,1]x ∈时, ()2(0)(1)g g x g ≤≤,即231()22a a g x e a -≤≤-+, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有:()3121112a a e a ⎧-≤⎪⎪⎨⎪-+≥-⎪⎩, 令'1()(0)()12a a h a e a a h a e =-+>⇒=-, 因为0a >,所以'()0h a >,因此函数 ()h a 单调递增, 所以有3()(0)2h a h >=,因此不等式组(1)的解集为:12a ≥,而0a >,所以12a ≥; 当0a <时,函数1()2ax g x e a =-+是单调递减函数,当2[0,1]x ∈时, ()2(1)(0)g g x g ≤≤,即213()22a e a g x a -+≤≤-, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有()1122312a e a a ⎧-+≤⎪⎪⎨⎪-≥-⎪⎩:, 令'1()(0)()12a a h a e a a h a e =-+<⇒=-,因为0a <,所以'()0h a <,因此函数 ()h a 单调递减, 所以有3()(0)2h a h >=,因此不等式组 (2)的解集为空集, 综上所述:12a ≥. 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】 关键点睛:根据不等式112a e a -+≥构造新函数,利用导数求出新函数的最小值是解题的关键.14.【分析】引入函数求导后利用已知条件得即为增函数计算题设不等式又化为由单调性可求解最后再由正弦函数性质得出结论【详解】设则∴单调递增即为∴∴故答案为:【点睛】关键点点睛:本题考查用导数解函数不等式解题 解析:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈ 【分析】引入函数2()()21g x f x x =+-,求导后利用已知条件得()0g x '>,即()g x 为增函数,计算102g ⎛⎫= ⎪⎝⎭,题设不等式又化为(sin )(0)g x g ≥,由单调性可求解.最后再由正弦函数性质得出结论.【详解】设2()()21g x f x x =+-,则()()40g x f x x ''=+>,∴()g x 单调递增.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2(sin )cos2(sin )2sin 10f x x f x x -=+-≥即为1(sin )2g x g ⎛⎫≥ ⎪⎝⎭, ∴1sin 2x ≥,∴522,66k x k k Z ππππ+≤≤+∈. 故答案为:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈ 【点睛】 关键点点睛:本题考查用导数解函数不等式,解题关键是引入新函数2()()21g x f x x =+-,利用导数确定单调性,不等式转化为()g x 的不等式,从而求解.解题时要善于观察,分析如何引入函数,引入什么样的函数.15.【分析】构造函数则所以的单调递减将转化成又再根据函数单调性即可求出结果【详解】设所以因为所以所以在上为减函数因为函数是定义在上的增函数所以所以在上恒成立又因为所以所以即因为所以所以又在上为减函数所以 解析:(),0-∞【分析】构造函数()()2+=x f x g x e ,则()()()()20'-+'=<x f x f x g x e,所以()g x 的单调递减,将()ln 2ln 3f x x +>+⎡⎤⎣⎦转化成()23+>x f x e ,又()03g =,再根据函数单调性即可求出结果.【详解】设()()2+=x f x g x e ,所以()()()()()()()222''-+-+'==x x x x f x e f x e f x f x g x e e, 因为()()2f x f x '+>,所以()0g x '<,所以()()2+=x f x g x e在R 上为减函数, 因为函数()f x 是定义在R 上的增函数,所以()0f x '>,所以()()20'+>>f x f x 在R 上恒成立,又因为()ln 2ln 3f x x +>+⎡⎤⎣⎦,所以()2ln 3+>f x x ,所以()23+>x f x e ,即()23+>x f x e ,因为()01f =,所以()()00203+==f g e,所以()()0g x g >,又()()2+=x f x g x e在R 上为减函数,所以0x <. 故答案为:(),0-∞【点睛】 本题主要考查导数在判断单调性中的应用,解题的关键是合理构造函数,利用导函数判断构造的函数的单调性.16.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立, 令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当133x ⎛⎫∈-- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.17.【分析】考虑和两种情况分别计算得到利用均值不等式得到;证明单调递增得到得到答案【详解】当时即对恒成立当时符合题意;当时参变分离得:因为当时等号成立故上式恒成立时;当时即对恒成立参变分离得:令故单调递 解析:14a e≤≤ 【分析】考虑1x ≥和1x <两种情况,分别计算得到211211x a x x x ≤=-++--,利用均值不等式得到4a ≤;x x a e ≥,证明()x x p x e=单调递增,得到1a e ≥,得到答案. 【详解】当1x ≥时,()0f x ≥,即20x ax a -+≥对1x ≥恒成立,当1x =时,符合题意; 当1x >时,参变分离得:211211x a x x x ≤=-++--, 因为11241x x -++≥-,当2x =时等号成立,故上式恒成立时4a ≤; 当1x <时,()0f x ≥,即0x ae x -≥对1x <恒成立, 参变分离得:x x a e ≥,令()x x p x e =,()10x x p x e -'=>,故()p x 单调递增,∴()()11x x p x p e e=<= 要使0x ae x -≥对1x <恒成立,则1a e ≥. 综上所述:a 的取值范围为14a e ≤≤. 故答案为:14a e≤≤. 【点睛】 本题考查了恒成立问题,参数分离转化为函数的最值问题是解题的关键.18.【分析】设结合导数可得函数的值域为最大值与最小值之差为从而得到函数的值域为最大值与最小值之差也为然后根据题意可得或即可求得答案【详解】设则函数在区间上单调递减在区间上单调递增函数的值域为最大值与最小 解析:][(),01,-∞⋃+∞【分析】设3()3,g x x x x =-∈结合导数可得函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,从而得到函数33,2y x x x m ⎡=-+∈⎣的值域为[]22,2m m -+,最大值与最小值之差也为2.然后根据题意可得220m -+≥或20m ≤,即可求得答案.【详解】设()33,g x x x x ⎡=-∈⎣, 则()()()233311g x x x x ==-'-+,∴函数()y g x =在区间[)0,1上单调递减,在区间(上单调递增. ()00g =,()12g =- ,0g = ,∴函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,∴函数33,2y x x x m ⎡=-+∈⎣的值域[]22,2m m -+,最大值与最小值之差也为2.()332f x x x m =-+在x ∈上的最大值与最小值之差为2,∴220m -+≥或20m ≤,解得m 1≥. 或0m ≤. .∴实数m 的取值范围为][(),01,-∞⋃+∞.故答案为:][(),01,-∞⋃+∞.【点睛】本题考查用导数研究函数的最值问题,具有综合性和难度,解题的关键是注意将问题进行合理的转化,考查了分析能力和计算能力,属于难题.19.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而 解析:2【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立,得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=,画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->,∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增,而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈,∴k 的最大值是2.故答案为:2【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.20.【分析】对函数求导要满足题意只需导函数在定义域内有两个零点数形结合即可求得【详解】由可得函数定义域为且若满足有两个不同的极值点则需要满足有两个不同的实数根即在区间上有两个不同的实数根也即直线与函数有 解析:()0,1【分析】对函数求导,要满足题意,只需导函数在定义域内有两个零点,数形结合即可求得.【详解】由()2122f x x x aInx =-+可得函数定义域为()0,∞+且()2a f x x x=+-' 若满足()f x 有两个不同的极值点,则需要满足()20a f x x x=-'+=有两个不同的实数根, 即22a x x =-+在区间()0,∞+上有两个不同的实数根,也即直线y a =与函数()22,0,y x x x =-+∈+∞有两个交点,在直角坐标系中作图如下:数形结合可知,故要满足题意,只需()0,1a ∈.故答案为:()0,1.【点睛】本题考查由函数极值点的个数,求参数范围的问题,属基础题;本题也可转化为二次函数在区间()0,∞+上有两个实数根,从而根据二次函数根的分布进行求解.三、解答题21.(1)见解析;(2) 6a . 【详解】解: 2322221212(1)(2?44(0)2(2)'128'0,()26v a x x a x ax a x x v ax ax a a a v x x x x =-=-+<<=-+===)令舍,根据,列表,得到函数的极值和单调性06a (,) 6a(,)62a a V’+9 - v增 极大值 减 6x =时,max ()27v x = 【点睛】此题是一道应用题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.22.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -,直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.23.(1)3{26a b =-=-,()f x 的减区间为(1,2)-,增区间为(,1)-∞-,(2,)+∞;(2)7(,1)(,)2-∞-⋃+∞. 【详解】试题分析:(1)求出()'f x 并令其0=得到方程,把1x =-和2x =代入求出,a b 即可;(2)求出函数的最大值为()1f -,要使不等式恒成立,既要证()2312f c c -+<,即可求出c 的取值范围.试题(1)()232f x x ax b =++', 由题意得:()()10{20f f ''-==即320{1240a b a b -+=++=,解得3{26a b =-=- ∴()32362f x x x x c =--+,()2336f x x x '=--. 令()0f x '<,解得12x -<<,令()0f x '>,解得1x <-或2x >∴()f x 的减区间为()1,2-,增区间为(),1-∞-,()2,+∞.(2)由(1)知,()f x 在(),1-∞-上单调递增;在()1,2-上单调递减;在()2,+∞上单调递增.∴[]2,3x ∈-时,()f x 的最大值即为()1f -与()3f 中的较大者.()712f c -=+,()932f c =-+,∴当1x =-时,()f x 取得最大值, 要使()232f x c c +<,只需()2312c f c >-+,即2275c c >+,解得1c <-或72c >. ∴c 的取值范围为()7,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a af x x x=-+',根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==, ①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<, ∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-, ∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减, (3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a ,即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a =-=⋅-+-=⋅---,2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解. 试题(1)由k e =得()xf x e ex =-,所以()xf x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数.于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增.故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<. 综合①②得,实数k 的取值范围是0k e <<. 也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用. 26.(1)答案见解析;(2){}1a a e ≤-. 【分析】(1)分类讨论0a ≥,0a <两种情况,利用导数得出函数()f x 的单调性;(2)分类参数得出ln 1x e x a x --≤在(0,)+∞恒成立,利用导数得出ln 1()x e x g x x--=的最小值,即可得出实数a 的取值范围. 【详解】(1)定义域为(0,)+∞,11()ax f x a x x+'=+= ①若0a ≥,则()0f x '>,()f x 在(0,)+∞单调递增②若0a <,则1()a x a f x x⎛⎫+ ⎪⎝⎭'=1()00f x x a '>⇒<<-,1()0f x x a'<⇒>-()f x 在10,a ⎛⎫-⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减综上知①0a ≥,()f x 在(0,)+∞单调递增,②0a <,()f x 在10,a ⎛⎫-⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减 (2)不等式ln 1xax x e ++≤恒成立,等价于ln 1x e x a x--≤在(0,)+∞恒成立令ln 1()x e x g x x --=,0x >,则2(1)ln ()x x e xg x x -+'=令()(1)ln x h x x e x =-+,0x >,1()0xh x xe x'=+>.所以()y h x =在(0,)+∞单调递增,而(1)0h =所以(0,1)x ∈时,()0h x <,即()0g x '<,()y g x =单调递减;(1,)x ∈+∞时,()0h x >,即()0g x '>,()y g x =单调递增所以在1x =处()y g x =取得最小值(1)1g e =-,所以1a e -≤ 即实数a 的取值范围是{}1a a e ≤- 【点睛】本题主要考查了利用导数求函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.。

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤ D .35a <≤4.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( ) A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <15.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞6.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<7.若函数1()ln f x x a x=-+在区间(1,)e 上存在零点,则常数a 的取值范围为( )A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 8.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣∞,﹣3)∪(0,3) 9.函数y =x 3+x 的递增区间是( ) A .(0,+∞) B .(-∞,1) C .(-∞,+∞)D .(1,+∞)10.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .1212.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.若函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是____. 14.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.15.定义在()0,∞+上的函数()f x 满足()210x f x '+>,()15f =,则不等式()14f x x≤+的解集为______. 16.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 17.321313y x x x =--+的极小值为______. 18.设()22,0ln ,0x mx x f x x mx x ⎧-+<=⎨->⎩,若方程()f x x =恰有三个零点,则实数m 的取值范围为______.19.已知函数()f x 的导函数()y f x '=的图象如图所示,给出如下命题:①当20x -<<时,()0f x >;②(1)(0)f f -<;③函数()f x 在12x =-处切线的斜率小于零;④0是函数()f x 的一个极值点;其中正确的命题是___________.(写出所有正确命题的序号)20.设m R ∈,若函数()332f x x x m =-+在0,3⎡⎤⎣⎦上的最大值与最小值之差为2,则实数m 的取值范围是______.三、解答题21.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 22.已知函数3()3f x x x =-.(1)求函数()f x 在3[3,]2-上的最大值和最小值.(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程. 23.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围. 24.已知函数2()f x alnx bx =-,a ,b R ∈.若()f x 在1x =处与直线12y 相切. (1)求a ,b 的值;(2)求()f x 在1[e,]e 上的最大值.25.已知函数:()()21ln ,12x f x x a x a g x e x =--=--. (1)当[]1,x e ∈时,求()f x 的最小值;(2)对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围.26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1a maxg x g ae a--=--=--,由题意知,2210aae ----恒成立,令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围.【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭,故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.D解析:D 【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D.点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,()g x 单调递减,所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭, 所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.7.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x'=+>在区间()1,e 上恒成立,所以函数1()ln f x x a x=-+在区间()1,e 上为增函数,所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.8.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.9.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.10.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.11.C解析:C 【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果. 【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x ,则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=,令()0f x '>,则01x <<;令()0f x '<,则1x > , 所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数,由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤, 故a 的最大值为1. 故选:C. 【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x ex x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.0【详解】此题考查导数的应用;所以当时原函数递减当原函数递增;因为在上不单调所以在上即有减又有增所以解析:0123t t <<<<或 【详解】此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x -+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以0113{{01231131t t t t t t <<<<∴<<<<<+<+或或14.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.15.【分析】设解不等式即解则结合条件得出的单调性且可解出不等式得出答案【详解】由设则故函数在上单调递增又故的解集为即的解集为故答案为:【点睛】本题考查根据条件构造函数根据函数单调性解不等式由条件构造出函 解析:(]0,1【分析】 设()()14g x f x x =--,解不等式()14f x x≤+,即解()0g x ≤,则()()221x f x g x x'+'=,结合条件,得出()g x 的单调性,且()10g =,可解出不等式得出答案. 【详解】由()210x f x '+>,设()()14g x f x x =--,则()()()222110x f x g x f x x x'+''=+=>. 故函数()g x 在()0,∞+上单调递增, 又()10g =,故()0g x ≤的解集为(]0,1, 即()14f x x≤+的解集为(]0,1. 故答案为:(]0,1 【点睛】本题考查根据条件构造函数,根据函数单调性解不等式,由条件构造出函数是本题的关键,属于中档题.16.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【解析:1,1e ⎛⎤-∞- ⎥⎝⎦【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围. 【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+,令()ln 1g x x x =+,则()ln 1g x x '=+, 当()0g x '≥,即ln 10x +≥,解得1x e ≥, 当()0g x '<,即ln 10x +<,解得10x e<< 所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数,所以()min 1111ln 11g x g e e e e⎛⎫==+=- ⎪⎝⎭, 所以11k e≤-故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.17.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.18.【分析】将问题转化为与图像交点个数有3个的问题利用导数研究函数单调性和最值数形结合即可求得结果【详解】当时等价于;当时等价于;令则方程恰有三个零点等价于与直线有三个交点当时则令解得故该函数在区间单调解析:1m <-【分析】将问题转化为()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩与1y m =+图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果. 【详解】当0x <时,22y x mx x =-+=,等价于21x m x+=+; 当0x >时,y lnx mx x =-=,等价于1lnxm x=+; 令()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩,则方程()f x x =恰有三个零点,等价于()y h x =与直线1y m =+有三个交点. 当lnx y x =时,则21lnx y x -=',令0y '=,解得x e =, 故该函数在区间()0,e 单调递增,在(),e +∞单调递减. 且x e =时,1y e=;又x e >时,0y >; 而当2y x x=+时,由对勾函数性质,容易知: 当2x =-时,函数取得最大值22y =-. 故()h x 的图像如下所示:数形结合可知,要满足题意,只需122m +<-, 解得221m <-. 故答案为:221m <-. 【点睛】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综合中档题.19.②④【分析】由导数的图象推不出当时;当时函数单调递增由此可判断②正确由可判断③错误由时时时可判断④正确【详解】由导数的图象推不出当时故①不一定正确当时函数单调递增所以故②正确因为所以函数在处切线的斜解析:②④ 【分析】由导数的图象推不出当20x -<<时,()0f x >;当20x -<<时0fx ,函数()f x 单调递增,由此可判断②正确,由102f ⎛⎫'-> ⎪⎝⎭可判断③错误,由0x >时0f x,0x =时0fx ,0x <时0f x 可判断④正确【详解】由导数的图象推不出当20x -<<时,()0f x >,故①不一定正确. 当20x -<<时0f x ,函数()f x 单调递增,所以(1)(0)f f -<,故②正确因为102f ⎛⎫'-> ⎪⎝⎭,所以函数()f x 在12x =-处切线的斜率大于零,故③错误因为0x >时0f x ,0x =时0f x ,0x <时0f x所以0是函数()f x 的一个极值点,故④正确 故答案为:②④ 【点睛】本题考查命题的真假判断和应用,解题时要熟练掌握导函数的图象和性质.20.【分析】设结合导数可得函数的值域为最大值与最小值之差为从而得到函数的值域为最大值与最小值之差也为然后根据题意可得或即可求得答案【详解】设则函数在区间上单调递减在区间上单调递增函数的值域为最大值与最小 解析:][(),01,-∞⋃+∞【分析】设3()3,g x x x x =-∈结合导数可得函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,从而得到函数33,2y x x x m ⎡=-+∈⎣的值域为[]22,2m m -+,最大值与最小值之差也为2.然后根据题意可得220m -+≥或20m ≤,即可求得答案. 【详解】设()33,g x x x x ⎡=-∈⎣,则()()()233311g x x x x ==-'-+,∴函数()y g x =在区间[)0,1上单调递减,在区间(上单调递增.()00g =,()12g =- ,0g= ,∴函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,∴函数33,2y x x x m ⎡=-+∈⎣的值域[]22,2m m -+,最大值与最小值之差也为2.()332f x x x m =-+在[0,3]x ∈上的最大值与最小值之差为2,∴220m -+≥或20m ≤,解得m 1≥. 或0m ≤. .∴实数m 的取值范围为][(),01,-∞⋃+∞.故答案为:][(),01,-∞⋃+∞. 【点睛】本题考查用导数研究函数的最值问题,具有综合性和难度,解题的关键是注意将问题进行合理的转化,考查了分析能力和计算能力,属于难题.三、解答题21.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少. 【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+(升),水底作业时的用氧量为10×0.9=9(升), 返回水面用时=(单位时间),用氧量为×1.5=(升), 因此总用氧量232409,(0)50v y v v =++>.(2)由(1)得232409,(0)50v y v v=++>,∴y′=-=,令y′=0得v =3102,当0<v<3102时,y′<0,函数单调递减; 当v>3102时,y′>0,函数单调递增.①若c<3102 ,则函数在(c ,3102)上单调递减,在(3102,15)上单调递增, ∴ 当v =3102 ②若c≥3102,则y 在[c ,15]上单调递增, ∴ 当v =c 时,总用氧量最少. 【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合. (2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.22.(1)min ()18f x =-,max ()2f x =;(2)30x y +=或24540x y --=. 【分析】(1)求出导数,根据导数求出函数的单调区间,即可求出函数的最值;(2)设切点为3000(,3)Q x x x -,表示出切线方程,代入点(2,6)P -,求出0x ,即可得出切线方程. 【详解】(1)'()3(1)(1)f x x x =+-,当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,∴[3,1]--,31,2⎡⎤⎢⎥⎣⎦为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <,∴[1,1]-为函数()f x 的单调减区间 又因为(3)18f -=-,(1)2f -=,(1)2f =-,39()28f =-所以当3x =-时,min ()18f x =-,当1x =-时,max ()2f x =(2)设切点为3000(,3)Q x x x -,则切线斜率()200()31k f x x '==-,则所求切线方程为320000(3)3(1)()y x x x x x --=--,由于切线过点(2,6)P -,∴3200006(3)3(1)(2)x x x x ---=--, 解得00x =或03x =所以切线方程为3y x =-或624(2)y x +=-, 即30x y +=或24540x y --=. 【点睛】本题考查利用导数求函数最值,考查利用导数求切线方程,属于中档题. 23.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-.(2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, 所以()f x 在2(1,)a 上单调递增,()f x 在2(,)a+∞上单调递减,所以()2()10f f a >=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞.【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题.24.(1)112a b =⎧⎪⎨=⎪⎩;(2)12- . 【分析】(1)对()f x 进行求导,先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a ,b 的方程求得a ,b 的值.(2)判定函数的单调性,可得函数的极大值就是最大值,求出函数的极值可确定出最大值. 【详解】 (1)函数2()(0)f x alnx bx x =->,()2af x bx x∴'=-, 函数()f x 在1x =处与直线12y相切, ∴(1)201(1)2f a b f b '=-=⎧⎪⎨=-=-⎪⎩,解得112a b =⎧⎪⎨=⎪⎩;(2)21()2f x lnx x =-,21()x f x x-'=,当1x e e 时,令()0f x '>得:11x e<,令()0f x '<,得1x e <,()f x ∴在1[e,1],上单调递增,在[1,]e 上单调递减, 所以函数的极大值就是最大值,()max f x f ∴=(1)12=-.【点睛】本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、导数在最大值、最小值问题中的应用考查运算求解能力、化归与转化思想.属于中档题.25.(1)答案见解析;(2)2124,24e e ⎡⎫-+⎪⎢⎣⎭.【分析】(1)求导,对参数进行分类讨论,根据不同情况下函数的单调性,即可求得函数的最小值;(2)根据题意,求得不同情况下()f x 的值域,结合其值域为()f x 的子集,列出不等式,则问题得解. 【详解】(1)()2x af x x-'=1a ≤时,[]()()1,,0,x e f x f x '∈≥递增,()()min 112f x f a ==-, 2a e ≥时,[]()()1,,0,x e f x f x '∈≤递减,()()2min22e f x f e a ==-,21a e <<时,x ⎡∈⎣时()0,()f x f x '<递减,x e ⎤∈⎦时()0,()f x f x '>递增,所以()min ln 22a af x fa ==-- 综上,当min 11,()2a f x a ≤=-; 当()2min1ln 22a a a e f x a <<=--, 当()22min 22e a ef x a ≥=-,(2)因为对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =成立,所以()[],0,1g x x ∈的值域是()([1,])f x x e ∈的值域的子集.因为()1x g x e '=- [0,1],()0,()x g x g x '∈≥递增,()g x 的值域为()()[]0,10,2g g e =-⎡⎤⎣⎦(i )当1a ≤时,()f x 在[]1,e 上单调递增,又()()211,222e f a f e a =-=-, 所以()f x 在[1,e]上的值域为21[,2]22e a a --, 所以2102222a e a e ⎧-≤⎪⎪⎨⎪-≥-⎪⎩, 即112a . (ii )当21a e <<时,因为x ⎡∈⎣时,()f x递减,x e ⎤∈⎦时,()f x 递增,且()10,0f f <<,所以只需()2f e e ≥- 即2222e a e -≥-,所以21142e e a <≤-+ (iii )当2a e ≥时,因为()f x 在[1,]e 上单调递减,且()()1102f x f a ≤=-<, 所以不合题意. 综合以上,实数a 的取值范围是2124,24e e ⎡⎫-+⎪⎢⎣⎭. 【点睛】本题考查求含参函数最值得求解,涉及利用导数求函数值域的问题,属综合中档题. 26.(1)0b =(2)63a -≤≤-【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可.(2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可.【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值,所以()0f x '=,即得0b =;经检验可知:b =0符合题意.(2)令(0)0f '=,即2320x ax +=,解得0x =或23x a =-. 依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-.【点睛】 本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。

高中数学 第三章 导数应用章末综合测评(含解析)北师大

高中数学 第三章 导数应用章末综合测评(含解析)北师大

(三) 导数应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.物体运动的方程为s =14t 4-3,则t =5时的瞬时速度为( )A.5B.25C.125D.625【解析】 ∵v =s ′=t 3,∴t =5时的瞬时速度为53=125. 【答案】 C2.函数f (x )=(x -3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)【解析】 f ′(x )=(x -2)e x,由f ′(x )>0,得x >2,所以函数f (x )的单调递增区间是(2,+∞).【答案】 D3.函数f (x )=ax 3+x +1有极值的充要条件是( ) A.a ≥0 B.a >0 C.a ≤0D.a <0【解析】 f ′(x )=3ax 2+1,当a =0时,f ′(x )=1>0,f (x )单调增加,无极值; 当a ≠0时,只需Δ=-12a >0,即a <0即可. 【答案】 D4.(2016·西安高二检测)函数f (x )的导函数f ′(x )的图像如图1所示,那么f (x )的图像最有可能的是( )图1A B C D【解析】 数形结合可得在(-∞,-2),(-1,+∞)上,f ′(x )<0,f (x )是减函数;在(-2,-1)上,f ′(x )>0,f (x )是增函数,从而得出结论.【答案】 B5.若函数y =a (x 3-x )的递增区间是⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,则a 的取值范围是( )A.a >0B.-1<a <0C.a >1D.0<a <1【解析】 依题意得y ′=a (3x 2-1)>0的解集为⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,∴a >0. 【答案】 A6.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A.3f (1)<f (3) B.3f (1)>f (3) C.3f (1)=f (3)D.f (1)=f (3)【解析】 由于f (x )>xf ′(x ),⎝ ⎛⎭⎪⎫f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数,∴f (3)3<f (1)1,即3f (1)>f (3),故选B.【答案】 B7.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )A.-5B.7C.10D.-19【解析】 ∵f (x )′=-3x 2+6x +9=-3(x +1)(x -3), 所以函数在[-2,-1]内单调递减, 所以最大值为f (-2)=2+a =2, ∴a =0,最小值为f (-1)=a -5=-5. 【答案】 A8.函数y =12x -2sin x 的图像大致是( )【解析】 因为y ′=12-2cos x ,所以令y ′=12-2cos x >0,得cos x <14,此时原函数是增函数;令y ′=12-2cos x <0,得cos x >14,此时原函数是减函数,结合余弦函数图像,可得选项C 正确.【答案】 C9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)【解析】 f ′(x )=-x +bx +2,由题意知f ′(x )≤0在(-1,+∞)上恒成立,即b ≤x2+2x 在(-1,+∞)上恒成立,即b ≤(x +1)2-1,则b ≤-1,故选C.【答案】 C10.已知y =f (x )是定义在R 上的函数,且f (1)=1,f ′(x )>1,则f (x )>x 的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞)D.(-∞,-1)∪(1,+∞)【解析】 不等式f (x )>x 可化为f (x )-x >0, 设g (x )=f (x )-x ,则g ′(x )=f (x )′-1, 由题意g ′(x )=f ′(x )-1>0,∴函数g (x )在R 上单调递增,又g (1)=f (1)-1=0, ∴原不等式⇔g (x )>0⇔g (x )>g (1), ∴x >1,故选C. 【答案】 C11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A.[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98C.[-6,-2]D.[-4,-3]【解析】 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max.设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x2x6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min.仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0. 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2. 【答案】 C12.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A.a ≥0B.a <-4C.a ≥0或a ≤-4D.a >0或a <-4【解析】 f ′(x )=2x +2+a x,x ∈(0,1), ∵f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立, ∴2x +2+a x ≥0或2x +2+a x≤0在(0,1)上恒成立, 即a ≥-2x 2-2x 或a ≤-2x 2-2x 在(0,1)上恒成立.设g (x )=-2x 2-2x =-2⎝ ⎛⎭⎪⎫x +122+12,则g (x )在(0,1)上单调递减,∴g (x )max =g (0)=0,g (x )min =g (1)=-4. ∴a ≥g (x )max =0或a ≤g (x )min =-4. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.【解析】 因为f (x )=(2x +1)e x, 所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 【答案】 314.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.【解析】 ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2, 即12≤f (x )≤12e π2. 【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π2 15.(2016·洛阳高二检测)已知函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,则a +b =________.【解析】 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,⎩⎪⎨⎪⎧2a +b =-3,a 2+a +b =9,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11,∴a +b =-7.【答案】 -716.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【解析】 设矩形的长为x ,则宽为10-x (0<x <10),由题意可知所求圆柱的体积V =πx 2(10-x )=10πx 2-πx 3,∴V ′(x )=20πx -3πx 2.由V ′(x )=0,得x =0(舍去),x =203,且当x ∈⎝⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝⎛⎭⎪⎫203,10时,V ′(x )<0,∴当x =203时,V (x )取得最大值为4 00027π cm 3.【答案】4 00027π 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若函数f (x )=x 3+3ax 2+3(a +2)x +3既有极大值又有极小值,求实数a 的取值范围.【解】 ∵f ′(x )=3x 2+6ax +3(a +2), 令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0,∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实数根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.故实数a 的取值范围是(-∞,-1)∪(2,+∞).18.(本小题满分12分)设函数f (x )=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值;(2)讨论函数f (x )的单调性.【解】 (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图像与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-11,3-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6x -9=3(x 2-2x -3)=3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3; 又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)和x ∈(3,+∞)时,f (x )是增函数,当x ∈(-1,3)时,f (x )是减函数.19.(本小题满分12分)已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值. 【解】 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ),令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增∴f (x )极大值=f (-m )=-m 3+2m 3+2m 3-4=-2,∴m =1.20.(本小题满分12分)证明:当x >0时,ln(x +1)>x -12x 2.【证明】 设f (x )=ln(x +1)-⎝ ⎛⎭⎪⎫x -12x 2=ln(x +1)-x +12x 2,函数的定义域是(-1,+∞),则f ′(x )=1x +1-1+x =x2x +1.当x ∈(-1,+∞)时,f ′(x )>0, ∴f (x )在(-1,+∞)上是增函数. ∴当x >0时,f (x )>f (0)=0, 即当x >0时,ln(x +1)>x -12x 2.21.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 【解】 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh (元), 底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意200πrh +160πr 2=12 000π, 所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因为r >0,又由h >0可得0<r <53, 故函数V (r )的定义域为(0,53). (2)因为V (r )=π5(300r -4r 3)(0<r <53),所以V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.22.(本小题满分12分)(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【解】 (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a )时,f ′(x )<0; 当x ∈(ln(-2a ),+∞)时,f ′(x )>0. 因此f (x )在(1,ln(-2a )内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。

高中数学 第三章 导数应用单元测试 北师大版选修22

高中数学 第三章 导数应用单元测试 北师大版选修22

第三章 导数应用单元检测(时间:45分钟,满分:100分)一、选择题(每题5分,共40分)1.已知函数y =2x 3-6x 2-18x +7,则下列结论正确的是( ). A .在x =-1处取得极大值17,在x =3处取得极小值-47 B .在x =-1处取得极小值17,在x =3处取得极大值-47 C .在x =-1处取得极小值-17,在x =3处取得极大值47 D .以上答案都不对2.对于在R 上可导的任意函数f (x ),若满足(x -a )f ′(x )≥0,则必有( ). A .f (x )>f (a ) B .f (x )<f (a ) C .f (x )≥f (a )D .f (x )≤f (a )3.内接于半径为R 的球且体积最大的圆柱体的高为( ).A .3R B .3R C .2R D .2R 4.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x 都有f (x )≥0,则(1)(0)f f 的最小值为( ). A .3B .52C .32D .25.函数f (x )=ax 3+bx 2+cx 在x =1a处有极值,则ac +2b 的值为( ). A .3 B .-3 C .0 D .16.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则f (x )的极值为( ).A .极大值为427,极小值为0 B .极大值为0,极小值为427 C .极小值为427-,极大值为0D .极小值为0,极大值为427-7.已知函数y =x 3-3x ,则它的单调递增区间为( ).A .(-∞,0)B .(-1,1)C .(0,+∞)D .(-∞,-1)和(1,+∞)8.M ,m 分别是函数f (x )在[a ,b ]上的最大值和最小值,若m =M ,则f ′(x )( ). A .等于0 B .小于0 C .等于1 D .不确定 二、填空题(每题5分,共15分)9.若f (x )=x 3-3x 2+6x -2,则f (x ),x ∈[-1,1]的最大值为__________,最小值为__________.10.函数y =x 3+x 2-5x -5的单调递减区间为__________.11.若 x =2是函数f (x )=x (x -m )2的极大值点,则函数f (x )的极大值为__________. 三、解答题(每题15分,共45分)12.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高为多少?13.设函数f (x )=2x 3-3(a -1)x 2+1,其中a ≥1. (1)求f (x )的单调区间;(2)讨论f(x)的极值.14.(2012重庆高考,理16)设f(x)=a ln x+1322xx+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.参考答案1. 答案:A 解析:y ′=6x 2-12x -18,令y ′=0,得x 1=-1,x 2=3,当x 变化时,f∴当=-1时,()取得极大值(-1)=17, 当x =3时,f (x )取得极小值f (3)=-47. 2. 答案:B 解析:由(x -a )f ′(x )≥0知,当x >a 时f ′(x )≥0,当x <a 时f ′(x )≤0. ∴当x =a 时,函数f (x )取得最小值,则f (x )≥f (a ).3. 答案:A 解析:设圆柱高为2h ,圆柱的体积为V =π·(R 2-h 2)·2h =2πR 2h -2πh 3.令V ′=0,得2πR 2-6πh 2=0,∴h =3R ,即当2h =3R 时,圆柱体的体积最大. 4. 答案:D 解析:f ′(x )=2ax +b ,f ′(0)=b >0.对任意实数x 都有f (x )≥0,得a >0,b 2-4ac ≤0,∴b 2≤4ac , ∴c >0,∴(1)(0)f a b c a cf b b+++=='1=2(当且仅当a =c 时,取“=”).5. 答案:B 解析:∵f ′(x )=3ax 2+2bx +c ,1f a ⎛⎫'⎪⎝⎭=0, ∴3+2b +ac =0,∴ac +2b =-3.6. 答案:A 解析:f ′(x )=3x 2-2px -q ,f ′(1)=3-2p -q =0, ∴2p +q =3.①∵函数图像过点(1,0),∴1-p -q =0,即p +q =1.②由①②得p =2,q =-1,即f (x )=x 3-2x 2+x .∴f ′(x )=3x 2-4x +1=(x -1)(3x -1). 令f ′(x )=0,解得x 1=1,x 2=13. 当x <13时,f ′(x )>0, 当13<x <1时,f ′(x )<0,当x>1时,f′(x)>0,故f(x)在x=13处取得极大值427,在x=1处取得极小值0.7.答案:D 解析:y′=3x2-3,令y′>0,∴3x2-3>0,∴x<-1或x>1,∴y=x3-3x的单调递增区间为(-∞,-1)和(1,+∞).8.答案:A 解析:∵M,m分别是函数f(x)在[a,b]上的最大值和最小值且M=m,∴函数f(x)在[a,b]上是常量函数,即f(x)=M=m,∴f′(x)=0.9.答案:2 -12 解析:∵f′(x)=3x2-6x+6=3(x2-2x+2)=3[(x-1)2+1]>0,∴函数f(x)在[-1,1]上是增加的,∴f(x)m ax=f(1)=2,f(x)mi n=f(-1)=-12.10. 答案:5,13⎛⎫- ⎪⎝⎭解析:令y′=3x2+2x-5<0,得53-<x<1.11.答案:32 解析:f(x)=x3-2mx2+m2x,∴f′(x)=3x2-4mx+m2,∴f′(2)=0,∴12-8m+m2=0,∴m=2或m=6.当m=2时,f′(x)=3x2-8x+4.令f′(x)=0,则x1=2,x2=23,∴当x<23或x>2时,f′(x)>0,当23<x<2时,f′(x)<0,∴f(2)是极小值,∴m=2应舍去.当m=6时,f′(x)=3x2-24x+36. 令f′(x)=0时,x1=2,x2=6,∴当x<2或x>6时,f′(x)>0,当2<x<6时,f′(x)<0,∴f(2)是极大值,∴f(2)=2(2-6)2=32.12. 解:设圆锥的高为x cm其体积为V=13π×(202-x2)·x=13π(400x-x3)(0<x<20).令V′=0,解得x1x2=(舍去).当0<x V′>0,x <20时,V ′<0,∴当x V 时,圆锥形漏斗的体积最大.13. 解:由已知得f ′(x )=6x [x -(a -1)],令f ′(x )=0,解得x 1=0,x 2=a -1.(1)当a =1时,f ′(x )=6x 2≥0,f (x )在(-∞,+∞)上单调递增.当a >1时,f ′(x )=6x [x -(a -1)],f ′(x )的符号、f (x )的单调性及极值随x 的变化由表可知,函数()在(-∞,0)上单调递增,在(0,-1)上单调递减,在(-1,+∞)上单调递增.(2)由(1)知,当a =1时,函数f (x )没有极值,当a >1时,函数f (x )在x =0处取得极大值1,在x =a -1处取得极小值1-(a -1)3.14. 解:(1)因f (x )=a ln x +1322x x ++1,故f ′(x )=21322a x x -+. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -1322+=0,解得a =-1. (2)由(1)知f (x )=-ln x +1322x x ++1(x >0),f ′(x )=2222113321(31)(1)2222x x x x x x x x--+---+==. 令f ′(x )=0,解得x 1=1,x 2=21133x ⎛⎫-=- ⎪⎝⎭因不在定义域内,舍去.当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.。

2021年高中数学 第3章 导数的应用(二)同步练习 北师大版选修2-2

2021年高中数学 第3章 导数的应用(二)同步练习 北师大版选修2-2

2021年高中数学 第3章 导数的应用(二)同步练习 北师大版选修2-21. 若为增函数,则( )A. B.C. D.2. 已知函数则( )A. 有极小值但无极大值B. 有极小值0 但无极大值C. 有极小值0 ,极大值D. 有极大值但无极小值3. 已知,则( )A. 在(-2,0)上递增B. 在(0,2)上递增C. 在 上递增D. 在上递增4. 函数在处有极值 ,则的值分别为( )A. B. C. D.5. 函数的极值情况是( )A. 有极大值,没有极小值B. 有极小值,没有极大值C. 既无极大值又无极小值D. 既有极大值又有极小值6. 若在区间内,则在内),(0)(,0)(,),('b a a f x f b a ≥>( )A. B. C. D. 的正负不确定7. 函数在处有最值,则()A. 2B. 1C.D. 08. 内接于半径为的球且体积最大的圆柱体的高为()A. B. C. D.9. 函数取得极大值或极小值时的值分别为0和,则()A. =0B. 0C. 0D. 符号不定10. 用边长为48 cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,要使铁盒容积最大时,截去的小正方形的边长为()A. 5B. 8C. 10D. 1211. 函数的递减区间为___________________。

12. 函数的极大值为________,极小值为_______。

13. 函数的最大值和最小值分别为________________。

14. 要做一个无盖的圆柱形水桶,若要使其体积为,且用料最省,则圆柱的底面半径是_____。

15. 求函数在区间上的最大值与最小值。

16. 若函数在上极大值和极小值,如图所示,求常数的取值范围。

y-11O x17. 确定函数的单调区间,并求此函数的极值。

18. 已知函数的图像过点,且过该点的切线与直线平行,(1)求的值;(2)设在上的最大值与最小值分别为,令,求的表达式。

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(2)

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(2)

一、选择题1.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或22.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞4.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<5.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e-∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab 的值为( ) A .23-B .23或2 C .2D .13-8.已知可导函数()()f x x R ∈满足()()f x f x '>,则当0a >时,()f a 和(0)a e f 的大小关系为( ) A .()(0)a f a e f > B .()(0)a f a e f <C .()(0)a f a e f =D .()(0)a f a e f ≤9.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.15.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 16.设()ln f x x =,若函数()()h x f x ax =-在区间()0,8上有三个零点,则实数a 的取值范围______.17.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.18.已知函数2()x f x ae x =-有两个极值点,则实数a 的取值范围是_______. 19.设函数()f x '是奇函数()f x ()x R ∈的导函数, ()20f -=,当0x >时,()()0xf x f x '-<,则不等式()0f x >的解集为______________.20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数.22.已知函数()()()3222110f x ax a x a =--+≠.(1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围. 23.已知函数()ln 1x f x ae x =--.(1)设2x =是()f x 的极值点,求()f x 的单调区间; (2)证明:当1a e≥时,()0f x ≥. 24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数:()()21ln ,12x f x x a x a g x e x =--=--. (1)当[]1,x e ∈时,求()f x 的最小值;(2)对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数. 【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+, 当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()y F x =的零点个数为0. 故选:A. 【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .3.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 4.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.5.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.A解析:A 【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可.【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩,当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足.故6293a b -==-. 故选:A. 【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.8.A解析:A 【分析】根据条件构造函数()()x f x g x e=,求导可知()g x 单调递增,比较(),(0)g a g 的大小,可得()f a 和(0)a e f 的大小关系.【详解】解:令()()x f x g x e =,则'''2()()()()()x x x xf x e f x e f x f xg x e e--==,因为()()f x f x '>,所以'()0g x >,所以()g x 在(),-∞+∞上单调递增;因为0a >,所以()(0)g a g >,即0()(0)af a f e e>,即()(0)a f a e f >. 故选:A. 【点睛】本题考查构造函数法比较大小,考查利用导数求函数的单调性,属于基础题.9.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不解析:16 【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】 因为()ln 2xg x x=+,()0,x ∈+∞, 所以()21ln xg x x-'=,令()0g x '=得x e =, 所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增; 当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减, 又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =, 所以121022t t e<<<<+,则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16. 【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.15.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围. 【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+,令()ln 1g x x x =+,则()ln 1g x x '=+, 当()0g x '≥,即ln 10x +≥,解得1x e ≥, 当()0g x '<,即ln 10x +<,解得10x e<< 所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e⎛⎫==+=- ⎪⎝⎭, 所以11k e≤-故答案为:1,1e⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.16.【分析】画出函数图像计算直线和函数相切时和过点的斜率根据图像得到答案【详解】故画出图像如图所示:当直线与函数相切时设切点为此时故解得;当直线过点时斜率为故故答案为:【点睛】本题考查了根据函数零点个数解析:3ln 21,8e ⎛⎫⎪⎝⎭ 【分析】()f x ax =,画出函数图像,计算直线和函数相切时和过点()8,ln8的斜率,根据图像得到答案. 【详解】()()0h x f x ax =-=,故()f x ax =,画出图像,如图所示:当直线与函数相切时,设切点为()00,x y ,此时()ln f x x =,()1'f x x=, 故01a x =,00y ax =,00ln y x =,解得0x e =,01y =,1a e=; 当直线过点()8,ln8时,斜率为3ln 28k =,故3ln 218a e<<. 故答案为:3ln 21,8e ⎛⎫⎪⎝⎭.【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和综合应用能力.17.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积 43【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当0h <<,可得'0V >,可知V 在0h <<当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313237V ⎛⎫-⨯⨯=⎪⎝⎭=故答案为:3. 【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.18.【分析】求出函数的导数问题转化为和在上有2个交点根据函数的单调性求出的范围从而求出的范围即可【详解】若函数有两个极值点则和在上有2个交点时即递增时递减故(1)而恒成立所以故答案为:【点睛】本题考查了解析:2(0,)e. 【分析】求出函数的导数,问题转化为y a =和2()xxg x e =在R 上有2个交点,根据函数的单调性求出()g x 的范围,从而求出a 的范围即可. 【详解】()2x f x ae x '=-,若函数2()x f x ae x =-有两个极值点,则y a =和2()xxg x e =在R 上有2个交点, 22()xxg x e -'=, (,1)x ∈-∞时,即()0g x '>,()g x 递增,(1,)x ∈+∞时,()0g x '<,()g x 递减,故()max g x g =(1)2e=, 而20x xe >恒成立,所以20a e<<, 故答案为:2(0,)e. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.19.【分析】根据当时构造函数求导在上是减函数再根据是奇函数在上是增函数由写出的解集【详解】设所以因为当时则所以在上是减函数又因为是奇函数所以在上是增函数因为所以所以当或时所以不等式的解集为故答案为:【点 解析:(),2(0,2)-∞-⋃【分析】根据当0x >时,()()0xf x f x '-<,构造函数()()f x g x x=,求导 ()()()20xf x f x g x x'-'=<,()g x 在()0,∞+上是减函数,再根据()f x 是奇函数,()g x 在(),0-∞上是增函数,由()20f -=,()20f =,写出()0f x >的解集. 【详解】 设()()f x g x x=, 所以()()()2xf x f x g x x'-'=, 因为当0x >时,()()0xf x f x '-<,则()0g x '<, 所以()g x 在()0,∞+上是减函数,又因为()f x 是奇函数,所以()g x 在(),0-∞上是增函数, 因为()20f -=,所以()20f =, 所以当2x <- 或02x <<时,()0f x >, 所以不等式()0f x >的解集为(),2(0,2)-∞-⋃.故答案为:(),2(0,2)-∞-⋃ 【点睛】本题主要考查构造函数,用导数研究函数的单调性解不等式,还考查了运算求解的能力,属于中档题.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围; 【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.三、解答题21.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---, 利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3.∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee 202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定. 22.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间; (2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增;③当12a =时,()230f x x '=≥,()f x 在R 上单调递增;④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a ->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭;当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭;(2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤ ⎥⎝⎦上单调递增,在10,2⎛⎫ ⎪⎝⎭上单调递减.因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.23.(1)在()0,2上单调递减,在(2,)+∞上单调递增;(2)证明见解析. 【分析】(1)由()20f '=可得212a e =,由导函数的符号可得函数的单调区间; (2)当1a e时,()ln 1xe f x x e--()g x =,利用导数证明()0g x ≥即可. 【详解】(1)()f x 的定义域为1(0,),()e xf x a x'+∞=-. 由题设知,()20f '=,所以212a e=. 从而22111()ln 1,()22x x f x e x f x e e e x'=--=-. 当02x <<时,()0f x <′;当2x >时,()0f x >′.所以()f x 在()0,2上单调递减,在(2,)+∞上单调递增.(2)证明:当1a e 时,()ln 1x e f x x e --. 设()ln 1x e g x x e =--,则1()x e g x e x'=-为(0,)+∞上的增函数, 当01x <<时,()0(1)g g x '<'=;当1x >时,()(1)0g x g ''>=.所以()g x 在(0,1)上递减,在(1,)+∞上递增,所以1x =是()g x 的最小值点.故当0x >时,()()10g x g ≥=.因此,当1ae 时,()()0f xg x ≥≥. 【点睛】本题考查了由函数的极值点求参数,考查了利用导数求函数的单调区间,考查了利用导数证明不等式,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x +--+=-'+==, ①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a ,即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-,当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)答案见解析;(2)2124,24e e ⎡⎫-+⎪⎢⎣⎭. 【分析】(1)求导,对参数进行分类讨论,根据不同情况下函数的单调性,即可求得函数的最小值;(2)根据题意,求得不同情况下()f x 的值域,结合其值域为()f x 的子集,列出不等式,则问题得解.【详解】(1)()2x a f x x-'= 1a ≤时,[]()()1,,0,x e f x f x '∈≥递增,()()min 112f x f a ==-, 2a e ≥时,[]()()1,,0,x e f x f x '∈≤递减,()()2min 22e f x f e a ==-,21a e <<时,x ⎡∈⎣时()0,()f x f x '<递减,x e ⎤∈⎦时()0,()f x f x '>递增,所以()min ln 22a a f x f a ==-- 综上,当min 11,()2a f x a ≤=-; 当()2min 1ln 22a a a e f x a <<=--, 当()22min 22e a e f x a ≥=-, (2)因为对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =成立,所以()[],0,1g x x ∈的值域是()([1,])f x x e ∈的值域的子集.因为()1x g x e '=- [0,1],()0,()x g x g x '∈≥递增,()g x 的值域为()()[]0,10,2g g e =-⎡⎤⎣⎦(i )当1a ≤时,()f x 在[]1,e 上单调递增,又()()211,222e f a f e a =-=-, 所以()f x 在[1,e]上的值域为21[,2]22e a a --, 所以2102222a e a e ⎧-≤⎪⎪⎨⎪-≥-⎪⎩, 即112a . (ii )当21a e <<时,因为x ⎡∈⎣时,()f x递减,x e ⎤∈⎦时,()f x 递增,且()10,0f f <<,所以只需()2f e e ≥- 即2222e a e -≥-,所以21142e e a <≤-+ (iii )当2a e ≥时,因为()f x 在[1,]e 上单调递减,且()()1102f x f a ≤=-<, 所以不合题意. 综合以上,实数a 的取值范围是2124,24e e ⎡⎫-+⎪⎢⎣⎭. 【点睛】本题考查求含参函数最值得求解,涉及利用导数求函数值域的问题,属综合中档题. 26.(1)函数ln x y x =在()0,e 单调递增;在(),e +∞单调递减;(2)最大值1e ,最小值e -.【分析】(1)对函数进行求导得()21ln x y f x x -''==,解不等式,即可得答案; (2)求出端点的函数值和极值,再进行比较,即可得答案;【详解】(1)()21ln x y f x x-''==,解()0f x '=得x e =,当0x e <<时,()0f x '>,所以函数ln x y x =在()0,e 单调递增; 当x e >时,()0f x '<,所以函数ln x y x =在(),e +∞单调递减. (2)由(1)知,()ln x y f x x ==在区间1,e e ⎡⎤⎢⎥⎣⎦单调递增,在区间2,e e ⎡⎤⎣⎦单调递减, 所以最大值为()1f e e =,而1f e e ⎛⎫=- ⎪⎝⎭;()222f e e =. 因为()21f f ee ⎛⎫< ⎪⎝⎭,所以,ln x y x =在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值1M e =,最小值m e =-. 【点睛】本题考查利用导数研究函数的单调性和极值,考查函数与方程思想,考查运算求解能力,属于基础题.。

北师大数学选修22配套作业:第三章 导数应用 §2 第2课时 含解析

北师大数学选修22配套作业:第三章 导数应用 §2 第2课时 含解析

第3章 §2 第2课时 最大值、最小值问题A 级 基础巩固一、选择题1.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( D )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值 [解析] ∵函数f (x )满足x 2f ′(x )+2xf (x )=e x x, ∴[x 2f (x )]′=e xx, 令F (x )=x 2f (x ),则f ′(x )=e xx,F (2)=4·f (2)=e 22.由x 2f ′(x )+2xf (x )=ex x ,得f ′(x )=e x -2F (x )x 3,令φ(x )=e x -2F (x ),则φ′(x )=e x -2F ′(x )=e x (x -2)x .∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增, ∴φ(x )的最小值为φ(2)=e 2-2F (2)=0.∴φ(x )≥0. 又x >0,∴f ′(x )≥0.∴f (x )在(0,+∞)上单调递增. ∴f (x )既无极大值也无极小值.故选D.2.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( A )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )[解析] 令F (x )=f (x )-g (x ) ∴F ′(x )=f ′(x )-g ′(x )<0.所以F ′(x )<0,∴F (x )在[a ,b ]上递减,∴F (x )max =f (a )-g (a ). 3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( D )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)[解析] ∵2x (x -a )<1, ∴a >x -12x ,令y =x -12x ,∴y 是单调增函数,若x >0,则y >-1,∴a >-1.4.已知函数f (x )=-23x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图像上的点(1,f (1))处的切线方程是( B )A .3x -15y +4=0B .15x -3y -2=0C .15x -3y +2=0D .3x -y +1=0[解析] ∵f (x )=-23x 3+2ax 2+3x ,∴f ′(x )=-2x 2+4ax +3 =-2(x -a )2+2a 2+3, ∵f ′(x )的最大值为5, ∴2a 2+3=5,∵a >0,∴a =1∴f ′(1)=5,f (1)=133. ∴f (x )在点(1,f (1))处的切线方程是y -133=5(x -1),即15x -3y -2=0.5.如果圆柱轴截面的周长l 为定值,则体积的最大值为( A ) A .(l 6)3πB .(l 3)3πC .(l4)3πD .14(l 4)3π[解析] 设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l , ∴h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3(0<r <l4),V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,∴r =l6是其唯一的极值点.∴当r =l 6时,V 取得最大值,最大值为(l6)3π.6.用总长为6 m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为34,那么容器容积最大时,高为( A )A .0.5 mB .1 mC .0.8 mD .1.5 m[解析] 设容器底面相邻两边长分别为3x m 、4x m ,则高为6-12x -16x 4=⎝⎛⎭⎫32-7x (m),容积V =3x ·4x ·⎝⎛⎭⎫32-7x =18x 2-84x 3⎝⎛⎭⎫0<x <314,V ′=36x -252x 2, 由V ′=0得x =17或x =0(舍去).x ∈⎝⎛⎭⎫0,17时,V ′>0,x ∈⎝⎛⎭⎫17,314时,V ′<0,所以在x =17处,V 有最大值,此时高为0.5 m. 二、填空题7.下列结论中正确的有④.①在区间[a ,b ]上,函数的极大值就是最大值; ②在区间[a ,b ]上,函数的极小值就是最小值;③在区间[a ,b ]上,函数的最大值、最小值在x =a 和x =b 处取到; ④在区间[a ,b ]上,函数的极大(小)值有可能就是最大(小)值. [解析] 由函数最值的定义知,①②③均不正确,④正确.故填④.8.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为4.[解析] 本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减, 因此g (x ) max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0],f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3,g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. 三、解答题9.(2019·成都高二检测)成都某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入x (x ≥10)万元之间满足:y =f (x )=ax 2+10150x -b ln x10,a ,b 为常数.当x =10万元时,y =19.2万元;当x =30万元时,y =50.5万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6).(1)求f (x )的解析式;(2)求该景点改造升级后旅游利润T (x )的最大值.(利润=旅游增加值-投入). [解析] (1)由条件可得⎩⎨⎧a ×102+10150×10-b ln1=19.2,a ×302+10150×30-b ln3=50.5,解得a =-1100,b =1,则f (x )=-x 2100+10150x -ln x10(x ≥10).(2)T (x )=f (x )-x =-x 2100+5150x -ln x10(x ≥10),则T ′(x )=-x 50+5150-1x =-(x -1)(x -50)50x ,令T ′(x )=0,则x =1(舍)或x =50,当x ∈(10,50)时,T ′(x )>0,因此T (x )在(10,50)上是增函数; 当x ∈(50,+∞)时,T ′(x )<0,因此T (x )在(50,+∞)上是减函数, ∴当x =50时,T (x )取最大值.T (50)=-502100+5150×50-ln 5010=24.4(万元).即该景点改造升级后旅游利润T (x )的最大值为24.4万元. 10.设函数f (x )=e x -k2x 2-x .(1)若k =0,求f (x )的最小值; (2)若k =1,讨论函数f (x )的单调性.[解析] (1)k =0时,f (x )=e x -x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调减小,在(0,+∞)上单调增加,故f (x )的最小值为f (0)=1.(2)若k =1,则f (x )=e x -12x 2-x ,定义域为R .∴f ′(x )=e x -x -1,令g (x )=e x -x -1, 则g ′(x )=e x -1,由g ′(x )≥0得x ≥0,所以g (x )在[0,+∞)上单调递增, 由g ′(x )<0得x <0,所以g (x )在(-∞,0)上单调递减, ∴g (x )min =g (0)=0,即f ′(x )min =0,故f ′(x )≥0. 所以f (x )在R 上单调递增.B 级 素养提升一、选择题1.已知不等式ln (kx )x ≤1e 对任意的正实数x 恒成立,则实数k 的取值范围是( A )A .(0,1]B .(-∞,1]C .[0,2]D .(0,2][解析] 令y =ln (kx )x ,则y ′=1-ln (kx )x 2,可以验证当y ′=0即kx =e ,x =e k 时,y max =lneek =k e, 又y ≤1e 对于x >0恒成立∴k e ≤1e ,得k ≤1又kx >0,x >0,∴k >0,∴0<k ≤1.2.(2019·威海高二检测)一窗户的上部是半圆,下部是矩形,如果窗户面积为S ,为使窗户周长最小,用料最省,圆的半径应为( C )A .3Sπ+4 B .S π+4 C .2S π+4D .2S π+4[解析] 设圆的半径为x ,记矩形高为h ,则窗户的面积为S =πx 22+2hx ,∴2h =S x -π2x .则窗户周长为l =πx +2x +2h =πx 2+2x +Sx .令l ′=π2+2-8x 2=0,解x =2Sπ+4或-2Sπ+4(舍) 因为函数只有一个极值点,所以x =2Sπ+4为最小值点,所以使窗户的周长最小时,圆的半径为2Sπ+4,故选C. 二、填空题3.已知函数y =xf ′(x )的图像如图所示(其中f ′(x )是函数f (x )的导函数),给出以下说法:①函数f (x )在区间(1,+∞)上是增函数;②函数f (x )在区间(-1,1)上无单调性;③函数f (x )在x =-12处取得极大值;④函数f (x )在x =1处取得极小值.其中正确的说法有①④.[解析] 从图像上可以发现,当x ∈(1,+∞)时,xf ′(x )>0 ,所以f ′(x )>0,故f (x )在(1,+∞)上是增函数,①正确;当x ∈(-1,1)时,f ′(x )<0,所以函数f (x )在(-1,1)上是减函数,所以②,③错误;当0<x <1时,f (x )在区间(0,1)上递减,而在(1,+∞)上递增,故f (x )在x =1处取极小值,故④正确.4.已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x 2>0,则不等式x 2f (x )>0的解集是(-1,0)∪(1,+∞).[解析] 令g (x )=f (x )x (x ≠0),∵x >0时,xf ′(x )-f (x )x 2>0,∴g ′(x )>0,∴g (x )在(0,+∞)上为增函数,又f (1)=0,∴g (1)=f (1)=0,∴在(0,+∞)上g (x )>0的解集为(1,+∞),∵f (x )为奇函数,∴g (x )为偶函数,∴在(-∞,0)上g (x )<0的解集为(-1,0),由x 2f (x )>0得f (x )>0,∴f (x )>0的解集为(-1,0)∪(1,+∞).三、解答题5.(2019·德州高二检测)已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.[解析] (1)由题意得x >0,f ′(x )=1-2x +ax 2.由函数f (x )在定义域上是增函数得,f ′(x )≥0, 即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,因为f (x )在定义域上是增函数,又f (1)=0, 所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时, f (x )>0.所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故x =1时,g (x )取得最大值g (1)=-e. 6.设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减. 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x ),当x >1时,h (x )<h (1)=0,即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).C 级 能力拔高(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1) 时,函数g (x )=e x -ax -ax 2(x >0) 有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解析] (1)f (x )=x -2x +2e x ,f ′(x )=e x⎣⎢⎡⎦⎥⎤x -2x +2+4(x +2)2=x 2e x(x +2)2, 因为当x ∈(-∞,-2)∪(-2,+∞)时,f ′(x )>0, 所以f (x )在(-∞,-2)和(-2,+∞)上单调递增, 所以x >0时,x -2x +2e x >f (0)=-1,所以(x -2)e x +x +2>0.(2)g ′(x )=(e x -a )x 2-2x (e x -ax -a )x 4=x (x e x -2e x +ax +2a )x 4=(x +2)⎝ ⎛⎭⎪⎫x -2x +2·e x +a x3,a ∈[0,1). 由(1)知,当x >0时,f (x )=x -2x +2·e x 的值域为(-1,+∞),只有一解,使得t -2t +2·e t =-a ,t∈(0,2].当x ∈(0,t )时g ′(x )<0,g (x )单调递减; 当x ∈(t ,+∞)时g ′(x )>0,g (x )单调递增. h (a )=e t -a (t +1)t 2=e t +(t +1)t -2t +2·e tt 2=e tt +2,记k (t )=e tt +2,在t ∈(0,2]时,k ′(t )=e t (t +1)(t +2)2>0, 所以k (t )单调递增, 所以h (a )=k (t )∈⎝⎛⎦⎤12,e 24.。

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(2)

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(2)

一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .⎫+∞⎪⎪⎝⎭D .⎛ ⎝⎭3.已知函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭(0a >,且1a ≠),对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立,则实数a 的最小值是( )A .2eB .eC .3D .24.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞6.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞7.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<8.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( )A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >9.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞10.函数2()(3)x f x x e =-的单调递增区间是( ) A .(,0)-∞B .(0)+∞,C .(,3)-∞和(1)+∞, D .(-3,1) 11.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞12.已知函数10()ln ,0x xf x x x x ⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 二、填空题13.若函数()2xf x x e a =-恰有三个零点,则实数a 的取值范围是______.14.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.15.某生产厂家生产一种产品的固定成本为1万元,并且每生产1百台产品需增加投入0.5万元.已知销售收入()R x (万元)满足()32191882R x x x x =-++(其中x 是该产品的月产量,单位:百台,08x <<),假定生产的产品都能卖掉,则当公司每月产量为______百台时,公司所获利润最大..16.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.17.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____18.设函数()22ln f x x x x =+-,若关于x 的方程()2f x x x a =++在(]0,2上恰有两个相异实根,则实数a 的范围是______.19.已知函数()f x 在R 上是偶函数,其导函数为()f x ',且()21f =,()0f x ≥.当0x >时,()()0xf x f x '+<恒成立,则不等式()21f x -≤的解集为______.20.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为__________.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围.23.已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 24.已知函数()ln ()af x x a R x=+∈. (1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.25.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+;(Ⅱ)34<()f x 32≤. 26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x -'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.A解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =->有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x -'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.A解析:A由导数求得()f x 在[0,1]上单调递增,求得函数的最值,把任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立,转化为()()max min 2f x f x a -≤-,进而求得a 的取值范围,得到最小值. 【详解】由题意,显然2a ≥, 因为函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭,可得()ln (1)cos()36x f x a a x ππ'=-+,又由[0,1],2x a ∈≥,可得ln 0,10,cos()036xa a x ππ>-≥>,故()0f x '>,函数()f x 在[0,1]上单调递增, 故()()max min (1)1ln ,(0)1f x f a a f x f ==+-==, 对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立, 即()()max min 2f x f x a -≤-,所以1ln 12a a a +--≤-,即ln 2a ≥,解得2a e ≥, 即实数a 的最小值为2e . 故选:A. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件.【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.5.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭x sin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.6.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.7.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.8.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1x x xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.9.B解析:B【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.10.D解析:D 【解析】∵函数f(x)=(3-x 2)e x , ∴f′(x)=-2xe x +(3-x 2)e x =(3-2x-x 2)e x . 由f′(x)>0,得到f′(x)=(3-2x-x 2)e x >0, 即3-2x-x 2>0,则x 2+2x-3<0,解得-3<x <1, 即函数的单调增区间为(-3,1). 本题选择D 选项.11.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.12.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x=, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点,又由()312ln xg x x -'=, 令12ln 0x -=,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,则()g x 单调递减, 所以当x e =时,()max 12g x e=, 若直线y k =和()2ln xg x x=有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.二、填空题13.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】解:函数2x y x e =的导数为22(2)x x x y xe x e xe x '=+=+, 令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增,0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==. 函数2()x f x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭. 故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.14.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x -'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<,函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.15.6【分析】设销售利润为利用导数求出的最大值即可【详解】设销售利润为依题意可得当时当时所以在单调递增在单调递减所以时取得极大值也是最大值所以当公司每月生产6百台时获得利润最大故答案为:6【点睛】本题考解析:6 【分析】设销售利润为1(),()()12g x g x R x x =--,利用导数求出()g x 的最大值即可. 【详解】设销售利润为()g x ,依题意可得,3232191119()11,(0,8)882288g x x x x x x x x =-++--=-+-∈,2393()(6)848g x x x x x '=-+=--,当(0,6)x ∈时,()0g x '>,当(6,8)x ∈时,()0g x '<,所以()g x 在(0,6)单调递增,在(6,8)单调递减, 所以6x =时,()g x 取得极大值,也是最大值, 所以当公司每月生产6百台时,获得利润最大. 故答案为:6. 【点睛】本题考查函数应用问题以及运用导数求最值,考查数学建模、数学计算能力,属于中档题.16.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.17.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围. 【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立,()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln ag x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立,只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.18.【分析】根据题意得转化为直线和函数的图像有两个不同的交点利用导数研究函数的单调性和最值即可得出实数a 的范围【详解】由及得令根据题意可得:直线和函数的图像有两个不同的交点令得此时函数单调递减令得此时函 解析:(]1,2ln 2-【分析】根据题意得ln a x x =-,转化为直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,利用导数研究函数()g x 的单调性和最值,即可得出实数a 的范围. 【详解】由()22ln f x x x x =+-及()2f x x x a =++,得ln a x x =-,令()ln g x x x =-,根据题意可得:直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点, 1()1g x x'=-, 令()0g x '<,得01x <<,此时函数()g x 单调递减, 令()0g x '>,得12x <≤,此时函数()g x 单调递增,所以,当1x =时,函数()ln g x x x =-,(]0,2x ∈取得最小值,值为(1)1g =, 又(2)2ln 2g =-,且当210x e <<时, 2211()22ln 2g x g e e⎛⎫>=+>- ⎪⎝⎭,故当12ln 2a <≤-时,直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,所以实数a 的范围是(]1,2ln 2-. 故答案为:(]1,2ln 2-. 【点睛】本题主要考查的是函数零点问题,本题解题的关键是转化为两函数图像的交点问题,利用导数研究函数的单调性和最值,考查学生的分析问题能力,是中档题.19.【分析】由时可得再利用偶函数的性质即可解决【详解】当时由及得所以故在上单调递减又为偶函数所以所以解得或故答案为:【点睛】本题考查解与抽象函数有关的不等式本题关键是找到函数的单调性以及利用偶函数的性质 解析:(][),04,-∞+∞【分析】由0x >时,()()0xf x f x '+<可得'()0f x <,再利用偶函数的性质(||)()f x f x =即可解决. 【详解】当0x >时,由()0f x ≥及()()0xf x f x '+<,得()()0xf x f x '<-≤,所以'()0f x <,故()f x 在(0,)+∞上单调递减,又()f x 为偶函数,所以()21f x -≤⇔(|2|)1(2)f x f -≤=所以|2|2x -≥,解得4x ≥或0x ≤. 故答案为:(][),04,-∞+∞【点睛】本题考查解与抽象函数有关的不等式,本题关键是找到函数()f x 的单调性以及利用偶函数的性质(||)()f x f x =,是一道中档题.20.【分析】把代入即恒成立构造利用导数研究最值即得解【详解】则恒成立等价于令因此在单调递增在单调递减故故答案为:【点睛】本题考查了导数在不等式的恒成立问题中的应用考查了学生转化与划归数学运算的能力属于中 解析:[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【详解】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥ 故答案为:[)0,+∞ 【点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立. 【详解】(1)()cos sin 1cos()14xxx f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=,()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin xF x f x g x e x x x =-=-, 所以()()()cos sin cos sin xF x e x x x x x '=--+,①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时,0cos sin x x <<,()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()F x ∴在42ππ⎛⎤⎥⎝⎦,上必存在一个零点;综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛: 利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =;函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,53x =±, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 23.(1)见解析;(2)[1,+∞);(3)证明见解析.【分析】(1)求导数可得2244(1)(2)ax a y ax x +-'=++,当1a 时函数在[)0+∞,上单调递增;当01a <<时易得函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,不等式()()1f x g x +在[0x ∈,)+∞时恒成立,当01a <<时,不等式00()()1f x g x +不成立,综合可得a 的范围;(3)由(2)的单调性易得11[(1)]122ln k lnk k <+-+,进而可得11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+,将上述式子相加可得结论.【详解】解:(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增;当01a <<时,由0y '>可得x >∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立,当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立,综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k ∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题. 24.(1)见解析;(2),a e =.【分析】(1)求得()2x a f x x ='-,分类讨论,即可求解函数的单调性; (2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解.【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增所以()()min ln 12f x f a a ==+=,解得a e = (舍去),当a e ≥时,由(1)知()f x 在[]1,e 单调递减,所以()()min ln 12a a f x f e e e e ==+=+=,解得a e = , 综上所述,a e =.【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.25.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题 (Ⅰ)因为44231()11,1()1x x x x x x x ----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+, 所以2()1.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤. 由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >.综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤. 26.(1)函数ln x y x =在()0,e 单调递增;在(),e +∞单调递减;(2)最大值1e ,最小值e -.【分析】(1)对函数进行求导得()21ln x y f x x -''==,解不等式,即可得答案; (2)求出端点的函数值和极值,再进行比较,即可得答案;【详解】(1)()21ln x y f x x -''==, 解()0f x '=得x e =, 当0x e <<时,()0f x '>,所以函数ln x y x =在()0,e 单调递增; 当x e >时,()0f x '<,所以函数ln x y x =在(),e +∞单调递减. (2)由(1)知,()ln x y f x x ==在区间1,e e ⎡⎤⎢⎥⎣⎦单调递增,在区间2,e e ⎡⎤⎣⎦单调递减, 所以最大值为()1f e e =,而1f e e ⎛⎫=- ⎪⎝⎭;()222f e e =. 因为()21f f ee ⎛⎫< ⎪⎝⎭,所以,ln x y x =在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值1M e =,最小值m e =-. 【点睛】本题考查利用导数研究函数的单调性和极值,考查函数与方程思想,考查运算求解能力,属于基础题.。

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(包含答案解析)(2)

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(包含答案解析)(2)

一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-5.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2,)e eD .1(2,]ee6.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.已知函数10()ln ,0x xf x x x x ⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 9.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.函数()21xy x e =-的图象大致是( )A .B .C .D .12.已知函数()3242xxf x x x e e =-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.若函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是____. 14.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.15.记函数(),,2ln ,0,xx s eH x x x s x⎧≥⎪⎪=⎨⎪<<⎪⎩若对任意的实数k ,总存在实数m ,使得()=H m k成立,则实数s 的取值集合______.16.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.17.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .18.若函数()2xf x x e a =-恰有三个零点,则实数a 的取值范围是______.19.如图,等腰直角ABC 底边4BC =,E 为BC 上异于B ,C 的一个动点,点F 在AB 上,且EF BC ⊥,现将BEF 沿EF 折起到B EF '的位置,则四棱锥B AFEC '-体积的最大值为___________.20.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________.三、解答题21.已知函数()ln f x x x =-.(1)求曲线()y f x =在点()1,(1)f 处的切线方程;(2)设函数()()g x f x a =+,若12,(0,]x x e ∈是函数g (x )的两个零点, ①求a 的取值范围; ②求证:121x x <.22.已知函数()ln 1f x x x =++,2()2g x x x =+. (1)求函数()()()h x f x g x =-在(1,(1))h 处的切线方程;(2)若实数m 为整数,且对任意的0x >时,都有()()0f x mg x -≤恒成立,求实数m 的最小值.23.已知函数()()2ln 1f x ax x =-+()0a ≠.(1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.24.已知函数()32122f x ax x x =+-,其导函数为()f x ',且(1)0f '-=. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程 (Ⅱ)求函数()f x 在[1,1]-上的最大值和最小值.25.定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”. (1)判断函数()1xxf x e =-是否为“YZ 函数”,并说明理由; (2)若函数()()ln g x x mx m R =-∈是“YZ 函数”,求实数m 的取值范围; (3)已知()32111323h x x ax bx b =++-,()0,x ∈+∞,a 、b R ∈,求证:当2a ≤-,且01b <<时,函数()h x 是“YZ 函数”. 26.已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ;()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.C【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.5.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.6.B【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭, 所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.C解析:C【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案.【详解】 由题意,函数10()ln ,0x x f x x x x ⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =,要使得()0F x =有两个实数解,即y k =和()2ln xg x x =有两个交点,又由()312ln xg x x -'=,令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e =,若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e ∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >, 综上可得,实数k 的取值范围是1(0,)2e . 故选:C.【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.9.C解析:C【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.10.C解析:C【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.【详解】 解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=, 则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<,则|23|1x +<,得1231x -<+<,得21x -<<-,即不等式的解集为(2,1)--,故选:C .【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.A解析:A【分析】 根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21x y x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.12.A解析:A【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解.【详解】 由题意,函数32()42x x f x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x x x x f x x x x x e f x e-=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+, 所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略:1、求解函数不等式的依据是函数的单调性的定义.具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 二、填空题13.0【详解】此题考查导数的应用;所以当时原函数递减当原函数递增;因为在上不单调所以在上即有减又有增所以解析:0123t t <<<<或【详解】 此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以0113{{01231131t t t t t t <<<<∴<<<<<+<+或或 14.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可.【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++ 由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤- ⎥⎝⎦时,()0f x '>,()f x 单调递增; 31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减; 所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭, 又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭ 又13711ln ln 2044322f f ⎛⎫⎛⎫--=->-> ⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭ 所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()lnln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】 本题主要考查用导数求函数的最值,属于中档题.15.【分析】由题意得的值域为R 求出在单调递增其值域为然后求导求出函数的值域通过求解和的值域并分析是否满足题意可推出实数s 的取值集合【详解】因为对任意的实数总存在实数使得成立所以的值域为R 函数在单调递增其解析:【分析】 由题意得()H x 的值域为R ,求出2x y e =在[,)s +∞单调递增,其值域为[,)2s e +∞,然后求导,求出函数ln x y x=的值域,通过求解s e >和0s e <≤的值域,并分析是否满足题意,可推出实数s 的取值集合.【详解】因为对任意的实数k ,总存在实数m ,使得()=H m k 成立,所以()H x 的值域为R . 函数2x y e =在[,)s +∞单调递增,其值域为[,)2s e +∞, 函数ln x y x =,'21ln x y x -=, 当(0,)x e ∈时,'0y >,所以ln x y x=在(0,)e 单调递增; 当[,)x e ∈+∞时,'0y <,所以ln x y x =在(,)e +∞单调递减, ①当s e >时,函数ln x y x =在(0,)e 单调递增,(,)e s 单调递减,其值域为1(,]e -∞,又12s e e>,不符合题意; ②当0s e <≤时,函数ln x y x =在(0,)s 单调递增,其值域为ln (,]s s-∞,由题意得ln 2s s e s≤,即22ln 0s e s -≤; 令22'222()2ln ,()2e s e u s s e s u s s s s -=-=-=,当s >'()0u s >,()u s 在)e 上单调递增;当0s <<'()0u s <,()u s 在上单调递减,所以当s =()u s 有最小值0u =,从而()0u s ≥恒成立,所以,()0u s =,所以s =故答案为:.【点睛】本题考查导数的综合应用,难点在于根据题意分析出()H x 的值域为R ,并由此求出2x y e=和ln x y x =的值域,进行分析,考查分类讨论的思想,属难题. 16.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围.【详解】由于14,4n n b b ==,公比为4,所以()()141441441414333n n n nT +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n n n n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464x x f x -⋅++=, 令'0f x 解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.17.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.18.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫ ⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围.【详解】解:函数2x y x e =的导数为22(2)x x x y xe x e xe x '=+=+,令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增,0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==. 函数2()x f x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭. 故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】 本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.19.【分析】设则设根据四棱锥的体积公式可求得四棱锥体积为利用正弦函数的最大值以及导数求得的最大值可得结果【详解】设则设则四棱锥的高四边形的面积为则四棱锥体积为当且仅当时取等号令则令得令得所以函数在上递增【分析】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,根据四棱锥的体积公式可求得四棱锥B AFEC '-体积为31sin (8)6x x θ-,利用正弦函数的最大值以及导数求得31(8)(04)6y x x x =-<<的最大值可得结果. 【详解】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,则四棱锥B AFEC '-的高sin sin h B E x θθ'==,四边形AFEC 的面积为22111424222x x ⨯⨯-=-, 则四棱锥B AFEC '-体积为211sin (4)32x x θ⨯-3311sin (8)(8)66x x x x θ=-≤-,当且仅当sin 1θ=,2πθ=时取等号, 令31(8)(04)6y x x x =-<<,则21(83)6y x '=-,令0y '>,得0x <<0y '<4x <<,所以函数31(8)(04)6y x x x =-<<在上递增,在上递减,所以当x =31(8)6y x x =-所以当26,23x πθ==时,四棱锥B AFEC '-体积的最大值为16627. 故答案为:16627 【点睛】本题考查了棱锥的体积公式,考查了正弦函数的最值,考查了利用导数求函数的最值,属于中档题.20.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案. 【详解】由题可知函数()f x 的定义域为()0,∞+函数()ln 1f x ax x =--有零点,等价于()ln 10f x ax x =--=有实数根 ()ln 10f x ax x =--=,即ln 1x a x +=, 设()ln 1x g x x +=,则()2ln 'x g x x-=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =,画出图像,如图所示:根据图像知1a ≤.故答案为:(,1]-∞.【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.三、解答题21.(1)y =﹣1;(2)①(1,e ﹣1];②证明见解析. 【分析】(1)求出切线的斜率和切点坐标代入点斜式方程可得答案; (2)①求出()'g x 利用()g x 的单调性可得答案;②不妨设x 1<x 2,利用单调性可得()121g x g x ⎛⎫< ⎪⎝⎭,再证()2210g x g x ⎛⎫-< ⎪⎝⎭,构造函数()22222112ln g x g x x x x ⎛⎫-=-+ ⎪⎝⎭,再利用单调性可得答案.【详解】(1)1()1f x x='-,∴切线的斜率(1)0,(1)1f f '==-,则曲线y =f (x )在点()1,(1)f 处的切线方程为:y =﹣1; (2)①由g (x )=f (x )+a =ln x ﹣x +a ,x ∈(0,e ],1()1g x x'=-,令g ′(x )=0,解得:x =1, x ,g ′(x ),g (x )的变化如下:12g (1)=﹣1+a >0,即a >1,g (e )=1﹣e +a ≤0,即a ≤e ﹣1, 令x =e ﹣a ,显然0<e ﹣a <1,有g (e ﹣a )=﹣e ﹣a <0, 故a 的取值范围是(1,e ﹣1];②证明:不妨设x 1<x 2,由①可知x 1∈(0,1),x 2∈(0,e ), 故21(0,1)x ∈,要证x 1x 2<1,即证121x x <, 又121,(0,1)x x ∴∈,函数g (x )在(0,1)递增, 即证()121g x g x ⎛⎫< ⎪⎝⎭,∵x 1,x 2∈(0,e )是函数g (x )的两个零点, 故g (x 1)=g (x 2)=0,即证()221g x g x ⎛⎫<⎪⎝⎭,只需证()2210g x g x ⎛⎫-<⎪⎝⎭, ()2222222221111ln ln 2ln g x g x x x x x x x x ⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎝⎭⎝⎭,令()222212ln h x x x x =-+,则()()222222221211x h x x x x-=-'=--,当x 2∈(1,e ]时,h ′(x 2)<0,故h (x 2)在(1,e ]递减,h (x 2)<h (1)=0,故()2210g x g x ⎛⎫-< ⎪⎝⎭得证,故121x x <. 【点睛】本题考查了导数的几何意义、根据零点求参数的范围的问题,关键点是构造函数利用函数的单调性求解,考查了学生分析问题、解决问题的能力. 22.(1)210x y +-=;(2)1. 【分析】(1)利用导数的几何意义求出函数()()()h x f x g x =-在(1,(1))h 处的切线方程; (2)等价于2ln 12x x m x x ++≥+在(0,)+∞上恒成立,设2ln 1()(0)2x x x x x xϕ++=>+,利用二次求导求出函数的最大值max 011(),122x x ϕ⎛⎫=∈ ⎪⎝⎭,即得解. 【详解】(1)2()()()ln 1h x f x g x x x x =-=--+,1(21)(1)()21x x h x x x x--+'∴=--=, (1)1h =-,(1)2h '=-,()h x ∴在(1,(1))h 处的切线方程为12(1)y x +=--即210x y +-=.(2)()()0f x mg x -≤,即()2ln 120x x m x x ++-+≤在(0,)+∞上恒成立,2ln 12x x m x x++∴≥+在(0,)+∞上恒成立, 设2ln 1()(0)2x x x x x xϕ++=>+,则()22(1)(2ln )()2x x x x x x ϕ-++'=+,显然10x +>,()2220x x+>,设()(2ln )t x x x =-+,则2()10t x x ⎛⎫'=-+< ⎪⎝⎭, 故()t x 在(0,)+∞上单调递减, 由(1)10t =-<,11112ln 2ln 202222t ⎛⎫⎛⎫=-+=->⎪ ⎪⎝⎭⎝⎭, 由零点定理得01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()00t x =, 即002ln 0x x +=,且()00,x x ∈时,()0t x >,则()0x ϕ'>,()0,x x ∈+∞时,()0t x <,则()0x ϕ'<.()x ϕ∴在()00,x 上单调递增,在()0,x +∞上单调递减,()00max 0200ln 1()2x x x x x x ϕϕ++∴==+, 又由002ln 0x x +=,01,12x ⎛⎫∈ ⎪⎝⎭, 则()0002000ln 111,1222x x x x x x ϕ++⎛⎫==∈ ⎪+⎝⎭, ∴由()m x ϕ≥恒成立,且m 为整数,可得m 的最小值为1.【点睛】关键点点睛:解答本题的关键是二次求导,在一次求导之后,如果函数的单调区间不易求出,此时一般要进行二次求导,求出新函数的单调区间,求出新函数在什么范围内大于零,什么范围内小于零,再结合已知分析得解.23.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即202210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*) 由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++,即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. 24.(1) 4250x y --=. (2) ()max 32f x =,min22()27f x =-. 【解析】分析:(1)先由'(1)0f -=求出a 的值,再求出函数()y f x =在点(1,(1))f 的切线方程;(2)先求出函数的极值,列表格,根据单调性求出最大值和最小值.详解: (Ⅰ)()232f x ax x '=+-∵()10f '-=,∴3120a --=.解得1a =∴()32122f x x x x =+-,()232f x x x '=+- ∴()1f 12=-,()12f '=. ∴曲线()y f x =在点()()1,1f 处的切线方程为4250x y --= (Ⅱ)出(Ⅰ),当()0f x '=时,解得1x =-或23x =当x 变化时,()f x ,()f x '的变化情况如下表:∴()f x 的极小值为327f ⎛⎫=- ⎪⎝⎭又()312f -=,()112f =- ∴()()max 312f x f =-=,()min 222327f x f ⎛⎫==-⎪⎝⎭. 点睛:本题主要考查了导数的几何意义,利用导数求函数最值的步骤等,属于中档题.求出a 的值是解题的关键.25.(1)()f x 是“YZ 函数”,理由见解析;(2)1,e ⎛⎫+∞ ⎪⎝⎭;(3)证明见解析.【分析】(1)利用导数求出函数()y f x =的极大值,结合题中定义判断即可;(2)分0m ≤和0m >两种情况讨论,利用导数分析函数()y g x =的单调性,利用题中定义得出关于m 的不等式,进而可解得实数m 的取值范围;(3)求出函数()y h x =的导数()2h x x ax b =++',利用导数分析函数()y h x =的单调性,设函数()y h x =的极值点分别为1x 、2x ,可知1x 、2x 是方程()0h x '=的两根,进而可列出韦达定理,结合韦达定理证明出函数()y h x =的极大值为负数,由此可证得结论.【详解】 (1)函数()1x xf x e=-是“YZ 函数”,理由如下: 因为()1x x f x e =-,则()1x xf x e='-, 当1x <时,()0f x '>;当1x >时,()0f x '<, 所以函数()1x x f x e =-的极大值()1110f e =-<,故函数()1x x f x e=-是“YZ 函数”; (2)函数()ln g x x mx =-的定义域为()0,+∞,()1g x m x'=-. 当0m ≤时,()10g x m x-'=>,函数()y g x =单调递增,无极大值,不满足题意; 当0m >时,当10x m<<时,()10g x m x -'=>,函数单调递增,当1x m>时,()10g x m x -'=<,函数单调递减,所以函数()y g x =的极大值为111ln ln 1g m m m m m ⎛⎫=-⋅=-- ⎪⎝⎭, 易知1ln 10g m m ⎛⎫=--<⎪⎝⎭,解得1m e >, 因此,实数m 的取值范围是1,e⎛⎫+∞ ⎪⎝⎭;(3) ()2h x x ax b =++',因为2a ≤-,01b <<,则240a b ∆=->,所以()20h x x ax b =++='有两个不等实根,设为1x 、2x ,因为121200x x a x x b +=->⎧⎨=>⎩,所以1>0x ,20x >,不妨设120x x <<,当10x x <<时,()0h x '>,则函数()y h x =单调递增; 当12x x x <<时,()0h x '<,则函数()y h x =单调递减. 所以函数()y h x =的极大值为()321111111323h x x ax bx b =++-, 由()21110h x x ax b =++='得()3211111x x ax b ax bx =--=--, 因为2a ≤-,01b <<, 所以()()322211111111111111323323h x x ax bx b ax bx ax bx b =++-=--++- ()()22211111121121111063333333ax bx b x bx b x b b b =+-≤-+-=--+-<.所以函数()y h x =是“YZ 函数”. 【点睛】本题考查函数的新定义“YZ 函数”的应用,考查利用导数求函数的极值、利用极值求参数,同时也考查了利用导数证明不等式,考查推理能力与运算求解能力,属于中等题. 26.(1)f (x )极大值=ln 2-1,无极小值;(2)答案见解析. 【分析】 (1)当a =12时,f (x )=ln x -12x ,求导得到f ′(x )=1x -12=22x x-,然后利用极值的定义求解.(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1axx- (x >0),然后分a ≤0和a >0两种情况讨论求解. 【详解】 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=22x x-, 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表. x (0,2) 2 (2,+∞) f ′(x ) +-f (x )ln 2-1极大值(2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1axx- (x >0). 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈10,a ⎛⎫⎪⎝⎭时,f ′(x )>0, 当x ∈1,a ⎛⎫+∞⎪⎝⎭时,f ′(x )<0, 故函数在x =1a处有极大值. 综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a. 【点睛】本题主要考查导数与函数的极值以及极值点的个数问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.。

(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭3.已知函数()3sin f x x x ax =+-,则下列结论错误的是( ) A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点4.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .5.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-6.若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e7.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭ B .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭8.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤9.函数()2cos f x x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最大值为( ) A .2B .36π+C .13π+ D .33π+10.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞11.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1B .2C .eD .2e12.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞二、填空题13.已知函数()2e 2=++x f x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________. 14.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.15.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________ 16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号)17.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 18.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.19.已知函数()2221,204ln 2,0x mx m x f x x m x xe ⎧----<≤⎪=⎨+->⎪⎩在区间()2,-+∞上有且只有三个零点,则实数m 的取值范围为______.20.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 三、解答题21.设函数()()2ln 1f x x x ax =--+.(1)若()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围; (2)若存在正数0x ,使得()001ln f x x ≤-成立,求实数a 的取值范围. 22.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围.23.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.24.某工厂经奥组委授权生产销售伦敦奥运会吉祥物(精灵“文洛克”)饰品,生产该饰品的全部成本c 与生产的饰品的件数x (单位:万件)满足函数32120075c x =+(单位:万元);该饰品单价p (单位:元)的平方与生产的饰品件数x (单位:万件)成反比,现已知生产该饰品100万件时,其单价50p =元.且工厂生产的饰品都可以销售完.设工厂生产该饰品的利润为()f x (万元)(注:利润=销售额-成本) (1)求函数()y f x =的表达式.(2)当生产该饰品的件数x (万件)为多少时,工厂生产该饰品的利润最大. 25.设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的极值. 26.已知函数()ln 1f x ax x =++. (1)讨论函数()f x 的单调性;(2)对任意的0x >,不等式()x f x e ≤恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a'>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3xy xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.3.C解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 4.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .5.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.6.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由x y e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>.∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.8.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.9.B解析:B 【分析】利用导数分析函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值. 【详解】()2cos f x x x =+,则()12sin f x x '=-,0,2x π⎡⎤∈⎢⎥⎣⎦,当()0f x '>时,则12sin 0x ->,解得06x π≤<;当()0f x '<时,12sin 0x -<,解得62x ππ<≤.所以,函数()y f x =在区间0,6π⎡⎫⎪⎢⎣⎭上单调递增,在区间,62ππ⎛⎤ ⎥⎝⎦上单调递减, 因此,函数()y f x =在6x π=处取得极大值,亦即最大值,即()max 66f x f ππ⎛⎫== ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数求解函数的最值,考查计算能力,属于中等题.10.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e '-'=∴=<∴单调递减(1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D11.C解析:C 【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.B解析:B 【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围. 【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x-+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-,因此,实数m 的取值范围是(2,2e ⎤-∞-⎦.故选:B. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可.【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-, 当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果.【详解】由题意得:()()2sin2xx f x ee xf x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.15.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④ 【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案. 【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---, 令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =, ()3313130g e e =--<,()4414200g e e=-->, 则方程2()2f x x x =+有一根在(3,4)之间, 故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立, 若0x x e e k -+->,即1x xx xk e ee e -<+=+恒成立, 而12xxe e +,若有2k <, 故④正确;综合可得:①②④正确; 故答案为:①②④. 【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值. 【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值, 则42R H l +=22lH R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=- 令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-= 60l R ∴-= 6lR ∴=当6lR >时,(6)0V R l R π'=-< 当6lR <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-=故答案为:3216l π.【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.18.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值. 【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.19.【分析】当时函数的图像是函数的图像进行上下平移而得到的求出的单调区间作出其图像可得在上函数至多有2个零点又当时则在上函数至多有1个零点根据条件所以在上有一个零点在上有2个零点则从而可得答案【详解】当解析:()22【分析】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的,求出4ln xy x=的单调区间,作出其图像,可得在()0+∞,上,函数()f x 至多有2个零点,又当20x -<≤时,()2010f m =--<,则在()20-,上,函数()f x 至多有1个零点,根据条件所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点,则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,从而可得答案. 【详解】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的. 又由函数4ln xy x =有()241ln x y x-'=. 由()241ln 0x y x -'=>,得x e <,()241ln 0x y x-'=<,得x e >. 所以函数4ln xy x=在()0,e 上单调递增,在(),e +∞上单调递减,图像如图. 当1x >时,4ln 0xy x=>.所以在()0+∞,上,函数()f x 至多有2个零点. 当20x -<≤时,()2221f x x mx m =---,()2010f m =--<,其对称轴为x m =.此时二次方程22210x mx m ---=有两相异号的实根.所以在()20-,上,函数()f x 至多有1个零点. 因为函数()f x 在区间()2,-+∞上有且只有三个零点.所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点.则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,解得:272m <故答案为:()22 【点睛】本题考查根据函数的零点个数求参数的取值范围,属于中档题.20.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】 先求出()21ln xf x x -'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案. 【详解】 由函数()ln xf x x =有()()2ln 1ln 0x x f x x x x -'==>由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又函数()ln xf x x=在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e ≥⎧⎨+≤⎩,解得:01a e ≤≤-.故答案为:[]0,1e - 【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.三、解答题21.(1)(],1-∞-;(2)[)0,+∞ 【分析】(1)由函数()f x 在区间[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即()2ln 10f x x a x=--'+≥在[)1,+∞上恒成立,采用参变分离的方法,将问题转化为2ln 1a x x ≤+-在[)1,+∞上恒成立,设函数()2ln 1g x x x≤+-,于是只需满足()min a g x ≤即可,问题转化为求函数()g x 的最小值;(2)存在正数0x ,使得()001ln f x x ≤-,即()0001ln x x ax -<,分离参数可得()001ln x x a x -≥,构造函数()()()1ln ,0,x x g x x x-=∈+∞,利用导数求出()()1ln x x g x x-=的最小值即可求解.【详解】(1)函数()f x 的定义域为()0,∞+,()2ln 1f x x a x=+--', 要使()f x 在区间[)1,+∞上单调递增,只需()0f x '≥, 即2ln 1x a x+-≥在[)1,+∞上恒成立即可, 由对数函数、反比例函数的性质可得2ln 1y x x=+-在[)1,+∞上单调递增, 所以只需min a y ≤即可,当1x =时,y 取最小值,min 2ln1111y =+-=-, ∴实数a 的取值范围是(],1-∞-.(2)存在正数0x ,使得()001ln f x x ≤-成立,即()0001ln x x ax ≤-,即存在()00x ∈+∞,使得()001ln x x a x -≥,令()()()1ln ,0,x x g x x x-=∈+∞,则()2ln 1x x g x x+-'=,令()()ln 1,0,h x x x x =+-∈+∞, 则()h x 在()0,∞+上单调递增,且()10h =, 所以当()0,1x ∈时,()0h x <,即()0g x '<, 当()1,x ∈+∞时,()0h x >,即()0g x '>, 所以()g x 在()0,1上单调递减;在()1,+∞上单调递增,则()()min 10g x g ==,故0a ≥,即实数a 的取值范围为[)0,+∞. 【点睛】思路点睛:导数是高考中的高频考点,同时也是初等数学与高等数学的重要衔接.利用导数研究函数单调性,利用导数研究函数最值,导数几何意义等内容,使函数内容更加丰富,更加充盈.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“恒成立”问题和“有解”问题的等价转化,可以简化解题过程.还有在求参数取值范围时,可以考虑到分离参数方法或分类讨论的方法.22.(1)答案见解析;(2)[)1,-+∞.【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln x a x x≥-恒成立,令()()ln 0x h x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】 (1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x '=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a >. 所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以函数()y f x =有极大值点是1a ,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln x a x x≥-恒成立, 令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数.所以()()max 11h x h ==-,所以1a ≥-.因此,实数a 的取值范围是[)1,-+∞.【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.23.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立.③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.24.(1)()()321200075f x x x =->;(2)25万件 【分析】(1)设2k p x =,代入100x =,50p =求出k 的值,然后由已知给出的关系式列式即可;(2)求出(1)中所得函数的导函数,利用导数求函数的极大值,即可得函数的最大值【详解】(1)依题意:设2k p x =,代入100x =,50p =得:41025k =⨯,∴p=,故()()321200075f x x x =-> (2)由(1)得()2675f x x '=- 则()26002575f x x x '>⇔>⇔<< 所以函数()f x 在()0,25上递增,在()25,+∞上递减,所以函数()f x 在25x =处有极大 值:因为()f x 在0,上只有唯一极值,所以函数()f x 在25x =处有最大值; 故当生产该饰品25万件时,可以获得最大利润. 【点睛】此题考查了函数的模型的选择及应用,考查了利用导数求函数的最值,属于中档题 25.(1)12b =-;(2)()f x 的极大值是21,极小值是6-.【解析】试题分析:(1)先对()f x 求导,()f x 的导数为二次函数,由对称性可求得a ,再由()10f '=即可求出b ;(2)对()f x 求导,分别令()f x '大于0和小于0,即可解出()f x 的单调区间,继而确定函数的极值.试题(1)因()3221f x x ax bx =+++,故()2'62f x x ax b =++,从而()22'666a a f x x b ⎛⎫=++- ⎪⎝⎭,即()'y f x =关于直线6a x =-对称,从而由条件可知162a -=-,解得3a =,又由于()'0f x =,即620ab ++=解得12b =-. (2)由(1)知()()()()32223121,'6612612f x x x x f x x x x x =+-+=+-=-+.令()'0f x =,得1x =或2x =-,当(),2x ∈-∞-时,()()'0,f x f x > 在(),2-∞-上是增函数,当()2,1x ∈-时,()()'0,f x f x <在()2,1-上是减函数,当()1,x ∈+∞时,()()'0,f x f x > 在()1,,+∞上是增函数,从而()f x 在2x =-处取到极大值()221f -=, 在1x =处取到极小值()16f =-.考点:利用导数研究函数的单调性;二次函数的性质.26.(1)答案见解析;(2){}1a a e ≤-.【分析】(1)分类讨论0a ≥,0a <两种情况,利用导数得出函数()f x 的单调性; (2)分类参数得出ln 1x e x a x --≤在(0,)+∞恒成立,利用导数得出ln 1()x e x g x x--=的最小值,即可得出实数a 的取值范围.【详解】(1)定义域为(0,)+∞,11()ax f x a x x+'=+= ①若0a ≥,则()0f x '>,()f x 在(0,)+∞单调递增②若0a <,则1()a x a f x x⎛⎫+ ⎪⎝⎭'= 1()00f x x a '>⇒<<-,1()0f x x a'<⇒>- ()f x 在10,a ⎛⎫- ⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减 综上知①0a ≥,()f x 在(0,)+∞单调递增,②0a <,()f x 在10,a ⎛⎫-⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减 (2)不等式ln 1xax x e ++≤恒成立,等价于ln 1x e x a x --≤在(0,)+∞恒成立令ln 1()x e x g x x --=,0x >,则2(1)ln ()x x e x g x x-+'= 令()(1)ln x h x x e x =-+,0x >,1()0x h x xe x'=+>. 所以()y h x =在(0,)+∞单调递增,而(1)0h =所以(0,1)x ∈时,()0h x <,即()0g x '<,()y g x =单调递减;(1,)x ∈+∞时,()0h x >,即()0g x '>,()y g x =单调递增所以在1x =处()y g x =取得最小值(1)1g e =-,所以1a e -≤即实数a 的取值范围是{}1a a e ≤-【点睛】本题主要考查了利用导数求函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档