北京市2013年大兴区中考数学模拟试卷(一
北京市2013届九年级中考模拟考试数学试题(附答案)
2013年北京市中考数学模拟试卷一、选择题(本题共32分,每小题4分) 1.﹣3的倒数是( ) A .B .﹣3C .3D .2. 南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( ) A . 0.35×108 B .3.5×107 C . 3.5×106 D . 35×105 3.每年的4月23日是“世界读书日”。
某中学为了了解九年级学生的读数情况,随机调查了50名学生的读书册数,统计数据如表所示:册数 0 1 2 3 4 人数31316171则这50名学生读书册数的众数、中位数是( )A .3,3B .3,2C .2,3D .2,24.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是( ) A. 41 B. 21 C. 43 D.15.如图1所示,一个60度角的三角形纸片,剪去这个60度角后,得到 一个四边形,则么21∠+∠的度数为( )图1A. 120B. 180.C. 240D. 3006.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >> 7.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD=5,DC=4,DE ∥AB 交BC 于点E ,且EC=3,则梯形ABCD 的周长是( )图2A .26B .25C .21D .208. 如图3,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折线AD –DC –CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2).运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是( )A B C D 图3二、填空题(本题共16分,每小题4分) 9.分解因式:2x 2+4x+2= . 10.已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则= .11. 如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为 .12. 如图5,连接在一起的两个正方形的边长都为1cm ,一个微型机器人由点A 开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达点G 时,微型机器人移动了 cm ; ②当微型机器人移动了2013cm 时,它停在 点.图5三、解答题(本题共30分,每小题5分) 13. 计算:﹣+2sin60°+()﹣1CB A图414. 解不等式组:15. 如图6,在△ABC 中,AB=AC ,AD 平分∠BAC,求证:∠DBC=∠DCB。
2013年历年北京市初三数学中考一、二模拟题分类汇编:应用题及答案
应用题1.(2013.朝阳一模18)北京地铁6号线正式运营后,家住地铁6号线附近的小李将上班方式由自驾车改为了乘坐地铁,这样他从家到达上班地点的时间缩短了0.3小时.已知他从家到达上班地点,自驾车时要走的路程为17.5千米,而改乘地铁后只需走15千米,并且他自驾车平均每小时走的路程是乘坐地铁平均每小时所走路程的23.小李自驾车从家到达上班地点所用的时间是多少小时?2.(2013.昌平一模18)某学校组织九年级(1)班和(2)班的学生到离校5千米的“农业嘉年华”参观,(1)班学生的行进速度是(2)班学生速度的1.25倍,结果(1)班学生比(2)班学生早到15分钟,求(2)班学生的速度.3.(2013.大兴一模18)列方程或方程组解应用题:为了改善生态环境,防沙造林,某村计划在荒坡上种植480棵树,由于有志愿者的支援,每日比原计划多种13,结果提前4天完成任务,问原计划每天种多少棵树?4.(2013.大兴一模17)列方程或方程组解应用题:小红到离家2100米的学校参加初三联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.初中数学辅(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)5.(2013.丰台一模18)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.6.(2013.海淀一模18)列方程(组)解应用题:雅安地震灾情牵动全国人民的心.某厂计划加工1500顶帐篷支援灾区,加工了300顶帐篷后,由于救灾需要,将工作效率提高到原计划的2倍,结果提前4天完成了任务.求原计划每天加工多少顶帐篷.7.(2013.怀柔一模18)某商店经销一种T恤衫,4月上旬的营业额为2000元,为扩大销售量,4月中旬该商店对这种T恤衫打9折销售(原销售价格的90%),结果销售量增加20件,营业额增加700元.求该种T恤衫4月上旬的销售价格.8.(2013.密云一模18)列方程或方程组解应用题:某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A、B 两个制衣车间,A 车间每天加工的数量是B车间的1.2 倍,A、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A、B 两车间每天分别能加工多少件.9.(2013.平谷一模18)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)15 20 25 …y(件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.10.(2013.西城一模18)列方程(组)解应用题:某工厂原计划生产2400台空气净化器,由于天气的影响,空气净化器的需求量呈上升趋势,生产任务的数量增加了1200台.工厂在实际生产中,提高了生产效率,每天比原计划多生产10台,实际完成生产任务的天数是原计划天数的1.2倍.求原计划每天生产多少台空气净化器.应用题参考答案1.(2013.朝阳一模18) 解:设小李自驾车从家到达上班地点所用的时间是x 小时. …………………………1分由题意,得 17.51520.33x x =⨯-. ……………………………………………………2分 解方程,得 x =0.7. ………………………………………………………………………3分经检验,x =0.7是原方程的解,且符合题意.……………………………………………4分答:小李自驾车从家到达上班地点所用的时间是0.7小时. ……………………………5分2.(2013.昌平一模18)解:设(2)班学生的速度为x 千米/小时. …………… 1分依题意,得 55151.2560x x -= . ……………………………… 2分 解之,得 x = 4 . ……………………… 3分 经检验:x = 4是原方程的解,且符合实际意义. ………………… 4分 答:(2)班学生的速度为4千米/小时. ……………………………… 5分3.(2013.大兴一模18)解:设原计划每天种x 棵树, …………………1分依题意,得4x )311(480x480=+- . ………………………………………………2分 解得x = 30 . ……………………………………………………………………3分 经检验:x = 30是方程的解. ……………………………………………………4分 答:原计划每天种30棵树. ……………………………………………………5分 (2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)4.(2013.大兴一模17)解:(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分. ··························· 1分 根据题意得:21002100203x x=+ . ·············· 2分 得 70x = . ····················· 3分 经检验70x =是原方程的解 . ················ 4分 答:小红步行的平均速度是70米/分.(2)根据题意得:21002100404570370+=<⨯ . ∴小红能在联欢会开始前赶到. …………………………………5分5.(2013.丰台一模18)解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. -- 1分由题意得, 60151.51515=-x x . 解得,x=20.经检验,x=20.是原方程的解,并且x=20,1.5x=30都符合题意.答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.6.(2013.海淀一模18)解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分经检验,150x =是原方程的解,且符合题意.答:原计划每天加工150顶帐篷. ………………………5分7.(2013.怀柔一模18)解:设该种T 恤衫4月上旬的销售价为每件x 元,根据题意得…… 1分20002000700200.9x x+=-…………………………………………… 3分 解之得x=50…………………………………………………… 4分经检验x=50是所得方程的解,且符合题意………………………………………… 5分 ∴该种T 恤衫4月上旬的销售价格是每件50元.8.(2013.密云一模18)设B 车间每天生产x 件,则A 车间每天生产1.2X 件,……………1分由题意得44004400201.2x x x +=+………………………………………..2分解得x=320……………………………………………………………...3分经检验x=320是方程的解……………………………………………..4分此时A 车间每天生产320⨯1.2=384件答:A 车间每天生产384件,B 车间每天生产320件……………….5分9.(2013.平谷一模18)解:(1)设此一次函数解析式为.y kx b =+ ………………1分则1525,2020.k b k b +=⎧⎨+=⎩………………………………………………………2分 解得k =-1,b =40.即一次函数解析式为40y x =-+. ………………………………………………3分(2)每日的销售量为304010y =-+= ……………………………. ………….……..4分。
北京市2013年数学中考模拟试卷及答案
新世纪教育网精选资料 版权全部 @新世纪教育网九年级综合水平质量调研数学试卷2013.3学校 ___________________ 班级 _______________姓名 ________________ 学号 _____________考1. 本试卷共 8 页,共五道大题, 25 道小题,满分 120 分,考试时间 120 分钟 .生 2. 在试卷和答题卡上正确填写学校.班级.姓名.学号.须3. 试题答案一律填涂或书写在 答题卡 上,在试卷上作答无效 .知4. 考试结束,请将本试卷和答题卡一并交回.注 意 1 . 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范.事项 2 . 考试结束后,试卷和机读答题卡由监考人一并回收.第一卷(机读卷 32 分)一 1.4 的算术平方根是选 A . 2B .± 2C . 16D .± 16择2. 如图,已知 △ ABC 为直角三角形, ∠ C=90°,若 C题 沿图中虚线剪去∠ C , 则∠ 1+∠ 2 等于D本 A.90°B. 135 °E12题C. 150 °D. 270 °BA32第 2分题图,3.布袋中装有 1 个红球, 2 个白球, 3 个黑球,它们除颜色外完好同样,从袋中任每 小 意摸出一个球,摸出的球是白球..的概率是题 A .1B .1C . 1D .543626分4.某班的 9 名同学的体重分别是(单位:千克): 61,59, 70,59, 65,67,59,63,57,这组数据的众数和中位数分别是A . 59,61B .59,63C . 59, 65D . 57,61 5.全世界可被人类利用的淡水总量仅占地球上总水量的 0.00003 ,所以珍惜水、保护 水,是我们每一位公民当仁不让的责任.此中数字 0.00003 用科学记数法表示为A .3 10 4B .3 10 5C .0.310 4D .0.3 10 56.如图,模块①-⑤均由 4 个棱长为 1 的小正方体构成,模块⑥由 15 个棱长为 1的小正方体构成 .现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为 3 的大正方体 . 则以下选择方案中,能够达成任务的为新世纪教育网精选资料版权全部@新世纪教育网一选择题本题32分,每小题4分A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤7.如图,两个齐心圆,大圆的弦 AB与小圆相切于点 P,大圆的弦CD经过点 P,且 CD=13, PC=4,则两圆构成的圆环的面积是A.16πB.36πC.52πD.81π第 7题图8. 矩形 ABCD 中,AD8cm, AB 6cm .动点E从点C开始沿边 CB 向点B以 2cm/s 的速度运动至点 B 停止,动点 F从点 C 同时出发沿边CD 向点 D 以 1cm/s 的速度运动至点D停止.如图可获得矩形CFHE ,设运动时间为 x(单位: s),此时矩形 ABCD 去掉矩形 CFHE 后节余部分的面积为y(单位: cm2) ,则 y 与 x 之间的函数关系用图象表示大概是以下图第 8题图中的注 1.第Ⅱ卷包含 4 道填空和 13 道解答,共 8 . 答前要真,看清目意要求,按要求真作答.事2.答笔迹要工整,画要清楚,卷面要整.3.考生除画能够用笔外,答必用色或黑色笔、珠笔.二填空本共16分,每小4分三解答本第二卷(非机读卷88 分)9.若分式 x 24的 0, x 的.x210.如,点 A、 B 、C是半径6的⊙O上的点,BB 30,AC 的_____________.AOC第 10如,在△ ABC 中, D、 E 分 AB、 AC 上的点, DE∥A 11.BC.若 AD =3, DB= 5,DE = 1.2, BC=.D EB C第 1112. 如,在ABC 中,A,ABC 的平分与ACD 的均分交于点A,得 A,11A1=. A1 BC 的均分与A1CD 的均分交于点A2,得A2,⋯⋯,A2009 BC 的均分与A2009CD的均分第 12交于点 A2010,得 A2010,A2010=.13.(本小 5 分)( 3 1)04sin6027题14. (本小题 5 分)共3x1430解不等式组x,并把它的解集表示在数轴上.2x2分,每小题5分15. (本小题 5 分)A D如图, E、F 是平行四边形ABCD 对角线 AC E上两点, BE ∥ DF ,求证:AF CE 。
2013.1大兴初三期末考试数学试题及答案
大兴区2012~2013学年度第一学期期末试题 初三数学第Ⅰ卷 (选择题 共32分)一、选择题(共8小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的.1.如图所示:△ABC 中,DE ∥BC ,AD=5,BD=10,AE=3,则CE 的值为2.函数23y x =--的图象顶点是 A .(0,3) B.(-1,3) C. (0,-3) D. (-1,-3) 3.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°4.如图,AB 、CD 是⊙O 的弦,且AB ∥CD , 若∠BAD = 36°,则∠AOC 等于A .36° B. 54° C. 72° D. 90°5. 已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若抛物线 22y x x d =-+与x 轴有两个不同的交点,则点PA 、在⊙O 的内部B 、在⊙O 的外部C 、在⊙O 上D 、无法确定6.已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是A. 都相似B. 都不相似C. 只有(1)相似D. 只有(2)相似(1) (2) 7.有A ,B 两只不透明口袋,每只口袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“心”的字样,B 袋中的两只球上分别写了“信”、“任”的字样,从每只口袋里各摸出一只球,能组成..“信心”字样的概率是35757570AB CDO 4 3 6 8EABCDDCBAOA .43 B .32C .31D .418.已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是第Ⅱ卷 (非选择题 共88分)二、填空题(共4小题,每小题4分,共16分)9.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.10.如图,矩形ABCD 的对角线BD的中点经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为(-4,-1),则k 的值为___________.11.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为 14 ,那么袋中球的总个数为错误!未找到引用源。
北京中考数学一、二模拟考试代几综合试题汇编
2013年北京中考数学一、二模拟考试代几综合试题汇编1.(2013.昌平一模25)如图,在平面直角坐标系xOy中,点B,C在x轴上,点A,E在y轴上,OB︰OC=1︰3,AE=7,且tan∠OCE=3,tan∠ABO=2.(1)求经过A,B,C三点的抛物线的解析式;(2)点D在(1)中的抛物线上,四边形ABCD是以BC为一底边的梯形,求经过B、D两点的一次函数解析式;(3)在(2)的条件下,过点D作直线DQ∥y轴交线段CE于点Q,在抛物线上是否存在点P,使直线PQ与坐标轴相交所成的锐角等于梯形ABCD的底角,若存在,求出点P的坐标;若不存在,请说明理由.2.(2013.朝阳一模25)如图,二次函数y=ax2+2ax+4的图象与x轴交于点A、B,与y轴交于点C,∠CBO的正切值是2.(1)求此二次函数的解析式.(2)动直线l从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线l与BC交于点D,P是线段AD的中点.①直接写出点P所经过的路线长.②点D与B、C不重合时,过点D作DE⊥AC于点E、作DF⊥AB于点F,连接PE、PF,在旋转过程中,∠EPF的大小是否发生变化?若不变,求∠EPF的度数;若变化,请说明理由.③在②的条件下,连接EF,求EF的最小值.3.(2013.大兴一模25)小明同学在研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边与该抛物线交于、两点,请你帮小明解答以下问题:(1)若测得(如图1),求的值;(2)对同一条抛物线,小明将三角板绕点旋转到如图2所示位置时,过作轴于点,测得,写出此时点的坐标,并求点的横坐标;(3)对该抛物线,小明将三角板绕点旋转任意角度时惊奇地发现,交点、所连的线段总经过一个固定的点,试说明理由并求出该点的坐标.。
2013年北京市数学中考一、二模拟题分类汇编:代几综合
( 3)若 M 为二次函数 y
2
x
bx
c 的图象上一点,且横坐标为
2,点 P 是 x 轴上的
任意一点, 分别联结 BC 、 BM .试判断 PC PM 与 BC BM 的大小关系, 并说明理由 .
( 第 25 题图)
6. ( 2013. 丰台一模 25)如图,在平面直角坐标系 xOy 中,⊙ C的圆心坐标为(- 2,- 2), 半径为 2.函数 y=- x+ 2 的图象与 x 轴交于点 A,与 y 轴交于点 B,点 P 为直线 AB 上一动点.
三角板的直角顶点置于平面直角坐标系的原点 点,请你帮小明解答以下问题: ( 1)
O ,两直角边与该抛物线交于 A 、 B 两
若测得
OA OB 2 2 (如图 1),求 a 的值; ( 2)对同一条抛物线, 小明将三角板绕点 O 旋转到 如图 2 所示位置时, 过 B 作 BF x 轴于点 F ,测得 OF 1 , 写出此时点 B 的坐标,并求点 A 的横.坐.标.; ( 3)对该抛物线,小明将三角板绕点 O 旋转任意角度时惊奇地发现,交点 A 、 B 所连
y
E
A
BO
C
x
2. ( 2013. 朝阳一模 25)如图,二次函数 y=ax2+2ax+4 的图象与 x 轴交于点 A、B,与 y 轴交
于点 C,∠ CBO的正切值是 2.
( 1) 求此二次函数的解析式.
(2) 动直线 l 从与直线 AC重合的位置出发,绕点 A 顺时针旋转,与直线 AB重合时终止
运动,直线 l 与 BC交于点 D, P 是线段 AD的中点.
的 线段总经过一个固定的点,试说明理由并求出该点的坐标.
4. ( 2013. 东城一模 25)在平面直角坐标系 xOy 中,抛物线 y x2 2mx m2 9 与 x 轴交
北京市2013年中考数学试题(解析版)
个完全相同的不透明礼盒中,准备将它们奖给小本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。
采取验证法和排除法求解较为简单。
本题考点:两点间距离、线段.难度系数:0.4分解因式: .269mn mn m ++=的代数式表示.)本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年毫克所需的银杏树叶的片数与一年滞尘毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,解得检验:将带入中,不等于零,则是方程的根=CF=请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011每年需新增运营里程多少千米?【解析】228;1000;82.75【点评】本题将北京市轨道交通发展规划与统计结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力。
这是北京市这几年考核统计这部分知识的常见题型本题考点:条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想难度系数:0.622.操作与探究:P(1)对数轴上的点进行如下操作:先把点2,在平面直角坐标系中,对正方形及其内部的每个xOy ABCD 点进行如下操作:把每个点的横、纵坐标都乘以同一种实数到的点先向右平移个单位,再向上平移个单位(m n m 得到正方形及其内部的点,其中点的对应点分别为A B C D ''''A B ,个单位。
2013北京大兴中考二模数学(含解析)
4 / 15
20.已知:如图, AB 是⊙ O 的直径, AC 是弦,CD 是⊙ O 的切线,C 为切点, AD CD 于点 D . 求证: ( 1 ) AOC 2ACD ; ( 2 ) AC 2 AB· AD .
21.如图,将平行四边形 ABCD 的边 DC 延长到点 E ,使 CE DC ,连接 AE ,交 BC 于点 F .若
二、填空题(本题共 16 分,每小题 4 分) 题号 答案 9
BC
10
( x 1)2 4
11
3
12
30≤x≤60
三、解答题(本题共 30 分,每小题 5 分) 13.解:原式 2
3 3 2 3 3 2
3.
14.解:∵关于 x 的一元二次方程 x2 2 x m 0 有实数根, ∴ 22 4 1 m≥0 , ∴ m≤1 . ∴ m 1 为最大值. ∴一元二次方程为 x2 2 x 1 0 . 解方程得, x1 x2 1 . 15.解:原式=
2013 年北京大兴中考二模数学试卷
一、选择题(本题共 32 分,每小题 4 分) 下列各题均有四个选项,其中只有一个 是符合题意的. .. 1. 5 的绝对值是( ) . A.
1 5
B. 5
C. 5
D.
1 5
2.将一副三角板按如图方式叠放,则 等于( A. 30 B. 45 C. 60 D. 75
1 ∴ OC a . 3
1 ∴ C ( a , 0) . 3
∵点 C 在直线 y kx 3 上,
1 ∴ ka 3 0 ,即 ka 9 . 3 ∴ DB 3 b 3 (ka 3) ka 9 ,
∵ BP a , ∴ S△DBP ∴a 6,
初中数学北京市大兴区中考模拟数学一模考试题考试卷及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是A.3 B.C.D.试题2:北京新机场货运量是每年3 000 000吨,将3 000 000用科学记数法表示应为A.3×107B.3×106C.30×105 D.300×104试题3:正五边形各内角的度数为A.72° B.108°C.120° D.144°试题4:若菱形两条对角线的长分别为10cm和24cm,则这个菱形的周长为A. 13cmB. 26cmC. 34cmD. 52cm试题5:从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是2的倍数的概率是A. B. C. D.试题6:我市某一周的日最高气温统计如下表:最高气温()15 16 17 18天数(天) 1 1 2 3则这组数据的中位数与众数分别是A.18,17 B.17.5,18 C.17,18 D.16.5,17试题7:已知:如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为A.π B. C.2π D.3π试题8:若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有18个,且具有“波动性质”,则这18个数的和为A.-64 B.0 C.18 D.64试题9:若二次根式有意义,则x的取值范围是.试题10:分解因式:= .试题11:若把代数式化为的形式,其中m,k为常数,则m+k= .试题12:已知正方形ABCD 的边长为2,E 为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF 并延长与线段DE交于点G,则BG 的长为 .试题13:已知:如图,点B、F、C、E在同一直线上,,, ,垂足分别为、,联结AC、DF,∠A=∠D.求证:.试题14:计算:+.试题15:求不等式组的整数解.试题16:已知2,求()的值试题17:在平面直角坐标系xOy中,直线与直线 y= -2x关于y轴对称,直线与反比例函数的图象的一个交点为A(2, m).(1) 试确定反比例函数的表达式;(2) 若过点A的直线与x轴交于点B,且∠ABO=45°,直接写出点B的坐标.试题18:某工厂现在平均每天比原计划平均每天多生产50台机器,现在生产600台机器所需的时间与原计划生产400台机器所需的时间相同,现在平均每天生产多少台机器?试题19:已知:如图,正方形ABCD中,点E为AD边的中点,联结CE.求cos∠ACE和tan∠ACE的值.试题20:某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树的棵树和所占百分比情况进行了调查,将收集的数据整理并绘制成图1和图2两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树棵;(2)请补全两幅统计图;(3)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树大约有多少棵?试题21:已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.(1)求证:DC是⊙O 的切线;(2)若AD=l,BC=4,求直径AB的长.试题22:如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °BD(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).试题23:在平面直角坐标系xOy中,已知二次函数的图象与x轴的正半轴交于A、B两点(点A在点B的左侧),与y轴交于点C .点A和点B间的距离为2,若将二次函数的图象沿y轴向上平移3个单位时,则它恰好过原点,且与x轴两交点间的距离为4.(1)求二次函数的表达式;(2)在二次函数的图象的对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由;(3)设二次函数的图象的顶点为D,在x轴上是否存在这样的点F,使得?若存在,求出点F的坐标;若不存在,请说明理由.试题24:在等边三角形ABC中,AD⊥BC于点D.(1)如图1,请你直接写出线段AD与BC之间的数量关系: AD= BC ;(2)如图2,若P是线段BC上一个动点(点P不与点B、C重合),联结AP,将线段AP绕点A逆时针旋转60°,得到线段AE,联结CE,猜想线段AD、CE、PC之间的数量关系,并证明你的结论;(3)如图3,若点P是线段BC延长线上一个动点,(2)中的其他条件不变,按照(2)中的作法,请在图3中补全图形,并直接写出线段AD、CE、PC之间的数量关系.试题25:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”(1)已知:如图1,在△ABC中,∠C=90°,,.求证:△ABC是“匀称三角形”;图1(2)在平面直角坐标系xoy中,如果三角形的一边在x轴上,且这边的中线恰好等于这边的长,我们又称这个三角形为“水平匀称三角形”.如图2,现有10个边长是1的小正方形组成的长方形区域记为G, 每个小正方形的顶点称为格点,A (3,0),B(4,0),若C、D(C、D两点与O不重合)是x轴上的格点,且点C在点A的左侧. 在G内使△PAC与△PBD 都是“水平匀称三角形”的点P共有几个?其中是否存在横坐标为整数的点P,如果存在请求出这个点P的坐标,如果不存在请说明理由.试题1答案:A试题2答案:B试题3答案:B试题4答案:D试题5答案:D试题6答案:C试题7答案:C试题8答案:B试题9答案:试题10答案:试题11答案:-5试题12答案:试题13答案:证明:∵,∴.即. ∵,,∴∠B=∠E=90°. …又∠A=∠D,∴△ABC≌△DEF∴.试题14答案:解:+试题15答案:解:解不等式①,得x<2 .解不等式②,得x>-1.∴原不等式组的解集是-1<x<2.∴原不等式组的整数解为0,1.试题16答案:解:()(x-2)=(x-2)=∵ 2x2-x-2=0,∴2x2=x+2.∴原式=.试题17答案:解:由题意,直线与直线y=-2x关于y轴对称,∴直线的解析式为y= 2x.∵点A(2,m)在直线上,∴m=2×2=4.∴点A的坐标为(2,4).又∵点A(2,4)在反比例函数的图象上,∴,∴k=8.∴反比例函数的解析式为.(2) (6,0)或(-2,0).试题18答案:解:设现在平均每天生产x台机器,则原计划平均每天生产(x-50)台机器.依题意,得:解得:x=150经检验:x=150是所列方程的解且符合题意.答:现在平均每天生产150台机器.试题19答案:解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.试题20答案:解:(1)200;(2)图1 图2 (3)根据题意得:2000×95%=1900(棵).答:全校种植的树中成活的树大约有1900棵.试题21答案:(1)证明:联结OE,在⊙O中,∵,∴∵OD∥BE,∵OA=OE,OD=OD.∴∵AM是⊙O的切线,切点为A,∴,∵OE是⊙O的半径⊙O的切线(2)解:过点D作BC的垂线,垂足为H.∵BN切⊙O于点B,∴四边形ABHD是矩形,∴AD=BH=1,AB=DHAD、CB、CD分别切⊙O于点A、B、E,∴AD=ED=1.BC=CE=4,∴DC=DE+CE=1+4=5在Rt △DHC 中,试题22答案:(1)90(2)P (7,7)PM 是分割线.试题23答案:解:(1)∵平移后的函数图象过原点且与x 轴两交点间的距离为4,∴平移后的函数图象与x 轴两交点坐标为(0,0),(4,0)或(0,0),(-4,0) ∴它的对称轴为直线x =2或x =-2.∵抛物线与x 轴的正半轴交于A 、B 两点,∴抛物线关于直线x =2对称,∵它与x 轴两交点间的距离为2,且点A 在点B 的左侧.∴其图象与x 轴两交点的坐标为A (1,0)、B (3,0).FOEM由题意知,二次函数的图象过C(0,-3),∴设.(2)∵点B关于直线x=2的对称点为A(1,0)设直线AC的解析式为∴直线AC的解析式为直线AC与直线x=2的交点P就是到B、C两点距离之差最大的点.当x=2时,y=3∴点P的坐标为(2,3)…(3)在x轴上存在这样的点F,使得DFB=DCB抛物线的顶点D的坐标为(2,1)设对称轴与x轴的交点为点E∵E(2,0),∴符合题意的点F的坐标为F1(-1,0)或F2(5,0)试题24答案:解:(1)(2)AD=(CE+PC).理由如下:∵线段AP绕点A逆时针旋转60°,得到线段AE,∴∠PAE=60°,AP=AE,∵等边三角形ABC,∴∠BAC=60°,AB=AC∴∠BAC﹣∠PAC=∠PAE﹣∠PAC,∴∠BAP=∠CAE,在△ABP和△ACE中,∴△ABP≌△ACE,∴BP=CE,∵BP+PC=BC,∴CE+ PC=BC,∵AD=BC,∴AD=(CE+PC).(3)如图,AD=(CE-PC).试题25答案:解:解:(1)如图1,作AC边的中线BD交AC于点D,∵∠C=90°,BC= 2,AB = 2,∴AC = = 4.∴AD=CD=2.BD == 4∴AC = BD,∴△ABC是“匀称三角形”(2)①在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有 4 个②在G内使△PAC与△PBD都是“水平匀称三角形”的点P中,存在横坐标为整数的点P.如图,当C点坐标为(2,0),D点坐标为(3,0)与A重合时,△PAC与△PBD是水平匀称三角形.∵A(3,0),C(2,0),B(4,0),D(3,0)∴AC=1,BD=1设PM、PN分别为CA、DB上的中线,∴AM=AC=,AN=BD= ,∴AM=AN=∴点A为MN的中点.∵△PAC与△PBD是“水平匀称三角形”∴PM=AC=1,PN=BD=1∴PM=PN=1∴PA⊥MN,即PA与x轴垂直∵A(3,0)∴P点横坐标为整数3.在Rt△PMA中,PM=1,AM=∴PA=∴P(3,)所以,当C点坐标为(2,0),D点坐标为(3,0)与A重合时,△PAC与△PBD是水平匀称三角形且P点横坐标为整数. 解法2. 在长方形区域内使△PAC与△PBD都是“水平匀称三角形”的点P中,存在横坐标为整数的点P.如图,当C点坐标为(2,0),D点坐标为(3,0)与A重合,P点横坐标为3时∵A(3,0),P点横坐标为3∴PA与x轴垂直∵A(3,0),C(2,0),B(4,0),D(3,0)∴AC=1,BD=1设AC中点为M,BD中点为N.∴AM=AC=,AN=BD=∴AM=AN要使△P AC与△PBD是水平匀称三角形只需PM=AC=1,PN=BD=1∵PA与x轴垂直在Rt△PMA中,PM=1,AM=∴PA=∴P(3,)所以,当C点坐标为(2,0),D点坐标为(3,0)与A重合,△PAC与△PBD是水平匀称三角形且P点横坐标为整数.。
2013北京中考数学试题、答案解析版
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
2013年北京市中考数学试卷-答案
1 / 13北京市2013年高级中等学校招生考试年高级中等学校招生考试数学答案解析一、选择题 1.【答案】B【解析】解:将3960用科学记数法表示为33.9610´【提示】科学记数法的表示形式为10n a ´的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.是负数.【考点】科学记数法—表示较大的数.表示较大的数. 2.【答案】D【解析】解:∵34143æöæö-´-=ç÷ç÷èøèø,∴34-的倒数是43-.【提示】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.,我们就称这两个数互为倒数. 【考点】倒数.【考点】倒数.3.【答案】C【考点】概率公式.【考点】概率公式.【解析】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是35. 【提示】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.比值就是其发生的概率的大小.4.【答案】C 【解析】解:∵12Ð=Ð,340Ð=°,∴()1111803180407022()Ð=´°-Ð=´°-°=°,∵a b ∥,∴4170Ð=Ð=°.【提示】根据平角的定义求出1Ð,再根据两直线平行,内错角相等解答.,再根据两直线平行,内错角相等解答. 【考点】平行线的性质.【考点】平行线的性质.5.【答案】B【解析】解:∵AB BC ^,CD BC ^,∴BAE CDE △∽△,∴AB BECD CE=∵20BE =m ,10CE =m ,20CD =m ,∴202010AB =解得:40AB =【提示】由两角对应相等可得BAE CDE △∽△,利用对应边成比例可得两岸间的大致距离AB . 【考点】相似三角形的应用.【考点】相似三角形的应用. 6.【答案】A【解析】解:A .不是轴对称图形,是中心对称图形.故此选项正确;.不是轴对称图形,是中心对称图形.故此选项正确; B .是轴对称图形,也是中心对称图形.故此选项错误;.是轴对称图形,也是中心对称图形.故此选项错误; C .是轴对称图形,不是中心对称图形.故此选项错误;.是轴对称图形,不是中心对称图形.故此选项错误; D .是轴对称图形,不是中心对称图形.故此选项错误..是轴对称图形,不是中心对称图形.故此选项错误. 【提示】根据轴对称图形与中心对称图形的概念求解.【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形,轴对称图形.【考点】中心对称图形,轴对称图形. 7.【答案】B【解析】解:根据题意得:【解析】解:根据题意得:(509014040)50=+++¸32050=¸6.4=(小时). 故这50名学生这一周在校的平均体育锻炼时间是6.4小时.小时.【提示】根据加权平均数的计算公式列出算式5106157208()550´+´+´+´¸,再进行计算即可.,再进行计算即可. 【考点】加权平均数.【考点】加权平均数. 8.【答案】A【解析】解:作OC AP ^,如图,则1122AC AP x ==, 在Rt AOC △中,1OA =,2222111442OC OA AC x x =-=-=-, 所以211402()24y OC AP x x x ==-££g g ,所以y 与x 的函数关系的图像为A 选项.选项.【提示】作OC AP ^,根据垂径定理得1122AC AP x ==,再根据勾股定理可计算出2142OC x =-,然后根据三角形面积公式得到21402()4y x x x =-££g ,再根据解析式对四个图形进行判断.,再根据解析式对四个图形进行判断.【考点】动点问题的函数图像.【考点】动点问题的函数图像. 二、填空题9.【答案】2(2)a b -【解析】解:244ab ab a -+ 2(44)a b b =-+(提取公因式)(提取公因式) 2(2)a b =-(完全平方公式)(完全平方公式)【提示】先提取公因式a ,再根据完全平方公式进行二次分解.完全平方公式:2222()a ab b a b -+=- 【考点】提公因式法与公式法的综合运用.【考点】提公因式法与公式法的综合运用. 10.【答案】21x +【解析】解:抛物线21y x =+开口向上,且与y 轴的交点为(0,1). 【提示】根据二次函数的性质,开口向上,要求a 值大于0即可.即可. 【考点】二次函数的性质.【考点】二次函数的性质.11.【答案】20【考点】矩形的性质,三角形中位线定理.【考点】矩形的性质,三角形中位线定理.【提示】根据题意可知OM 是ADC △的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.的周长. 【解析】解:∵O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,的中点,∴112.522OM CD AB ===,∵5AB =,12AD =,∴2251213AC =+=,∵O 是矩形ABCD 的对角线AC 的中点,的中点, ∴16.52BO AC ==,∴四边形ABOM 的周长为56 6.5 2.520AB AM BO OM +++=+++=12.【答案】32-13- 0,1-【解析】解:当12a =时,1B 的纵坐标为12,1B 的纵坐标和2A 的纵坐标相同,的纵坐标相同, 则2A 的横坐标为232a =-,2A 的横坐标和2B 的横坐标相同,的横坐标相同,则2B 的纵坐标为223b =-,2B 的纵坐标和3A 的纵坐标相同,的纵坐标相同,则3A 的横坐标为313a =-,3A 的横坐标和3B 的横坐标相同,的横坐标相同,则3B 的纵坐标为33b =-,3B 的纵坐标和4A 的纵坐标相同,的纵坐标相同, 则4A 的横坐标为42a =,4A 的横坐标和4B 的横坐标相同,的横坐标相同,则4B 的纵坐标为412b =, 即当12a =时,232a =-,313a =-,42a =,532a =-,112b =,223b =-,33b =-,412b =,523b =-,∵20136713=,∴2013313a a ==-;点1A 不能在y 轴上(此时找不到1B ),即0x ¹,点1A 不能在x 轴上(此时2A ,在y 轴上,找不到2B ), 即10y x =--¹,解得:1x ¹-; 综上可得1a 不可取01-、【提示】求出2a ,3a ,4a ,5a 的值,可发现规律,继而得出2013a 的值,根据题意可得1A 不能在x 轴上,也不能在y 轴上,从而可得出1a 不可能取的值.不可能取的值. 【考点】反比例函数综合题.【考点】反比例函数综合题. 三、解答题 13.【答案】见解析【答案】见解析【解析】证明:∵DE AB ∥,∴CAB ADE Ð=Ð,∵在ABC △和DAE △中,CAB ADEAB DA B DAEÐ=Ðìï=íïÐ=Ðî, ∴()ABC DAE ASA △≌△,∴BC AE =.【提示】根据两直线平行,内错角相等求出CAB ADE Ð=Ð,然后利用“角边角”证明ABC △和DAE △全等,再根据全等三角形对应边相等证明即可.等,再根据全等三角形对应边相等证明即可. 【考点】全等三角形的判定与性质.【考点】全等三角形的判定与性质.14.【答案】5【解析】解:原式2122452=+-´+=【提示】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.法则计算即可.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.15.【答案】115x -<<【解析】解:32123x x x x >-ìïí+>î①②,解不等式①得,1x >-,解不等式②得,15x <,所以,不等式组的解集是115x -<<. 【提示】先求出两个不等式的解集,再求其公共解.【提示】先求出两个不等式的解集,再求其公共解. 【考点】解一元一次不等式组.【考点】解一元一次不等式组. 16.【答案】12【解析】解:∵2410x x --=,即241x x -=,∴原式222222412931()29343912x x x y y x x x x =-+-+-=-+=-++= .【提示】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.算即可求出值.【考点】整式的混合运算—化简求值.化简求值. 17.【答案】2.5平方米平方米【解析】解:设每人每小时的绿化面积x 平方米,由题意,得平方米,由题意,得 18018036(62)x x-=+,解得: 2.5x =经检验, 2.5x =是原方程的解,且符合题意.是原方程的解,且符合题意. 答:每人每小时的绿化面积2.5平方米.平方米.【提示】设每人每小时的绿化面积x 平方米,根据增加2人后完成的时间比原来的时间少3小时为等量关系建立方程求出其解即可.系建立方程求出其解即可. 【考点】分式方程的应用.【考点】分式方程的应用.18.【答案】(1)52k <(2)2【解析】解:(1)根据题意得:44(24)2080k k =--=->△,解得:52k <;(2)由k 为正整数,得到1k =或2,利用求根公式表示出方程的解为152x k =-±-, ∵方程的解为整数,∴52k -为完全平方数,则k 的值为2.【提示】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k 的范围;的范围;(2)找出k 范围中的整数解确定出k 的值,经检验即可得到满足题意k 的值.的值. 【考点】根的判别式,一元二次方程的解,解一元二次方程—公式法.公式法. 四、解答题19.【答案】(1)见解析)见解析 (2)13【解析】证明:(1)在ABCD Y 中,AD BC ∥,且AD BC =.∵F 是AD 的中点,∴12DF AD =.又∵12CE BC =,∴DF CE =,且DF CE ∥, ∴四边形CEDF 是平行四边形;是平行四边形;(2)解:如图,过点D 作DH BE ^于点H .在ABCD Y 中,∵60B Ð=°,∴60DCE Ð=°.∵4AB =,∴4CD AB ==,∴122CH CD ==,23DH =.在CEDF Y 中,132CE DF AD ===,则1EH = ∴在Rt DHE △中,根据勾股定理知2(23)113DE =+=.【提示】(1)由“平行四边形的对边平行且相等”的性质推知AD BC ∥,且AD BC =;然后根据中点的定义、结合已知条件推知四边形CEDF 的对边平行且相等(DF CE =,且DF CE ∥),即四边形CEDF 是平行四边形;行四边形;(2)如图,过点D 作DH BE ^于点H ,构造含30度角的直角DCH △和直角DHE △.通过解直角DCH △和在直角DHE △中运用勾股定理来求线段ED 的长度.的长度.【考点】平行四边形的判定与性质,含30度角的直角三角形,勾股定理.度角的直角三角形,勾股定理. 20.【答案】(1)见解析)见解析 (2)【解析】(1)证明:P A ,PC 与O e 分别相切于点A ,C ,∴APO EPD Ð=Ð且PA AO ^,∴90P AO Ð=°, ∵AOP EOD Ð=Ð,90PAO E Ð=Ð=°∴APO EDO Ð=Ð,∴EPD EDO Ð=Ð; (2)解:连接OC ,∴6P A PC ==,∵3tan 4PDA Ð=,∴在Rt P AD △中,8AD =,10PD =,∴4CD =,∵3tan 4PDA Ð=,∴在Rt OCD △中,3OC OA ==,5OD =, ∵EPD ODE Ð=Ð,∴DEP OED △∽△,∴2DP PE ED DO DE OE===,∴2DE OE =在Rt OED △中,222OE DE OD +=,即2255OE =,∴5OE =.【提示】(1)根据切线长定理和切线的性质即可证明:EPD EDO Ð=Ð;(2)连接OC ,利用3tan 4PDA Ð=,可求出4CD =,再证明OED DEP △∽△,根据相似三角形的性质和勾股定理即可求出OE 的长.的长.【考点】切线的性质,相似三角形的判定与性质.【考点】切线的性质,相似三角形的判定与性质. 21.【答案】(1)0.03 (2)见解析)见解析 (3)33.710´【解析】解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:0.0415%0.0320%´=(平方千米); (2)植物花园的总面积为:0.0420%0.2¸=(平方千米), 则第九届园博会会园区陆地面积为:0.218 3.6´=(平方千米), 第七、八界园博会的水面面积之和为:10.5 1.5+=(平方千米), 则第九届园博会水面面积为1.5平方千米,如图:平方千米,如图:(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:35007.4 3.710´»´.【提示】(1)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;(2)先算出植物花园的总面积,然后可求出第九届园博会会园区陆地面积,根据图像求出第七、八界园博会的水面面积之和,补全条形统计图即可;会的水面面积之和,补全条形统计图即可;(3)根据图表所给的信息,求出停车位数量与单日最多接待游客量成正比例关系,算出比值,求出大约需要设置的停车位数量.要设置的停车位数量.【考点】条形统计图,用样本估计总体,统计表,扇形统计图.【考点】条形统计图,用样本估计总体,统计表,扇形统计图. 22.【答案】(1)a (2)2(3)23【解析】解:(1)四个等腰直角三角形的斜边长为a ,则斜边上的高为12a ,每个等腰直角三角形的面积为:2111224a a a =g ,则拼成的新正方形面积为:22144a a ´=,即与原正方形ABCD 面积相等,∴这个新正方形的边长为a ;(2)∵四个等腰直角三角形的面积和为2a ,正方形ABCD 的面积为2a ,∴2144122ARE DWH GCT SBF AREMNPQ S S S S S S =+++==´´=△△△△△正方形; (3)如答图1所示,分别延长RD ,QF ,PE ,交F A ,EC ,DB 的延长线于点S ,T ,W .由题意易得:RSF △,QET △,PDW △均为底角是30°的等腰三角形,其底边长均等于ABC △的边长. 不妨设等边三角形边长为a ,则SF AC A ==. 如答图2所示,过点R 作RM SF ^于点M ,则1122MF SF a ==,在Rt RMF △中,133tan30236RM MF a a =°=´=g ,∴21332612RSFSa a a ==g △ 过点A 作AN SD ^于点N ,设AD AS x ==,则1sin302AN AD x =°=g ,22cos303SD ND AD x ==°=,∴2111332224ADS S SD AN x x x ===g g g △ ∵三个等腰三角形RSF △,QET △,PDW △的面积和223333124RSF S a a ==´=△,∴3RPQ ADS CFT BEW ADSS S S S S =++=△△△△△,∴233334x =´,得249x =,解得23x =或23x =-(不合题意,舍去)舍去)∴23x =,即AD 的长为23.【考点】四边形综合题.【考点】四边形综合题.【提示】(1)四个等腰直角三角形的斜边长为a ,其拼成的正方形面积为2a ,边长为a ;(2)如题图2所示,正方形MNPQ 的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ 的面积;的面积;(3)参照小明的解题思路,对问题做同样的等积变换.)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形RSF △,QET △,PDW △的面积和等于等边三角形ABC △的面积,的面积,故阴影三角形PQR △的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD 的长度.的长度. 五、解答题23.【答案】(1)(0,2)A -(1,0)B(2)22y x =-+; (3)2242y x x =--【解析】解:(1)当0x =时,2y =-,∴(0,2)A -,抛物线的对称轴为直线212m x m-=-=,∴(1,0)B ;(2)易得A 点关于对称轴直线1x =的对称点(2,2)A ¢-,则直线l 经过A ¢、B ,设直线l 的解析式为(0,)y kx b k =+¹,则220k b k b +=-ìí+=î,解得22k b =-ìí=î,所以,直线l 的解析式为22y x =-+; (3)∵抛物线的对称轴为直线1x =,∴抛物线在23x <<这一段与在10x -<<这一段关于对称轴对称,结合图像可以观察到抛物线在21x -<<-这一段位于直线l 的上方,在10x -<<这一段位于直线l 的下方,的下方, ∴抛物线与直线l 的交点的横坐标为1-,当1x =-时,2(1)24y =-´-+=,所以,抛物线过点(1,4)-,当1x =-时,224m m +-=,解得2m =,∴抛物线的解析式为2242y x x =--【提示】(1)令0x =求出y 的值,即可得到点A 的坐标,求出对称轴解析式,即可得到点B 的坐标;的坐标; (2)求出点A 关于对称轴的对称点(2,2)-,然后设直线l 的解析式为()0y kx b k =+¹,利用待定系数法求一次函数解析式解答即可;一次函数解析式解答即可;(3)根据二次函数的对称性判断在23x <<这一段与在10x -<<这一段关于对称轴对称,然后判断出抛物线与直线l 的交点的横坐标为1-,代入直线l 求出交点坐标,然后代入抛物线求出m 的值即可得到抛物线解析式.解析式.【考点】二次函数的性质,一次函数图像与几何变换,二次函数图像上点的坐标特征.24.【答案】(1)1302ABD a Ð=°-(2)见解析)见解析(3)30a =°【解析】(1)解:∵AB AC =,A a Ð=,∴ABC ACB Ð=Ð,180ABC ACB A Ð+Ð=°-Ð, ∴1118(92)002ABC ACB A a Ð=Ð=°-Ð=°-, ∵ABD ABC DBC Ð=Ð-Ð,60DBC Ð=°,即1302ABD a Ð=°-;(2)ABE △是等边三角形,证明:连接AD ,CD ,ED ,∵线段BC 绕B 逆时针旋转60°得到线段BD ,则BC BD =,60DBC Ð=°,∵60ABE Ð=°,∴160302ABD DBE EBC a Ð=°-Ð=Ð=°-, 且BCD △为等边三角形,在ABD △与ACD △中AB AC AD AD BD CD=ìï=íï=î∴()ABD ACD SSS △≌△,∴1122BAD CAD BAC a Ð=Ð=Ð=,∵150BCE Ð=°, ∴111803015022BEC BAD a a æöç÷èÐ=°-°--°==Ðø,在ABD △和EBC △中BEC BAD EBC ABD BC BDÐ=ÐìïÐ=Ðíï=î ∴()ABD EBC AAS △≌△,∴AB BE =,∴ABE △是等边三角形;是等边三角形;(3)解:∵60BCD Ð=°,150BCE Ð=°,∴1506090DCE Ð=°-°=°,∵45DEC Ð=°,∴DEC △为等腰直角三角形,∴DC CE BC ==,∵150BCE Ð=°,∴1(180150)152EBC Ð=°-°=°, ∵130152EBC a Ð=°-=°,∴30a =°.【提示】(1)求出ABC Ð的度数,即可求出答案;的度数,即可求出答案;(2)连接AD ,CD ,ED ,根据旋转性质得出BC BD =,60DBC Ð=°,求出1302ABD EBC a Ð=Ð=°-,且BCD △为等边三角形,证ABD ACD △≌△, 推出1122BAD CAD BAC a Ð=Ð=Ð=,求出12BEC BAD a Ð==Ð,证ABD EBC △≌△,推出AB BE =即可;可;(3)求出90DCE Ð=°,DEC △为等腰直角三角形,推出DC CE BC ==,求出15EBC Ð=°, 得出方程130152a °-=°,求出即可.,求出即可. 【考点】全等三角形的判定与性质,等边三角形的性质,等腰直角三角形,旋转的性质.25.【答案】(1)①,D E②03m ££(2)1r ³【解析】解:(1)①如图1所示,过点E 作O 的切线设切点为R ,∵O e 的半径为1,∴1RO =,∵2EO =,∴∠30OER =°,根据切线长定理得出O e 的左侧还有一个切点,使得组成的角等于30°,∴E 点是O e 的关联点,的关联点,∵11,22D æöç÷èø,(0,2)E -,()23,0F ,∴OF EO >,DO EO <,∴D 点一定是O e 的关联点,而在O e 上不可能找到两点与点F 的连线的夹角等于60°,故在点D .E 、F 中,O e 的关联点是,D E ;②如图2,由题意可知,若P 要刚好是C e 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,由图2可知60APB Ð=°,则30CPB Ð=°,连接BC ,则22sin BC PC BC r CPB===Ð,∴若P 点为C e 的关联点,则需点P 到圆心的距离d 满足02d r ££;由上述证明可知,考虑临界点位置的P 点,如图3,点1P 到原点的距离1212OP =´=,过点O 作直线l 的垂线OH ,垂足为H ,23tan 32FO OGF OG Ð===,∴60OGF Ð=°,∴sin 603OH OG =°=; 13sin 2OH OPH OP Ð==,∴160OPH Ð=°,可得点1P 与点G 重合,过点2P 作2P M x ^轴于点M ,可得230P OM Ð=°,∴2cos303OM OP =°=,从而若点P 为O e 的关联点,则P 点必在线段12P P 上,∴03m ££;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;的中点;考虑临界情况,如图4,即恰好E 、F 点为K e 的关联时,则1222KF KN EF ===,此时,1r =,故若线段EF 上的所有点都是某个圆的关联点,这个圆的半径r 的取值范围为1r ³.【提示】(1)①根据关联点的定义得出E 点是O e 的关联点,进而得出F 、D ,与O e 的关系;的关系;②若P 要刚好是⊙C 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,进而得出PC 的长,进而得出点P 到圆心的距离d 满足02d r ££,再考虑临界点位置的P 点,进而得出m 的取值范围;的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;再考虑临界情况,即恰好E 、F 点为K 的关联时,则1222KF KN EF ===,即可得出圆的半径r 的取值范围.的取值范围.【考点】圆的综合题.【考点】圆的综合题.。
2013北京中考数学一模12题
D
C
A(P)
B
12. (2013 东城区一模)在平面直角坐标系中,正方形 ABCD 的位置如右图所示,点 A 的坐标为(1,0) ,点 D 的坐标为 (0,2) .延长 CB 交 x 轴于点 A1,作正方形 A1B1C1C;延长 C1B1 交 x 轴于点 A2,作正方形 A2B2C2C1,…按这样的规律 进行下去,第 2013 个正方形的面积为 .
BOC
(用含 n 的式子表示) .
初三数学
page
3
of 4
小马成群 12.(2013 石景山区一模)将全体正整数排成一个三角形数阵: 按照以上排列的规律,第 5 行从左到右的第 3 个数为_______;第 n 行( n ≥3)从左到右的第 3 个数为 . (用含 1 2 4 7 8 5 3 6 9 10
第 1 个等式:a1 请解答下列问题: (1)按以上规律列出第 5 个等式:a5 = (2)求 a1 + a2 + a3 + a4 + … + a100 的值为 = .:学_科_网 ;
12.(2013 平谷区一模)如图 1、图 2、图 3,在 △ABC 中,分别以 形,正五边形, BE、CD 相交于点
AB、AC 为边,向 △ABC 外作正三角形,正四边 AB、AD 是以 AB 为边向 △ABC 外所作正 n 边形的一组邻边; AC、AE 是以 AC 为边向 △ABC 外所作正 n (n 为正整数)边形的一组邻边. BE、CD 的延长相交于点 O .图 1 中
O .如图
4, ;图 4 中 BOC
y C D B O A
12. (2013 海淀区一模)如图 1 所示,圆上均匀分布着 11 个点
x
大兴区初三数学一模试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001……D. √42. 如果a、b是方程x²-5x+6=0的两个根,则a+b的值为()A. 5B. -5C. 6D. -63. 已知函数y=2x+1,若x的取值范围是[2,3],则y的取值范围是()A. [5,7]B. [3,5]C. [4,6]D. [5,6]4. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 下列命题中,正确的是()A. 如果a>b,那么a²>b²B. 如果a>b,那么a²>a²C. 如果a²>b²,那么a>bD. 如果a²>b²,那么a<b6. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 120°C. 135°D. 150°7. 下列函数中,是反比例函数的是()A. y=x+2B. y=x²C. y=2/xD. y=x³8. 已知一次函数y=kx+b,若该函数的图像经过点(2,3),则k和b的值分别为()A. k=1,b=1B. k=1,b=2C. k=2,b=1D. k=2,b=29. 在等腰三角形ABC中,若AB=AC,且∠BAC=40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°10. 下列各数中,属于无理数的是()A. √4B. √-1C. 0.333……D. 0.5二、填空题(本大题共5小题,每小题4分,共20分)11. 已知a=3,b=-2,则a²-b²的值为__________。
2013大兴区初三(上)期中数学
2013大兴区初三(上)期中数学一、选择题(本题共28分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.2.(4分)下列图形一定是相似图形的是()A.任意两个菱形B.任意两个等边三角形C.任意两个等腰三角形D.任意两个矩形3.(4分)已知抛物线的解析式为y=﹣(x﹣5)2﹣1,则它的顶点坐标是()A.(5,1)B.(﹣5,1)C.(5,﹣1)D.(1,5)4.(4分)把抛物线y=5x2向上平移2个单位后,所得抛物线的解析式是()A.y=﹣5x2﹣2 B.y=﹣5x2+2 C.y=5x2﹣2 D.y=5x2+25.(4分)已知:如图,在△ABC中,D,E两点分别在AB、AC边上,DE∥BC.若AD:AB=2:3,则S△ADE:S△ABC的值为()A.9:4 B.4:9C.4:5 D.5:46.(4分)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.7.(4分)已知:如图,关于x的二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④x=1是关于x的方程ax2+bx+c=0(a≠0)的一个根.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本题共20分,每小题5分)8.(5分)把长为8cm的线段进行黄金分割,则较长线段的长为cm.9.(5分)若抛物线y=x2+3x+a与x轴有两个交点,则a的取值范围是.10.(5分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,若点(﹣,y1)、(4,y2)在抛物线上,则y1y2(填“>”,“<”或“=”号)11.(5分)已知抛物线y=ax2+bx+c(a≠0)上有四个点:(1,m),(0,4),(3,m),(4,n),则n的值为.三、解答题(本题共30分,每小题6分)12.(6分)已知反比例函数y=的图象经过点(4,3).在x=6时,求y的值.13.(6分)作函数的图象.14.(6分)已知抛物线y=x2+bx+c过点(2,1),且此抛物线的对称轴是直线x=,求这条抛物线的解析式.15.(6分)如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.16.(6分)已知:如图,在平行四边形ABCD中,EF∥AB,DE:DA=2:5,CD=10.求EF的长.四、解答题(本题共10分,每小题0分)17.已知关于x的二次函数y=ax2+bx+1(a≠0),自变量x的部分取值及对应的函数值y如下表所示:x …﹣3 0 1 …y … 1 1 5 …求这个二次函数的解析式.18.已知:抛物线y=nx2﹣(3n+2)x+2n+2(n>0).(1)求证:抛物线与x轴有两个交点;(2)当n=2时,求抛物线与x轴的交点坐标.五、解答题(本题共10分,每小题5分)19.(5分)某种进口水果的进价每千克20元,如果以每千克x元的价格销售,那么每天可售出(100﹣x)千克.当销售单价为何值时,这种进口水果每天可获得的利润y最大?最大利润是多少元?20.(5分)已知:如图,AB⊥BC,AB=BC=4,DC⊥BC,点E是BC边上的一个动点(点E不与点B、C重合),连结AE,过点E作EF⊥AE交DC于点F.设BE的长为x,CF的长为y.求y与x之间的函数关系式,并写出自变量x的取值范围.六、解答题(本题共10分)21.(10分)已知:如图,一次函数y=﹣x﹣2的图象与二次函数y=2x2+2x﹣4的图象与x轴交于同一点A,且与y 轴交于点B,设二次函数交y轴于点D,在x轴上有一点C,使以点A、B、C组成三角形与△ADB相似.试求出C 点的坐标.七、解答题(本题共22分,第22题7分,第23题7分,第24题8分)22.(7分)关于x的二次函数y=x2+2x+k﹣1的图象与x轴有交点,k为正整数.(1)求k的值;(2)当关于x的二次函数y=x2+2x+k﹣1与x轴的交点的横坐标均是负整数时,将关于x的二次函数y=x2+2x+k﹣1的图象向下平移4个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=(b<3)与此图象有两个公共点时,b的取值范围.23.(7分)已知:如图,矩形ABCD中,AB=12cm,AD=16cm,动点E、F分别从点A、C同时出发,均以2厘米/秒的速度分别沿AD向点D和沿CB向点B运动.设运动时间为t(其中t≤6.25)秒(1)当EF与AC垂直时,求出t的值;(2)在(1)的条件下,若P为线段AC上一点(点P不与点A、C重合),连结EP,当2AE2=AC•AP时,请判断EP 与AD的位置关系,并说明理由;求出此时AP的长.24.(8分)已知关于x的二次函数y=x2+mx+n的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,当﹣3<x<2时,函数值y<0;当x<﹣3或x>2时,函数值y>0.(1)求这个二次函数的解析式;(2)在直线y=﹣5上是否存在点P,使得∠APB=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.数学试题答案一、选择题(本题共28分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】根据等式性质2,可判断出只有B选项正确,故选B.2.【解答】A、两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.3.【解答】抛物线y=﹣(x﹣5)2﹣1的顶点坐标为(5,﹣1).故选C.4.【解答】∵y=5x2向上平移2个单位长度,∴新抛物线为y=5x2+2.故选;D.5.【解答】∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选B.6.【解答】∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选:A.7.【解答】∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,y<0,即4a﹣2b+c<0,所以②正确;∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∴ac<0,所以③错误;∵抛物线的对称轴为直线x=1,点B坐标为(﹣1,0),∴A点坐标为(3,0),∴ax2+bx+c=0(a≠0)的根为﹣1和3,所以④错误.故选B.二、填空题(本题共20分,每小题5分)8.【解答】较长线段的长度=×8cm=4(﹣1)cm.故答案为4(﹣1).9.【解答】∵抛物线y=x2+3x+a与x轴有两个交点,∴令y=0,则关于x的方程x2+3x+a=0有两个不相等的实数根,∴△=b2﹣4ac>0,即9﹣4a>0,解得a<,故答案为:a<.10.【解答】∵抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,开口向上,而点(﹣,y1)比点(4,y2)离对称轴近,∴y1<y2.故答案为<.11.【解答】∵抛物线y=ax2+bx+c(a≠0)过(1,m)、(3,m),∴抛物线的对称轴为直线x=﹣=2,即b=﹣4a,把(0,4)代入解析式得c=4,把(4,n)代入解析式得n=16a+4b+c=16a+4×(﹣4a)+4=4.故答案为4.三、解答题(本题共30分,每小题6分)12.【解答】把(4,3)代入y=得k=4×3=12,所以反比例函数解析式为y=,当x=6时,y===2.13.【解答】列表:描点、连线:14.【解答】根据题意得,解得,所以这条抛物线的解析式为y=x2﹣x﹣1.15.【解答】在△ABC中,∠B=180°﹣∠A﹣∠C=79°,在△ABC和△DEF中,,∴△ABC∽△DEF.16.【解答】∵四边形ABCD为平行四边形,∴AB=CD=10,∵EF∥AB,∴△DEF∽△DAB,∴=,∴=,∴EF=4.四、解答题(本题共10分,每小题0分)17.【解答】根据题意得,解得,所以这个二次函数的解析式为y=x2+3x+1.18.【解答】(1)∵y=nx2﹣(3n+2)x+2n+2(n>0),∴b2﹣4ac=(3n+2)2﹣4n(2n+2)=9n2+12n+4﹣8n2﹣8n=n2+4n+4=(n+2)2,∵n>0,∴b2﹣4ac=(n+2)2>0,∴抛物线与x轴有两个交点;(2)当n=2时,抛物线y=nx2﹣(3n+2)x+2n+2=2x2﹣8x+6,当y=0时,0=2x2﹣8x+6,∴x2﹣4x+3=0,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴抛物线与x轴的交点坐标为:(1,0),(3,0).五、解答题(本题共10分,每小题5分)19.【解答】y=(100﹣x)(x﹣20)=﹣(x﹣60)2+1600.即y=﹣(x﹣60)2+1600(0<x≤100).所以,当x=60时,y最大值=1600.答:当销售单价为60元时,这种进口水果每天可获得的利润y最大,最大利润是1600元.20.【解答】BE的长为x,则CE=BC﹣BE=4﹣x,CF的长为y,∵AB⊥BC,EF⊥AE,DC⊥BC,∴∠ABC=∠AEF=∠DCB=90°,∴∠A+∠AEB=90°,∠AEB=∠CEF=90°,∴∠A=∠CEF,∴Rt△ABE∽Rt△ECF,∴=,即=,∴y=﹣x2+x(0<x<4).六、解答题(本题共10分)21.【解答】令x=0,一次函数与y轴的交点B(0,﹣2),二次函数与y轴的交点为D(0,﹣4),∴△AOB是等腰直角三角形,BD=﹣2﹣(﹣4)=2,∴AB==2,∠OAB=∠OBA=45°,∵△ABD中,∠BAD、∠ADB都不等于45°,∠ABD=180°﹣45°=135°,∴∠BAC和∠ABD是对应角为135°,∴点C在点A的左边,①AC和BD是对应边时,∵△ADB∽△BCA,∴==1,∴AC=BD=2,∴OC=OA+AC=2+2=4,点C的坐标为(﹣4,0),②AC和AB是对应边时,∵△ADB∽△CBA,∴==,∴AC=AB=×2=4,∴OC=OA+AC=2+4=6,∴点C的坐标为(﹣6,0),综上所述,在x轴上有一点C(﹣4,0)或(﹣6,0),使以点A、B、C组成的三角形与△ADB相似.七、解答题(本题共22分,第22题7分,第23题7分,第24题8分)22.【解答】(1)由题意得,△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为(0,0),不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它的图象向下平移4个单位得到的图象的解析式为:y=x2+2x﹣3;(3)设二次函数y=x2+2x﹣3的图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后的图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意的b(b<3)的取值范围为:﹣<b<.23.【解答】(1)∵EF⊥AC,∴∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AB=CD,∠D=90°,AD∥BC,∴∠CAD=∠ACB.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴AO=CO,EO=FO.在Rt△ADC中,由勾股定理,得AC=20.∴AO=AC=10.∵AB=12cm,AD=16cm,∴CD=12.∴cos∠CAD=,∴,∴,∴AE=,t=÷2=秒.答:时,EF与AC垂直;(2)过E作EP⊥AD交AC于P.∴∠AEP=90°,∴∠AEP=∠AOE.∵∠OAE=∠EAP,∴△AOE∽△AEP,∴=,∴AE2=A0•AP,∴AE2=AC•AP,∴2AE2=AC•AP.24.【解答】(1)∵二次函数y=x2+mx+n,当﹣3<x<2时,函数值y<0;当x<﹣3或x>2时,函数值y>0,∴二次函数y=x2+mx+n过点A(﹣3,0),B(2,0),把A,B点代入二次函数解析式得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)如图所示:过点B作BD⊥AC于点D,当x=0,则y=﹣6,∴CO=6,∵A(﹣3,0),B(2,0),∴AO=3,BO=2,AB=5,∴AC==3,BC=2,∴DB×AC=AB×CO,∴BD===2,∴sin∠DCB===,∴∠DCB=45°,当∠APB=∠ACB,即∠APB=∠ACB=45°,∵AB=5,点P在直线y=﹣5上,∴当PA⊥AB垂足为A时,PA=AB,∠BAP=90°,∴∠APB=∠ABP=45°,此时P点坐标为:(﹣3,﹣5),当∠AP′B=∠ACB,即∠AP′B=∠ACB=45°,∵AB=5,点P′在直线y=﹣5上,∴当P′B⊥AB垂足为B时,P′A=AB,∠P′BA=90°,∴∠AP′B=∠BAP′=45°,此时P′点坐标为:(2,﹣5),综上所述:在直线y=﹣5上是否存在点P,使得∠APB=∠ACB,点P的坐标分别为:(﹣3,﹣5),(2,﹣5).。
北京市大兴区中考数学模拟试卷
北京市大兴区中考数学模拟试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣2的相反数是()A.B.﹣C.2D.﹣22.(4分)截止到4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1.将491671用科学记数法表示应为()A.49.1671×104B.4.91671×105C.4.91671×106D.0.491671×1073.(4分)如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,若AD =5,CD=3,DE=4,则AB的长为()A.B.C.D.4.(4分)某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m),这一小组的频率为0.25,则该组的人数为()A.150人B.300人C.600人D.900人5.(4分)布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红﹣黄﹣蓝”的概率是()A.B.C.D.6.(4分)下列图形中,阴影部分面积为1的是()A.B.C.D.7.(4分)如图,四边形OABC为菱形,点A、B在以点O为圆心的弧DE上,若AO=3,∠1=∠2,则扇形ODE的面积为()A.πB.2πC.πD.3π8.(4分)如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x 轴、y轴的交点,点P是此图象上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),则结论:①AF=2;②BF=4;③OA=5;④OB=3,正确结论的序号是()A.①②③B.①③C.①②④D.③④二、填空题(本题共16分,每小题4分)9.(4分)函数y=﹣1中,自变量x的取值范围是.10.(4分)分解因式:ax2﹣ay2=.11.(4分)如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠ACE+∠BDE=.12.(4分)将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为,那么第n(n为正整数)个图中,挖去的所有三角形的面积和为(用含n的代数式表示).三、解答题(本题共30分,每小题5分)13.(5分)计算2﹣1﹣tan60°+(π﹣2011)0+||.14.(5分)解不等式组.15.(5分)已知,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.16.(5分)已知直线y=k1x+b与双曲线相交于点A(2,4),且与x轴、y 轴分别交于B、C两点,AD垂直平分OB,垂足为D,求直线和双曲线的解析式.17.(5分)列方程或方程组解应用题:根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600m后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?18.(5分)在平面直角坐标系中,点A的坐标是(0,6),点B在一次函数y=﹣x+m的图象上,且AB=OB=5.求一次函数的解析式.四、解答题(本题共20分,每小题5分)19.(5分)已知:如图,在直角梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,上底AD=8,AB=12,CD边的垂直平分线交BC边于点G,且交AB 的延长线于点E,求AE的长.20.(5分)如图,在边长为1的正方形网格内,点A、B、C、D、E均在格点处.请你判断∠x+∠y的度数,并加以证明.21.(5分)2010年5月20日上午10时起,2010年广州亚运会门票全面发售.下表为抄录广州亚运会官方网公布的三类比赛的部分门票价格,如图为某公司购买的门票种类、数量所绘制成的条形统计图.比赛项目票价(元/张)羽毛球400艺术体操240田径x依据上面的表和图,回答下列问题:(1)其中观看羽毛球比赛的门票有张;观看田径比赛的门票占全部门票的%.(2)公司决定采用随机抽取的方式把门票分配给部分员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小丽抽到艺术体操门票的概率是.(3)若该公司购买全部门票共花了36000元,试求每张田径门票的价格.22.(5分)一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示):请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积.要求:(1)画出的平行四边形有且只有一个顶点与B点重合;(2)写出画图步骤;(3)写出所画的平行四边形的名称.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC 大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF ⊥AE于F.(1)求OA,OC的长;(2)求证:DF为⊙O′的切线;(3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.24.(7分)已知:如图,在四边形ABCD中,AD=BC,∠A、∠B均为锐角.(1)当∠A=∠B时,则CD与AB的位置关系是CD AB,大小关系是CD AB;(2)当∠A>∠B时,(1)中CD与AB的大小关系是否还成立,证明你的结论.25.(8分)如图,在平面直角坐标系中,点A的坐标为(1,),点B在x轴的负半轴上,∠ABO=30°.(1)求过点A、O、B的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C,使AC+OC的值最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)在(1)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.北京市大兴区中考数学模拟试卷参考答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.C;2.B;3.A;4.B;5.A;6.D;7.D;8.B;二、填空题(本题共16分,每小题4分)9.x≥0;10.a(x+y)(x﹣y);11.90°;12.;;三、解答题(本题共30分,每小题5分)13.;14.;15.;16.;17.;18.;四、解答题(本题共20分,每小题5分)19.;20.;21.30;20;;22.;五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.;24.∥;<;25.;。
北京市大兴区中考数学一模试卷
点 D,连结 AD.求证:AC+BC>2AD.
22.(5 分)列方程或方程组解应用题: 某服装商预测一种应季衬衫能畅销市场,就用 8000 元购进一批衬衫,面市后果
然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一 批购进数量的 2 倍,但单价贵了 8 元.商家销售这种衬衫时每件售价都是 100 元,很快售完.在这两笔生意中,商家共盈利多少元? 四、解答题(本题共 20 分,每小题 5 分) 23.(5 分)已知:如图,在△ABC 中,∠C=90°,AC=BC= ,将△ABC 绕 点 A 顺时针方向旋转 60°到△AB′C′的位置,连接 C′B. (1)请你判断 BC′与 AB′的位置关系,并说明理由; (2)求 BC′的长.
(a+b+c); 16.( )n;
三、解答题(本题共 30 分,每小题 5 分)
17.
; 18.
; 19.
; 20.5;x1=x2=﹣2; 21.
;
22.
;
四、解答题(本题共 20 分,每小题 5 分)
23.
; 24.
; 25.
; 26.
;
五、解答题(本题共 22 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)
50 名学生平均每天课外阅读时间统计表
类别
时间 t(小时)
人数
A
t<0.5
10
B
0.5≤t<1
20
C
1≤t<1.5
15
D
t≥1.5
a
(1)求表格中的 a 的值,并在图中补全条形统计图; (2)该校现有 1300 名学生,请你估计该校共有多少名学生课外阅读时间不少于
2013北京中考数学一模24题
∠B 60 .
(1)点 E 到 BC 的距离为 设 EP x . ①点 N 在线段 AD 上时(如图 2) , △P M N 若不存在,请说明理由. 的形状是否发生改变?若不变,求出 △PMN 的周长;若改变,请说明理由; ②当点 N 在线段 DC 上时(如图 3) ,是否存在点 P,使 △PMN 为等腰三角形?若存在,请求出所有满足要求的 x 的值; ; (2)点 P 为线段 EF 上的一个动点,过 P 作 PM EF 交 BC 于点 M,过 M 作 MN ∥ AB 交折线 ADC 于点 N,连结 PN,
初三数学
page
3
of 15
小马成群 4. (2013 东城区一模)问题 1:如图 1,在等腰梯形 ABCD 中,AD∥BC,AB=BC=CD,点 M,N 分别在 AD,CD 上, 若∠MBN=
1 ∠ABC,试探究线段 MN,AM,CN 有怎样的数量关系?请直接写出你的猜想,不用证明; 2
问题 2:如图 2,在四边形 ABCD 中,AB=BC,∠ABC+∠ADC=180°,点 M,N 分别在 DA,CD 的延长线上,若 ∠MBN=
A 逆时针旋转 60 得到点 Q ,是否存在点 P , 使得以 A 、C 、Q 、 D 为顶点的四边形是梯形,若存在,请指出点 P 的位置,并求出 PC 的长;若不存在,请说明理由.
A D B C
B P C A D
B1
图 24-1 图 24-2
初三数学
page
11
of 15
小马成群 12.(2013 顺义区一模)如图 1,将三角板放在正方形
m cos n sin ,直接写出∠APB 的度数.
初三数学
page
14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2013年大兴区中考数学模拟试卷(一)学校 姓名 准考证号 考生须知 1.本试卷共5页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.12-的相反数是 A .2 B . 2- C .12 D .12- 2.某区在一次扶贫活动中,共捐款3180000元,将3180000用科学记数法表示为 A . 531.810⨯ B .3.18×106C .70.31810⨯D .73.1810⨯3.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是A .22cmB .20 cmC .18cmD .15cm4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是A .甲B .乙C .丙D .丁5.从1~9这九个自然数中任取出一个,这个数是2的倍数的概率是A .29B .49C .59D .236.如图,在平面直角坐标系中,点P 坐标为(﹣2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于A.﹣4和﹣3之间B.3和4之间 C .﹣5和﹣4之间 D .4和5之间EDCBA7.如图是由一些相同的小正方体构成的几何体的三视图,那么构成这个几何体的小正方体的个数为A .7个B .6个C .5个D .4个8. 如图,已知A 、B 是反比例函数y =kx (k >0,x >0)图象上的两点,BC ∥x轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为二、填空题(本题共16分,每小题4分) 9.函数1xy x-=中,自变量x 的取值范围是 . 10.分解因式:2816mx mx m -+ = .11.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 .12.如图,正方形ABCD 边长为2cm ,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2013cm 时,线段P A 的长为______cm ;当点P 第n 次(n 为正整数)到达点D 时,点P 的运动路程为______cm(用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:201301(1)9(3.14)sin 302οπ---+⨯-+ 14.解不等式组⎩⎨⎧->+<-.)1(215,02x x x15.证明:不论x 取何实数,多项式43221218x x x -+-的值都不会是正数.E DCBA俯视左视主视ODC BABA(P)DCB16.已知:如图,在△ABC 中,AB=AC,延长AB 到点D ,使BD=AB,取AB 的中点E ,连结CD 和CE.求证: CD=2CE .17.已知:关于x 的一元二次方程 2(2)(1)0x m x m -+++=. . (1)求证:方程有两个实数根;(2)设m<0,且方程的两个实数根分别为 , (其中 < ),若y 是关于m 的函数,且 ,求这个函数的解析式.18.列方程或方程组解应用题:为了改善生态环境,防沙造林,某村计划在荒坡上种植480棵树,由于有志愿者的支援,每日比原计划多种13,结果提前4天完成任务,问原计划每天种多少棵树?四、解答题(本题共20分,每小题5分)19.已知:如图,过正方形ABCD 的顶点B 作直线BE 平行于对角线AC ,AE=AC (E ,C 均在AB 的同侧).求证:∠CAE=2∠BAE .20.已知:如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,连结PB 、PO ,PO//BC ,错误!未找到引用源。
. (1)求证:直线PB 是⊙O 的切线; (2)求tan ∠BCA 的值.21.某区在“阳光体育进校园”活动中,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题,(1)样本中最喜欢B 项目的人数百分比是____,其所在扇形图中的圆心角的度数是___________(2)请把统计图补充完整.(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?EDCBAPO C BAI21,x x 1x 2x 1214x xy -=22.分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD 1E 1和正方形BCD 2E 2,连结D 1D 2.(1)如图1,过点C 作直线HG 垂直于直线AB 于点H ,交D 1D 2于点G .试探究线段GD 1与线段GD 2的数量关系,并加以证明.(2)如图2,CF 为AB 边中线,试探究线段CF 与线段D 1D 2的数量关系,并加以证明.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN+MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.A 44℅D C B 28%8%人数(单位:项目1ABCD2345448 28 图2D 2D 1E 2E 1F CBA24. 如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB=∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,请直接写...出.S 与x 的函数关系式,并求出..S 的最小值 .25.小明同学在研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请你帮小明解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,小明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥ 轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,小明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 所连的线段总经过一个固定的点,试说明理由并求出该点的坐标.2013年大兴区中考数学模拟试卷(一)参考答案及评分标准一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 题号 1 2 3 4 5 6 7 8 答案CBADBADA二、填空题(本题共16分,每小题4分)9. x ≤1且x ≠0 . 10. m ( x – 4 ) 2 . 11. 25º . 12.5. 8n-2 . 三、解答题(本题共30分,每小题5分) 13. 解:原式=– 1 –21+ 3 + 21…………………………………………4分 = 2 . ……………………………………………………5分 14.解:解不等式20x -<,得2x < . ………………………………2分 解不等式512(1)x x +>-,得1x >-.………………………………4分 ∴原不等式组的解集为12x -<<. …………………………………5分 15.证明:原式= – 2 x 2 ( x 2 – 6x + 9 )= – 2 x 2 ( x – 3 )2 . …………………………………………2分∵220x -≤,2(3)0x -≥∴– 2 x 2 ( x – 3 )2 ≤ 0∴不论x 取何实数,原式的值都不会是正数.………………………5分 16. 证明一:∵ E 是AB 中点,可设:AE = BE = x∵ AB = AC ,BD = AB ,则有AC = 2x ,AD = 4x …………1分∴12AE AC AC AD ==………………………………………………2分 又∵ ∠A = ∠A ,∴ △AEC ∽△ACD ……………………………………………3分 ∴21CD CE = ……………………………………………4分 ∴ CD = 2 CE. ……………………………………………5分 证明二:过点B 作BF//AC 交CD 于点F ,……………………1分 ∵ BD = AB , ∴ 点B 为AD 的中点. ∴ 点F 为CD 的中点. ∴ BF=1122AC AB ==BE.………………………………………2分 ∵ BF//AC ,∴ ∠ABC = ∠ACB = ∠CBF.∴ △C EB ≌ △CFB . ……………………………………3分 ∴ CE = CF . ……………………………………………………4分 ∴ CD = 2 CE.……………………………………………………5分17.已知:关于x 的一元二次方程 . (1)求证:方程有两个实数根;(2)设m<0,且方程的两个实数根分别为(其中 < ),若y 是关于m 的函数,且 ,求这个函数的解析式; (1)证明:()224(1)m m ∆=+-+ 20m =≥.方程有两个实数根; ……………………………………1分 (2)解:由(1)可知,方程有两个实数根,∴ 2(2)(0)2m m x m +±=<.∴ 22m mx +±=. ∵ 12x x <,∴ 121,1x m x =+=. ……………………………………3分∴ 41(1)y m =-+.FE DCBA21,x x 1x 2x 1214x xy -=01)2(2=+++-m x m x∴ 4y m-=.(m <0) ……………………………………5分 18.解:设原计划每天种x 棵树, …………………………………………1分 依题意,得4x)311(480x480=+- . ………………………………………………2分 解得x = 30 . ……………………………………………………………………3分 经检验:x = 30是方程的解. ……………………………………………………4分 答:原计划每天种30棵树. ……………………………………………………5分 四、解答题(本题共20分,每小题5分)19.证明:过A 作AG ⊥BE 于G ,连结BD 交AC 于点O ,………………1分 ∴ AGBO 是正方形.………………………………………………………2分 ∴ AG=AO=21AC =21AE ∴ ∠AEG=30°. ………………………………………………………3分 ∵ BE ∥AC ,∴ ∠CAE =∠AEG = 30 º. ∴ ∠BAE = 45º – 30º = 15º .∴ ∠CAE = 2∠BAE .……………………………………………………5分 20.(1)证明:联结OB , ∵ OB = OC , ∴ ∠C = ∠OBC. ∵ PO ∥BC ,∴ ∠C = ∠AOP ,∠BOP = ∠OBC , ∴ ∠AOP =∠BOP ∵ OP = OP ,∴ △AOP ≌△BOP.……………………………………………1分 ∴∠OBP = ∠OAP = 90º∴ PB 是⊙O 的切线. ……………………………………2分 (2)解:延长AC 交PB 的延长线于点D ,∵ PO//BC ,∴ △PDO ∽△BDC .EDCBAGO∴23DC BC DO PO ==. ∴ DC=2CO. ………………………………………3分 设CO = r ,则DO = 3r ,连结BO , 在Rt △BDO 中, 22922DB r r r =-=. 又∵ △BDO ∽△ADP , ∴22242BO BD r PA AD r ===. ∴ 2PA r =. ………………………………………4分 ∴ tan tan 2BCA POA ∠=∠=.………………………5分 21.解:(1)样本中最喜欢B 项目的人数百分比是20%, 其所在扇形图中的圆心角的度数是72°. ……………………2分 (2)B 组人数44÷44%×20=20人,画图如下:……………………3分(3)1200×44%=528人,答:全校最喜欢乒乓球的人数大约是528人.…………………5分 22.(1)答:FD 1 = FD 2 。