2014年列代数式训练

合集下载

代数式(压轴必刷30题5种题型专项训练)(解析版)

代数式(压轴必刷30题5种题型专项训练)(解析版)

代数式(压轴必刷30题5种题型专项训练)一.列代数式(共7小题)1.(2022秋•拱墅区月考)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a),如图1;取出两张小正方形卡片放入大正方形卡片内拼成的图案如图2;再重新用三张小正方形卡片放入大正方形卡片内拼成的图案如图3.则图3中阴影部分的面积为(用含有a,b的代数式表示);已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.【分析】图2中阴影正方形的边长为(2b﹣a),面积就是(2b﹣a)2;图3中两个阴影部分的面积可以上下拼在一起,也是个正方形,其边长是(a﹣b),面积就是(a﹣b)2.再根据等量关系列方程就可以得出含有a、b的关系式了.【解答】解:图2中阴影部分是正方形,它的边长是(2b﹣a),所以它的面积就是(2b﹣a)2.图3a﹣b),所以它的面积就可以表示为:(a﹣b)2.又因为图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,所以可得:(2b﹣a)2+2ab﹣15=(a﹣b)2,4b2﹣4ab+a2+2ab﹣15=a2+b2﹣2ab,3b2=15,b2=5,故小正方形的面积是5.【点评】本题考查列代数式的能力,用字母表示阴影部分的面积.再根据等量关系进行推导.2.(2022秋•余姚市校级期中)A市、B市和C市分别有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台.已知调运机器的费用如表所示.设从A市、B市各调x台到D市.(1)C市调运到D市的机器为台(用含x的代数式表示);(2)B市调运到E市的机器的费用为元(用含x的代数式表示,并化简);(3)求调运完毕后的总运费(用含x的代数式表示,并化简);(4)当x=5和x=8时,哪种调运方式总运费少?少多少?【分析】(1)用D市需要的总数减去从A市、B市各调的台数即可;(2)求得B市剩下的台数,再乘运费即可;(3)用运送的台数乘运费分别求得各自得运费,再进一步求和即可;(4)把x=5和x=8分别代入求得答案即可.【解答】解:(1)C市调运到D市的机器为18﹣2x台;故答案为:(18﹣2x);(2)B市调运到E市的机器的费用为700(10﹣x)=(7000﹣700x)元(用含x的代数式表示,并化简);故答案为:(7000﹣700x).(3)调运完毕后的总运费为200x+800(10﹣x)+300x+700(10﹣x)+400(18﹣2x)+500[8﹣(18﹣2x)]=17200﹣800x;(4)当x=5时,总运费为17200﹣800×5=13200元;当x=8时,总运费为17200﹣800×8=10800元;10800元<13200元,13200﹣10800=2400,所以当x=8时,总运费最少,最少为10800元,少2400元.【点评】此题考查列代数式,题目关系是比较多,理清顺序,正确利用基本数量关系解决问题.3.(2021秋•陕州区期末)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;故答案为1500a.(1600a﹣1600).(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a(4)①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.(2020秋•衢州期中)甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x ×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);(2)当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元.【点评】5.(2021秋•下城区校级期中)从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:2004年1月至2012年6月执行的收费标准:2012年7月起执行的收费标准:(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.【分析】(1)根据表格中的数据可以计算出小明家2012年7月份的用电量为200度时当月的电费支出和新政前用电量为200度时当月的电费支出,从而可以解答本题;(2)根据表格中的数据可以分别用代数式表示出各个阶段的电费支出.【解答】解:(1)由题意可得,小明家2012年7月份的用电量为200度,小明家7月份的电费支出是:200×0.53=106(元),新政前,用电200度电费支出为:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少华4.5元,即若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是106元,比新政前少了4.5元;(2)由题意可得,当0≤a≤230时,小明家当月的电费支出为:0.53a,当230<a≤400时,小明家当月的电费支出为:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,当a>400时,小明家当月的电费支出为:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用电量为a度,当月支出的费用为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(2023秋•海曙区校级期中)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔的费用;(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.(2021秋•临海市月考)大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?【分析】原有(3a﹣b)人,中途下车(3a﹣b)人,又上车若干人后车上共有乘客(8a﹣5b)人.中途上车乘客数=车上共有乘客数﹣中途下车人数,所以中途上车乘客为,把a=10,b=8代入上式可得上车乘客人数.【解答】解:中途上车乘客是(8a﹣5b)﹣(3a﹣b)=(人),当a=10,b=8时,上车乘客是29人.【点评】要分析透题中的数量关系:中途上车乘客数=车上共有乘客数﹣中途下车人数,用代数式表示各个量后代入即可.二.代数式求值(共7小题)8.(2023秋•西湖区期中)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.【分析】先利用绝对值的性质求得m、n的值,然后根据m<n分类计算即可.【解答】解:由题意可得,m=±2,n=±2,又∵m<n,∴m=﹣3,n=2 或m=﹣3,n=﹣2,当m=﹣3,n=2时,原式=(﹣3)2+(﹣3)×2+22=9﹣6+4=7;当m=﹣3,n=﹣2时,原式=(﹣3)2+(﹣3)×(﹣2)+(﹣2)2=9+6+4=19.【点评】本题主要考查的是求代数式的值,求得m、n的值是解题的关键.9.(2022秋•阳新县期中)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200x﹣10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.10.(2022秋•吴兴区期中)电动车厂计划每天平均生产n辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖55元;少生产一辆扣60元,当n=50时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,在此方式下这一周工人的工资总额与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据正负数的意义分别表示出5天的生产电动车的数量,再求和即可;(2)5天的生产电动车的总数×200元+超出部分的奖励﹣罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【解答】解:(1)n+5+n﹣1+n﹣6+n+13+n﹣2=5n+9;(2)当n=50时,5n+9=5×50+9=259,200×259+55(5+13)+60(﹣1﹣6﹣2)=52250,所以该厂工人这一周的工资总额是52250元.(3)5+(﹣1)+(﹣6)+13+(﹣2)=9,259×200+9×55=52295,∵52250<52295,∴每周计件工资制一周工人的工资总额更多.【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,掌握每日计件工资制的计算方法.11.(2021秋•镇海区校级期中)周末小明陪爸爸去陶瓷商城购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价40元,茶杯每只定价5元,且两家都有优惠,甲商店买一送一大酬宾(买一把茶壶送一只茶杯),乙商店全场九折优惠,小明的爸爸需茶壶5把,茶杯a只(不少于25只)(1)分别用含有a的代数式表示在甲、乙两家商店购买所需的费用;(2)当a=40时,在甲、乙哪个商店购买付款较少?请说明理由.(3)若小明的爸爸准备了1800元钱,在甲、乙哪个商店购买的茶杯多?请说明理由.【分析】(1)根据实际付款数得到甲店购买需付款为5(a﹣5)+40×5=(5a+175)(元),乙店购买需付款为(5a+40×5)×0.9=(4.5a+180)(元);(2)将a=40分别代入(1)中所求的两式子,得出的值在哪家少就在那家买;(3)令甲乙的付款数都为1800,然后解方程5a+175=1800和4.5a+135=1800,根据a的大小进行判断.【解答】解:(1)设购买茶杯a只(不少于25只),甲商店买一送一大酬宾(买一把茶壶送一只茶杯),且茶壶每把定价40元,茶杯每只定价5元,故在甲店购买需付:5(a﹣5)+40×5=(5a+175)(元);乙商店全场九折优惠,故在乙店购买需付:(5a+40×5)×0.9=(4.5a+180)(元);(2)在乙商店购买付钱较少.理由如下:当a=40时,在甲店购买需付:5×40+175=375元,在乙店购买需付:4.5×40+180=360元,∵375>360,∴在乙商店购买付款较少;(3由5a+175=1800,得a=325;由4.5a+180=1800,得a=360.所以在乙商店购买的茶杯多.【点评】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题,注意细心求解即可.12.(2023秋•下城区校级月考)如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x为4时,求最后输出的结果y是.【分析】根据题中的程序流程图,将x=4代入计算,得到结果为﹣2小于1,将x=﹣2代入计算得到结果为1,将x=1代入计算得到结果大于1,即可得到最后输出的结果.【解答】解:输入x=4,代入(x2﹣8)×(﹣)得:(16﹣8)×(﹣)=﹣2<1,将x=﹣2代入(x2﹣8)×(﹣)得:(4﹣8)×(﹣)=1=1,将x=1代入(x2﹣8)×(﹣)得:(1﹣8)×(﹣)=>1,则输出的结果为.故答案为:.【点评】此题考查了代数式求值,弄清题中的程序流程是解本题的关键.13.(2021秋•诸暨市期中)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【分析】(1)根据平移计算出地毯总长,然后再根据长×宽可得面积;(2)把已知数据代入(1)中求出答案.【解答】解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.【点评】此题主要考查了生活中的平移现象、代数式求值,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.14.(2021秋•椒江区校级期中)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示.例如x=﹣1时多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.已知g(x)=﹣2x2﹣3x+1,h(x)=ax3+2x2﹣x﹣12.(1)求g(﹣2)值;(2)若h()=﹣11,求g(a)的值.【分析】(1)根据举的例子把x=﹣2代入求出即可;(2)把x=代入h(x)=ax3+2x2﹣x﹣12得出一个关于a的方程,求出a的值,把a的值代入g(x)=﹣2x2﹣3x+1即可.【解答】解:(1)g(﹣2)=﹣2×(﹣2)2﹣3×(﹣2)+1=﹣2×4﹣3×(﹣2)+1=﹣8+6+1=﹣1;(2)∵h()=﹣11,∴a×()3+2×()2﹣﹣12=﹣11,解得:a=1,即a=8∴g(a)=﹣2×82﹣3×8+1=﹣2×64﹣24+1=﹣128﹣24+1=﹣151.【点评】本题考查了有理数的混合运算和新定义,关键是培养学生的阅读能力和理解能力,也培养学生的计算能力,题目比较典型,是一道比较好的题目.三.多项式(共1小题)15.(2021秋•越城区期中)关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项时,求m、n的值.【分析】利用多项式的定义得出二次项与一次项系数为0,进而求出即可.【解答】解:∵关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项,∴﹣5﹣(2m﹣1)=0,2﹣3n=0,解得:m=﹣2,n=.【点评】此题主要考查了多项式的定义,得出各项系数之间关系是解题关键.四.整式的加减(共9小题)16.(2020秋•西湖区校级期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于2即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.17.(2021秋•婺城区校级期中)已知整式M=x2+5ax﹣x﹣1,整式M与整式N之差是3x2+4ax﹣x (1)求出整式N;(2)若a是常数,且2M+N的值与x无关,求a的值.【分析】(1)根据题意,可得N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x),去括号合并即可;(2)把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【解答】解:(1)N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x)=x2+5ax﹣x﹣1﹣3x2﹣4ax+x=﹣2x2+ax﹣1;(2)∵M=x2+5ax﹣x﹣1,N=﹣2x2+ax﹣1,∴2M+N=2(x2+5ax﹣x﹣1)+(﹣2x2+ax﹣1)=2x2+10ax﹣2x﹣2﹣2x2+ax﹣1=(11a﹣2)x﹣3,由结果与x值无关,得到11a﹣2=0,解得:a=.【点评】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.18.(2021秋•临海市校级期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值;(3)如果A+2B+C=0,则C的表达式是多少?【分析】(1)先把A、B的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A+6B的表达式,再令a的系数等于0,求出b的值即可;(3)先把A、B C的表达式即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴3A+6B=3(2a2+3ab﹣2a﹣1)+6(﹣a2+ab﹣1)=6a2+9ab﹣6a﹣3﹣6a2+6ab﹣6=15ab﹣6a﹣9;(2)3A+6B=15ab﹣6a﹣9=a(15b﹣6)﹣9,∵3A+6B的值与a无关,∴15b﹣6=0,∴b=;(3)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,A+2B+C=0,∴C=﹣A﹣2B=﹣(2a2+3ab﹣2a﹣1)﹣2(﹣a2+ab﹣1)=﹣2a2﹣3ab+2a+1+2a2﹣2ab+2=﹣5ab+2a+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.19.(2020秋•奉化区校级期末)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2021秋•嵊州市期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【分析】x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),根据新数减去原数等于99建立方程求解.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.【点评】本题利用了整式来表示每位上的数,整式的减法,建立方程求解.21.(2021秋•嵊州市期中)符号“”称为二阶行列式,规定它的运算法规为:=ad﹣bc.(1)计算:=;(直接写出答案)(2)化简二阶行列式:.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=10﹣12=﹣2;故答案为:﹣2;(2)根据题中的新定义得:原式=(a+2b)(a﹣2b)﹣4b(0.5a﹣b)=a2﹣4b2﹣2ab+4b2=a2﹣2ab.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(2023秋•象山县校级期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.【点评】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.23.(2020秋•婺城区期末)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)用含a,b的代数式表示A.(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.【解答】解:(1)∵A﹣2B=7a2﹣7ab,∴A=7a2﹣7ab+2B,=7a2﹣7ab+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14;(2)根据题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,∴A=﹣a2+5ab+14=﹣(﹣1)2+5×(﹣1)×2+14=﹣1﹣10+14=3.【点评】本题考查了整式的加减,代数式求值,非负数的性质,实质就是去括号,合并同类项的过程,熟记去括号法则和合并同类项法则是解题的关键.24.(2022秋•鄞州区校级期中)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.五.整式的加减—化简求值(共6小题)25.(2020秋•永嘉县校级期末)先化简再求值:2(x2+3y)﹣(2x2+3y﹣x),其中x=1,y=﹣2.【分析】先去括号,再合并同类项即可化简原式,继而将x、y的值代入计算可得.【解答】解:原式=2x2+6y﹣2x2﹣3y+x=3y+x,当x=1、y=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算整式加减运算顺序和法则是解本题的关键.26.(2020秋•诸暨市期中)化简求值:5(3a2b﹣2ab2)﹣4(﹣2ab2+3a2b),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(15a2b﹣10ab2)﹣(﹣8ab2+12a2b)=15a2b﹣10ab2+8ab2﹣12a2b=3a2b﹣2ab2,当a=﹣2,b=1时,原式=16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.(2020秋•富阳区期中)化简并求值:[2b2﹣3+2(a2﹣1)]﹣(4a2﹣3b2),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2b2﹣3+2a2﹣2﹣4a2+3b2=5b2﹣2a2﹣5,当a=﹣2,b=1时,原式=5﹣8﹣5=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2020秋•温州月考)求多项式的值,其中x=5,y=﹣8.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,当x=5时,原式=﹣50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.(2020秋•长兴县期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(2021秋•椒江区校级期中)已知|x+2|+(y﹣)2=0,求代数式(x3+2x2y)+x3﹣(﹣3x2y+5xy2)﹣(7﹣5xy2)的值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,则原式=x3+2x2y+x3+3x2y﹣5xy2﹣7+5xy2=x3+5x2y﹣7=﹣8+10﹣7=﹣5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。

列代数式

列代数式

工程问题:设工作量为Q,工作时间为t,工作 工程问题:设工作量为Q,工作时间为t,工作 Q,工作时间为t, 效率为v, v,则 效率为v,则Q=______,v=_____,t=______.
例2 一项工程甲独做要a天完成,乙独做要b 一项工程甲独做要a天完成,乙独做要b 天完成,现在甲先做3 天完成,现在甲先做3天,剩下的工作乙独做 还需要_________天才能完成。 _________天才能完成 还需要_________天才能完成。
2 2
1 1 ( 2) a − b 3 2
(4)(a + b )(a − b )
比一比
的和的平方; (1)a与b的和的平方; ) 与 的和的平方 的平方和; (2)a与b的平方和; ) 与 的平方和 的平方的和; (3)a与b的平方的和; ) 与 的平方的和 的差的平方; (4)a与b的差的平方; ) 与 的差的平方 的平方差; (5)a与b的平方差; ) 与 的平方差
(4)某数的倒数与5的差。
例3
用代数式表示:
(1)a、b两数的平方和减去它们乘积的2倍; (2)a、b两数的和的平方减去它们的差的平方; (3)a、b两数的和与它们的差的乘积; (4)偶数,奇数。 还有其他代数 式来表示偶数 与奇数?
例4.设甲数为
x
,用代数式表示乙数
(1)乙数比甲数大5 (2)乙数比甲数的2倍小3 (3)乙数比甲数大16% (4)乙数比甲数的倒数小7 (5)乙数比甲数的平方多2
试一试
1、某市出租车收费标准是:起步价为7元,3 某市出租车收费标准是:起步价为7 千米后每千米为1.8 1.8元 千米后每千米为1.8元。 (1)某人乘坐出租车4千米需 某人乘坐出租车4 6千米需 元; 若这人乘坐x(x>3)千米, x(x>3)千米 (2)若这人乘坐x(x>3)千米,需 元; 元。

六年级下册数学试题——列方程(无答案) 人教新课标(2014秋)

六年级下册数学试题——列方程(无答案)  人教新课标(2014秋)

列方程【教学目标】1、知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、过程与方法:利用等式的性质解简易方程。

3、情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

【重点难点】1、理解“方程的解”和“解方程”之间的联系和区别。

2、理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

【教学过程】一、解方程1、方法总结.列方程解应用题的步骤是:(1)审题:弄清题意,确定已知量、未知量及它们的关系;(2)设元:选择适当未知数,用字母表示;(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;(4)列方程:利用列代数式时未用过的等量关系,列出方程;(5)解方程:正确运用等式的性质,求出方程的解;(6)检验并答题。

解方程步骤:1.去分母,(通过最小公倍数约掉),2.移项,把带有X 的都到等号的一边,要变负号:原来是+移项就变成-;原来是-移项就变成+3.合并同类项(把带X 的放到等号的一边,数字的放到等好的另一边)4.把X 的前面的数字,变为1,(两边同时除以X 前面的数字)实战演练解方程夯基达标3X+5X=48 14X-8X=12 20X-50=5028+6X=88 32-22X=1024-3X=399X=100-X X+3=18 X-6=1256-2X=204y+2=6 x+32=763x+6=1816+8x=40 2x-8=88x-3x=105 x+5=72x+3=1012x-9x=9 6x+18=48能力提升12-3(9-x)=5(x-4)-7(7-x) 6x-17=139-10x=10-9x 2(x-1)=4.13x-26=13 75-5x=702(6x-2)=8 25x(12-6)=30024x+12=132 56=12x+82x+4=30 12x=11x-7913x-12(x+2)=0 67-12x=7(x-1)-(3x+2)= - (x-1)列方程解应用题1.苹果和梨共14筐,总重520千克,其中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?2.鸡兔共36个头,118只脚,问鸡兔各多少只?3.某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?4.工人搬运100只玻璃杯,搬运一只得3角,损坏一只赔5角,搬运完共得到26元。

列代数式练习题

列代数式练习题

列代数式练习题1、设甲数为x,用代数式表示乙数;1已数比甲数大5; 2乙数比甲数的2倍小3; 3乙数比甲数大16%; 4乙数比甲数的倒数小7. 5乙数比甲数的一半小1; 6甲数比乙数多3; 7乙数比甲数的倒数小17%. 8甲、乙两数的平方差; 9甲数与乙数的倒数的和; 10甲数除乙数与1的和的商.2、用代数式表示1比a 小3的数; 2比b 的一半大5的数;3a 的3倍与b 的2倍的和 ;4x 的 与 的差 ;5a 与b 的和的60%; 6x 与4的平方差即平方的差 ; 7a 、b 两数平方和 , 8a 、b 两数和的平方 ;3、设甲数为a,乙数为b,用代数式表示1甲乙两数的和的2倍; 2甲数的 与乙数的 的差; 3甲、乙两数的平方和 ;4甲乙两数的和与甲两数的差的积; 5甲与乙的2倍的和 ;6甲数的 与乙数差的 ;7甲、乙两数和的平方 ;8甲乙两数的和与甲乙两数的积的差 ;4、当61,31==b a 时,求代数式2)(b a -的值5、当m=2,n= –5时,求n m -22的值6、已知当1,21==y x 时,2x-5y+12的值7、一个塑料三角板,形状和尺寸如图所示,1求出阴影部分的面积;2当a=5cm,b=4cm,r=1cm 时,计算出阴影部分的面积是多少;一、填空题:1、一支圆珠笔 a 元,5 支圆珠笔共_____元;2、“a 的 3 倍与 b 的的和”用代数式表示为__________; 3、比 a 的 2 倍小 3 的数是_____;4、某商品原价为 a 元,打 7 折后的价格为______元;5、一个圆的半径为 r,则这个圆的面积为_______;6、当 x =-2 时,代数式 x 2+1 的值是_______;7、代数式 x 2-y 的意义是_______________;8、一个两位数,个位上的数字是为 a,十位上的数字为 b,则这个两位数是_______;9、若 n 为整数,则奇数可表示为_____;10、设某数为 a,则比某数大 30% 的数是_____;11、被 3 除商为 n 余 1 的数是_____;12、校园里刚栽下一棵 1.8m 的高的小树苗,以后每年长 0.3m;则n 年后的树高是__ m二、求代数式的值:1、已知:a=12,b=3,求的值;2、当x=-,y=-,求4x2-y 的值;3、已知:a+b=4,ab=1,求2a+3ab+2b 的值;。

列代数式专项练习60题(有答案)

列代数式专项练习60题(有答案)

列代数式专项练习60题(有答案)1.正方体棱长为a,体积为V,则V与a之间的关系式为_________ ,当a=4cm时,V= _________ cm3.2.一个数比a的3倍的平方小3,则这个数是_________ .3.体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是_________ .4.某商品的进价是x元,售价是132元,则此商品的利润是_________ .5.“x的2倍与y的3倍的差”列式为_________ .6.在负整数a后添上3,使其位数增加一位,则这个数可表示为_________ .7.若一个数比x的2倍小3,则这个数可表示为_________ .8.“比a的3倍小2的数”用整式表示是_________ .9.“x与y的和”用代数式可以表示为_________ .10.用代数式表示“a的3倍与4的和”为_________ .11.某校共有学生x人,其中女生占总数的m%,则男生人数为_________ 人.12.某商品进价是m元,提价30%后标价,又打九折出售,则该商品的利润是_________ .13.一个笼子里的鸡a只,兔b只,则笼子里的鸡和兔的脚共有_________ 只.14.某工厂的产值由a万元增加了20%,达到_________ 万元.15.一台a元的电视机,降价20%后的价格为_________ 元.16.某工厂今年的产值是a万元,比去年增加了20%,则去年的产值是_________ .17.苹果每千克p元,若苹果超过10千克以上,则全部9折优惠,买15千克应付_________ 元.18.张红在一次考试中,得数学a分,语文b分,则张红这二科的平均成绩是_________ 分.19.科学家在南极考察时,拾到一块不规则的矿石,科学家用一把刻度尺,一只圆柱体的玻璃杯和足量的水,就测出了这块矿石的体积.如果玻璃杯的内直径为r,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则这块矿石的体积是_________ .20.一件商品原价为a元,先涨价5元后,再按8.5折出售,那么现售价用代数式表示为_________ .21.如图,正方形的边长为2,分别以正方形的两个相对顶点为圆心,以正方形的一边为半径画弧,则阴影部分的面积是_________ .22.如图是数值转换器的示意图,如果输入的数字用x表示,那么输出的数字可以用代数式_________ 表示.23.小亮从一列火车的第m节车厢起,一直数到第2m节车厢,他数过的车厢节数是_________ .24.小明在考试前到文具店里买了2支2B的铅笔和一副三角板,2B的铅笔每支x元,三角板每副3元,小明总共应付_________ 元(用含x的代数式表示).25.三毛早上从报社以每份0.4元的价格购进了a份报纸.以每份0.5元的价格出售,一天共售b份报纸,剩余的报纸以每份0.2元的价格退回报社,回家后三毛发现这一天的辛苦还是赚到了钱,那么三毛这天赚了_________ 元.26.n(n≥2)个球队进行单循环赛(参加比赛的每个队都与其他所有的队各赛一场),总的比赛场数是_________ .27.绥阳某商店的一种商品每件进价为a元,按进价提高30%标价,再按标价的8折出售,那么打折后,每件商品的售价是_________ 元.28.“圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a,中间方孔边长为b,则图示阴影部分面积为_________ .30.如图,两个长方形的一部分重叠在一起,重叠部分是边长为3的正方形,则阴影部分的面积是_________ .31.三角形三边的长分别是(2x+1)厘米,(3x﹣2)厘米,(8﹣2x)厘米,求这个三角形的周长,如果x=3,三角形的周长是多少?32.晓霞的爸爸开了一个超市,一天,她爸爸分别以P元进了A、B两种商品,后来A商品提价20%,B商品降价10%,这样在某一天中,A商品卖了10件,B商品卖了20件,问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.33.列代数式:(1)比a与b的积的2倍小5的数;(2)a与b的平方差;(3)被5除商是a,余数是2的数.34.我国出租车收费标准因地而异,A市为:起步价10元,3km后每千米加价1.2元;B市为:起步价8元,3km 后每千米加价1.4元;(1)试分别写出在A,B两城市坐出租车x(x>3)km所付的车费;(2)求在A,B两城市坐出租车x(x>3)km的差价是多少元?35.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.36.窗户的形状如图,其上部是半圆形,下部是长方形.已知窗户的下部宽为xm,窗户长方形部分高度为1.5xm.计算:(1)窗户的面积S;(2)窗框的总长L.37.“十一”黄金周期间,小刚拿着妈妈给的800元钱到重百商场购买运动服和运动鞋,他来到自己喜欢的“阿迪、(1)200~500元(含500元)的部分打9折;(2)500~800元(含800元)的部分打8折;(3)800元以上的部分打7折(商品金额可累计),他又看到运动服标价a元/件(400≤a≤500),运动鞋标价b元/双(300≤b≤400);(1)算他单独买一件运动服需多少钱;(用含a的代数式表示)(2)计算他一次性买一件运动服和一双运动鞋共需多少钱.(用含a、b的代数式表示)38.为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.(1)如果小红家每月用水15吨,水费是多少.如果每月用水35吨,水费是多少;(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢.39.某轮船顺水航行4小时,逆水航行2.5小时,已知轮船在静水中的速度为m千米/小时,水流速度为y千米/小时.轮船共航行了多少千米?40.一轮船航行于甲、乙两港口之间,在静水中的航速为m千米/小时,水流速度为12千米/小时,(1)则轮船顺水航行5小时的行程是多少?(2)轮船逆水航行4小时的行程是多少?(3)轮船顺水航行5小时和逆水航行4小时的行程相差多少?41.某公园的成人票价是20元,儿童票价是8元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童人数是甲旅行团的.(1)求两个旅行团的门票总费用是多少?(2)当x=10人,y=6人时,求两个旅行团的门票总费用是多少元?42.小明想把一长是60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个相同小正方形(如图).(1)若设这些小正方形的边长为xcm,求图中阴影部分小长方形的面积.(2)当x=5时,求这个盒子的体积.43.某礼堂第1排a个座位,后面每排比第一排多1个座位,用含a的代数式表示:(1)第2排有多少个座位?第5排有多少个座位?第10排有多少个座位?(2)前10排共有多少个座位?(3)第11排比第5排多多少个座位?44.如图,正方形ABCD的边长为a,长方形AEFD的长AE为b,(1)用代数式表示图中阴影部分的面积;(2)求当a=5cm,b=7cm时,阴影部分的面积.45.一个三位数,个位上的数是十位上的数的平方,百位上的数比十位上的数的4倍多1.将十位上的数设为x.(1)列式表示这个三位数;(2)这个三位数是多少?46.学校组织初一年级全体同学参加植树造林劳动.全体同学分三队,第一队植树x棵,第二队植的树比第一队植树的两倍少80棵,第三队植的树比第二队植树多了10%.(1)求全体同学一共植树多少棵?(用含x的式子表示)(2)若x=100棵,求全体同学共植树多少棵?47.攀枝花市出租车收费标准为:起步价5元(其中包含2千米),2千米后每千米价1.8元.则某人乘坐出租车x 千米的付费为多少元.(用代数式表示)48.龙港某企业有甲、乙两种经营收入,2010年甲种年收入是乙种年收入的1.5倍,预计2011年甲种年收入将减少20%,而乙种年收入将增加40%,记2010年乙种年收入为a万元.(1)2010年该企业甲种年收入为_________万元;(2)2011年该企业甲种年收入为_________万元;乙种年收入为_________万元.(3)当a=100万元时,请问该企业2011年总收入比2010年总收入是增加,还是减少?增加或减少了多少?请说明理由.49.用代数式表示下列图形中阴影部分的面积.(1)S阴影=_________;(2)S阴影=_________.50.学校需要到印刷厂印刷n份材料,甲印刷厂的收费标准是每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂的收费标准是每份材料收0.4元印刷费,不收制版费.(1)两个印刷厂的收费各是多少元?(用含n的代数式来表示)(2)学校要印2600份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.51.一辆汽车以每小时80千米的速度行驶,从A城市到B城市需要t小时,按题意解决下列问题(1)如果汽车行驶的速度每小时增加v千米,那么从从A城市到B城市还需要多少小时.(2)如果某次因紧急情况,从B城市返回到A城市的平均速度比原来每小时增加12千米,那么预计返回比原来可提前多少时间.52.一种笔记本售价为2.3元/本,如果买100本以上(不含100本),售价为2.2元/本.(1)列式表示买n本笔记本所需的钱数;(2)按照售价规定,会不会出现多买比少买反而付钱少的情况?(3)如果需要100本笔记本,怎样购买更省钱?并说明理由.53.甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在_________商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.54.列代数式:(1)a的3倍与b的和;(2)a与b的差的平方;(3)被5除商是x,余数是2的数.55.如图,将一张长方形大铁皮切割(切痕为虚线)成九块,其中有两块是边长都为a厘米的大正方形,两块是边长都为b厘米的小正方形,且a>b.(1)这张长方形大铁皮长为_________厘米,宽为_________厘米(用含a、b的代数式表示);(2)①求这张长方形大铁皮的面积(用含a、b的代数式表示);②若最中间的小长方形的周长为22厘米,大正方形与小正方形的面积之差为33厘米2,试求a和b的值,并求这张长方形大铁皮的面积;(3)现要从切块中选择5块,恰好焊接成一个无盖的长方体盒子,共有哪几种方案可供选择(画出示意图)?按哪种方案焊接的长方体盒子的体积最大?试说明理由.(接痕的大小和铁皮的厚度忽略不计)56.在正常情况下,某出租车司机每天驾车行驶t小时,且平均速度为v千米/小时.已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/小时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/小时,(1)求A日出租车司机比正常情况少行驶多少千米?(用含v,t的代数式表示)(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米?57.已知我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?58.如图为一梯级的纵截面,一只老鼠沿长方形的两边A→B→D路线逃跑,一只猫同时沿梯级(折线)A→C→D的路线去捉,结果在距离C点0.6米的D处,捉住了老鼠.请将下表中的语句“译成”数学语言(写出代数式).设梯级(折线)A→C的长度x米AB+BC的长为A→C→D的长为A→B→D的长为设猫捉住老鼠所用时间为t秒猫的速度老鼠的速度59.某地公交公司推出刷卡月票制,即持有这种月票的乘客通过刷卡扣除每次的车票.某人买了50元的这种月票卡,如果此人乘车的次数用m表示,每次乘车的余额用n表示,它们之间的关系如下表:乘车次数m 月票余额n/元1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……回答下列问题:(1)如果此人乘车的次数m,那么月票余额是_________元.(2)此人最多能乘车几次?简单说明理由.60.一本小说共m页,一位同学第一天看了全书的少6页,第二天看了剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=900,则第三天看了多少页?列代数式专项练习60题参考答案:1.∵正方体边长为a,∴它的体积是V=a3.当a=4cm时,V=4 3=64cm3.故答案为:a3,64.2.由题意得:(3a)2﹣3=9a2﹣3,故答案为:9a2﹣3.3.设没分为x人,则教练有x人,学生有20x人,由题意,得∴20x=m+n,∴x=,∴教练有人.故答案为:人4.∵某商品的进价是x元,售价是132元,∴此商品的利润=售价﹣进价=132﹣x(元).故答案为(132﹣x)元.5.x的2倍是2x,y的3倍是3y,则x的2倍与y的3倍的差为:2x﹣3y.故答案是:2x﹣3y.6.在负整数a后添上3,使其位数增加一位,则这个数可表示为10a﹣3.故答案为10a﹣3.7.一个数比x的2倍小3,则这个数可表示为2x﹣3.故填:2x﹣38.由题意得:3a﹣2,故答案为:3a﹣2.9.“x与y的和”用代数式可以表示为:x+y.故答案为x+y10.先求a的3倍是3a,再求与4的和为3a+4.故答案为:3a+4.11.由题意得:x﹣m%x,故答案为:(x﹣m%x).12.∵某商品进价是m元,提价30%后标价,又打九折出售,∴此商品的售价为0.9×1.3m=1.17m(元),∴该商品的利润是1.17m﹣m=0.17m(元).故答案为0.17m13.∵鸡有两只脚,兔有四只脚,又∵鸡有a只,兔有b只,∴鸡和兔的脚共有:2a+4b.故答案为:2a+4b14.根据题意得产值由a万元增加了20%,达到的产值15.∵电视机的原价为a元,∴降价20%后的价格为(1﹣20%)a=0.8a(元).故答案为0.8a16.∵今年比去年增加了20%,∴今年的产值占去年的1+20%=120%,∴去年的产值=a÷120%=a万元.故答案为:a万元.17.15×0.9p=13.5p.故答案是:13.5p.18.二科的平均成绩是:(a+b).故答案是:(a+b).19.根据圆柱的体积公式可得这块矿石的体积为:.故填:20.根据一件商品原价为a元,先涨价5元,则价格变为:a+5,再按8.5折出售,依题意得:(a+5)×0.85.故答案为:0.85(a+5)21.S阴影=2S扇形﹣S正方形=2×﹣22=π×22﹣22=2(π﹣2).故填2(π﹣2)22.根据示意图可得:2x﹣3.故答案为2x﹣3.23.根据题意列得:他数过的车厢有(2m﹣m+1)即(m+1)节.故答案为:m+1.故选D24.因为2支2B铅笔2x元,一副三角板3元,所以小明总共应付(2x+3)元.故答案为:2x+325.∵每份0.4元的价格购进了a份报纸,∴这些报纸的成本是0.4a元,∵每份0.5元的价格出售,一天共售b份报纸,∴共买了0.5b元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a﹣b)元,他一天工赚到的钱数为:0.5b+0.2(a﹣b)﹣0.4a=0.3b26.n支球队举行单循环比赛,比赛的总场数为:n(n ﹣1).故答案为:n(n﹣1)27.根据题意得:a•(1+30%)×80%=1.04a;故答案为:1.04a.28.圆的面积为π×()2=,中间正方形的面积为b2,∴图中阴影部分面积为:﹣b2.故答案为:﹣b2.29.∵由题意可得计算过程如下:( x×2+y2)÷2,∴当x=5,y=﹣2时,( x×2+y2)÷2=(5×2+4)÷2=7.故答案为:730.阴影部分的面积是:ab+cd﹣2×32=ab+cd﹣18;故答案为:ab+cd﹣18.31.三角形的周长是2x+1+3x﹣2+8﹣2x=3x+7,当x=3时,原式=3x+7=3×3+7=16.32.在一天的两种商品的买卖中,超市不赚不赔.∵10件A商品一共卖了10×(1+20%)P=12P(元),20件B商品一共卖了20×(1﹣10%)P=18P(元),∴这30件商品一共卖了12P+18P=30P(元),∵30P﹣30P=0,∴超市不赚不赔33.(1)2ab﹣5.(2)a2﹣b2.(3)5a+234.(1)A:10+1.2(x﹣3)=1.2x+6.4;B:8+1.4(x﹣3)=1.4x+3.8;(2)A与B的差价=(1.2x+6.4)﹣(1.4x+3.8)=2.6﹣0.2x.35.阴影部分的面积=GF•DG+GF•CG=GF•CD=×2•a.=a.36.①S==(m2)(4分);②L===(m)37.(1)由题意得,单独买一件运动服需要的钱数为:200+(200﹣a)×0.9即20+0.9a.(2)∵700≤a+b≤900,而打折却有7折和8折两种方式,∴当700≤a+b≤800时,应付费:200+300×0.9+(a+b﹣500)×0.8即为70+0.8a+0.8b(元);当800<a+b≤900时,应付费:200+300×0.9+300×0.8+(a+b﹣800)×0.7即为150+0.7a+0.7b(元)38.(1)每月用水15吨时,水费为:15×3=45元(1分)每月用水35吨时,水费为:3.8(35﹣20)+60=117元…(2分)(2)①如果每月用水x≤20吨,水费为:3x元(4分)②如果每月用水x>20吨,水费为:3.8(x﹣20)+60或3.8x﹣16元39.根据题意得:4(m+y)+2.5(m﹣y)=6.5m+1.5y.轮船共航行了(6.5m+1.5y)千米.40.(1)根据题意得:(m+12)×5=5m+60(千米);答:轮船顺水航行5小时的行程是(5m+60)千米.(2)根据题意得:(m﹣12)×4=4m﹣48(千米)答:轮船逆水航行4小时的行程是(4m﹣48)千米.(3)根据题意得:5m+60﹣(4m﹣48)=m+108(千米)答:轮船顺水航行5小时和逆水航行4小时的行程相差(m+108)千米.41.(1)由题意得:甲旅行团门票总费用:20x+8y;乙旅行团门票总费用:20×2x+8×y=40x+4y;(2)甲旅行团门票总费用:20x+8y=20×10+8×6=248(元);乙旅行团门票总费用:40x+4y=40×10+4×6=424(元),248+424=672(元).答:两个旅行团的门票总费用是672元42.(1)剩余部分的面积为:(60×40﹣4x2)cm2;(2)盒子的体积为:x(60﹣2x)(40﹣2x)cm3;当x=5时,原式=5(60﹣10)(40﹣10)=7500cm3;答:盒子的体积为7500立方厘米43.(1)∵第1排a个座位,后面每排比第一排多1个座位,(2)根据题意得:a+(a+1)+(a+2)+…+(a+9)=10a+(1+9)×9÷2=10a+45答:前10排共有10a+45个座位;(3)∵第11排有(a+10)个座位,第5排有(a+4)个座位,∴第11排比第5排多的座位数是:(a+10)﹣(a+4)=6(个);则第11排比第5排多6个座位44.(1)阴影部分的面积为:a(b﹣a)(3分);(2)当a=5cm,b=7cm时,原式=5×(7﹣5)=10cm2 45.(1)100(4x+1)+10x+x2(1分)=400x+100+10x+x2=x2+410x+100(2分);(2)当x=0时,x2+410x+100=100,当x=1时,x2+410x+100=511,当x=2时,x2+410x+100=924,当x取3,4,…,9时,4x+1>9,不合题意.由上可知,这个三位数是100或511或924.(4分)46.(1)∵第一队植树x棵,第二队植的树比第一队的2倍少80棵,∴第二队的植树棵数为:2x﹣80,∵第三队植的树比第二队植树多了10%.∴第三队的植树棵数为:(2x﹣80)(1+10%),所以三个队共植树:x+2x﹣80+(2x﹣80)(1+10%)=x﹣168,(2)当x=100棵时,全体同学共植树:x﹣168=×100﹣168=352(棵)47.根据题意可知:当x≤2,支出费用为:5元,若某人乘坐出租车x(x>2)千米的付费=5+1.8×(x﹣2),整理得:应付费用为:1.4+1.8x48.(1)1.5a(1分)(2)1.5a(1﹣20%);a(1+40%)各(1分)(3)2010年总收入250万元,(1分)2011年总收入260万元,(1分)260﹣250=10万元.(1分)答:该企业2011年总收入比2010年总收入增加了10万元49.(1)阴影部分的面积:;(2)阴影部分的面积:,故答案为ab ,.(2)学校要印2600份材料,在甲厂印费用=0.2×2600+500=1020(元);在乙厂印费用=0.4×2600=1040元,∵1020<1040,∴在甲厂印刷比较合算51.1)A城市与B城市之间的距离:80t,从A城市到B 城市的时间:小时,答:需要小时.(3分)(2)由题意:t ﹣=t ﹣=t ﹣=(7分)答:可以提前小时到达52.(1)当n≤100时,买n本笔记本所需的钱数是:2.3n,当n>100时,买n本笔记本所需的钱数是:2.2n;(2)因为2.3n>2.2n,所以会出现多买比少买付钱少的情况;(3)如果需要100本笔记本,购买101本笔记本,比较省钱53.(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1635,∵1635>>1630,∴选择甲商场合算54.(1)3a+b,(2)(a﹣b)2,(3)5x+2.55.(1)(2a+b)、(a+2b)…(2分)(2)①依题意可得:(2a+b)(a+2b)=2a2+4ab+ab+2b2=(2a2+5ab+2b2)cm2…(4分)②依题意得a2﹣b2=33即(a+b)(a﹣b)=33又2(a+b)=22即a+b=11①∴a﹣b=3②…(6分)由①②式可求得解得:a=7,b=4当a=7,b=4时,2a2+5ab+2b2=2×72+5×7×4+2×42=270答:这张长方形大铁皮的面积是270cm2.…(8分)(3)共有下列四种方案可供选择:V2=a2bV3=a2bV4=ab2…(12分)∴V1=V4,V2=V3∴V1﹣V2=ab2﹣a2b=ab(b﹣a)∵a>b∴V1=V4<V2=V3∴方案②与③的体积最大.56.(1)由已知得:A日出租车司机比正常情况少行驶:vt﹣(t﹣2)(v﹣5)=2v+5t﹣10(米);(2)由已知得:B日出租车司机比正常情况多行驶(t+2)(v+5)﹣vt=2v+5t+10(米)①,又由(1)和已知的得:2v+5t﹣10=120,将2v+5t=130代入①得140(米).答:B日出租车司机比平时多行驶140千米57.(1)由题意得:应付的车费为:7+(m﹣3)×1.8=1.8m+1.6(元)即他应付1.8m+1.6元车费;(2)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时甲乘出租车行驶了4km,所以1.8×4+1.6=8.8(元),即他应付车费8.8元;(3)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时游客付了10.6元,则可列出方程为:1.8m+1.6=10.6解得:m=5,即从西区大润发到文昌楼大约有5公里58.AB+BC的长=A→C的长,为x,∵CD=0.6米,∴A→C→D的长=x+0.6,A→B→D的长=x﹣0.6,猫的速度=,老鼠的速度=.故答案为:x;x+0.6;x﹣0.6;;.59.(1)此人乘车的次数m,则月票余额是:50﹣0.8m;(2)50﹣0.8m≥0,故答案为:(1)(50﹣0.8m).60.∵一本小说共m 页,一位同学第一天看了全书的少6页,∴第一天看了m﹣6,剩下m ﹣(m﹣6)=m+6,∵第二天看了剩下的多6页,∴第二天看了,剩下:,当m=900时,(页).。

中考数学常考易错专题 1-2《代数式》

中考数学常考易错专题 1-2《代数式》

代数式易错清单1.在规律探索问题中如何用含n的代数式表示.【例1】(2014·湖北十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的().【解析】观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.∵2013÷4=503…1,∴2013是第504个循环组的第2个数.∴从2013到2014再到2015,箭头的方向是.【答案】 D【误区纠错】本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.2.求代数式的值时,一般应先化简再代入求值.【误区纠错】在计算括号内的分式加减法时,通分出错,或者分子加减时出错.【误区纠错】本题易错点一是化简时没注意运算顺序;易错点二是去掉分母计算.名师点拨1.能用字母表示实际意义,正确解释代数式的含义.2.会用数字代替字母求代数式的值.3.能用数学语言表述代数式.提分策略1.列代数式的技巧.列代数式的关键是正确理解数量关系,弄清运算顺序和括号的作用.掌握文字语言和、差、积、商、倍、分、大、小、多、少等在数学语言中的含义,此外还要掌握常见的一些数量关系,如行程、营销利润问题等.【例1】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.【解析】设原收费标准每分钟是x元,则(x-a)(1-20%)=b,解得x=a+1.25b.【答案】a+1.25b2.求代数式的值的方法.求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果,对于特殊的代数式,也可以用以下方法求解:①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入求值;②给出代数式中所含几个字母间的关系,不直接给出字母的值,该类题一般是把代数式通过恒等变形,转化成为用已知关系表示的形式,再代人计算;③在给定条件中,字母间的关系不明显,字母的值含在题设条件中,该类题应先由题设条件求出字母的值,再代人代数式的值.【例2】按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解析】由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.【答案】553.列代数式探索规律.根据一系列数式关系或一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中以图形为载体的数式规律最为常见.猜想这种规律,需要把图形中的有关数量关系式列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论.【例3】观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个★.【解析】观察发现:相邻的下一个图形比这个图形多3个“★”,由此得第n个图形★的个数为3n+1,故第9个图形★的个数为3×9+1=28.【答案】28专项训练一、选择题1. (2014·甘肃天水一模)下列运算中正确的是().A. 3a-2a=1B. a·a2=3a3C. (ab2)3=a3b3D. a2·a3=a52. (2014·福建岚华中学)下列运算正确的是().A. a3÷a3=aB. (a2)3=a5C. D. a·a2=a33. (2014·山东东营模拟)下列运算正确的是().4. (2013·广西钦州四模)下列二次三项式是完全平方式的是().A. x2-8x-16B. x2+8x+16C. x2-4x-16D. x2+4x+165. (2013·江苏东台第二学期阶段检测)下列运算中正确的是().A. 3a+2a=5a2B. 2a2·a3=2a6C. (2a+b)(2a-b)=4a2-b2D. (2a+b)2=4a2+b26. (2013·浙江宁波北仑区一模)对任意实数x,多项式-x2+6x-10的值是().A. 负数B. 非负数C. 正数D. 无法确定二、填空题7. (2014·湖北黄石模拟)化简÷的结果为.8. (2014·山东聊城模拟)下面是用棋子摆成的“上”字:(第8题)如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.9. (2014·山西太原模拟)计算:(x+3)(x-3)= .10. (2014·天津塘沽区一模)计算(a2)3的结果等于.11. (2014·河北廊坊模拟)计算:x3·x3+x2·x4= .12.(2013·河北唐山二模)随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低m元后,又降低20%,此时售价为n元,则该手机原价为元.13. (2013·浙江杭州拱墅一模)计算:3a·(-2a)= ;(2ab2)3= .14. (2013·江苏南京一模)课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,该推导过程的第一步是:(a-b)2= .三、解答题15. (2014·江苏无锡港下初中模拟)化简:16. (2014·北京平谷区模拟)已知a2+2a=3,求代数式2a(a-1)-(a-2)2的值.17. (2014·浙江金华6校联考)先化简,再求值:(a+2)(a-2)+4(a-1)-4a,其中a=-3.18.(2013·北京龙文教育一模)已知x2+3x-1=0,求代数式的值.参考答案与解析1. D[解析]3a-2a=a;a·a2=a3;(ab2)3=a3b6.3. C[解析]3x3-5x3=-2x3,6x3÷2x-2=3x5,-3(2x-4)=-6x+12.4.B[解析]根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.5. C[解析]3a+2a=5a;2a2·a3=2a5;(2a+b)2=4a2+4ab+b2.6. A[解析]原式=-(x-3)2-1.8.4n+2[解析]第一个“上”字需要6(=4×1+2)个棋子,第二个“上”字需要10(=4×2+2)个棋子,第三个“上”字需要14(=4×3+2)个棋子,∴第n个“上”字需用4n+2个棋子.9.x2-9[解析]考查平方差公式.10.a6[解析]a2·a3=a5,(a2)3=a6.11. 2x6[解析]原式=x6+x6=2x6.13.-6a28a3b6[解析]3a·(-2a)=-6a2;(2ab2)3=23a3b6=8a3b6.14. [a+(-b)]2(注:写a2+2a·(-b)+(-b)2也可)16.原式=2a2-2a-(a2-4a+4)=2a2-2a-a2+4a-4=a2+2a-4.∵a2+2a=3,∴原式=3-4=-1.17.原式=a2-4+4a-4-4a=a2-8.当a=-3时,原式=1.学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。

列代数式试题集锦

列代数式试题集锦

列代数式试题集锦一、数量关系用“和、差、倍、分”关键词直接表达,使用加、减、乘、除符号列式。

1.“a 的相反数与a 的2倍的差”,用代数式表示为( )A 、a -2aB 、-a -2aC 、a+2aD 、-a+2a2.如果甲数为x ,甲数是乙数的2倍,则乙数是()A 、x 21B 、2xC 、x+2D 、21 x 3.a 平方的2倍与3的差,用代数式表示为________;当a=-1时,此代数式的值为_________.4.用代数式表示“x的平方的3倍与1的差”为5.已知甲数是乙数的相反数的2倍,设乙数为x, 用关于x 的代数式表示甲数.二、利用归纳规律列代数式,首先要发现已知的一组数字或图形与序号的关系规律,进而用序号的字母表示这种数量关系。

1.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .21B .24C .27D .302.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92-4× 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.3.(3分)(2015•牡丹江)一列单项式:﹣x 2,3x 3,﹣5x 4,7x 5,…,按此规律排列,则第7个单项式为 .4.(3分)观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示)5.一种商品每件成本a 元,按成本增加30%定价,现因出现库存积压减价,按定价的80%出售,每件还能盈利 元(结果用含a 的式子表示).6.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)7.(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有______个“•”.三、利用图形周长、面积、体积公式,利用路程公式等各类公式表示数量关系。

初一数学列代数式试题

初一数学列代数式试题

初一数学列代数式试题1.(2014•乐山)苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【答案】C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.解:买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选:C.点评:此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.2.(2014•台湾)若有一等差数列,前九项和为54,且第一项、第四项、第七项的和为36,则此等差数列的公差为何?()A.﹣6B.﹣3C.3D.6【答案】A【解析】由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.解:∵前九项和为54,∴第五项=54÷9=6,∵第一项、第四项、第七项的和为36,∴第四项=36÷3=12,∴公差=第五项﹣第四项=6﹣12=﹣6.故选:A.点评:此题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用.3.(2014•济南)现定义一种变换:对于一个由有限个数组成的序列S,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)【答案】D【解析】根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出选择.解:A、∵2有3个,∴不可以作为S1,故A选项错误;B、∵2有3个,∴不可以作为S1,故B选项错误;C、3只有1个,∴不可以作为S1,故C选项错误;D、符合定义的一种变换,故D选项正确.故选:D.点评:考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.4.(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A.B.C.D.1【答案】B【解析】根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案.数解;每三个数一循环,1、,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,1=,故选:B.点评:本题考查了数字的变化类,利用了数字的变化规律.5.(2014•重庆)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()A.22B.24C.26D.28【答案】C【解析】仔细观察图形,找到图形变化的规律,利用发现的规律解题即可.解:第一个图形有2+6×0=2个三角形;第二个图形有2+6×1=8个三角形;第三个图形有2+6×2=14个三角形;…第五个图形有2+6×4=26个三角形;故选:C.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,发现图形变化的规律.6.(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40【答案】B【解析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.7.(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨【答案】B【解析】根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.8.(2014•海港区一模)如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2010次输出的结果为()A.3B.6C.12D.24【答案】A【解析】由图示知,当输入的数x为偶数时,输出x;当输入的数x是奇数时,输出x+3.按此规律计算即可求解.解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…故第2010次输出的结果为3.故选A.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题,注意输入的数x分为偶数和奇数两种情况.9.(2014•大兴区一模)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有18个,且具有“波动性质”,则这18个数的和为()A.﹣64B.0C.18D.64【答案】B【解析】根据已知得出,an+1=an+an+2,an+2=an+1+an+3,an+3=an+2+an+4,进而得出an+an+2+an+4=0,a n+1+an+3+an+5=0,即可得出答案.解:由题意得:a n+1=an+an+2,a n+2=an+1+an+3,a n+3=an+2+an+4,三式相加,得:an +an+2+an+4=0,同理可得:an+1+an+3+an+5=0,以上两式相加,可知:该数列连续六个数相加等于零,18是6的倍数,所以结果为零.故选:B.点评:此题主要考查了数字变化规律,根据已知得出an +an+2+an+4=0,an+1+an+3+an+5=0是解题关键.10.(2014•盐都区一模)现规定正整数n的“N运算”是:①当n为奇数时,N=3n+1;②当n为偶数时,N=n××…(其中N为奇数).如:数3经过1次“N运算”的结果是10,经过2次“N运算”的结果为5,经过3次“N运算”的结果为16,经过4次“N运算”的结果为1,则数7经过2014次的“N运算”得到的结果是()A.1B.4C.5D.16【答案】A【解析】按照①②运算一次一次的输入,得出它们的结果,从中发现规律解决问题.解:n=7第一次:3×7+1=22第二次:22×=11第三次:3×11+1=34第四次:34×=17第五次:17×3+1=52第六次:52××=13第七次:13×3+1=40第八次:40×××=5第九次:5×3+1=16第十次:16×=1第十一次:1×3+1=4第十二次:4×=1…从第11次开始,4、1两个数字以此不断循环出现.(2014﹣10)÷2=1002数7经过2014次的“N运算”得到的结果是1.故选:A.点评:此题考查了数字的变化规律;关键是通过运算找出规律,利用循环规律解决问题.。

北师大版七年级下《第1章整式的运算》2014年单元测试卷

北师大版七年级下《第1章整式的运算》2014年单元测试卷

第1章整式的运算单元测试卷一、选择题(每小题3分,共39分)﹣xy+y)﹣(﹣x﹣﹣.a=(((×,第1章整式的运算单元测试卷参考答案与试题解析一、选择题(每小题3分,共39分)、错误,应等于232y y﹣2xy+24167.(3分)小敏去一家超市买洗衣粉和肥皂,恰好赶上某种品牌的洗涤用品正在该超市搞促销活动:买一袋洗衣粉赠送一块肥皂.小敏决定购买该产品,已知洗衣粉的价格为x元/袋,肥皂的价格为y元/块,小敏一共买回3袋洗m n m+n11.(3分)下列各式的计算中不正确的个数是()①100÷10﹣1=10 ②10﹣4(2×7)0=10000﹣1﹣3﹣4﹣1﹣4÷=10﹣12.(3分)如图,表示阴影部分面积的代数式是()13.(3分)(2007•临夏州)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()二、填空题(每空3分,共24分)14.(3分)科学记数法表示0.000000002013= 2.013×10﹣9.15.(3分)2.76×10﹣4所表示的小数是0.000276.16.(6分)计算:(2a3﹣a2)÷a2=2a﹣1.=﹣x5.x;﹣17.(3分)今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(﹣x2+2xy﹣y2)﹣(﹣x2+7xy﹣y2)=﹣x2+______+y2.空格的地方被钢笔水弄污了,那么空格中的一项是﹣5xy.18.(3分)(2008•金华)如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.19.(3分)已知a+b=10,ab=﹣2,则(3a+b)﹣(2a﹣ab)=8.20.(3分)七年级七班教室后墙上的“学习园地”是一个长方形,其中一边长为3a,另一边长为2a﹣3b+1,则这个“学习园地”的面积为6a2﹣9ab+3a.三、判断下面的计算对不对?(错的打×,对的打√,12分)21.(12分)判断下面的计算对不对(1)b5•b5=2b5×(2)b5+b5=b10×(3)x5÷x5=0×(4)(﹣2a2c)3=﹣8a5c3×(5)c•c3=c3×(6)(﹣a2)5=﹣a10.√.四、计算题(每小题24分,共24分)22.(24分)计算:①﹣2a•(3a2﹣a+3)②(﹣3a3)2•a3+(﹣4a)2•a7+(﹣5a3)3③(a+3)(a﹣1)+a(a﹣2)④(b2)3•(﹣b3)4•(b5)3.五、解答题23.(10分)(2009•长沙)先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b=﹣.时,)24.(11分)化简求值:(a+2b)2﹣(a﹣b)(a﹣4b),其中,a=,b=2012.,25.(7分)一台电子计算机每秒可运行4×109次运算,它工作5×102秒可作多少次运算?26.(11分)如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并观察下列问题.(1)在第4个图中,共有白色瓷砖20块;(2)在第n个图中,共有瓷砖(n+2)(n+3)块;(3)如果每块黑瓷砖4元,每块白瓷砖3元,铺设当n=10时,共需花多少钱购买瓷砖?27.(12分)某校举办模型制作比赛,小聪同学制作了小汽车模型,如图为小汽车模型的设计图,上面是梯形,中间是长方形,下面是两个半圆.(1)用含a、b的代数式表示该设计图的面积S;(2)当a=2cm,b=3cm时,求这个设计图的面积(π取3).(+5ab+( 1.2b=πS=六、附加题:28.(2010•东莞)阅读下列材料:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=[n×(n+1)×(n+2)];(3)1×2×3+2×3×4+3×4×5+…+7×8×9=1260.[a2=((11=(+(++(+[n((((((+(+(29.若a x=3,a y=5,求:(1)a x﹣y的值;(2)a3x﹣2y的值.;.30.已知(a+b)2=10,(a﹣b)2=2,则求ab的值是多少?31.已知x+y=9,,求(x﹣y)2的值.,整体代入进行求解.,×=64参与本试卷答题和审题的老师有:CJX;zhehe;HLing;yu123;开心;zhangbo;张超。

列代数式专项练习60题(有答案)ok

列代数式专项练习60题(有答案)ok

列代数式专项练习60题(有答案)1.正方体棱长为a,体积为V,则V与a之间的关系式为_________ ,当a=4cm时,V= _________ cm3.2.一个数比a的3倍的平方小3,则这个数是_________ .3.体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是_________ .4.某商品的进价是x元,售价是132元,则此商品的利润是_________ .5.“x的2倍与y的3倍的差”列式为_________ .6.在负整数a后添上3,使其位数增加一位,则这个数可表示为_________ .7.若一个数比x的2倍小3,则这个数可表示为_________ .8.“比a的3倍小2的数”用整式表示是_________ .9.“x与y的和”用代数式可以表示为_________ .10.用代数式表示“a的3倍与4的和”为_________ .11.某校共有学生x人,其中女生占总数的m%,则男生人数为_________ 人.12.某商品进价是m元,提价30%后标价,又打九折出售,则该商品的利润是_________ .13.一个笼子里的鸡a只,兔b只,则笼子里的鸡和兔的脚共有_________ 只.14.某工厂的产值由a万元增加了20%,达到_________ 万元.15.一台a元的电视机,降价20%后的价格为_________ 元.16.某工厂今年的产值是a万元,比去年增加了20%,则去年的产值是_________ .17.苹果每千克p元,若苹果超过10千克以上,则全部9折优惠,买15千克应付_________ 元.18.张红在一次考试中,得数学a分,语文b分,则张红这二科的平均成绩是_________ 分.19.科学家在南极考察时,拾到一块不规则的矿石,科学家用一把刻度尺,一只圆柱体的玻璃杯和足量的水,就测出了这块矿石的体积.如果玻璃杯的内直径为r,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则这块矿石的体积是_________ .20.一件商品原价为a元,先涨价5元后,再按8.5折出售,那么现售价用代数式表示为_________ .21.如图,正方形的边长为2,分别以正方形的两个相对顶点为圆心,以正方形的一边为半径画弧,则阴影部分的面积是_________ .22.如图是数值转换器的示意图,如果输入的数字用x表示,那么输出的数字可以用代数式_________ 表示.23.小亮从一列火车的第m节车厢起,一直数到第2m节车厢,他数过的车厢节数是_________ .24.小明在考试前到文具店里买了2支2B的铅笔和一副三角板,2B的铅笔每支x元,三角板每副3元,小明总共应付_________ 元(用含x的代数式表示).25.三毛早上从报社以每份0.4元的价格购进了a份报纸.以每份0.5元的价格出售,一天共售b份报纸,剩余的报纸以每份0.2元的价格退回报社,回家后三毛发现这一天的辛苦还是赚到了钱,那么三毛这天赚了_________ 元.26.n(n≥2)个球队进行单循环赛(参加比赛的每个队都与其他所有的队各赛一场),总的比赛场数是_________ .27.绥阳某商店的一种商品每件进价为a元,按进价提高30%标价,再按标价的8折出售,那么打折后,每件商品的售价是_________ 元.28.“圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a,中间方孔边长为b,则图示阴影部分面积为_________ .29.右下图是一个数值转换机的示意图.若输入的x是5,y是﹣2,则输出的结果是_________ .30.如图,两个长方形的一部分重叠在一起,重叠部分是边长为3的正方形,则阴影部分的面积是_________ .31.三角形三边的长分别是(2x+1)厘米,(3x﹣2)厘米,(8﹣2x)厘米,求这个三角形的周长,如果x=3,三角形的周长是多少?32.晓霞的爸爸开了一个超市,一天,她爸爸分别以P元进了A、B两种商品,后来A商品提价20%,B商品降价10%,这样在某一天中,A商品卖了10件,B商品卖了20件,问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.33.列代数式:(1)比a与b的积的2倍小5的数;(2)a与b的平方差;(3)被5除商是a,余数是2的数.34.我国出租车收费标准因地而异,A市为:起步价10元,3km后每千米加价1.2元;B市为:起步价8元,3km 后每千米加价1.4元;(1)试分别写出在A,B两城市坐出租车x(x>3)km所付的车费;(2)求在A,B两城市坐出租车x(x>3)km的差价是多少元?35.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.36.窗户的形状如图,其上部是半圆形,下部是长方形.已知窗户的下部宽为xm,窗户长方形部分高度为1.5xm.计算:(1)窗户的面积S;(2)窗框的总长L.37.“十一”黄金周期间,小刚拿着妈妈给的800元钱到重百商场购买运动服和运动鞋,他来到自己喜欢的“阿迪、达斯”专柜前看到该品牌打出的优惠条件:标价200元以内(含200元)不打折;标价200元以上的按如下方式打折:(1)200~500元(含500元)的部分打9折;(2)500~800元(含800元)的部分打8折;(3)800元以上的部分打7折(商品金额可累计),他又看到运动服标价a元/件(400≤a≤500),运动鞋标价b元/双(300≤b≤400);(1)算他单独买一件运动服需多少钱;(用含a的代数式表示)(2)计算他一次性买一件运动服和一双运动鞋共需多少钱.(用含a、b的代数式表示)38.为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.(1)如果小红家每月用水15吨,水费是多少.如果每月用水35吨,水费是多少;(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢.39.某轮船顺水航行4小时,逆水航行2.5小时,已知轮船在静水中的速度为m千米/小时,水流速度为y千米/小时.轮船共航行了多少千米?40.一轮船航行于甲、乙两港口之间,在静水中的航速为m千米/小时,水流速度为12千米/小时,(1)则轮船顺水航行5小时的行程是多少?(2)轮船逆水航行4小时的行程是多少?(3)轮船顺水航行5小时和逆水航行4小时的行程相差多少?41.某公园的成人票价是20元,儿童票价是8元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童人数是甲旅行团的.(1)求两个旅行团的门票总费用是多少?(2)当x=10人,y=6人时,求两个旅行团的门票总费用是多少元?42.小明想把一长是60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个相同小正方形(如图).(1)若设这些小正方形的边长为xcm,求图中阴影部分小长方形的面积.(2)当x=5时,求这个盒子的体积.43.某礼堂第1排a个座位,后面每排比第一排多1个座位,用含a的代数式表示:(1)第2排有多少个座位?第5排有多少个座位?第10排有多少个座位?(2)前10排共有多少个座位?(3)第11排比第5排多多少个座位?44.如图,正方形ABCD的边长为a,长方形AEFD的长AE为b,(1)用代数式表示图中阴影部分的面积;(2)求当a=5cm,b=7cm时,阴影部分的面积.45.一个三位数,个位上的数是十位上的数的平方,百位上的数比十位上的数的4倍多1.将十位上的数设为x.(1)列式表示这个三位数;(2)这个三位数是多少?46.学校组织初一年级全体同学参加植树造林劳动.全体同学分三队,第一队植树x棵,第二队植的树比第一队植树的两倍少80棵,第三队植的树比第二队植树多了10%.(1)求全体同学一共植树多少棵?(用含x的式子表示)(2)若x=100棵,求全体同学共植树多少棵?47.攀枝花市出租车收费标准为:起步价5元(其中包含2千米),2千米后每千米价1.8元.则某人乘坐出租车x 千米的付费为多少元.(用代数式表示)48.龙港某企业有甲、乙两种经营收入,2010年甲种年收入是乙种年收入的1.5倍,预计2011年甲种年收入将减少20%,而乙种年收入将增加40%,记2010年乙种年收入为a万元.(1)2010年该企业甲种年收入为_________万元;(2)2011年该企业甲种年收入为_________万元;乙种年收入为_________万元.(3)当a=100万元时,请问该企业2011年总收入比2010年总收入是增加,还是减少?增加或减少了多少?请说明理由.49.用代数式表示下列图形中阴影部分的面积.(1)S阴影=_________;(2)S阴影=_________.50.学校需要到印刷厂印刷n份材料,甲印刷厂的收费标准是每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂的收费标准是每份材料收0.4元印刷费,不收制版费.(1)两个印刷厂的收费各是多少元?(用含n的代数式来表示)(2)学校要印2600份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.51.一辆汽车以每小时80千米的速度行驶,从A城市到B城市需要t小时,按题意解决下列问题(1)如果汽车行驶的速度每小时增加v千米,那么从从A城市到B城市还需要多少小时.(2)如果某次因紧急情况,从B城市返回到A城市的平均速度比原来每小时增加12千米,那么预计返回比原来可提前多少时间.52.一种笔记本售价为2.3元/本,如果买100本以上(不含100本),售价为2.2元/本.(1)列式表示买n本笔记本所需的钱数;(2)按照售价规定,会不会出现多买比少买反而付钱少的情况?(3)如果需要100本笔记本,怎样购买更省钱?并说明理由.53.甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在_________商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.54.列代数式:(1)a的3倍与b的和;(2)a与b的差的平方;(3)被5除商是x,余数是2的数.55.如图,将一张长方形大铁皮切割(切痕为虚线)成九块,其中有两块是边长都为a厘米的大正方形,两块是边长都为b厘米的小正方形,且a>b.(1)这张长方形大铁皮长为_________厘米,宽为_________厘米(用含a、b的代数式表示);(2)①求这张长方形大铁皮的面积(用含a、b的代数式表示);②若最中间的小长方形的周长为22厘米,大正方形与小正方形的面积之差为33厘米2,试求a和b的值,并求这张长方形大铁皮的面积;(3)现要从切块中选择5块,恰好焊接成一个无盖的长方体盒子,共有哪几种方案可供选择(画出示意图)?按哪种方案焊接的长方体盒子的体积最大?试说明理由.(接痕的大小和铁皮的厚度忽略不计)56.在正常情况下,某出租车司机每天驾车行驶t小时,且平均速度为v千米/小时.已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/小时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/小时,(1)求A日出租车司机比正常情况少行驶多少千米?(用含v,t的代数式表示)(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米?57.已知:我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?58.如图为一梯级的纵截面,一只老鼠沿长方形的两边A→B→D路线逃跑,一只猫同时沿梯级(折线)A→C→D的路线去捉,结果在距离C点0.6米的D处,捉住了老鼠.请将下表中的语句“译成”数学语言(写出代数式).设梯级(折线)A→C的长度x米AB+BC的长为A→C→D的长为A→B→D的长为设猫捉住老鼠所用时间为t秒猫的速度老鼠的速度59.某地公交公司推出刷卡月票制,即持有这种月票的乘客通过刷卡扣除每次的车票.某人买了50元的这种月票卡,如果此人乘车的次数用m表示,每次乘车的余额用n表示,它们之间的关系如下表:乘车次数m 月票余额n/元1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……回答下列问题:(1)如果此人乘车的次数m,那么月票余额是_________元.(2)此人最多能乘车几次?简单说明理由.60.一本小说共m页,一位同学第一天看了全书的少6页,第二天看了剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=900,则第三天看了多少页?参考答案:1.∵正方体边长为a,∴它的体积是V=a3.当a=4cm时,V=4 3=64cm3.故答案为:a3,64.2.由题意得:(3a)2﹣3=9a2﹣3,故答案为:9a2﹣3.3.设没分为x人,则教练有x人,学生有20x人,由题意,得∴20x=m+n,∴x=,∴教练有人.故答案为:人4.∵某商品的进价是x元,售价是132元,∴此商品的利润=售价﹣进价=132﹣x(元).故答案为(132﹣x)元.5.x的2倍是2x,y的3倍是3y,则x的2倍与y的3倍的差为:2x﹣3y.故答案是:2x﹣3y.6.在负整数a后添上3,使其位数增加一位,则这个数可表示为10a﹣3.故答案为10a﹣3.7.一个数比x的2倍小3,则这个数可表示为2x﹣3.故填:2x﹣38.由题意得:3a﹣2,故答案为:3a﹣2.9.“x与y的和”用代数式可以表示为:x+y.故答案为x+y10.先求a的3倍是3a,再求与4的和为3a+4.故答案为:3a+4.11.由题意得:x﹣m%x,故答案为:(x﹣m%x).12.∵某商品进价是m元,提价30%后标价,又打九折出售,∴此商品的售价为0.9×1.3m=1.17m(元),∴该商品的利润是1.17m﹣m=0.17m(元).故答案为0.17m13.∵鸡有两只脚,兔有四只脚,又∵鸡有a只,兔有b只,∴鸡和兔的脚共有:2a+4b.故答案为:2a+4b14.根据题意得产值由a万元增加了20%,达到的产值15.∵电视机的原价为a元,∴降价20%后的价格为(1﹣20%)a=0.8a(元).故答案为0.8a16.∵今年比去年增加了20%,∴今年的产值占去年的1+20%=120%,∴去年的产值=a÷120%=a万元.故答案为:a万元.17.15×0.9p=13.5p.故答案是:13.5p.18.二科的平均成绩是:(a+b).故答案是:(a+b).19.根据圆柱的体积公式可得这块矿石的体积为:.故填:20.根据一件商品原价为a元,先涨价5元,则价格变为:a+5,再按8.5折出售,依题意得:(a+5)×0.85.故答案为:0.85(a+5)21.S阴影=2S扇形﹣S正方形=2×﹣22=π×22﹣22=2(π﹣2).故填2(π﹣2)22.根据示意图可得:2x﹣3.故答案为2x﹣3.23.根据题意列得:他数过的车厢有(2m﹣m+1)即(m+1)节.故答案为:m+1.故选D24.因为2支2B铅笔2x元,一副三角板3元,所以小明总共应付(2x+3)元.故答案为:2x+325.∵每份0.4元的价格购进了a份报纸,∴这些报纸的成本是0.4a元,∵每份0.5元的价格出售,一天共售b份报纸,∴共买了0.5b元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a﹣b)元,他一天工赚到的钱数为:0.5b+0.2(a﹣b)﹣0.4a=0.3b26.n支球队举行单循环比赛,比赛的总场数为:n(n ﹣1).故答案为:n(n﹣1)27.根据题意得:a•(1+30%)×80%=1.04a;故答案为:1.04a.28.圆的面积为π×()2=,中间正方形的面积为b2,∴图中阴影部分面积为:﹣b2.故答案为:﹣b2.29.∵由题意可得计算过程如下:( x×2+y2)÷2,∴当x=5,y=﹣2时,( x×2+y2)÷2=(5×2+4)÷2=7.故答案为:730.阴影部分的面积是:ab+cd﹣2×32=ab+cd﹣18;故答案为:ab+cd﹣18.31.三角形的周长是2x+1+3x﹣2+8﹣2x=3x+7,当x=3时,原式=3x+7=3×3+7=16.32.在一天的两种商品的买卖中,超市不赚不赔.∵10件A商品一共卖了10×(1+20%)P=12P(元),20件B商品一共卖了20×(1﹣10%)P=18P(元),∴这30件商品一共卖了12P+18P=30P(元),∵30P﹣30P=0,∴超市不赚不赔33.(1)2ab﹣5.(2)a2﹣b2.(3)5a+234.(1)A:10+1.2(x﹣3)=1.2x+6.4;B:8+1.4(x﹣3)=1.4x+3.8;(2)A与B的差价=(1.2x+6.4)﹣(1.4x+3.8)=2.6﹣0.2x.35.阴影部分的面积=GF•DG+GF•CG=GF•CD=×2•a.=a.36.①S==(m2)(4分);②L===(m)37.(1)由题意得,单独买一件运动服需要的钱数为:200+(200﹣a)×0.9即20+0.9a.(2)∵700≤a+b≤900,而打折却有7折和8折两种方式,∴当700≤a+b≤800时,应付费:200+300×0.9+(a+b﹣500)×0.8即为70+0.8a+0.8b(元);当800<a+b≤900时,应付费:200+300×0.9+300×0.8+(a+b﹣800)×0.7即为150+0.7a+0.7b(元)38.(1)每月用水15吨时,水费为:15×3=45元(1分)每月用水35吨时,水费为:3.8(35﹣20)+60=117元…(2分)(2)①如果每月用水x≤20吨,水费为:3x元(4分)②如果每月用水x>20吨,水费为:3.8(x﹣20)+60或3.8x﹣16元39.根据题意得:4(m+y)+2.5(m﹣y)=6.5m+1.5y.轮船共航行了(6.5m+1.5y)千米.40.(1)根据题意得:(m+12)×5=5m+60(千米);答:轮船顺水航行5小时的行程是(5m+60)千米.(2)根据题意得:(m﹣12)×4=4m﹣48(千米)答:轮船逆水航行4小时的行程是(4m﹣48)千米.(3)根据题意得:5m+60﹣(4m﹣48)=m+108(千米)答:轮船顺水航行5小时和逆水航行4小时的行程相差(m+108)千米.41.(1)由题意得:甲旅行团门票总费用:20x+8y;乙旅行团门票总费用:20×2x+8×y=40x+4y;(2)甲旅行团门票总费用:20x+8y=20×10+8×6=248(元);乙旅行团门票总费用:40x+4y=40×10+4×6=424(元),248+424=672(元).答:两个旅行团的门票总费用是672元42.(1)剩余部分的面积为:(60×40﹣4x2)cm2;(2)盒子的体积为:x(60﹣2x)(40﹣2x)cm3;当x=5时,原式=5(60﹣10)(40﹣10)=7500cm3;答:盒子的体积为7500立方厘米43.(1)∵第1排a个座位,后面每排比第一排多1个座位,(2)根据题意得:a+(a+1)+(a+2)+…+(a+9)=10a+(1+9)×9÷2=10a+45答:前10排共有10a+45个座位;(3)∵第11排有(a+10)个座位,第5排有(a+4)个座位,∴第11排比第5排多的座位数是:(a+10)﹣(a+4)=6(个);则第11排比第5排多6个座位44.(1)阴影部分的面积为:a(b﹣a)(3分);(2)当a=5cm,b=7cm时,原式=5×(7﹣5)=10cm2 45.(1)100(4x+1)+10x+x2(1分)=400x+100+10x+x2=x2+410x+100(2分);(2)当x=0时,x2+410x+100=100,当x=1时,x2+410x+100=511,当x=2时,x2+410x+100=924,当x取3,4,…,9时,4x+1>9,不合题意.由上可知,这个三位数是100或511或924.(4分)46.(1)∵第一队植树x棵,第二队植的树比第一队的2倍少80棵,∴第二队的植树棵数为:2x﹣80,∵第三队植的树比第二队植树多了10%.∴第三队的植树棵数为:(2x﹣80)(1+10%),所以三个队共植树:x+2x﹣80+(2x﹣80)(1+10%)=x﹣168,(2)当x=100棵时,全体同学共植树:x﹣168=×100﹣168=352(棵)47.根据题意可知:当x≤2,支出费用为:5元,若某人乘坐出租车x(x>2)千米的付费=5+1.8×(x﹣2),整理得:应付费用为:1.4+1.8x48.(1)1.5a(1分)(2)1.5a(1﹣20%);a(1+40%)各(1分)(3)2010年总收入250万元,(1分)2011年总收入260万元,(1分)260﹣250=10万元.(1分)答:该企业2011年总收入比2010年总收入增加了10万元49.(1)阴影部分的面积:;(2)阴影部分的面积:,故答案为ab ,.(2)学校要印2600份材料,在甲厂印费用=0.2×2600+500=1020(元);在乙厂印费用=0.4×2600=1040元,∵1020<1040,∴在甲厂印刷比较合算51.1)A城市与B城市之间的距离:80t,从A城市到B 城市的时间:小时,答:需要小时.(3分)(2)由题意:t ﹣=t ﹣=t ﹣=(7分)答:可以提前小时到达52.(1)当n≤100时,买n本笔记本所需的钱数是:2.3n,当n>100时,买n本笔记本所需的钱数是:2.2n;(2)因为2.3n>2.2n,所以会出现多买比少买付钱少的情况;(3)如果需要100本笔记本,购买101本笔记本,比较省钱53.(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1635,∵1635>>1630,∴选择甲商场合算54.(1)3a+b,(2)(a﹣b)2,(3)5x+2.55.(1)(2a+b)、(a+2b)…(2分)(2)①依题意可得:(2a+b)(a+2b)=2a2+4ab+ab+2b2=(2a2+5ab+2b2)cm2…(4分)②依题意得a2﹣b2=33即(a+b)(a﹣b)=33又2(a+b)=22即a+b=11①∴a﹣b=3②…(6分)由①②式可求得解得:a=7,b=4当a=7,b=4时,2a2+5ab+2b2=2×72+5×7×4+2×42=270答:这张长方形大铁皮的面积是270cm2.…(8分)(3)共有下列四种方案可供选择:V2=a2bV3=a2bV4=ab2…(12分)∴V1=V4,V2=V3∴V1﹣V2=ab2﹣a2b=ab(b﹣a)∵a>b∴V1=V4<V2=V3∴方案②与③的体积最大.56.(1)由已知得:A日出租车司机比正常情况少行驶:vt﹣(t﹣2)(v﹣5)=2v+5t﹣10(米);(2)由已知得:B日出租车司机比正常情况多行驶(t+2)(v+5)﹣vt=2v+5t+10(米)①,又由(1)和已知的得:2v+5t﹣10=120,将2v+5t=130代入①得140(米).答:B日出租车司机比平时多行驶140千米57.(1)由题意得:应付的车费为:7+(m﹣3)×1.8=1.8m+1.6(元)即他应付1.8m+1.6元车费;(2)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时甲乘出租车行驶了4km,所以1.8×4+1.6=8.8(元),即他应付车费8.8元;(3)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时游客付了10.6元,则可列出方程为:1.8m+1.6=10.6解得:m=5,即从西区大润发到文昌楼大约有5公里58.AB+BC的长=A→C的长,为x,∵CD=0.6米,∴A→C→D的长=x+0.6,A→B→D的长=x﹣0.6,猫的速度=,老鼠的速度=.故答案为:x;x+0.6;x﹣0.6;;.59.(1)此人乘车的次数m,则月票余额是:50﹣0.8m;(2)50﹣0.8m≥0,解得m≤62.5,∴此人最多能乘车62次.故答案为:(1)(50﹣0.8m).60.∵一本小说共m 页,一位同学第一天看了全书的少6页,∴第一天看了m﹣6,剩下m ﹣(m﹣6)=m+6,∵第二天看了剩下的多6页,∴第二天看了,剩下:,当m=900时,(页).列代数式----11。

第2章 整式的加减八大专题训练

第2章  整式的加减八大专题训练

第2章:《整式的加减》八大专题训练专训1:列代数数式◐名师点金◑列代数式就是先将文字叙述的语言表示为数量或数量关系,再用数学式子表示出来,要正确列出代数式需要注意以下几点:(1)仔细辨别词义;(2)弄清数量关系;(3)注意运算顺序;(4)规范书写格式.训练角度1:列代数式表示数量关系1.用代数式表示:(1)a,b两数的平方和减去它们乘积的2倍;(2)a,b两数的和的平方减去它们的平方和;(3)偶数,奇数;(4)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;(5)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数。

训练角度2:列代数式解决几何问题2.有若干张边长都是2的三角形纸片,从中取出一些纸片按如图所示的方式拼接起来,可以拼成一个大的平行四边形或一个大的梯形,如果取的纸片数为a,试用含n的代数式表示拼成的平行四边形或梯形的周长。

训练角度3:列代数式解决实际生活中的问题3.随着十一黄金周的来临,父亲、儿子、女儿三人准备外出旅游.甲旅行社规定:大人买一张全票,两个孩子的票价可按全票价的一半优惠;乙旅行社规定:三人可购买团体票,团体票价是全票价的60%.已知两个旅行社的全票价相同,则他们选择哪个旅行社较省钱?训练角度4:列代数式解决规律探究问题4.观察图中小黑点的摆放规律,并按照这样的规律继续摆放,若第n个图形中小黑点的个数为y.请解答下列问题:(1)填表(2)当n=8时,y=__________.(3)用含n的代数式表示y.n 1 2 3 4 5 ⋅⋅⋅y 1 3 7 13 ⋅⋅⋅专训2:与数有关的排列规律◐名师点金◑1.探究数式中的排列规律,关键是找出前面几个数与自身序号数的关系,从而找出一般规律,进而解决问题.2.探究数阵中的排列规律,一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.训练角度1:数式中的排列规律1.从1开始得到如下的一列数:1,2,4,8,16,22,24,28,….其中每一个数加上自己的个位数,成为下一个数.上述一列数中小于100的个数为()A.21B.22C.23D.992现察规律:1=21,1+3=22,1+3+5=23,1+3+5+7=24,…,1+3+5+7+…+(2n-1)的值是____________; 1+3+5+7+…+31的值为______________.训练角度2:数阵中的排列规律类型1:三角形排列3.请看杨辉三角(如图),并观察下列等式:4322344322332221464)(33)(2)(b ab b a b a a b a b ab b a a b a b ab a b a b a b a ++++=++++=+++=++=+)(根据前面各式的规律,则6)(b a +=______________________________________.类型2:长方形排列4.如图是某月的月历.(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变带阴影的长方形框的大小,将带阴影的长方形框移至其他几个位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的月历都成立吗?类型3:十字排列5.将连续的奇数1,3,5,7,9,…,按如图所示的规律排列.(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型4:斜排列6.如图所示是2018年8月份的月历.(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.【例2】把正偶数按如图所示的方法排成数阵,现用一平行四边形框圈出四个数(如下图):(1)若框中最小的一个数为x,请用x的代数式表示另外三个数;(2)若框中最大的一个数为第n行第三列所在的数,请用含n的代数式表示另外三个数,并求出此时框内四个式子的和.专训3:图形中的排列规律◐名师点金◑图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.训练角度1:图形变化规律探究1.观察下列一组图形(如图),其中图①中共有2颗星,图2中共有6颗星,图③中共有11颗星,图④中共有17颗星,…,按此规律,图⑧中星星的颗数是()A.43B.45C.51D.53训练角度2:图形个数规律探究类型1:三角形个数规律探究2.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成的.第1个图案中有4个三角形,第2个图案中有7个三角形,第3个图案中有10个三角形……依此规律,第n个图案中有________个三角形(用含n的代数式表示)类型2:四边形个数规律探究3.如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为( )A.20B.27C.35D.404.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的有90人,则需要这样的餐桌多少张?类型3:点阵图形中点的个数规律探究4.观察如图所示的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应等式;(2)通过猜想,写出与第n个图形相对应的等式.专训4:巧用整式的相关概念求值◐名师点金◑根据整式的概念求某些字母的值时,一般需要列出关于这些字母的方程.解此类问题经常利用的是单项式或多项式的次数概念;同类项的概念;单项式的系数不等于0;多项式某项的系数等于0或不等于0等。

4.4 整式

4.4 整式

绝密★启用前2013-2014学年度4.4 整式试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.如果m 、n 都是自然数,则多项式x m+y n-2m+n的次数是( ) A 、2m+2n B 、m 或n C 、m+n D 、m 、n 中的较大数 【答案】D【解析】本题考查的多项式的次数由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而-2m+n是常数项,所以多项式的次数应该是x ,y 的次数,由此可以确定选择项.∵-2m+n是常数项,∴多项式x m +y n -2m+n的次数应该是x ,y 中指数大的, 故选D .思路拓展:解答本题的关键是注意-2m+n是常数项,多项式的次数应该是x ,y 的次数。

2.若-mx ny 是关于x,y 的一个单项式,且其系数为3,次数为4,则mn 的值为( ) A 、9 B 、-9 C 、12 D 、-12 【答案】B【解析】本题主要考查了单项式的系数与次数的定义根据单项式的系数、次数的定义来求解.单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做这个单项式的次数.由题意得,3=-m ,41=+n ,解得3-=m ,3=n ,则9-=mn ,故选B.思路拓展:确定单项式的系数和次数时,把一个单项式写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.二次三项式ax 2+bx+c 为x 的一次单项式的条件是( ) A 、a ≠0,b=0,c=0 B 、a=0,b ≠0,c=0 C 、a ≠0,b=0,c ≠0 D 、a=0,b=0,c ≠0 【答案】B【解析】本题考查的是单项式要保证只有一次项,所以x 2的系数a=0,x 的系数b≠0;又是单项式,故c=0.一次单项式即次数为1的单项式,故符合题意的条件应为a=0,b≠0,c=0.故选B . 思路拓展:单项式中,所有字母的指数和叫做这个单项式的次数. 4.下列说法正确的是( )试卷第2页,总9页A 、整式就是多项式B 、a 2b 3c 4没有系数 C 、π是单项式 D 【答案】C【解析】本题考查的是整式的知识单项式就是数与字母的乘积,单独的数或字母也是单项式,几个单项式的和是多项式,单项式和多项式统称整式。

代数部分训练题(中考必下载)

代数部分训练题(中考必下载)

实数的概念一、填空题:1.3-的绝对值是 ; 32-= ;213-的倒数是 ;| 3.14 - π | = 。

2. 绝对值最小的数是_____。

若 |a |<2,则a 的整数解为_____。

3. 已知:| a +3 | = 1 ,那么 a = ______。

4.如果 0)12(322=-++y x ,那么2001)(y x += .5.大小比较(用<、>、=填空):0 -32; -1 365; -5 -7.43; 。

6. 如果a 与-2互为倒数,那么a = 。

二.选择题:1.若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B. a 的倒数是a1 C. a a =2 D. b 2是一个正数 2. 已知:3,2x y ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-13.设,a b 为非零实数,则a a +所有可能的值为( ).A. ±2B.±1或0C.±2或0D.±2或±1三.解答题:已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2。

求:)21()(2122m m cd b a +-÷+--的值.实数的运算一、填空题:1、用四舍五入法,精确到0.1,对5.49取近似值的结果是 。

2、据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 。

3、地球上陆地面积约为149 100 000 km 2,用科学记数法表示为 km 2。

4、下表是我国几个城市某年一月份的平均气温,其中各城市间温差最大为_____℃.5、计算: (1) 312-=______, (2) 22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=_______. 6、 解答题:(1) 2182009---+)((3)︒-+--⎪⎭⎫⎝⎛--45sin )32(2102(3)()121240-++-(3))012-+-代数式与整式、 因式分解1.4y x 33-它的系数为___________,次数为_______.2.多项式4423x xy 2y y 5x +--是_____次____项式,它的最高次项是______,二次项系数为_____,把这个多项式按y 降幂排列得____________________.3.若m 10y x 41与4n 13y x 31+是同类项,则m n =__________.4.若05a a 2=-+,则20082a 2a 2++的值为__________.5.计算:_______43=⋅-a a , 2a a a +⋅=________, (a +2)(a -1)=_______.6.若3,5==n m a a ,则___________32=+n m a .7.在多项式142+x 中,添加一个单项式使其成为一个完全平方式,则添加的单项式是___________(只写出一个即可). 8.把下列各式分解因式:(1)x 2-xy = ; (2)4x 2-16= ; (3)2x 2+4x +2= 。

2014年中考题训练(整式)

2014年中考题训练(整式)

2014年中考题训练(整式)一.选择题(共10小题)1.(2014•达州)一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎2.(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是3.(2014•烟台)按如图的运算程序,能使输出结果为3的x,y的值是()225.(2014•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()22m4n+22m+n n22二.填空题(共8小题)11.(2014•盐城)“x的2倍与5的和”用代数式表示为_________.12.(2014•咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是_________.13.(2014•长春)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为_________元.14.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为_________.15.(2014•赤峰)化简:2x﹣x=_________.16.(2014•莆田质检)若某种药品原单价为a元,则降价20%后的单价为_________元.17.(2014•贵阳)若m+n=0,则2m+2n+1=_________.18.(2014•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为_________.三.解答题(共1小题)19.(2014•石景山区二模)已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.2014年中考题训练(整式)参考答案与试题解析一.选择题(共10小题)1.(2014•达州)一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎元平方厘米,乙的卖价为∵>2.(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是3.(2014•烟台)按如图的运算程序,能使输出结果为3的x,y的值是()225.(2014•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()时,ax3bx+4=a时,ax a+3b+4=22m4n+22m+n n,22二.填空题(共8小题)11.(2014•盐城)“x的2倍与5的和”用代数式表示为2x+5.12.(2014•咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.13.(2014•长春)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为(80m+60n)元.14.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.15.(2014•赤峰)化简:2x﹣x=x.16.(2014•莆田质检)若某种药品原单价为a元,则降价20%后的单价为0.8a元.17.(2014•贵阳)若m+n=0,则2m+2n+1=1.18.(2014•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9.三.解答题(共1小题)19.(2014•石景山区二模)已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.。

专题24 列代数式(拓展提高)(解析版)

专题24 列代数式(拓展提高)(解析版)

专题2.4 列代数式(拓展提高)一、单选题1.下列各式符合代数式书写规范的是( ) A .x5 B .s tC .m+n 元D .223a【答案】B【分析】根据字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面可对A 进行判断;根据代数式中不能出现除号,相除关系要写成分数的形式 可对B 进行判断;答案中有加号或减号时,要把代数式括起来再加单位,于是可对C 进行判断;系数不能用带分数,由此可对D 进行判断. 【详解】解:A 、x5应该书写为5x ,所以A 选项错误; B 、st书写规范,所以B 选项正确;C 、m+n 元应该书写为(m+n )元,所以C 选项错误;D 、223a 应该书写为83a ,所以D 选项错误.故选:B .【点睛】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式.2.产量由mkg 增长10%,就达到多少kg?( ) A .1.1m B .0.9mC .10.1mD .0.11m【答案】A【分析】产量增加10%m ,现在的产量=原产量+增产量 【详解】现产量=()110% 1.1m m ⨯+=【点睛】本题属于应用题,增加对百分数方程的理解.3.我们知道,用字母表示的代数式是具有一般意义的,下列赋予3a 实际意义的例子中不正确的是( ). A .若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额 B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长 C .若3和a 分别表示一个长方形的长和宽,则3a 表示这个长方形的面积D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 【答案】D【分析】根据总价=单价×数量可判断A 的对错;根据等边三角形的周长公式可判断B 的对错;根据长方形的面积公式可判断C 的对错;根据多位数的表示法可判断D 的对错.【详解】若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额,A 选项正确. 若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长,B 选项正确. 若3和a 分别表示一个长方形的长和宽,则3a 表示这个长方形的面积,C 选项正确.若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示十位数字和个位数字的乘积,故D 选项错误. 故选D .【点睛】此题主要考查了代数式在实际问题中所表示的意义,关键是正确理解题意.4.某商店举办促销活动,促销的方法是将原价x 元的衣服以35(x ﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是( ) A .原价减去10元后再打6折 B .原价打6折后再减去10元 C .原价减去10元后再打4折 D .原价打4折后再减去10元【答案】A【分析】首先根据x-10得到原价减去10元,再根据“折”的含义,可得(x-10)变成35(x ﹣10),35即是6折,所以是把原价减去10元后再打6折,据此判断即可. 【详解】解:根据分析,可得:将原价x 元的衣服以35(x ﹣10)元出售,是把原价减去10元后再打6折.故选:A .【点睛】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.5.某商品每件成本为a 元,按成本增加50%定出价格,现由于库存积压减价,按定价的80%出售,现在每件商品的利润为( ) A .0.02a 元 B .0.2a 元C .1.02a 元D .1.2a 元【答案】B【分析】利润=售价-成本,按照先涨价再减价算出售价,减去成本即可.【详解】按成本增加50%后售价为()150 1.5+%=a a 元,再按定价的80%出售时价格为1.580⨯%=1.2a a 元,此时利润=0.21.2-=a a a 元,故选B.【点睛】本题考查了列代数式与合并同类项,掌握等量关系,并由题意求出售价是解题的关键.6.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:+⨯=元,若一年内在该健身俱乐部健例如,购买A类会员年卡,一年内健身20次,消费1500100203500身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【答案】C【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解二、填空题7.(1)3x+4-5是代数式(______) (2)1+2-3+4是代数式. (______)(3)m 是代数式,999不是代数式. (______) (4)x>y 是代数式.(______)(5)1+1=2不是代数式. (______) 【答案】 √ √ × × √【解析】代数式就是用运算符号把数和字母连接而成的式子(单独一个数或字母也是代数式),由此可得(1)(2)(5)正确,(3)(4)错误.8.若0<a <1,则a ,-a ,1a,-1a的大小关系是_________.(用“>”连接) 【答案】1a>a >-a >-1a【分析】先由0<a <1求出- a 的范围,1a范围,-1a的范围,再根据范围按要求排序,用“>”连接即可. 【详解】若0<a <1,-1<-a <0,11a>,1a -<-1则a ,-a ,1a,-1a的大小关系1a>a >-a >-1a. 故答案为:1a>a >-a >-1a.【点睛】本题考查有理数的大小比较问题,掌握相反数,倒数与倒数的相反数概念,会求倒数,能比较它们的大小,会利用a 的范围确定相反数与倒数的范围,及倒数的相反数的范围是解题关键.9.明明带了a 元去书店买了一套《四大名著》,每本名著售价b 元,一套有4本,还剩_______元.如果150a =,36.45b =元,还剩_______元.【答案】4a b - 4.2【分析】用总钱数减去买名著的钱数就是剩下的钱数,然后把a=150,b=36.45,代入含有字母的式子,即可求出还剩下的钱数. 【详解】解:根据题意,则 买完一套名著剩下的钱为:4a b -; 当150a =,36.45b =元时,∴4150436.45 4.2a b -=-⨯=(元); 故答案为:4a b -;4.2;【点睛】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.10.年出生人数减年死亡人数的差与年平均人口数的比,叫做年人口自然增长率.如果用p表示年出生人数,q表示年死亡人数,s表示年平均人口数,k表示年人口自然增长率,则年人口自然增长率k=p qs-.若把公式变形,已知k、s、p,求q,则q=_________ .【答案】p-ks【解析】∵k=p qs-.∴p−q=ks,∴q=p−ks.故答案为p−ks.11.如图是商场优惠活动宣传单的一部分:两个品牌分别标有“满100减40元”和“打6折”.请你比较以上两种优惠方案的异同(可举例说明)___________【答案】标价整百时,两种优惠方案相同;标价非整百时,“打6折”更优惠.【解析】如果买的商品标价是整百元的,此时两种优惠方案相同,如果买的商品标价不是整百元时,如标价为280元,则有“满100减40元”:280-40×2=280-80=200(元)“打6折”:280×60%=168(元),200元>168元,所以“打6折”比较实惠,故答案为:标价整百时,两种优惠方案相同;标价非整百时,“打6折”更优惠.【点睛】本题考查了商品销售问题中的方案选择问题,解题关键是要读懂题目的意思,根据题目给出的条件,分情况进行计算,然后再确定优惠方案.12.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x-10)元出售,则下列说法:(1)原价减去10元后再打8折;(2)原价打8折后再减去10元;(3)原价减去10元后再打2折;(4)原价打2折后再减去10元;其中能正确表达该商店促销方法的应该是__.(填序号) 【答案】(2)【分析】根据式子,对照各种说法进行分析即可. 【详解】将原价x 元的衣服以(x-10)元出售,是把原价打八折后再减去10元,因此正确的表达是(2).故答案为(2)【点睛】考核知识点:代数式的意义.理解题意是关键.13.9月6日,重庆来福购物中心正式开业,购物中心里的美食店推出了A 、B 两种套餐和其他美食,当天,A 套餐的销售额占总销售额的40%,B 套餐的销售额占总销售额的20%,国庆期间,重庆外来旅客增加,此店老板考虑外来游客的饮食口味推出了C 套餐,在10月1日这一天,A 、B 套餐各自的销售额都比9月6日的销售额减少了15%,C 套餐的销售额占10月1日当天总销售额的20%,其他美食的销售额不变,则10月1日的总销售额比9月6日的总销售额增加__________%. 【答案】13.75【分析】设9月6日的总销售额为x 元,先得出A 、B 套餐在10月1日的销售额,再根据C 套餐的销售额占10月1日当天总销售额的20%得出:A 、B 套餐和其他美食的销售额占10月1日当天总销售额的80%,然后根据题意列出式子计算即可. 【详解】设9月6日的总销售额为x 元,由题意得:10月1日当天A 套餐的销售额为:40%(115%)x -元 10月1日当天B 套餐的销售额为:20%(115%)x -元10月1日当天其他美食的销售额为:(140%20%)40%x x --=元 ∵C 套餐的销售额占10月1日当天总销售额的20%∴A 、B 套餐和其他美食的销售额占10月1日当天总销售额的:(120%)80%-= ∴10月1日当天总销售额为:[]40%(115%)20%(115%)40%80% 1.1375x x x x -+-+÷= ∴10月1日的总销售额比9月6日的总销售额增加:1.13750.137513.75%x xx-== 故填:13.75.【点睛】本题主要考查列代数式和百分数的实际应用,读懂题意列出式子是关键.14.小红:如图是由边长分别为a ,b 的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.请根据小明和小红的对话,用含有a ,b 的式子表示如图所示的阴影部分的面积__________.【答案】12a 2;【分析】先根据三角形面积公式列出三个三角形的面积式子,再根据两个正方形的面积和减去3个不同的直角三角形的面积等于阴影部分的面积列出代数式,最后化简即可. 【详解】根据题意可以列出式子阴影部分的面积22222222111111111()()222222222a b a b a b b b a a b ab b b ab a =+--+--=+---+=故填:212a .【点睛】本题主要考查列代数式及代数式的化简,根据正方形和三角形的面积公式列出代数式是关键.三、解答题15.某服装店销售一品牌服装,其原价为a 元,现有两种调价方案: ①先提价20%,再降价20%; ②先降价20%,再提价20%.问:两种调价方案的结果是否一样,最后是不是都恢复了原价. 【答案】两种调价方案的结果都一样,最后都没有恢复原价【分析】本题考查的是列代数式有关知识.先根据题意分别列出方案①和方案②的价格,然后再进行比较即可.【详解】方案①,最后的价格为()()120%120%0.96a a +-= 方案②,最后的价格为()()120%120%0.96a a -+= 0.96a a <∴两种调价方案调价后的价格都小于原价∴两种调价方案的结果都一样,最后都没有恢复原价.【点睛】本题考查了有理数和代数式的知识;解题的关键是熟练掌握有理数混合运算和代数式的性质,从而完成求解.16.一种蔬菜a 千克,不加工直接出售每千克可卖b 元,如果经过加工重量减少了20%,价格增加了50%,问:(1)写出a 千克这种蔬菜加工后可卖钱数的代数式.(2)如果这种蔬菜1000千克,不加工直接出售,每千克可卖1.5元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?【答案】(1)1.2ab ;(2)加工后原1000千克这种蔬菜可卖1800元,比加工前多卖300元 【分析】(1)根据加工后的重量乘以加工后的价格列式,化简即可;(2)将a=1000,b=1.5代入(1)中所列代数式计算,再结合加工前的总价格即可得出答案; 【详解】(1)a 千克这种蔬菜加工后可卖钱数为()()120%a 150%b 1.2ab -⨯+=; (2)当a 1000=,b 1.5=时,1.2ab 1800(=元), 180********(-=元),答:加工后原1000千克这种蔬菜可卖1800元,比加工前多卖300元.【点睛】本题主要考查列代数式,解题的关键是理解题意,掌握加工后总价钱的等量关系式及代数式书写规范、求值.17.汽车下坡时,速度和时间之间的关系如下表:(1)写出速度v 与时间t 之间的关系式; (2)计算当t =12时,汽车的速度. 【答案】(1)21510V t =+;(2)19.4m/s . 【分析】(1)根据表格速度由两部分构成,一部分是5.,另一部分是分子是t 平方,分母是10,速度v 与时间t 之间的关系式为:2510t v =+(2)当12t =时求代数值即可.【详解】解:(1)通过表格观察速度由两部分构成,一部分是5.,另一部分是分子是t 平方,分母是10,速度v 与时间t 之间的关系式为:2510t v =+(2)12t =, ∴21512514.419.410v =+⨯=+=m/s . 【点睛】本题考查速度v 与时间t 之间的表达式,代数式的值,掌握表格观察规律方法和求代数式值得步骤是解题关键.18.甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为()0100a a <<千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时).(1)当5t =时,客车与乙城的距离为____________千米(用含a 的代数式表示);(2)已知70a =,丙域在甲,乙两城之间,且与甲城相距260千米.当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案: 方案一:继续乘坐出租车到丙城,加油后立刻遇回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城? 【答案】(1)()8005a -;(2)方案二【分析】(1)用总路程减去5小时行驶的录成绩可;(2)分别计算出两种方案需要的时间,比较大小作出判断选择即可. 【详解】解:(1)∵两地相距800千米,5小时行驶了5a 千米, ∴客车与乙城的距离为()8005a -千米, 故答案为:()8005a -; (2)由题意知7090800t t +=, 解得5t =,此时客车行驶的路程为350千米,出租车行驶的路程为450千米, 所以丙城与M 处之间的距离为90千米. 方案一:小王需要的时间是()9090450907++÷=(小时)﹔方案二:小王需要的时间是45450707÷=(小时). 因为4577>,所以小王选择方案二能更快返回到乙城. 【点睛】本题考查了行程问题的列代数式,行程问题的时间计算,方案选择,熟练把生活化问题转化为正确的数学模型计算是解题的关键.19.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg )与人体身高(m )平方的商,对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高h (m ),求他的身体质量指数. (2)张老师的身高是1.8m ,体重是70kg ,他的体重是否适中? (3)你的身体质量指数是多少? 【答案】(1)2wh ;(2)他的体重适中,理由见解析;(3)23.84 【分析】(1)根据身体质量指数的意义,可得答案; (2)把h =1.8m ,w =70千克代入所求的代数式即可, (3)根据自己的身高和体重,依据公式计算即可. 【详解】解:(1)根据身体质量指数的意义,可得,2W h 答:一个人的身体质量指数2Wh ; (2)把h =1.8m ,w =70千克代入求值即可, 2Wh =2701.8≈21.60, 而18.5<21.6<24, 因此他的体重适中;(3)我身高为1.75m ,体重73千克,身体质量指数为:2731.75≈23.84, 答:我的身体质量指数为23.84.【点睛】本题考查列代数式、求代数式的值,列出代数式是计算的前提.20.课本告诉我们,同一个代数式可以表示不同的实际意义,这体现了不同背景实际问题中的相同数量关系常常可以用同一个代数式来表示.下列情境中的字母a 、b 表示的是两个不超过100的正整数,且a b ,请解决以下问题:(1)两根同样长的铁丝,分别围成一个长为cm a 、宽为cm b 的长方形和一个正方形,长方形的长比正方形的边长大多少? (2)下列情境:①a 、b 两数的平均数为A ;②甲、乙两人分别有a 元和b 元,要使两人的钱数一样,则甲需要给乙B 元; ③小亮在超市买了牛奶和可乐共a 瓶,其中牛奶比可乐少b 瓶,则他买了C 瓶牛奶;④小红和爷爷从相距m a 的两地相向而行,1min 后相遇,相遇时小红比爷爷多行了m b ,则爷爷的平均速度是m/min D .上述情境中的A 、B 、C 、D 也可以用(1)的结果中的代数式表示的是______.(填写所有正确选项前的........序号..) 【答案】(1)长方形的长比正方形的边长大11cm 22a b ⎛⎫- ⎪⎝⎭;(2)②③④ 【分析】(1)分别表示长方形和正方形的边长,再作差即可得出结论; (2)根据题意逐项列式,即可看出.【详解】(1)()12a ab -+ 1122a ab =-- 1122a b =- 答:长方形的长比正方形的边长大11cm 22a b ⎛⎫- ⎪⎝⎭. (2)①2a b A +=, ②2a b a B b B B --=+⇒= , ③()2a b a C C b C ---=⇒=, ④()2a b a D D b D ---=⇒=, 故答案为:②③④.【点睛】本题考查了代数式的意义及列代数式,能够根据题意列出正确的代数式是解决问题的关键.。

专题23 列代数式(基础检测)(解析版)

专题23 列代数式(基础检测)(解析版)

专题2.3 列代数式(基础检测)一、单选题1.下列代数式书写正确的是( ) A .7a B .x y ÷C .3a b +D .213ab【答案】C【分析】根据代数式的书写方法分别进行判断. 【详解】解:A 、7a 应写为7a ,故不符合题意; B 、x y ÷应写为xy,故不符合题意; C 、3a b +书写正确,故符合题意; D 、213ab 应写为53ab ,故不符合题意;故选C .【点睛】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.也考查了代数式的书写. 2.下列关于代数式“2a +”的说法,正确的是( ) A .表示2个a 相加 B .代数式的值比a 大C .代数式的值比2大D .代数式的值随a 的增大而减小【答案】B【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来,叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】A .2+a 表示2与a 的和,故选项A 错误; B . 2+a 的值大于a ,故选项B 正确;C .当a 是负数时,2+a 的值比2小,故选项C 错误,D .由于a 是任意实数,所以代数式的值不一定比3大,但随a 的增大而增大,故D 错误. 故选B .【点睛】本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序,具体说法没有统一规定,以简明而不引起误会为出发点.3.下列式子:①x y ÷;②113a ;③2xy -;④212ba -,其中格式书写正确的个数是( ).A .1B .2C .3D .4【答案】B【分析】根据代数式的书写要求判断各项即可 【详解】①x y ÷应表示为x y ;②113a 应表示为43a ;③2xy -;④212ba -正确. 故答案选B.【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4.有三个连续偶数,若最大的一个数是2n ,则最小的一个数可以表示为( ) A .24n - B .22n - C .21n - D .23n -【答案】A【分析】根据题意及偶数可直接进行解答.【详解】解:由最大的一个偶数是2n ,相邻两个偶数相差2,所以最小的一个偶数是24n -; 故选A .【点睛】本题主要考查代数式的意义,熟练掌握代数式的书写及意义是解题的关键. 5.已知a 是一位数,b 是两位数,将a 放在b 的左边,所得的三位数是( ) A .ab B .a +b C .10a +b D .100a +b【答案】D【分析】a 放在左边,则a 在百位上,据此即可表示出这个三位数. 【详解】解:a 放在左边,则a 在百位上,因而所得的数是:100a b . 故选:D .【点睛】本题考查了利用代数式表示一个数,关键是正确确定a 是百位上的数字. 6.某学校七年级有m 人,八年级人数比七年级人数的23多10人,用含m 的式子表示八年级的人数为( )A .23mB .2103m +C .2103m -D .3102m +【答案】B【分析】本题按照题干要求,理清七八年级数量关系,直接列式求解即可.【详解】由题已知:七年级人数的23表达式为23m ,在此基础上多10人为2103m +,故八年级的人数为2103m +. 故选:B .【点睛】本题考查代数式,难度较低,解题关键在于理清题意之间的数量关系.二、填空题7.数和表示数的字母相乘,或字母和字母相乘时,乘号可以____________,或用____________来代替.【答案】省略不写“.”【分析】由题意根据如果是字母和字母相乘,中间的乘号可以直接省略;但如果是字母和数相乘时中间的乘号也可以省略,但要把数字写在字母的前面,据此进行解答.【详解】解:在含有字母的式子里,数字和字母、字母和字母相乘时,乘号可以省略不写,但数字一定要写在字母的前面;或用“.”来代替;故答案为:省略不写;“.”.【点睛】本题考查列代数式的定义,解决此题明确只有在含有字母的乘法算式里,中间的乘号能省略,其它的运算符号都不能省略.8.下列式子各表示什么意义?(1)(x+y)2:________;(2)5x=12y﹣15:__________;(3)12(x+23x)=24:________.【答案】x,y的和的平方x的5倍比y的一半小15 x与它的23的和的一半等于24【分析】根据题意以及题中的式子直接写出代数式和方程所表示什么意义即可.【详解】解:(1)(x+y)2表示x,y的和的平方;(2)5x=12y﹣15表示x的5倍比y的一半小15;(3)12(x+23x)=24表示x与它的23的和的一半等于24.故答案为:x,y的和的平方;x的5倍比y的一半小15;x与它的23的和的一半等于24.【点睛】本题主要考查代数式的定义和方程的定义,属于基础题,熟练掌握代数式的定义和方程的定义是解决本题的关键.9.用代数式表示“比a的3倍少2的数”是________.【答案】3a-2【分析】根据代数式的写法列代数式即可.【详解】解:“比a的3倍少2的数”是3a-2【点睛】此题考查的是列代数式,掌握代数式的写法是解题关键.10.在①2x ,②325x -≠,③32x y z --,④3x >,⑤2(3)x +,⑥21y x =+中,是代数式的有___________.(只填番号) 【答案】①③⑤【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【详解】解:代数式的有:①2x ,③3x-2y-z ,⑤(x+3)2,共三个. 故填:①③⑤.【点睛】此题考查了代数式;根据代数式的定义即可求出答案;注意:代数式中不含有“>”,“=”号等. 11.某工厂1月份生产a 件产品,2月份比1月份增产了15%,则该厂1,2月份共生产产品__________件. 【答案】2.15a【分析】2月份比1月份增产15%,则2月份表示为:(1+15%)a ,再将两个月份相加即可. 【详解】根据题意可得2月份生产:(1+15%)a 件产品,则两月共生产a +(1+15%)a =2.15a 件. 故答案为:2.15a .【点睛】本题考查代数式的表示,关键在于理解题意根据代数式的表示方法表达.12.用代数式表示:买一个球拍需要a 元,买一根跳绳需要b 元,则分别买10个球拍和15根跳绳共需要________元. 【答案】()10a 15b +【分析】根据题意可以用相应的代数式表示分别买10个球拍和15根跳绳共需要的钱数. 【详解】解:由题意可得,买10个球拍需要10a 元;买15根跳绳需要15b 元, 所以分别买10个球拍和15根跳绳共需要:(10a+15b)元.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.13.随着新农村建设的进一步加快,某市农村居民人均纯收入增长迅速.据统计,2011年本市农村居民人均纯收入比上一年增长14.2%.若2010年黄冈市农村居民人均纯收入为a 元,则2011年本市农村居民人均纯收入可表示为__元. 【答案】1.142a【解析】根据题意可知a(1+14.2%)=1.142a .14.规定:()2f x x =-,()2g x x =+,例如()2224f -=--=,()2220g -=-+=.则式子()()71f x g x -++的最小值是____. 【答案】12【分析】根据题意将()()71f x g x -++表示出来,然后利用绝对值得几何意义求解即可. 【详解】解:由题意:()()71f x g x -++=()()7212x x --+++ =93x x -++∵93x x -++可以看作数轴上表示x 的点与表示数9的点和表示数-3的点之间的距离之和 ∴当39x -≤≤时,93x x -++有最小值,且最小值为12. 故答案为: 12.【点睛】本题考查求代数式的最值问题及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义.三、解答题15.下列用字母表示数的写法中哪些不规范,请改正过来.(1)3x +1;(2)m ×n -3;(3)2·y ;(4)a ·m +b ×n 元;(5)a ÷(b +c );(6)a -1÷b . 【答案】见解析【分析】(1)根据数与字母相乘的规则判断即可; (2)根据字母与字母相乘的规则判断即可; (3)根据数与字母相乘的规则判断即可; (4)根据字母与字母相乘的规则判断即可; (5)根据除号一般用分数线表示的规则判断即可; (6)根据除号一般用分数线表示的规则判断即可. 【详解】解:(1)3x +1书写规范; (2)m ×n -3应该是mn -3; (3)2·y 应该是2y ;(4)a ·m +b ×n 元应该是(am +bn )元;(5)a÷(b+c)应该是ab c;(6)a-1÷b应该是a-1b.【点睛】本题主要考查代数式的书写,掌握代数式的书写要求是解题的关键.16.代数式8x+5y可以表示很多意义,例如:若x表示苹果每千克的钱数,y表示香蕉每千克的钱数,则8x+5y表示买8 kg苹果和5 kg香蕉共花的钱数.请你给8x+5y赋予另一种实际意义.【答案】见解析【分析】同一个代数式可以表示不同的实际意义,本题答案不唯一,但一定要写出与生活实际联系的代数式意义.【详解】解:若x表示成人的门票价格,y表示儿童的门票价格,则8x+5y表示8个成人和5个儿童购买门票共用的钱数(答案不唯一)【点睛】本题考查代数式的实际意义.17.为鼓励节约用水,某地推行阶梯式水价,标准如下表所示:(1)甲居民上月用水20吨,应缴水费元;(直接写出结果)(2)乙居民上月用水35吨,应缴水费元;(直接写出结果)(3)丙居民上月用水x(x>30)吨,当a=2,b=2.5,c=3时,应缴水费多少元?(用含x的代数式表示)【答案】(1)17a+3b(2)17a+13b+5c(3)3x-23.5【分析】(1)上月用水20吨,则按照分为两部分,17吨部分和超过17吨的3吨部分,分别计算费用再求和.(2)上月用水35吨,则按照三部分,17吨部分与30-17=13吨部分与35-30=5吨部分,分别计算费用在求和.(3)根据(2)得出的代数式,把a,b,c的值代入即可得到.【详解】(1)20<30,则分两部分,17吨部分价格为17a,超过17吨且不超过30吨的部分价格为(20-17)×b=3b.即应缴税费为17a+3b(元)(2)35>30,则分为三部分,17吨部分价格为17a,超过17吨且不超过30吨的部分价格为(30-17)×b=13b,超过30吨的部分价格为(35-30)×c=5c.即应缴水费为17a+13b+5c (元) (3)由(2)知,水量大于30吨时,水费为17a+13b+(x-30)c ,把a =2,b =2.5,c =3代入得到,17a+13b+5c=17×2+13×2.5+(x-30)×3=3x-23.5(元)【点睛】本题考查了代数式的实际应用,解题关键在于找准每部分的水量是多少,然后根据每部分的单价计算费用,务必注意不能直接计算.18.如下3个图形中,长方形的长都为4cm ,宽都为2cm .(1)先通过计算,然后判断3个图形中灰色部分面积的大小有什么关系(π取3.14)? (2)若长方形的长都为acm ,宽都为bcm ,则用代数式表示图形中灰色部分面积. 【答案】(1)相等;(2)28a ab π-.【分析】(1)第一个的灰色部分面积是长方形与半圆的差;第二个为长方形与两个小圆的差;第三个为长方形与八个小圆的差;分别求出它们的值后再比较即可得到结论. (2)同(1),用代数式表示出图形中灰色部分的面积即可.【详解】解:(1)第一个的灰色部分面积是长方形与半圆的差:221242 1.722cm π⨯-⨯=;第二个为长方形与两个小圆的差:222421 1.72cm π⨯-⨯=;第三个为长方形与八个小圆的差:221248 1.722cm π⎛⎫⨯-⨯= ⎪⎝⎭∴它们都相等. 故答案为:相等.(2)若长方形的长都为acm ,宽都为bcm ,则第一个图形中灰色部分面积为:221228a a ab ab ππ⎛⎫-⨯=- ⎪⎝⎭;则第二个图形中灰色部分面积为:22248a a ab ab ππ⎛⎫-⨯=- ⎪⎝⎭;则第三个图形中灰色部分面积为:22888a a ab ab ππ⎛⎫-⨯=- ⎪⎝⎭;∴三个图形中灰色部分面积都相等,用代数式表示为:28a ab π-,故答案为:28a ab π-.【点睛】本题考查了有理数的混合运算以及代数式在实际生活中的应用,熟练掌握圆的面积公式是解题的关键.19.如图所示,把一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形,已知正方形的边长为a ,三角形的高为h .(1)用含a ,h 的式子表示阴影部分的面积; (2)当10a =,3h =时,求阴影部分的面积. 【答案】(1)22a ah -;(2)阴影部分的面积为40【分析】(1)根据题意结合图形可直接利用割补法进行求解阴影部分的面积; (2)把10a =,3h =代入(1)中代数式,然后直接进行求解即可. 【详解】解:(1)由题意得: 221422S a a h a ah =-⨯⨯⨯=-阴影;(2)由(1)可得阴影部分的面积为22a ah -,则把10a =,3h =代入得:22210210340S a ah =-=-⨯⨯=阴影.【点睛】本题主要考查代数式的实际应用,关键是根据题意得到阴影部分的面积表示,然后代入求值即可. 20.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班需球拍5副,乒乓球若干盒(不少于5盒). (1)若该班需购买乒乓球x 盒,用含x 的式子分别表示在甲、乙两家商店购买的费用. (2)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?【答案】(1)甲商店的付款钱数为(25x+375)元,乙商店的付款钱数为(450+22.5x)元;(2)当购买20盒乒乓球时,到甲商店购买更合算;当购买40盒乒乓球时,到乙商店购买更合算.【分析】(1)根据甲、乙两家商店的优惠政策分别得出甲、乙两店的代数式;(2)分别求出20盒和40盒时两家商店分别所需要付的钱,比较大小,从而得出答案.【详解】解:(1)当购买x盒乒乓球时,甲商店的付款钱数为100×5+25(x-5)=(25x+375)元,乙商店的付款钱数为0.9(100×5+25x)=(450+22.5x)元;(2)当购买20盒乒乓球时,甲商店付款:25×20+375=875(元),乙商店付款:450+22.5×20=900(元),而875<900所以当购买20盒乒乓球时,到甲商店购买更合算;当购买40盒乒乓球时,甲商店付款:25×40+375=1375(元),乙商店付款:450+22.5×40=1350(元),而1375>1350所以当购买40盒乒乓球时,到乙商店购买更合算.答:当购买20盒乒乓球时,到甲商店购买更合算;当购买40盒乒乓球时,到乙商店购买更合算.【点睛】本题主要考查的是代数式的表示方法以及应用,属于基础题型.理解优惠政策得出代数式是解决这个问题的关键.。

3-1 字母表示数(提升训练)(解析版)

3-1 字母表示数(提升训练)(解析版)

3.1 字母表示数【提升训练】一、单选题1.如图,将长和宽分别是a,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a,b,x 的代数式表示纸片剩余部分的面积为(,A.ab+2x2B.ab,2x2C.ab+4x2D.ab,4x2【答案】D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】,长方形的面积为ab,4个小正方形的面积为4x2,,剩余部分的面积为:ab-4x2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键.2.购买1个单价为a元的面包和2瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.2(a+b)元C.(a+2b)元D.(2a+b)元【答案】C【分析】求用买1个面包和2瓶饮料所用的钱数,用1个面包的总价+2瓶饮料的单价即可.【详解】买1个面包和2瓶饮料所用的钱数:(a+2b)元;故选:C.【点睛】此题考查列代数式,解题关键是根据已知条件,把未知的数用字母正确的表示出来.3.如图,是一回形图,其回形通道的宽和OB的长均为1,回形线于射线OA交于A1、A2、A3,若从O点到A1点的回形线为第一圈(长为7),从A1点到A2点的回形线为第2圈,依次类推,则第10圈的长为()A.71B.72C.79D.87【答案】C【分析】利用差补法结合正方形的周长公式可得出第n圈的长为2n×4-1=8n-1(n为正整数),再代入n=10即可求出结论.【详解】观察图形,可知:第一圈长=7=2×4−1,第二圈长=15=4×4−1,第三圈长=23=6×4−1,…,,第n圈长=2n×4−1=8n−1(n为正整数),,a10=20×4-1=79.故选C.【点睛】本题考查规律型:图形的变化类,将每一圈回形线变形,围成的图形正好是正方形缺少一条长度为1的线段,能清楚这一点是解决此题的关键.4.七年级一班有x个同学,若每4个人为一个学习小组,则有一个学习小组少1人,用代数式表示这个班分成的学习小组组数是()A.x14+B.x14-C.x4+1D.x4-1【答案】A【分析】如果加上1个人,则正好每4人分成一个学习小组,由此列式求得答案即可.【详解】分成的学习小组数为:x1 4+.故选A.【点睛】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.5.甲乙两地相距s km ,某人计划a h 到达,现在因为路上发生事故,延后了2h 到达,相比于原计划,平均每小时会少走( )A .2s s km a a ⎛⎫- ⎪-⎝⎭B .2s s km a a ⎛⎫- ⎪-⎝⎭C .2s s km a a ⎛⎫- ⎪+⎝⎭D .2s s km a a ⎛⎫- ⎪+⎝⎭【答案】D【分析】根据速度=路程÷时间,分别表示出原计划的速度和实际的速度即可得出答案.【详解】解:原计划的速度=s a km/h ,实际行走的速度=2s a km/h ,所以相比于原计划,平均每小时会少走2s s km a a ⎛⎫- ⎪+⎝⎭. 故选D.【点睛】本题考查了列代数式的知识,属于基础题型,用含s 、a 的代数式表示出原计划的速度和实际的速度是解题的关键.6.“比m 的12大3的数”用代数式表示是( ) A .12m -3 B .72m C .2m +3 D .12m +3 【答案】D【分析】比m 的12大3的数是12m +3,列代数式即可. 【详解】 “比m 的12大3的数”是:12m +3 故选D【点睛】此题考查列代数式,解题关键在于解释题意列代数式即可.7.用代数式表示“m 的一半与n 的3倍的和”是( )A .312m n +B .m 23n ÷+⨯C .32m n -D .32m n + 【答案】D【分析】m 的一半是12m ,n 的3倍就是3n ,根据文字描述列出代数式即可. 【详解】 解:根据题意得:12m +3n 故选D.【点睛】本题考查列代数式的知识;列代数式的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.8.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a 元的某种常用药降低60%,则降低后的价格为( )A .0.4a 元B .0.6a 元C .0.4a 元D .0.6a 元【答案】C【分析】根据题意可得:降价后是在a 的基础上减少了60%,价格为:a (1-60%)=40%a=0.4a 元.【详解】解:依题意得:价格为:a (1﹣60%)=40%a =0.4a 元.故选:C .【点睛】本题考查了列代数式表示相关数量关系.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.一辆汽车匀速行驶,若a 秒行驶6m 米,则它2分钟可行驶( ) A .3m a 米 B .10ma 米 C .20m a 米 D .120m a 米 【答案】C【分析】根据路程=速度×时间列出代数式化简可得【详解】因为路程=速度×时间,所以汽车两分钟行驶的路程=60·26m a ⋅=20m a米 故答案为C 选项【点睛】本题主要考查了路程问题中的代数式的列法,掌握其基本公式是关键10.一个两位数,个位数字为a ,十位数字为b ,则这个两位数为A .+a bB .baC .10b a +D .10a b + 【答案】C【分析】根据两位数的表示方法列出代数式解答即可.【详解】一个两位数,个位数字为a ,十位数字为b ,则这个两位数为10b+a ,故选C .【点睛】此题考查列代数式,理解题意,找出题目蕴含的数量关系是解决问题的关键.11.万州二中初一年级小高同学为庆祝建国七十周年和建校八十周年,用五角星按一定规律摆出如下图案,则第9个图案需( )颗五角星。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年列代数式训练一.填空题(共8小题)1.(2013•铁岭)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为_________元(结果用含m的代数式表示)2.(2013•牡丹江)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为_________元.3.(2010•随州)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是_________元.4.(2010•长春)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款_________元.(用含有a的代数式表示).5.科技兴趣小组,八年级有x人,九年级人数比八年级人数的3倍多1人,七年级人数比八年级人数的少1人,则该科技兴趣小组共有_________人.6.在同一条公路上有两辆卡车同向行驶,开始时甲车在乙车前4千米,甲车速度为每小时45千米,乙车速度为每小时60千米,那么在乙车赶上甲车的前1分钟两车相距_________米.7.某阶梯教室,第一排有a个座位,后面每一排都比前一排多2个座位,则第n排的座位数_________.8.一个两位数,个位数是x,十位数是y,这个两位数为_________,如果个位数字与十位数字对调,所得的两位数是_________.二.解答题(共10小题)9.小明要打车去世博园,请你帮小明算一算,上海市出租车收费标准是:起步价(3千米以内)12元,超过3千米的部分每千米2.40元,小明乘坐了x(x>3)千米的路程.(1)请写出他应该支付费用的表达式;(2)若他支付的费用是38.4元,你能算出他乘坐的路程吗?10.某市为了加强公民的节水意识,制定了以下用水标准:每户每月用水未超过8立方米时,每立方米收费1.00元,并加收0.20元的城市污水处理费;超过8立方米时,每立方米收费1.50元,并加收0.40元的城市污水处理费.某户用水量为x立方米,问这个月水费是多少元?11.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x的代数式表示);(2)李阿姨要买一条重量10克的此中铂金饰品,到哪个商店购买最合算.12.列式表示:(1)a的3倍与y的一半的差;(2)m与n的和的平方与m,n的积的和;(3)比x与y的差的2倍小1的数;(4)x的与y的和的.13.学校组织学生到离学校6千米的科学中心参观.小胖因迟到没能够坐上学校包车改乘出租车前往,当地出租车的收费标准为:3千米以下(含3千米)7元,3千米以上每增加1千米加收2.4元.小胖身上只带了16元.乘出租车到科学中心的费用够吗?为什么?若他乘车x(x>3)千米,请你用x表示出他所花的车费.14.有一棵果树结了m个果子,第一个猴子摘走后,扔掉一个,第二个猴子又摘走剩下的后,扔掉一个,第三个猴子又摘走剩下的后又扔掉一个.用代数式表示三个猴子摘走和剩下的果子数.15.一个三位数,十位上的数字是百位上数字的2倍,十位上的数字比个位上的数字大1.(1)若设百位上的数字为a,则个位数字为_________,这个三位数可表示为_________;(2)这个三位数能被5整除吗?若能,求出这个三位数;若不能请说明理由.16.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为_________元;②涨价后,每个台灯的利润为_________元;③涨价后,商场的台灯平均每月的销售量为_________台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.17.一辆邮政车自A城驶往B城,沿途有n个车站(包括起点A和终点B),行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该车站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当邮车停靠在第x个车站时,需要卸下已经通过的(x﹣1)个车站发给该站的邮包(x﹣1)个,还要装上后面行程中要停靠的(n﹣x)个车站的邮包(n﹣x)个.(1)沿途有4个车站(n=4),邮政车在各个车站启程时邮包的总个数为:在第1个车站(x=1)启程时邮包的总个数:3.在第2个车站(x=2)启程时邮包的总个数:3﹣1+2=4.在第3个车站(x=3)启程时邮包的总个数为:_________.(2)沿途有n个车站,邮政车在各个车站启程时邮包的总个数为:在第1个车站(x=1)启程时邮包的总个数:n﹣1.在第2个车站(x=2)启程时邮包的总个数:(n﹣1)﹣1+(n﹣2)=2n﹣4.依照上述做法,解答下列问题:①求在第3个车站(x=3)启程时邮包的总个数(应仿照x=2的做法,不能只写最后的结果);②猜想在第k个车站(x=k)启程时邮包的总个数(用含n,k的代数式表示,可直接写出最后的结果).18.某工厂生产的边长为l米的正方形装饰材料ABCD如图所示,点E在BC上,点F是CD的中点,△ABE、△CEF 和四边形AEFD分别由Ⅰ型、Ⅱ型、Ⅲ型三种材料制成.(1)设BE=x,请用含x的代数式分别表示△ABE和△EFC的面积;(2)己知1型、Ⅱ型、Ⅲ型三种材料每平方米的价格分别为50元、100元和40元,若要求制成这样一块装饰材料的成本为50元,求点E的位置;(3)由于市场变化,1型材科和Ⅱ型材料每平方米的价格变为70元和80元,Ⅲ型材料的价格不变,现仍要生产(2)中式样的装饰材料,则每块的成本将有何变化?变化多少元?2014年列代数式训练参考答案与试题解析一.填空题(共8小题)1.(2013•铁岭)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为0.945m元(结果用含m的代数式表示)2.(2013•牡丹江)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为0.4a元.3.(2010•随州)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是(a+1.25b)元.4.(2010•长春)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款(3200﹣5a)元.(用含有a的代数式表示).5.科技兴趣小组,八年级有x人,九年级人数比八年级人数的3倍多1人,七年级人数比八年级人数的少1人,则该科技兴趣小组共有人.少人,七年级人数为x+3x+1+人,故答案为:6.在同一条公路上有两辆卡车同向行驶,开始时甲车在乙车前4千米,甲车速度为每小时45千米,乙车速度为每小时60千米,那么在乙车赶上甲车的前1分钟两车相距250米.(小时)×+4×千米7.某阶梯教室,第一排有a个座位,后面每一排都比前一排多2个座位,则第n排的座位数a+2(n﹣1).8.一个两位数,个位数是x,十位数是y,这个两位数为10y+x,如果个位数字与十位数字对调,所得的两位数是10x+y.二.解答题(共10小题)9.小明要打车去世博园,请你帮小明算一算,上海市出租车收费标准是:起步价(3千米以内)12元,超过3千米的部分每千米2.40元,小明乘坐了x(x>3)千米的路程.(1)请写出他应该支付费用的表达式;(2)若他支付的费用是38.4元,你能算出他乘坐的路程吗?10.某市为了加强公民的节水意识,制定了以下用水标准:每户每月用水未超过8立方米时,每立方米收费1.00元,并加收0.20元的城市污水处理费;超过8立方米时,每立方米收费1.50元,并加收0.40元的城市污水处理费.某户用水量为x立方米,问这个月水费是多少元?11.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x的代数式表示);(2)李阿姨要买一条重量10克的此中铂金饰品,到哪个商店购买最合算.12.列式表示:(1)a的3倍与y的一半的差;(2)m与n的和的平方与m,n的积的和;(3)比x与y的差的2倍小1的数;(4)x的与y的和的.的一半为的表示为:x的和表示为:x+y,然后再乘的一半为,﹣的表示为:x与表示为:(13.学校组织学生到离学校6千米的科学中心参观.小胖因迟到没能够坐上学校包车改乘出租车前往,当地出租车的收费标准为:3千米以下(含3千米)7元,3千米以上每增加1千米加收2.4元.小胖身上只带了16元.乘出租车到科学中心的费用够吗?为什么?若他乘车x(x>3)千米,请你用x表示出他所花的车费.14.有一棵果树结了m个果子,第一个猴子摘走后,扔掉一个,第二个猴子又摘走剩下的后,扔掉一个,第三个猴子又摘走剩下的后又扔掉一个.用代数式表示三个猴子摘走和剩下的果子数.,第一个猴子摘走个剩下的解:第一个猴子摘走.﹣×=m﹣mm×1=,﹣×m,m﹣﹣×1=,m﹣15.一个三位数,十位上的数字是百位上数字的2倍,十位上的数字比个位上的数字大1.(1)若设百位上的数字为a,则个位数字为2a,这个三位数可表示为122a﹣1;(2)这个三位数能被5整除吗?若能,求出这个三位数;若不能请说明理由.(不合题意)16.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为40+a元;②涨价后,每个台灯的利润为10+a元;③涨价后,商场的台灯平均每月的销售量为600﹣10a台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.17.一辆邮政车自A城驶往B城,沿途有n个车站(包括起点A和终点B),行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该车站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当邮车停靠在第x个车站时,需要卸下已经通过的(x﹣1)个车站发给该站的邮包(x﹣1)个,还要装上后面行程中要停靠的(n﹣x)个车站的邮包(n﹣x)个.(1)沿途有4个车站(n=4),邮政车在各个车站启程时邮包的总个数为:在第1个车站(x=1)启程时邮包的总个数:3.在第2个车站(x=2)启程时邮包的总个数:3﹣1+2=4.在第3个车站(x=3)启程时邮包的总个数为:4﹣2+1=3.(2)沿途有n个车站,邮政车在各个车站启程时邮包的总个数为:在第1个车站(x=1)启程时邮包的总个数:n﹣1.在第2个车站(x=2)启程时邮包的总个数:(n﹣1)﹣1+(n﹣2)=2n﹣4.依照上述做法,解答下列问题:①求在第3个车站(x=3)启程时邮包的总个数(应仿照x=2的做法,不能只写最后的结果);②猜想在第k个车站(x=k)启程时邮包的总个数(用含n,k的代数式表示,可直接写出最后的结果).18.某工厂生产的边长为l米的正方形装饰材料ABCD如图所示,点E在BC上,点F是CD的中点,△ABE、△CEF 和四边形AEFD分别由Ⅰ型、Ⅱ型、Ⅲ型三种材料制成.(1)设BE=x,请用含x的代数式分别表示△ABE和△EFC的面积;(2)己知1型、Ⅱ型、Ⅲ型三种材料每平方米的价格分别为50元、100元和40元,若要求制成这样一块装饰材料的成本为50元,求点E的位置;(3)由于市场变化,1型材科和Ⅱ型材料每平方米的价格变为70元和80元,Ⅲ型材料的价格不变,现仍要生产(2)中式样的装饰材料,则每块的成本将有何变化?变化多少元?AB xEC××=(x(﹣x××((﹣,×××﹣(×)。

相关文档
最新文档