Boost变换器的设计与计算机仿真x

合集下载

Boost变换器工作原理与设计

Boost变换器工作原理与设计

选择磁芯材料
根据工作频率和电感值, 选择合适的磁芯材料,以 确保电感的性能和效率。
确定线圈匝数
根据电感值、线圈直径和 磁芯材料,计算线圈匝数, 以获得所需的电感性能。
二极管选择
1 2
选择合适的二极管类型
根据工作电压、电流和开关频率,选择合适的二 极管类型。
确定额定电流和电压
根据最大输出电流和电压,选择二极管的额定电 流和电压。
重要性
Boost变换器在许多应用中都非 常重要,如分布式电源系统、电 动汽车和可再生能源系统等。
Boost变换器的历史与发展
历史
Boost变换器最初在20世纪80年代 被提出,随着电力电子技术和控制理 论的不断发展,其性能和效率得到了 不断提高。
发展
目前,Boost变换器已经广泛应用于 各种领域,并且随着新能源和电动汽 车的快速发展,其需求和应用前景仍 然非常广阔。
当开关管关断时,电感释放所 储存的能量,通过二极管和输 出电容向负载提供电流,同时 输出电压逐渐升高。
通过控制开关管的通断时间, 可以调节输出电压的大小。
电感的作用
电感在开关管导通时 储存能量,在开关管 关断时释放能量。
电感的值决定了输出 电压的大小和开关频 率。
电感的作用是调节电 流和维持输出电压的 稳定。
小型化
随着电子设备的小型化和集成化,减小Boost变换器的体积成为 未来的重要发展方向。
智能化
随着人工智能和物联网技术的发展,实现Boost变换器的智能化 控制和远程监控成为未来的重要发展方向。
THANKS
感谢观看
02
Boost变换器的工作原理
工作原理概述
Boost变换器是一种DC-DC转换 器,用于提高直流电压。

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真Buck-Boost变换器是一种可以在同一电路内同时实现升压和降压的变换器。

这种变换器可以用于多种不同的应用,主要用于对电压进行放大和缩小,以达到正确的电压水平。

它总是能够将输入电压提高到所需的输出电压。

在本文中,将介绍Buck-Boost变换器的设计及其功能仿真工作。

Buck-Boost变换器的主要部件包括电感器,可变阻器,开关,振荡器和控制器。

电感器的设计是为了提供电流,形成负反馈环。

可变阻器的设计可以改变电路的过载,从而实现电流的调整。

开关的设计是为了实现升压和降压,允许电感器和可变阻器之间的能量交换。

振荡器的设计是为了控制电路内部的电流,以保证开关的实时响应。

通过控制器,可以实现输入和输出电压之间的转换,从而达到预期的电压水平。

为了对Buck-Boost变换器进行仿真,先进行输入,输出和负载之间的建模。

输入模型包括输入电压和要求的输出电压,其中输入电压可以在建模中任意调整。

负载建模通常是一个电阻和一个电容的组合。

输出模型则定义了电路的输出功率和输出电压水平。

接下来,可以对电感器和可变阻器进行建模。

由于电感器是一个电流源,故其建模需要考虑电流大小和电压偏移。

可变阻器建模则需要考虑其阻值和电压偏移。

最后,可以利用仿真软件进行仿真,探究Buck-Boost变换器的性能。

可以仿真该电路的输入和输出电压以及电流,从而分析改变输入电压对系统的影响。

此外,还可以分析负载的影响,比如负载变大时电路的输出能力会怎样受到影响。

这些仿真结果都能为设计者提供宝贵的启发,为确保电路的正常工作奠定基础。

Buck-Boost变化器是一种功能强大的电路,可以改变输入电压并生成预期的输出电压水平。

本文介绍了其设计原理和仿真过程,为设计者提供了宝贵的参考。

未来的研究将会探究更多的变换器类型,继续提高电路的性能和功效。

完整word版,BOOST电路设计及matlab仿真

完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

BOOST电路设计及仿真

BOOST电路设计及仿真

BOOST电路设计及仿真BOOST电路是一种升压电路,在电压电平较低的情况下,能够将输入电压提升到输出电压。

BOOST电路被广泛应用于电力电子领域,如电源、DC-DC转换器、光伏逆变器等。

BOOST电路的设计主要包括两个方面:拓扑结构设计和元件参数选择。

首先应选择合适的拓扑结构,BOOST电路拓扑结构多样,如单端输出、双绕绕制、双端输出等。

这里我们选择单端输出的BOOST电路拓扑结构。

BOOST电路的原理基于电感耦合和开关管的开关原理。

当电感L和二极管D恒定时,开关管S的导通和关闭会使电感L的磁场发生变化,从而使输出电压发生变化。

在导通状态下,能量储存在电感L中。

在关闭状态下,储存在电感L中的能量会传递到输出端,从而提高输出电压。

BOOST电路的关键参数:输入电压Vin:BOOST电路的输入电压是其工作的基础。

在选择拓扑结构时,需要明确输入电压的范围,以便选取合适的器件参数。

输出电压Vout:输出电压是BOOST电路的主要输出参数。

在设计时,需要确定输出电压所需的级数,以及负载电流的大小。

电感L:电感L是BOOST电路的关键元器件,负责储存能量。

在设计时需要选取合适的电感值和电感电流。

注意,电感L的选取也会对电路的效率产生影响。

开关管S:开关管是BOOST电路的关键元器件之一,主要负责电路的开关功能。

在设计时需要选取合适的开关管,考虑其最大电压和最大电流,并选择合适的开关频率。

设计和仿真步骤:1、确定电路参数设计之前首先需要明确电路所需的参数,如输入电压范围、输出电压、电感和电容等。

这些参数需要根据实际需求来确定。

2、选择拓扑结构BOOST电路拓扑结构多样,需要选择适合自己需求的拓扑结构。

选择单端输出的BOOST 电路拓扑结构。

3、选用元器件根据电路参数和选定的拓扑结构,选用合适的元器件,如电感、开关管、二极管、电容等。

4、绘制电路图根据选用的元器件和拓扑结构,绘制BOOST电路的电路图。

5、SIMULINK仿真利用MATLAB软件中的SIMULINK工具箱进行BOOST电路的仿真。

BOOST电路设计及仿真

BOOST电路设计及仿真

目录一. Boost主电路设计: (2)1.1占空比D计算 (2)1.2临界电感L计算 (2)1.3临界电容C计算(取纹波Vpp<2.2V) (2)1.4输出电阻阻值 (2)二. Boost变换器开环分析 (2)2.1 PSIM仿真 (2)2.2 Matlab仿真频域特性 (2)三. Boost闭环控制设计 (2)3.1闭环控制原理 (2)3.2 补偿网络的设计(使用SISOTOOL确定参数) (2)3.3 计算补偿网络的参数 (2)四.修正后电路PSIM仿真 (2)五.设计体会 (2)Boost变换器性能指标:输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 参考电压Vref=5V输出功率:Pout=5Kw输出电压纹波:Vpp=2.2V Vm=4V电流纹波:0.25A开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一. Boost主电路设计:1.1占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化围。

1.2临界电感L计算选取L>Lc,在此选L=4uH1.3临界电容C计算(取纹波Vpp<2.2V)选取C>Cc,在此选C=100uF1.4输出电阻阻值Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:二. Boost变换器开环分析2.1 PSIM仿真电压仿真波形如下图电压稳定时间大约1.5毫秒,稳定在220V左右电压稳定后的纹波如下图电压稳定后的纹波大约为2.2V电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图2.2 Matlab仿真频域特性设定参考电压为5V,则,系统的开环传递函数为,其中,由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。

系统不稳定,需要加控制电路调整。

Boost变换器的设计与计算机仿真x

Boost变换器的设计与计算机仿真x

《电力电子系统综合训练》任务书(第6组)2014年秋季学期摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。

升压斩波电路的PI 和PID调节器的性能对输出的电压影响很大。

由于这种斩波电路工作于开关模式下,是一个强非线形系统。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

【关键词】:Boost电路;直流电压; matlab仿真;目录摘要 (1)1概论 (1)1.1电力电子器件 (1)1.1.1电力电子器件概述 (1)1.1.2 直流-直流变换器(DC/DC)的应用 (2)1.2 MATLAB软件概述 (3)1.2.1 MATLAB介绍 (3)1.2.2 SIMULINK仿真基础 (5)1.2.3 MATLAB的GUI程序设计 (7)2升压式直流斩波电路 (9)2.1电路的结构与工作原理 (9)2.1.1电路结构 (9)2.1.2 工作原理 (9)2.1.3基本数量关系 (10)2.2升压斩波电路的典型应用 (10)3模型仿真 (14)3.1建立升压斩波电路模型 (14)3.2模型参数设置 (14)总结 (20)致谢 (21)参考文献 (22)1概论1.1电力电子器件1.1.1电力电子器件概述1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。

20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。

随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(IGBT)和电力场效应晶体管(Power-IGBT)为代表的全控型器件迅速发展,被称作第二代电力电子器件。

Boost变换器仿真分析.

Boost变换器仿真分析.

Boost变换器仿真分析小组成员:*** ***oost变换器仿真分析•Boost变换器简介•Boost变换器原理与分析•Boost变换器的Matlab建模与仿真•Boost变换器的仿真结果分析oost变换器简介Boost变换為足一种输出电压I常于输入电压的甲•符不隔肉」T 流变换器,在直流电压变换领域应用广泛。

Boost变换器中电感L在输入侧.称为升斥电感,开关管T仍为PWM控制方式,和Buck变换器-样,Boost变换器也有电感电流连续和断流陶种I.作方式。

为电感电流连续时.Boost变换»存在两种开关状态:(1)T导通.D截止•电感储能:(2) T载11 •” D导通.电源和电感的储能向电容和负载转移。

当电感电流断流时.Boost变换益还有第三种开关状态:T和D都截1上・电感电流为零,负技仃澹波电容供电。

oost变换器原理与分析图1 Boost变换器的匸电路图oost变换器原理与分析1.工作(1)开关模念1在t・0时.开关管Q甘通■电源电压Vin全部加到升压电感LLL.电感电渝ILf 线件増长.二极但D戏|匕负找由滤波电容Cf供电。

—z it=Tonihf t ILf达到址大值ILf (max) • 4Q导通期间■ ILf的増长朮为:Boost变换器原理与分析(2)开关模态2在"Ton时刻.Q关肛ILf通过WHD向输出側流。

,电源功率和电感Lf的储能向负裁和电容Cf转移.给Cf充电.此时加在Lf上的电压为Vin-Vo.因为Vo>Vin, 故ILf线性减小°^t=Ts时.ILf达到瑕小ftllLf (min) • AQttiE期间.ILf的减小呈小L foost变换器原理与分析(3)开关模态3 (仅在电潦断续时有)fl t=ToffiiJ. QfUD均餞11八住此期间.ILf保持为零.如戟由输出滤汲| T「2 •输入输出迫压比⑴电流连续时(2)电流斷续时oost变换器的Matlab建模与仿真T・ W4A9OMC2N2 Boost变换器的Matlab模型图oost 变换器的Matlab 建模与仿真参放设为:输入N 流电压* 20V 输入側电感,10mH 脉冲周期:0.2ms 脉冲片空比:50%输出滤波电容:100uF 负载电阻:1000Qoost 变换器的仿真结果分析 图3 IBGT屮电流oost变换器的仿真结果分析03 0 04 0 06 0 06 0 1 0 12 0 14 I 16 0 18 0 2图3 IBGT中电压oost变换器的仿真结果分析图3输出电压。

Buck-boost变换器建模及仿真

Buck-boost变换器建模及仿真

Buck-boost变换器建模及仿真Buck-boost 变换器建模及仿真1、Buck-boost 变换器平均开关模型利用平均开关网络法推导buck —boost 变换器的平均开关模型,Buck-boost 变换器电路图如图1所示,这里开关管的导通电阻为,二极管的前向导通压降为0.8v 。

gV )(t v图1 Buck-boost 变换器电路图中,虚线框内为开关网络,它是一个二端口网络,共有、、和四个变量,选定其中两个变量作为输入变量,则余下两个变量可以由输入变量表示出来。

在此,我们选择和作为输入变量。

接下来我们要求出这四个变量的在一个周期内的平均值,首先根据图1画出它们在一个周期内的波形图,如图2所示。

)(1t v s dT sT (1i sdT s)(1t i )(2t i )(1t v on R )(2t v )(1t i )(2t v图2 开关网络电压电流的曲线图根据图2,写出)(1t i 、)(2t i 、)(1t v 、)(2t v 在一个周期内平均值:(1)(2)(3)(4)由式(3)与(4)得(5)将公式(1)与(5)代入(3)中得(6)将公式(6)中两边的)(1t v 合并得到下面式子:(7)由(1)与(2)得(8)])([)()(')()()(211D T T on T V t v t d t d t i t d R t v s s s +><+><=><= ><)()()(')(12(2vD(2t i ss s T T t i t d t i ><=><)()()(1s s T T t i t d t i ><=><)()(')(2))()((')()()(11s s s T C D g on T T t V V V t d R t i t d t v ><-++><=>s +><+><+>=<><由式(7)(8)可以得到开关网络的平均开关模型,如图3所示:图3 平均开关模型把图1中的开关网络用图3所示的平均开关模型代替可得到图4所示的Buck-boost 变换器的开关模型电路。

DCDC Buck Boost变换器设计与仿真工具

DCDC Buck Boost变换器设计与仿真工具

DCDC Buck Boost变换器设计与仿真工具DCDC Buck Boost变换器是一种常用的电源装置,可以通过调整输入电压来实现输出电压的升降。

其设计和仿真是电力电子学领域的重要内容之一。

本文将介绍如何进行DCDC Buck Boost变换器的设计,并提供一些常用的仿真工具。

一、设计要点在进行DCDC Buck Boost变换器设计时,需要考虑以下几个要点:1. 输入输出电压范围:根据具体应用需求确定输入输出电压范围。

2. 输入输出电流:根据负载需求和电源供应能力,确定输入输出电流。

3. 效率和稳定性:设计时要考虑提高效率和保持稳定性的方法,如合适的开关频率选择和控制策略。

4. 尺寸和散热:根据实际应用场景和功率需求,确定合适的尺寸和散热方案。

二、设计流程DCDC Buck Boost变换器的设计流程可以分为以下几个步骤:1. 确定输入输出电压范围和电流要求。

2. 选择合适的开关器件:根据电流和功率需求选择合适的开关管、二极管和电感器件。

3. 设计输出滤波电容:根据电流纹波和稳定性要求,确定输出滤波电容。

4. 选择控制策略:可选择常规控制、脉宽调制(PWM)控制或者其他一些先进的控制策略。

5. 进行电路图设计:使用相应的电路设计软件进行电路图设计。

6. 进行仿真:将设计好的电路图导入仿真软件,进行电路仿真。

7. 优化设计:根据仿真结果进行设计修改和参数优化。

8. PCB设计与制造:根据最终设计结果进行PCB板的设计和制造。

9. 组件选择和电路组装:根据设计规格书选择合适的元器件,并进行电路组装。

三、仿真工具在DCDC Buck Boost变换器的设计过程中,使用合适的仿真工具可以帮助我们更好地理解和优化电路,提高设计效率。

以下是一些常用的仿真工具:1. LTspice:LTspice是一款功能强大且免费的电路仿真软件,可以对DCDC Buck Boost变换器进行电路仿真,并进行性能评估和参数优化。

BOOST电路的设计与仿真

BOOST电路的设计与仿真

BOOST电路的设计与仿真摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。

升压斩波电路的PI和PID调节器的性能对输出的电压影响很大。

由于这种斩波电路工作于开关模式下,是一个强非线形系统。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

【关键词】:Boost电路直流电压 matlab仿真1.设计要求(1)输入电压:40v,输出电压:60v—120v(2)根据给定的指标,设计BOOST电路参数。

(3)利用MATLAB软件,对电路进行验证。

(4)通过仿真实验,验证仿真实验,验证电路参数是否正确。

(4)观察电路中主要波形,并记录(仿真,实验)。

2.设计目的(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。

(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。

(3)能正确设计电路,画出线路图,分析电路原理。

3. 设计方案和电路图3.1 Boost基本工作原理:假设电路中电感L值很大,电容C值也很大。

当V处于通态时,电源E向电感L 充电,充电电流基本恒定为I1,同时C上的电压向负载R供电,因为C也很大,基本保持输出电压为恒值U0.设V通态时间为ton,此阶段L积蓄能量为 E I1ton。

当V处于断态时E和L共同向C充电,并向负载R提供能量。

设V处于断态时间为toff,则这期间电感L释放能量为(U0-E)I1toff一周期T中,电感L积蓄的能量和释放的能量相等,即EI1ton=(U-E)I1toff(3-1)化简得:U0=T/toffE (3-2)式(3-2)中的T/ toff≥1,输出电压高于电源电压,故称改电路为升压斩波电路。

有的文献中直接采用其英文名称,称之为BOOST变换器。

完整word版,BOOST电路设计及matlab仿真

完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真1. 输入电压(VIN):12V2. 输出电压(VO):18V3. 输出电流(IN):5A4. 电压纹波:0.1V5. 开关频率设置为50KHz 需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A 范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost 电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

、主电路设计图 1 主电路2.1 Boost 电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS 断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost 升压电路的肖特基二极管主要起隔离作用,即在MOS 开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS 管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

设计要求接下来分两部分对 Boost 电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线 代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感 上的电流以一定的比率线性增加, 这个比率跟电感大小有关。

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。

Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。

本文将对Buck/Boost升降压斩波电路进行详细的分析。

RVDRVDRVD2 主电路拓扑和控制方式Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。

与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。

开关管也采用PWM 控制方式。

Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。

因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。

图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。

(a )V 导通(b)V关断,VD续流图2-2 Buck/Boost不同模态等效电路ttttt电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。

图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。

电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。

BOOST电路设计及matlab仿真

BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

Boost变换器工作原理与设计

Boost变换器工作原理与设计
的 时能间量与、输负出载电功容率之、间输 的出 关电系压如以下及式负所载示允: 许的电压最小值决定t。保持
F /W
Co
2Pout Δt Vo2 Vo2(min)
三 小信号模型的建立(状态空间平均法)
Ld
i(t) Ts dt
vg
Ts
d (t) ( vg
Ts
v(t) Ts )(1 d (t))
Boost变换器的工作原理与 设计
主要内容
一ห้องสมุดไป่ตู้基本工作原理 二、Boost变换器的主要应用以及参数选择 三、小信号模型的建立
一、基本工作原理
CCM状态下的BOOST
由电感L的伏秒平衡即可得:
VgDT (Vg V )(1 D) 0
即可得:
V 1 Vg 1 D
输入电流纹波大小:
iL
Vg 2L
sCv(s) Id(s) i(s)(1 D) v(s) R
Boost应用时的注意事项
1.启动保护 2.输入端电容
3.功率器件的保护
谢谢! 请多指教!
Kcrit D(1 D)2 2L
K RTs
二、 Boost变换器的主要应用
输入电感决定了输入端的高频纹波电流总量,为了确保 变换器运行于CCM模式,输入电感L保证在低压输入(85V) 的纹波电流大约为输入电流尖峰的20%,由此来确定输入电
感的大小。
假定电路中的元件均为理想元件,则在工频时间范 围 内,从电网上吸收的功率与变换器的输出功率有如下关系:
Pout Pin
其中
为变换器的效率,则在低压输入时变换器的输入
电 流峰值为:
I pk
2Pout
Vin-min •
L Vinmin 2 • Dmin 0.2Ipk • f

基于UC3842的Boost变换器的设计与仿真

基于UC3842的Boost变换器的设计与仿真
目前 , 对 Boost 变 换电路 的 CCM 模式 研究较 多 , 已建立了诸多电路模 型 , 取得 了可喜的研究成 果[ 3-4] ;对 DCM 模式的研究 , 主要为 DC/ DC 电路 , 对 AC/ DC 电路中 DCM 模式的研究甚少 .本文基于 小功率开关电源成本低 、性价比高的要求 , 采用通用 的 UC3842 芯片 , 设计了一种 Boost 变换电路 , 分析 了 DCM 模式的工作特 点及设计要点 , 并对所设计 电路的合理性进行了仿真验证 .
环和电流环 , 其作用就是要消除电网电流尖峰 , 使输 入电流成为正弦形状 , 并且和输入电压同相位 .就单 个开关周期而言 , 要求每个开关周期的电流和输入 电压成正 比[ 7] .假 如由于 某种原 因使输 出电压 升 高 , 或使输出电流增大时 , 脉宽调制器就会改变驱动 信号的脉冲宽度 , 即占空比 D , 使斩波 后的平均电 压或峰值电流下降 , 从而达到功率因数校正的目的 . 基于加法器的 DCM 电路原理图如图 2 所示 .
diLd(t t)= vinL(t), tKT ≤ t < tKT+D1 T ;
diLd(t t)=
vin(t)L
vo(t),
tKT +D T 1
≤t
< tK T+D T+D T ;(2) 12
iL(t)= 0, tKT+D1 T+D2 T ≤ t < tKT+D 1T+D 2T+D3 T .
进行描述 .式中 , K T +D 1 T +D 2 T +D3 T =(K + 1)T ;i L(t )为流过电感电流的瞬时值 ;v in(t)为电 网侧输入电压的瞬时值 ;v o(t)为 Boost 变换器输出 电压的瞬时值 .

BOOST电路的PSpice仿真分析与设计

BOOST电路的PSpice仿真分析与设计

BOOST电路的PSpice仿真分析与设计
BOOST 又称为升压型电路,是一种直流向来流变换电路,其电路结构1所示。

此电路在领域内占有十分重要的地位,长久以来广泛的应用于各种电源设备的设计中。

对它工作过程的理解把握关系到对囫囵开关电源领域各种电路工作过程的理解,然而现有的书本上仅仅给出电路在抱负状况下稳态工作过程的分析,而没有提及电路从启动到稳定之间暂态的工作过程,不利于读者理解电路的囫囵工作过程和升压原理。

本文采纳PSpice分析办法,直观、具体的描述了BOOST电路由启动到达稳态的工作过程,并对其中各种现象举行了细致深化的分析,便于读者真正把握BOOST电路的工作特性。

图1 BOOST 电路的结构
2 电路的工作状态
BOOST 电路的工作模式分为延续工作模式和电感电流断续工作模式。

其中电流延续模式的电路工作状态2(a)和图2(b)所示,电流断续模式的电路工作状态2(a)、(b)、(c)所示,两种工作模式的前两个工作状态相同,电流断续型模式比电流延续型模式多出一个电感电流为零的工作状态。

图2 BOOST 电路的工作状态
3 PSpice建模分析
3.1 PSpice建模
PSpice是一种功能强大的和数字电路混合仿真软件,它可以举行各式各样的电路仿真并给出波形输出和数据输出,无论对哪种器件和哪种电路举行仿真,均可以得到精确的仿真结果。

本文应用基于PSpice的OrCAD9.2软件对BOOST电路建模,模型3所示,其中采纳N 沟道的MOS管IRF640作为开关管,并用一个工作频率为40K 占空比为40%的脉冲源VG控制MOS管的通断来仿真图2中开关S的通断过程,Rs为
第1页共4页。

(完整word版)buck-boost变换器的建模与仿真

(完整word版)buck-boost变换器的建模与仿真

题目:Vg 1.5VQ135mΩ100uH100uFR5ΩV D0.5V图1 buck—boost 变换器电路图一、开关模型的建模与仿真图2 buck-boost 变换器的开关模型占空比由0.806变化到0.7的电感电流波形占空比由0.806变化到0.7的电容电压波形图3 buck —boost 变换器的开关模型的仿真二、 大信号模型与仿真1、 开关导通时:Vg 1.5VR on35m ΩV-图4 开关导通时的工作状态此时,电感电压和电容电流方程:(t)v (t)v (t)(t)(t)(t)(t)L g on c di L i R dtdv v i C dt R ⎧==-⎪⎪⎨⎪==-⎪⎩2、 开关断开时:100uH100uFVi c+-0.5Vi图5 开关断开时的工作状态此时,电感电压和电容电流方程:(t)v (t)(t)(t)(t)(t)(t)L D cdi L V v dtdv v i C i dt R ⎧==--⎪⎪⎨⎪==-⎪⎩3、平均方程电源电压、电感电流、电容电压变化的不大均为低频信号,则(t)(t)g g v v = ;(t)(t)i i =;v(t)v(t)=又因为:(t)v (t)L d i L dt= (t)(t)c d v i Cdt= 则有,电感电压平均方程:()()'v (t)d(t)v (t)(t)+d (t)(t)L g on D i R V v =---电容电流平均方程:''(t)(t)(t)(t)d(t)()d (t)((t))=d (t)(t)c v v v i i R R R=-+--+ 输入电流平均方程:g (t)d(t)(t)i i =4、大信号模型:()()''g (t)d(t)v (t)(t)+d (t)(t)d (t)(t)=d (t)(t)(t)d(t)(t)g on D d i L i R V v dt v v C i dt R i i ⎧=---⎪⎪⎪-+⎨⎪⎪=⎪⎩由方程可得到三个等效电路:-+-+-+g (t)i v (t)g (t)v D (t)i 'D (t)i d (t)v Cdt(t)d i Ldt'(0.5D )VonDR '(t)D v v (t)g D 图6buck-boost 变换器的大信号模型的等效电路大信号模型的仿真电路:图7 大信号模型仿真电路图大信号模型的仿真波形:电感电流随占空比变化的波形电容电压随占空比变化的波形图8 大信号模型仿真波形图三、 小信号模型假设,gv (t)=V +v (t)d(t)=D+d(t)(t)=(t)v(t)=V+v(t)(t)=(t)g g g g g i I i i I i ΛΛΛΛΛ⎧⎪⎪⎪⎪⎨+⎪⎪⎪⎪+⎩ 且各变量的扰动值远小于其稳态值。

BOOST电路设计及matlab仿真

BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压〔VIN〕:12V需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供应负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供应到负载端。

闭合开关会引起通过电感的电流增加。

翻开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两局部对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合〔三极管导通〕,等效电路如图二,开关〔三极管〕处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

图2 充电原理图放电过程如图,这是当开关断开〔三极管截止〕时的等效电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子系统综合训练》任务书(第6组)2014年秋季学期摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。

升压斩波电路的PI 和PID调节器的性能对输出的电压影响很大。

由于这种斩波电路工作于开关模式下,是一个强非线形系统。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

【关键词】:Boost电路;直流电压; matlab仿真;目录摘要 (1)1概论 (1)1.1电力电子器件 (1)1.1.1电力电子器件概述 (1)1.1.2 直流-直流变换器(DC/DC)的应用 (2)1.2 MATLAB软件概述 (3)1.2.1 MATLAB介绍 (3)1.2.2 SIMULINK仿真基础 (5)1.2.3 MATLAB的GUI程序设计 (7)2升压式直流斩波电路 (9)2.1电路的结构与工作原理 (9)2.1.1电路结构 (9)2.1.2 工作原理 (9)2.1.3基本数量关系 (10)2.2升压斩波电路的典型应用 (10)3模型仿真 (14)3.1建立升压斩波电路模型 (14)3.2模型参数设置 (14)总结 (20)致谢 (21)参考文献 (22)1概论1.1电力电子器件1.1.1电力电子器件概述1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。

20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。

随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(IGBT)和电力场效应晶体管(Power-IGBT)为代表的全控型器件迅速发展,被称作第二代电力电子器件。

80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。

电力电子器件专指电力半导体器件,在实际应用中,一般是由控制电路、驱动电路、和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路的中电力电子器件的导通与关断,来完成整个系统的功能。

电力电子器件因为处理的电功率较大,为了减小本身的损耗,提高效率,电力电子器件一般都工作在开关状态,导通时阻抗很小,接近于短路,管压降接近于0,而电流由外电路决定,阻断时阻抗很大,接近于断路,电流几乎为0,而管子两端的电压由外电路参数决定,就想普通晶体管的饱和与截止一样。

尽管工作在开关状态,但是电力电子器件自身功率损耗通常远大于信息电子器件,因而,为了保证不至于因损耗散发的热量导致器件温度过高而损坏,不仅在器件封装上比较讲究散热设计,而且在其工作时一般还需要安装散热器。

这是因为电力电子器件在导通或者阻断状态下,并不是理想的短路或者断路。

导通时器件上有一定的通态压降,阻断时器件上有微小的断态漏电流流过。

尽管其数值都很小,但分别与数值较大的通态电流与断态电压相互作用,就形成了电力电子器件的通态损耗和断态损耗。

本文主要利用IGBT型开关器件对升压降压进行控制,电力IGBT是用栅极电压来控制漏极电流的,因此它的一个显著特点就是驱动简单,需要的驱动功率小,第二个显著特点就是开关速度快,工作评频率高,另外,电力IGBT的热稳定性优于GTR。

1.1.2 直流-直流变换器(DC/DC)的应用直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。

按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。

进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。

由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。

用直流斩波器代替变阻器可节约20%~30%的电能。

直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。

DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。

随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。

目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

电子产业的迅速发展极大地推动了开关电源的发展。

高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。

在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。

一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。

目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过IGBT或IGBT 实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。

近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。

一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。

因为电子设备容量的不断增加,其电源容量也将不断增加。

1.2 MATLAB软件概述1.2.1 MATLAB介绍Matlab(Matrix Laboratory)是美国 MathWorks公司开发的一套高性能的数值分析和计算软件,用于概念设计,算法开发,建模仿真,实时实现的理想的集成环境,是目前最好的科学计算类软件之一。

MATLAB将矩阵运算、数值分析、图形处理、编程技术结合在一起,为用户提供了一个强有力的科学及工程问题的分析计算和程序设计工具,它还提供了专业水平的符号计算、文字处理、可视化建模仿真和实时控制等功能,是具有全部语言功能和特征的新一代软件开发平台。

MATLAB已发展成为适合众多学科,多种工作平台、功能强大的大型软件。

在欧美等国家的高校,MATLAB已成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的基本教学工具。

成为攻读学位的本科、硕士、博士生必须掌握的基本技能。

在设计研究单位和工业开发部门,MATLAB被广泛的应用于研究和解决各种具体问题。

在中国,MATLAB也已日益受到重视,短时间内就将盛行起来,因为无论哪个学科或工程领域都可以从MATLAB中找到合适的功能。

MATLAB的主要组成部分MATLAB系统由5个主要的部分构成:(1) 开发环境(Development Environment):微MATLAB用户或程序编制员提供的一套应用工具和设施。

由一组图形化用户接口工具和组件集成:包括MATLAB桌面、命令窗口、命令历史窗口、编辑调试窗口及帮助信息、工作空间、文件和搜索路径等浏览器。

(2) MATLAB数学函数库(Math Function Library):数学和分析功能在MATLAB工具箱中被组织成8个文件夹。

elmat 初步矩阵,和矩阵操作。

elfun 初步的数学函数,求和、正弦、余弦和复数运算等;specfun特殊的数学函数,矩阵求逆、矩阵特征值、贝塞尔函数等;matfun 矩阵函数-用数字表示的线性代数;atafun 数据分析和傅立叶变换;polyfun 插值,多项式;funfun 功能函数;sparfun 稀疏矩阵;(3) MATLAB语言:(MATLAB Language)一种高级编程语言(高阶的矩阵/数组语言),包括控制流的描述、函数、数据结构、输入输出及面对对象编程;(4) 句柄图形:(Handle Graphics) MATLAB制图系统具有2维、三维的数据可视化,图象处理,动画片制作和表示图形功能。

可以对各种图形对象进行更为细腻的修饰和控制。

允许你建造完整的图形用户界面(GUI),以及建立完整的图形界面的应用程序。

制图法功能在MATLAB工具箱中被组织成5个文件夹:二维数图表(graph2d)、三维图表(graph3d)专业化图表(specgraph)、制图法(graphics)、图形用户界面工具(uitools)。

(5) 应用程序接口:(Applied Function Interface)MATLAB的应用程序接口允许用户使用C或FORTRAN语言编写程序与MATLAB连接。

MATLAB的系统开发环境(System Developing Environment)1.操作桌面(Operating Desktop)(1)桌面布局:6个窗口命令窗口(Commend Window)、工作空间窗口(Workspace)、当前目录浏览器(Current Directory )、命令历史窗口( Commend History )、启动平台(Launch Pad)、帮助窗口(Help)、M文件优化器(Profiler)。

(2)菜单和工具栏;(Menu and toolbar) 操作桌面上有6个菜单和带有9个快捷按钮的工具栏组。

(3)改变桌面设置:(Setting) File 菜单中Preference对话框中设置。

2.命令窗口:(Command window)MATLAB的主要交互窗口。

用于输入MATLAB 命令、函数、数组、表达式等信息,并显示图形以外的所有计算结果。

相关文档
最新文档