人教版数学八年级下册导学案:19.2.2 一次函数和它的图象(1)

合集下载

19.2.2一次函数的图像和性质(1)

19.2.2一次函数的图像和性质(1)

-3 -5 -7 …
比一比:正比例函数y=-2x与一次函数y=- 2x+3 、y=-2x-3图象有什么异同点.
y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 o 1
y=-2x+3
2 3 4
5
6
x
y=-2x-3
-4
-5 -6
y=-2x
观察:比较上面三个函数的相同点与不同点,根 据你的观察结果回答下列问题: 直线 (1)这三个函数的图象形状都是___,并且倾斜程 相同 度___;
19.2.2一次函数(2) 一次函数的图像和性质
0
提问复习
1、什么叫正比例函数、一次函 数?它们之间有什么关系?
一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(
经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?
y=kx 图 象
y
性 质
经过一、三象限 y随x增大而增大
K>0
y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
3、已知函数y=(m-2)x+n的图象经过一、二、 三象限. 求 : m、n的取值范围.
课内练习: 1.下列各点中,那些点在函数y=4x+1的图象上? 那些不在函数的图象上? (2, 9) (5,1) (-1,-3) (-0.5,-1) 2.若函数y=2x-3 的图象经过点(1,a) ,(b, 2) 两点, 则a= ,b= . 3.点已知M(-3, 4)在一次函数y=ax+1的 图象上,则a的值是 .

八年级数学下册19.2.2一次函数第1课时导学案新版新人教版2

八年级数学下册19.2.2一次函数第1课时导学案新版新人教版2

19.2.2一次函数 (第一课时)学习目标:1、我会理解一次函数的概念。

2、我会搞清楚正比例函数与一次函数之间的关系。

学习重难点:一次函数函数的概念和解析式的特点以及与正比例函数之间的关系。

学习过程:一、创设问题情境:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.二、自主学习:1、自学课本89—90页,回答下列问题:(1)、一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为 .(2)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1分收取).(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化. 上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:2、上面这些函数的形式都是常数K与自变量的积与常数b的和的形式。

这些函数的形式可以写成: .3.一次函数的概念一般地,形如的函数,•叫做一次函数.当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.4、对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k≠0;(2)自变量x的次数为1;(3)当b=0时,y=kx+b即y=kx.故正比例函数是一次函数.三、合作交流与展示:1、下列函数中,是一次函数的有,是正比例函数的有(1)x y 8-= (2)x y 8-= (3)652+=x y (4)15.0--=x y (5)x y = (6))3(2+=x y (7)x y 34-=2、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数3、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正比例函数? (2)此函数为一次函数?4、函数,b kx y +=当 1=x 时1-=y ,当4=x 时5=y ,求K 与b 的值。

人教版数学八年级下册导学案:19.2.2一次函数(1)

人教版数学八年级下册导学案:19.2.2一次函数(1)

八年级数学下册:第十九章一次函数课题:19.2.2 一次函数(1)课型:新授教材内容:89-90页总序第38课时主备人:副备人:审核人:使用时间:学习提示:1、课标要求:结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。

2、结合前面所学,阅读课本89-90页内容,通过类比方法学习一次函数,掌握一次函数解析式的特点及意义,体会数学研究方法多样性,利用数形结合思想,提高分析概括、总结归纳能力.3、结合自学将学案中的问题独立解决,将学习中的疑问和联想到的与本节有关的知识写在“学学习之旅学习拓展一、自主探究:1、某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.2、我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.函数解析式: .(2)一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.函数解析式: .(3)某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).函数解析式: .(4)把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.函数解析式: .3、这些函数与我们上节所学的正比例函数有何不同?通过观察将你的看法在组内交流.4、一次函数的概念:阅读课本90页一次函数的概念,并进行重点勾画。

二、合作探究:针对一次函数的形式,思考:1、一次函数的表达式中,对k、b的取值看法,自变量的取值?。

人教版八年级下册数学一次函数(2)导学案

人教版八年级下册数学一次函数(2)导学案
2.你是怎么发现两函数图象具有平移关系的?与同伴交流。
归纳:
(1)直线y=kx+b可以看作由直线y=kx平移得到,当b>0,平移;
当b<0平移.
(2)一次函数y=kx+b(k,b是常数,k≠0)的图象是_______,
【学习新知】
例3画出函数y=2x-1与y=-0.5x+1的图象。
x
y=2x-1
y=-0.5x+1
【自我评价】
我的收获:_____________________________ .
我的疑惑:______________________________.
【达标检测】
1.一次函数y=2x-3与x轴的交点坐标为_______,与y轴交点坐标为______,图像经过第__________象限,y随x的增大而______.
自主学习合作探究
课堂流程
【自主学习】
完成表格的填空,并画出函数y =2x与y =2x +1的图象。
x
-3
-2
-1
0
1
y=2x
y=2x+5
【合作探究】
1.比较上面两个函数的图象的相同点与不同点,填出你的观察结果。
这两个函数的图象形状都是,并且倾斜程度。函数y=2x的图象经过原点,函数y=2x+5的图象与y轴交于点。函数y=2x+5可以看作由直线y=2x向____平移个单位长度而得到。
2.对于函数y=-5x+6,y随x的增大而_____
3.下列函数图象有什么关系?
(1)y =x-1,y =x,y =x+1;(2)y =-2x-1,y =-2x,y =-2x+1.
4.将直线 向上平移3个单位得到的直线解析式是,将直线 向下移3个单位得到的直线解析式是.

19.2.2一次函数导学案(1)

19.2.2一次函数导学案(1)

三、思考探究 1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.这些函数解析式 有哪些共同特征? (1)有人发现,在 20℃~25℃时,蟋蟀每分鸣叫次数 c 与温度 t(单位:℃)有关,即 c 的值是 t 的 7 倍与 35 的差.____________________________________ (2) 一种计算成年人标准体重 G (单位: kg) 的方法是: 以厘米为单位量出身高值 h, 再减常数 105, 所得差是 G 的值.____________________________________ (3)某城市的市内电话的月收费额 y(单位:元)包括月租费 22 元和拨打电话 x min 的计时费(按 0.1 元/min 收取). ________________________________ (4)把一个长 10 cm、宽 5 cm 的长方形的长减少 x cm,宽不变,长方形的面积 y(单位:cm)随 x 的变化而变化. _____________________________________ 思考:上面这些函数解析式有什么共同特征? 共同特征:_________________________________________ 2、概念学习 一次函数的概念:___________________________________ 问题探究:当 b=0 时,y=kx(k≠0)是不是一次函数呢?______________________ 四、课堂练习
ห้องสมุดไป่ตู้
x
(5)y=-0.5x-1(6)y = 2(x + 3) (7)y=4-3x 2、若函数y = b − 3 x + b2 − 9是正比例函数,则 b = b = _________ 3、下列说法正确的是( A、y = kx + b是一次函数 )

八年级数学下册《19.2.2一次函数的图象和性质》导学案(新版)新人教版

八年级数学下册《19.2.2一次函数的图象和性质》导学案(新版)新人教版

个单位长度得到;同样的,函数 y 2 x 3 与 y 轴交于点 ________,即它可以看作由直线 y 2 x 向
_____平移 _____个单位长度得到。
3、 猜想: 一次函数 y kx b (k≠ 0)的图象是一 条 ________,它是由 y kx ( k≠ 0)向 _____
平移 _____个单位长度得到。
一.辅助环节 :
1. 板书课题: 19.2.2 一次函数的图象和性质
2.出示学习目标 3.检查预习
二、自学环节(探究与思考 )
复习Biblioteka 1、正比例函数的概念: 一般地,形如
(k 是
,k
)的函数,叫做

其中 k 叫做
。当 k> 0 时,函数的图象是过
的一条
,图象经过

象限,它的图象从左到右是
趋势,即: y 随 x 的增大而
写出
六、 课堂小结: 本节课你还有什么疑惑吗?
七、作业: 1、《学案》 59 页课时达标;能力展示(必做)尝试提高(选做) 2、预习:课本 93-94 页完成《自主预习》题。
八、教学反思 本节课,我采用“先学后教”的教学模式来组织整个课堂教学,通过自学、导学、探讨交流、
练习等活动,让学生主动探索,在活动中获得知识,提高技能,掌握方法;通过一系列的问题,极 大的激发了学生的兴趣和求知欲望,学习中通过激烈的探讨与辩论,使重难点得到了很好的解决。
,我们称它为直线 y=kx+b.
当 k> 0,b>0 时, 图象经过
象限 , 从左向右
, y 随 x 的增大而
当 k> 0, b<0 时,图象经过
象限,从左向右
当 k< 0, b>0 时,图象经过

2014年春人教版义务教育教科书数学8年级下册19.2.2一次函数(第1课时)

2014年春人教版义务教育教科书数学8年级下册19.2.2一次函数(第1课时)

19.2.2 一次函数(第1课时)导学案【学习目标】:本节课通过问题2探索一次函数的图象及其性质,发展抽象的数学思维.能用“两点法”画出一次函数的图象。

结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

【学习过程】:问题思索1:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用解析式表示y•与x的关系.【思路点拨】y随x变化的规律是,从大本营向上当海拔加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=_________________________,•当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是x=0.5时函数y=________________的值,即y=__________(℃).问题思索2:下列问题中变量间的对应关系可用怎样的函数表示?•这些函数有什么共同点?(1)有人发现,在20~30℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C•的值约是t的7倍与35的差,其函数关系为y=___________________。

(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值,其函数关系为y=_____________。

(3)某城市市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取,其函数关系为y=___________________。

(4)把一个长10cm,宽5cm的长方形的长减少x,宽不变,长方形的面积y(单位:cm2)随x的值而变化.其函数关系为y=___________________。

探索结论:1、独立思考,列出函数关系式,并进行比较,得到这一类型函数的共同特征:这些函数的形式都是自变量x的k(常数)倍与一个常数的和.2、形成概念:一般地,形如______________________的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.随堂练习:课本P90练习1,2,3题.学效评价:1.下列函数中,y 是x 的一次函数的是( )①y=x-6;②y=x 2;③y=8x ;④y=7-x A 、①②③ B 、①③④ C 、①②③④ D 、②③④2 .写出下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm 2的三角形的底a(cm)与这边上的高h(cm);(2)一边长为8(cm)的平行四边形的周长L(cm)与另一边长b(cm);(3)食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨;(4)汽车每小时行40千米,行驶的路程s (千米)和时间t (小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;(6)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(7)一棵树现在高50厘米,每个月长2厘米,x 月后这棵树的高为y (厘米)同步训练:1、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数2、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为一次函数?(2)此函数为正比例函数?3、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。

人教版八年级数学下册19.2.2一次函数的图像与性质导学案

人教版八年级数学下册19.2.2一次函数的图像与性质导学案

庙渠初中“三环四步”导学案年级八科目数课题19.2.2一次函数的图像与性质主备人周次教学辅助手段导学目标1、会画一次函数的图象;2、理解一次函数图象的性质,了解bkxy+=中的k,b对函数图象的影响。

重点难点一次函数图象的性质导学模式自学--------展示-------反馈导学策略及学法指导(师生互动设计)导学过程四自主学习【自主学习】一、复习旧知:1、(1)2my m x=-+,当m= ,y是x的一次函数.2、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x;⑤2112y x=+;⑥y=0.5x中,属一次函数的有,属正比例函数的有(填序号)3、用描点法画函数图象的步骤是。

【合作探究】阅读教材,思考下列问题:1、选择自变量的值,在同一坐标系中画出函数y=2x,y=2x+3,y=2x-3的图象。

x …-2 -1 0 1 2 …导学过程四交流展示【交流展示】1、一次函数bkxy+=(k≠0)的图象是一条____ _。

当0>b时,它是由直线kxy=向_____平移_____个单位长度得到;当0<b时,它是由直线kxy=向_____平移_____个单位长度得到。

2、一次函数bkxy+=(k≠0)的性质:(1)当0>k时,y随x的增大而_______,这时函数的图象从左到右_______;(2)当0<k时,y随x的增大而_______,这时函数的图象从左到右_______;3、一次函数图象的画法:一次函数bkxy+=(k≠0)的图象是一条直线,因此画它们的图象时,只需要确定两点,通常选取坐标较“简单”的点,如(0, )导学策略及学法指导(师生互动设计)步设计合作探究y=2x ……y=2x+3 ……y=2x-3 ……观察这三个图象,这三个函数图象形状都是_________,并且倾斜度_______。

从左向右。

函数y=2x的图象经过原点,函数y=2x+3与y轴交于点________,即它可以看作由直线y=2x向_____平移_____个单位长度得到;函数y=2x-3与y轴交于点________,即它可以看作由直线y=2x向_____平移_____个单位长度得到。

人教版八年级下册数学 19.2.2一次函数图象的应用 学案

人教版八年级下册数学  19.2.2一次函数图象的应用   学案

4 t/s/海 2 4 6 8 10 123 5 60 L L 2 7 8 人教版八年级下册数学19.2.2一次函数图象的应用 学案学习目标1、通过函数图象获取信息,发展形象思维,进一步培养数形结合意识.2、能利用函数图象解决简单的实际问题,进一步发展数学应用能力.3、初步体会方程与函数的关系,建立良好的知识联系.学习重难点重点: 一次函数图象的应用.难点: 从函数图象中正确读取信息.学前准备1、一次函数图象经过(4,4000)、(0,2000)写出该一次函数表达式.2、一次函数图象经过(0,0)、(4,4000)写出该一次函数表达式.3、函数图像如图所示,根据图像回答以下问题: (1) x=0时,y=_______(2) 当y=0时,x=_______ (3) 当x_______时,y >0.(4) 当x_______时,y ﹤0.求直线的函数表达式.典型例题例1、如图:L 1反映了某公司产品的销售收入与销售量的关系,L 2反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入= 元销售成本= 元.(2)当销售量为6吨时销售收入= 元 销售成本= 元.(3)当销售量等于 时,销售收入=销售成本.(4)当销售量 时,该公司赢利,当销售量 时,该公司亏损(5)L 1对应的函数表达式是L 2对应的函数表达式是 例2、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶(如图所示)。

图中 L1 ,L2 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系 根据图像回答下列问题 0.51yx o(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12海里时,B将无法对其进行检查。

照此速度,B能否在A逃入公海前将其拦截?3某玩具厂计划生产一种玩具熊猫,每月最高产量为140只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R元,销售收入为P元,且R、P与x的关系分别为:R=500+300x,P=55x(1)在同一坐标系内作出它们的函数图象.(2)至少生产,才能保证不亏损.随堂练习1.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元.(2)从图象上你能获得哪些信息?(请写出2条)(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系.3.如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所行的时间t(小时)之间的函数关系图象如图所示的AC和BD给出,当他们行走3小时后,他们之间的距离为多少千米?课后小结本节课学了哪些知识?今日作业。

八年级数学下册19.2.2一次函数教案1(新版)新人教

八年级数学下册19.2.2一次函数教案1(新版)新人教

一次函数第1课时一次函数的概念"純載字目畅【知识与技能】1. 理解一次函数的概念以及它与正比例函数的关系2. 能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力•【教学重点】1. 一次函数的概念•2. 根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系"就載字S3程一、情境导入,初步认识弓I导学生一起回忆函数、正比例函数的概念和两者间的关系问题某登山队大本营所在地的气温为5C,海拔每升高1km气温下降6C,登山队员由大本营向上登高xkm,他们所在位置的气温是y C,试用解析式表示y与x的关系.【分析】y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5C减少6x C,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25C时蟋蟀每分钟鸣叫次数C 与温度t (单位:C)有关,即C的值约(2) —种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h, h再是t的7倍与35的差.减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y (单位:cm?)随x的值而变化.【答案】(1)C=7t-35 ;(2)G=h-105 ;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同•变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律•【归纳总结】(1)一般地,形如y=kx+b (k, b为常数,0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1下列函数中哪些是一次函数?哪些是正比例函数?2 2 1① y= -2x :② y :③ y=2x -3 :④ y= x+2.x 3【答案】①④是一次函数,①是正比例函数【教学说明】一次函数包括正比例函数•例2某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x (年)表示,年产值用y (万)元表示,那么y与x之间有什么样的关系?(3)当年数由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P 为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1千克的按1 千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费•【分析】因为P千克可写成(P-1 )+1,其中1千克付费2元,P-1千克增加费用0.5 (P-1 ), 所以c=2+0.5 (P-1 ) =0.5P+1.5.【答案】c=2+0.5 (P-1) =0.5P+1.5.当P=5时,c=0.5 X 5+1.5=4 (元).即5千克行李的托运费是4元.【教学说明】在写关系式时,应注意( P-1 )千克是增加的重量•类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的•四、运用新知,深化理解1. 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2. 汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y (单位:升)随行驶时间x (单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x的一次函数吗?3. 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6C.高于11km时,气温几乎不再变化,设地面的气温为38C,高空中xkm的气温为y C.(1)当O w x< 11时,求y与x的关系式.(2)求当x=2, 5, 8, 11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16C时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果【答案】1. (1) v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2. y=50-5x , O w x w 10, y 是x 的一次函数.3. (1) O w x w 11时,y与x之间的关系式为y=38-6x.(2)分别为26, 8, -10 , -28.(3)气温是-28C.(4)离地面9km高的地方.五、师生互动,课堂小结问题1反思函数、正比例函数、一次函数的概念及它们间的关系问题2就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系誓「谓后毎业1. 布置作业:从教材“习题19.2 ”中选取.2. 完成练习册中本课时练习數字反思本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识•教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力。

八年级数学下册19.2.2 一次函数导学案

八年级数学下册19.2.2 一次函数导学案

19.2.2 一次函数第一课时教学目标1.理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力,体验特殊和一般的辨证关系.2.能根据问题信息写出一次函数的表达式,能利用一次函数解决简单的实际问题.3.经过利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.教学重难点重点:一次函数的概念及其与正比例函数的关系;会根据已知信息写出一次函数的表达式.难点:理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力.教学过程一、情境引入上节课我们一起学习了函数和正比例函数的概念,同学们能说出函数与正比例函数的概念及它们之间的关系吗?(学生思考后,抢答.)请同学们来看下面的问题:(多媒体演示)【问题1】某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高x km时,他们所在位置的气温是y℃.试用函数解析式表示y与x的关系.【分析】 y随x变化的规律是:从大本营向上,当海拔增加xkm时,气温从5℃减少6x℃,因此,y与x的函数解析式为:y=5-6x,这个函数也可以写为y=-6x+5.当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是当x=0.5时函数y =-6x+5的值,即y=-6×0.5+5=2(℃).【问题2】问题1中的这个函数:y=-6x+5是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还有吗?让学生畅所欲言,将y=-6x+5与正比例函数的解析式y=kx作对比,发现多了一个常数项,学生依照模式举出另外一些例子,教师给予点评.本节课我们就一起来探究这种新型的函数及其图象的特征.二、互动新授请同学们接着看教材P90“思考”中的问题:(多媒体演示)【思考】下列问题中,变量之间的对立关系是函数关系吗?如果是,请写出函数关系式.这些函数解析式有哪些共同特征?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0.1元/min收取).(4)把一个长10cm 、宽5cm 的长方形的长减少x cm ,宽不变,长方形的面积y (单位:cm 2)随x 的变化而变化.逐一出示题目并由学生独立完成,此处不必对自变量取值范围作深入追究,重在正确得出函数关系式.教师评讲:上面问题中,表示变量之间关系的函数解析式分别为:(1)c =7t -35(20≤t ≤25); (2)G =h -105;(3)y =0.1x +22; (4)y =-5x +50(0≤x ≤10).正如函数y =-6x +5一样,上面这些函数都是常数k 与自变量的积及与常数b 的和的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.【问题3】 下列函数中哪些是一次函数,哪些又是正比例函数?(1)y =-8x ; (2)y =-8x; (3)y =5x 2+6; (4)y =-0.5x -1. 学生独自思考后交流讨论,形成共识:(1)(4)是一次函数,其中(1)是正比例函数.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的概念:形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.四、板书设计五、教学反思本课教学通过创设情境引入一次函数,引导学生类比正比例函数概念的学习过程来学习一次函数.教学中发现学生在判断一个函数是否是一次函数时,往往只凭表象判定,容易出错.因此,教学时要让学生明白:要判断一个函数是否是一次函数,就要先将式子进行变形,看它能否化成y =kx +b(k ,b 是常数,k ≠0)的形式,即x 的指数为1,k ≠0,b 为任意常数,若符合上述条件,且b =0,则这个函数即是一次函数,又是正比例函数.也就是说,正比例函数一定是一次函数,而一次函数不一定是正比例函数.同时,教师还要点明,一次函数的解析式应是整式,自变数指数应为 1.只有让学生把一次函数的概念理解透彻,才能明确辨析一次函数的解析式的结构特征,为今后一次函数的学习打好基础.导学方案一、学法点津学生在学习一次函数概念时,要明确:一次函数的解析式的形式是y =kx +b(k ,b 是常数,k ≠0),它的右边是关于x 的一次式,其中一次项系数必须是不为零的常数,b 可以为任意常数.二、学点归纳总结1.知识要点总结(1)一次函数的概念一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数是一次函数.(2)一次函数与正比例函数的区别与联系.正比例函数一定是一次函数,而一次函数只有当常数项为零时,才变为正比例函数.2.规律方法总结判断一个函数是否是一次函数,就是判断它是否能化成y =kx +b(k ,b 是常数,k ≠0)的形式,能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数一定就是一次函数,不能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数就不是一次函数.第一课时作业设计一、选择题1.下列说法正确的是( ).A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数2.一次函数y =kx +b(k ≠0)满足x =0时,y =-1;x =1时,y =1,则这个一次函数是( ).A .y =2x +1B .y =-2x +1C .y =2x -1D .y =-2x -13.若2y -4与3x -2成正比例函数,则y 与x( ).A .一定是正比例函数B .一定是一次函数C .没有函数关系D .以上答案不对二、填空题4.如图,已知点A(-1,0),点B 是直线y =x 上的一动点,当线段AB 最短时,点B 的坐标为________.5.下列函数:(1)y =x -6;(2)y =2x ;(3)y =x 8;(4)y =7-x 中,y 是x 的一次函数的有________.6.一次函数y =2x +b -3,当b =__________时,此一次函数变成为正比例函数.三、解答题7.k 为何值时,函数y =(k +1)xk 2+k -1是一次函数?此时它是正比例函数吗?8.已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.【参考答案】一、1.A 2.C 3.B二、4.⎝⎛⎭⎫-22,-22 5.(1)(3)(4) 6.3 三、7.解:由k 2=1,得k =±1,又∵k +1≠0,∴k ≠-1,∴k =1.此时y =2x ,它是正比例函数.8.解:(1)由y =k(x -3),当x =4时,y =3,得3=k(4-3),解得k =-3,∴y =3(x -3),即y =3x -9.(2)y 与x 之间是一次函数关系.(3)当x =2.5时,由y =3x -9得,y =3×2.5-9=-1.5.第二课时教学目标1.了解一次函数的图象及其画法.2.理解一次函数与正比例函数以及它们图象之间的关系.3.理解一次函数的性质.4.通过一次函数的图象和性质的研究,体会数形结合在问题解决中的作用,并能应用它们解决相关函数问题.5.通过画函数的图象以及用函数图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁性.教学重难点重点:一次函数的图象和性质.难点:由一次函数图象归纳出一次函数性质以及对性质的理解.教学过程一、情境引入大家知道,有句名言“数因形而直观,形因数而入微”,同学们还记得其中反映的数学思想方法吗?学生很容易回答出“利用数形结合来研究问题时,数量关系与图形相互依赖,密不可分”等,之后教师提出以下问题:【问题1】 我们曾用数形结合的方法研究了正比例函数,大家还能回忆它的有关内容吗?学生畅所欲言.【问题2】 还记得上节课的“登山问题”吗?多媒体出示:某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃.试用解析式表示y 与x 的关系.为了直观地反映登山温度变化情况(y =5-6x ),我们可以怎么做呢?(画出图象). 那么图象是什么形状呢?这就是本节课我们要一起探究的一次函数图象及其性质.二、互动新授【例2】 画出函数y =-6x 与y =-6x +5的图象.学生独自在坐标纸上动手画图后,教师多媒体演示:【解】 函数y =-6x 与y =-6x +5中,自变量x 可以是任意实数,列表表示几组对应值(计算并填写教材表19-9中空格).x -2 -1 0 1 2y=-6x0 -6y=-6x+55 -1教材表19-9画出函数y=-6x与y=-6x+5的图象(教材图19.2-3).教材图19.2-3【思考】比较上面两个函数的图象的相同点与不同点,填出你的观察结果:这两个函数的图象形状都是__________,并且倾斜程度__________,函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点__________,即它可以看作由直线y=-6x向__________平移__________个单位长度而得到.比较两个函数解析式,你能说出两个函数的图象有上述关系的道理吗?联系上面结果,考虑一次函数y=kx+b(k≠0)的图象是什么形状,它与直线y=kx(k≠0)有什么关系.学生思考后,师生共同探究:比较一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的解析式,容易得出:一次函数y=kx+b(k≠0)的图象可以由直线y=kx平移|b|个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).一次函数y=kx+b(k≠0)的图象也是一条直线,我们称它为直线y=kx+b.【例3】画函数y=2x-1与y=-0.5x+1的图象.【分析】由于一次函数的图象是直线,因此只要确定两个点就能画出它.【解】列表表示当x=0,x=1时两个函数的对应值(教材表19-10).x 0 1y=2x-1 -1 1y=-0.5x+1 1 0.5教材表19-10过点(0,-1)与点(1,1)画出直线y=2x-1的图象;过点(0,1)与点(1,0.5)画出直线y=-0.5x+1.(教材图19.2-4)教材图19.2-4【思考】画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象,由它们联想:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k的正负对函数图象有什么影响?学生练习后,师生共同分析:观察前面一次函数的图象,可以发现规律:当k>0时,直线y=kx+b从左向右上升;当k<0时,直线y=kx+b从左向右下降.由此可知:一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k<0时,y随x的增大而减小.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的图象及性质:当k>0时,图象由左向右呈上升趋势,y随x的增大而增大.当k<0时,图象由左向右呈下降趋势,y随x的增大而减小.四、板书设计五、教学反思本节课主要是研究一次函数的图象和性质,它是在学习了正比例函数的图象和性质,及初步了解如何研究一个具体函数的图象与性质的基础上进行的,原有的知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善、发展,进一步体验研究函数的基本思路.这些目标的达成,要求教学中必须发挥学生的主体作用.在教学中,部分学生对一次函数y=kx+b的图象位置的确定,k,b所起的作用理解不到位,以致对一次函数的性质把握不准、为了有效地解决这种问题,教师可用数形结合的思想方法来阐述.导学方案一、学法点津学生在画一次函数的图象时,只要在平面直角坐标系中先描出两个点,再连成直线即可,这两点一般选取(0,b)和(-bk,0);同时要记住一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.二、学点归纳总结1.知识要点总结(1)一次函数的图象.①一次函数y=kx+b(k,b是常数,k≠0)的图象是一条直线.②由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.(2)一次函数的性质.一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:①当k>0时,y随x的增大而增大;2.规律方法总结(1)因为两点确定一条直线,所以一般可由点(0,b)和点(-b k,0)确定直线y =kx +b 的解析式,并画出相应的图象.此外还可根据图象的平移求解,即直线y =kx +b 可以看作将直线y =kx 平移|b|个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).(2)根据一次函数的性质,如果已知系数k 的符号就可以直接说出系数y 的值随x 的变化而变化的情况;反之,如果知道一次函数的增减性,就能够推断常数k 的符号.第二课时作业设计一、选择题1.如果函数y =ax +b(a <0,b <0)和y =kx(k >0)的图象交于点P ,那么点P 应该位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 符号判断正确的是( ).A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点且x 1<x 2,则y 1,y 2的大小关系是( ).A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2二、填空题4.在一次函数y =2x +3中,y 随x 的增大而__________(填“增大”或“减小”);当0≤x ≤5时,y 的最小值为__________.5.在同一直角坐标系中作出下列直线:(1)y =12x -1;(2)y =2x -1;(3)y =-12x +1;(4)y =-2x +1,则互相平行的直线是__________.6.把直线y =3x 向上平移6个单位长度得到的函数解析式为__________.三、解答题7.已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x 轴的交点坐标.8.已知直线y =2x -3.(1)求直线与y 轴交点到x 轴的距离.(2)在直线上是否存在点A ,使点A 到x 轴的距离为2?若存在,求出点A 的坐标;若不存在,请说明理由.【参考答案】一、1.C 2.D 3.A二、4.增大 3 5.(1)和(3) 6.y =3x +6三、7.(1)y =12x -4. (2)(-4,0). 8.(1)3. (2)存在.点A 的坐标为⎝⎛⎭⎫52,2或⎝⎛⎭⎫12,-2.第三课时教学目标1.学会根据所给信息,用待定系数法求一次函数的解析式.2.了解分段函数的特点,学会根据题意求出分段函数的解析式并画出函数图象.3.能利用一次函数及其图象解决简单的实际问题,发展学生的数学应用能力.4.进一步体会并感知数学建模的一般思想.教学重难点重点:根据所给信息确定一次函数的表达式.难点:培养数形结合解决问题的能力.教学过程一、情境引入请同学们拿出坐标纸,画出函数y =12x 与y =3x -1的图象,回答下列问题:(多媒体演示)【问题1】 在画这两个函数图象时,分别描了几个点?为何选这几个点?可以有不同的取法吗?要求学生根据自己的作图畅所欲言,充分表达自己的观点,以使全班学生在本节课立于同一起跑线上.【问题2】 在上节课中,我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给出信息,能否求出函数的表达式呢?这将是本节课我们要研究的问题.二、互动新授【例4】 已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【分析】 求一次函数y =kx +b 的解析式,关键是求出k ,b 的值.从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b.【解】 设这个一次函数的解析式为y =kx +b.因为y =kx +b 的图象过点(3,5)与(-4,-9),所以⎩⎪⎨⎪⎧3k +b =5,-4k +b =-9.解方程组得⎩⎪⎨⎪⎧k =2,b =-1. 这个一次函数的解析式为y =2x -1.教师总结:像例4这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.由于一次函数y =kx +b 中有k 和b 两个待定系数,因此用待定系数法时,需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.多媒体呈现:K【例5】 “黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg 以上的种子,超过2kg 部分的种子价格打8折.(1)填写教材表19-11.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元…(2)写出购买量关于付款金额的函数解析式,并画出函数图象.【分析】 付款金额与种子价格有关.问题中种子价格不是固定不变的,它与购买量有关.设购买xkg 种子,当0≤x ≤2时,种子价格为5元/kg ;当x >2时,其中有2kg 种子按5元/kg 计价,其余的(x -2)kg(即超出2kg 部分)种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x ≤2和x >2分段讨论.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元 2.5 5 7.5 10 12 14 16 18 …(2)设购买量为x kg ,付款金额为y 元.当0≤x ≤2时,y =5x ;当x >2时,y =4(x -2)+10=4x +2.函数图象如教材图19.2-5.教材图19.2-5说明:y 与x 的函数解析式也可合起来表示为:y =⎩⎪⎨⎪⎧5x , 0≤x ≤2,4x +2, x >2. 【思考】 你能由上面的函数解析式解决以下问题吗?由函数图象也能解决这些问题吗?(1)一次购买1.5kg 种子,需付款多少元?(2)一次购买3kg 种子,需付款多少元?学生练习后,小组交流.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了用待定系数法求一次函数的解析式以及分段函数的特点.四、 板书设计五、教学反思在本节课的教学过程中,许多学生对用待定系数法确定一次函数解析式的步骤还不是很清楚,以致解析式求错,因此为便于记忆教师把用待定系数法确定一次函数解析式的步骤归纳为四个字:“设”、“列”、“解”、“代”.“设”.这样,学生记得简单,又不容易出错.另外,求分段函数的解析式,要让学生明白:首先要求出自变量各个范围内所对应的函数解析式,然后用大括号合写成一个函数的形式并标注自变量的取值范围即可.教师还要通过实例,让学生初步感受分段函数在解决问题中的优越性,树立起学生学习的兴趣和信心.导学方案一、学法点津学生要明白用待定系数法确定一次函数y=kx+b(k≠0)的解析式,就是要确定k和b 的值,通过四字口诀:设、列、解、代,来理解并识记其一般步骤.在学习求分段函数时,要明确方法:首先要确定自变量的取值范围,然后用待定系数法求各个自变量取值范围内的函数解析式,最后,合并写成一个函数的形式.二、学点归纳总结1.知识要点总结1.用待定系数法求一次函数解析式的一般步骤:(1)设:设出含有待定系数的函数解析式;(2)列:把已知条件(自变量与函数的对应值)代入解析式得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数;(4)代:将求出的待定系数的值代回所设的函数解析式,即可得到所求的函数解析式.(2)分段函数的概念.在同一问题中,自变量的不同取值范围内表示函数关系的解析式有不同的形式,这样的函数称为分段函数.2.规律方法总结(1)已知解析式可以画直线,反过来,已知直线也可以求解析式,它们之间的数形转换关系如下所示:K(2)求分段函数的解析式应注意各段自变量的取值范围,分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数的自变量的取值范围.同时,求分段函数的函数值应注意自变量所在的范围,确定相应的函数值.第三课时作业设计一、选择题1.直线y =kx +3与x 轴的交点是(1,0),则k 的值为( ).A .3B .2C .-2D .-32.一次函数图象经过点A(-2,-1),且与直线y =2x -3平行,则此函数解析式为( ).A .y =x +1B .y =2x +3C .y =2x -1D .y =-2x -53.某市出租车收费标准如下:3千米以内收费6元;3千米到10千米部分每千米收费1.3元;10千米以上部分每千米收1.9元,那么出租车收费y(元)与行驶路程x(千米)的函数关系用图象可表示为( ).A BCD二、填空题 4.已知直线y =ax -2经过点(-3,-8)和⎝ ⎛⎭⎪⎫12,b 两点,那么a =__________,b =__________.5.若一次函数y =(1-2m)x +3的图象经过A(x 1,y 1),B(x 2,y 2)两点,当x 1<x 2时,y 1>y 2,则m 的取值范围是__________.6.某图书出租店有一种图书的租金y(元)与出租的天数x(天)之间的函数关系如图所示,则两天后,每过一天,累计租金增加__________元.三、解答题7.已知直线l 与直线y =2x +1的交点的横坐标为2,与直线y =x -8交点的纵坐标为-7,求直线l 的解析式。

初中数学八年级下册19.2.2一次函数(1)导学案设计

初中数学八年级下册19.2.2一次函数(1)导学案设计

1922 —次函数(1)导学案学习目标:1 •理解一次函数的概念,知道一次函数与正比例函数关系.2 •能正确识别一次函数解析式.能根据已知确定一次函数解析式.3.学生通过实际问题中函数关系归纳得岀一次函数的概念,学生在探究合作中交流体验知识的形成过程。

学习重点:一次函数的概念及一次函数与正比例函数的联系。

学习难点:依据数量关系确定一次函数解析式学习过程:一、自主学习问题1、已知一根蜡烛长30cm,每小时燃烧10cm,设剩余蜡烛的长为Lem,燃烧时间t h(1)_____________________________ 由题可知蜡烛燃烧完需要h。

(2)_____________________________________________________________________________ 剩余蜡烛的长为Lem与燃烧时间t h之间的函数解析式为 __________________________________________________________________ (写出自变量的取值范围)。

b5E2RGbCAP(3)蜡烛燃烧1.5小时后,剩余蜡烛长L= ______________ 。

二、合作探究问题2、请写岀下列问题中的函数关系式(先独立完成,再小组交流)(1)有人发现,在20〜25C时蟋蟀每分鸣叫次数c与温度t (单位:°C)有关,即c的值约是t的7倍与35的差;p1EanqFDPw(2)一种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得的差是G的值; DXDiTa9E3d(3)某城市的市内电话的月收费为y (单位:元)包括:月租22元,拨打电话x分的计时费(按0.1元/分收取);RTCrpUDGiT(4)______________________________________ 把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y (单位:cm2)随x的值而变化。

人教版八年级下册数学导学案:一次函数和它的图象(1)

人教版八年级下册数学导学案:一次函数和它的图象(1)

一次函数和它的图象(1)(4课时)学习目标知识目标:1、理解正比例函数、一次函数的概念。

2、会根据数量关系,求正比例函数、一次函数的解析式。

3、会求一次函数的值。

能力目标:应用函数的思想观察现实世界中的函数关系情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的乐趣。

学习重点 一次函数、正比例函数的概念和解析式。

学习难点 根据已知信息写出一次函数的表达式,确定自变量的取值范围一. 独立思考,复习反馈(一)说一说:函数的概念及函数的判断方法(二)填一填;1.汽车以60 km/h 的速度匀速行驶,行驶路程S (km )与汽车行驶的时间t (h )之间的函数解析式为__________________.2.一颗树现在高60 cm ,每个月长高2 cm ,x 月之后这棵树的高度为h cm ,则h 关于x 的函数解析式为___________________.3.汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q (升)与行驶时间t (时)的函数解析式为_________________.4.在Rt △ABC 中,∠C=90°,设∠A= x °,∠B= y °,则y 关于x 的解析式为_______.二. 师生合作,共探新知(一)一次函数,正比例函数的一般形式1.比较下列各函数解析式,它们有哪些共同特征?特征:(1) 等号两边的代数式都是( );(2) 自变量的次数是( )。

2.定义____________________________________________________________ ___________________________________________________________________.3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?(1)(2) (3) 4) (5) (6)y=x4.反思:(1)正比例函数与一次函数的联系与区别;(2)正比例函数与小学学的“两个量成正比”的联系与区别;(二)理解一次函数y=kx=b(k 0)的特征已知一次函数y=1.6x+51、填表:X -2 -1 01 2 3 4 …… Y ……,60S t =,602+=x h ,550t Q -=x y -=90k b ,2r C π=,20032+=x y ,200v t =(),32x y -=()x x s -=50≠2.填空:观察上表发现:当自变量x 的值每增加1时,函数值y 的变化规律是_____________________________,3.合作结论:一般地, 一次函数y=kx=b(k 0)自变量的值每增加1时,函数值都_________,这说明一次函数的函数值是随着自变量_________。

人教版数学八年级下册导学案:19.2.2-一次函数(1)

人教版数学八年级下册导学案:19.2.2-一次函数(1)

19.2.2一次函数(1) 助学稿班级:_____________ 姓名:_______________ 学号:___________一、学习目标1、理解一次函数的概念;2、体会正比例函数是特殊的一次函数。

二、新课引入函数y=-2x的图象是经过点(0,)和点(,-2)的直线,y随x的增大而。

三、自学指导认真阅读课本第89至90页的内容,完成下面练习并体验知识点的形成过程.1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差。

(2)一种计算成年人标准体重G(单位:千克)的方法是:以厘米为单位量出身高值h,再减常数105,所得的差是G的值。

(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x分钟的计时费(按0.1元/分钟收取)。

(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化。

2、分别说出这些函数的常数、自变量,这些函数解析式有哪些共同特征?发现:它们都是常数k与自变量的与常数b的的形式.知识点一一次函数的定义3、一般地,形如(k,b是常数,)的函数,叫做函数。

当时,y kx b=,因此,正比例函数是一种特殊的。

=+即y kx练一练1、下列函数中哪些是一次函数,哪些又是正比例函数?(1)8y x=-(2)8yx-=(3)256y x=+(4)0.51y x=--2、一次函数y=kx+b ,当x=1时,y=5;当x=-1时,y=1.求k和b的值。

知识点二一次函数的应用问题2 某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y与x的关系。

解:(1)原大本营所在地气温为: ___,因为当海拔增加1km时,气温减少____ 。

八年级数学下册 19.2.2.2 一次函数导学案 新人教版(2021年整理)

八年级数学下册 19.2.2.2 一次函数导学案 新人教版(2021年整理)

八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19.2.2.2 一次函数导学案(新版)新人教版的全部内容。

19。

2.2.2 一次函数预习案一、学习目标1、学会运用待定系数法和数形结合思想求一次函数解析式;2、能通过函数解决简单的实际问题。

二、预习内容预习课本十九章第二节P93—95内容。

1、待定系数法:先,再根据条件确定解析式中,从而具体写出这个的方法,叫做待定系数法.2、一次函数的函数解析式一般设为 .三、预习检测1、、若一次函数y=—x+b的图象经过点(3,2),则一次函数的解析式为()A.y=x+1 B.y=-x+5 C.y=—x-5 D.y=—x+12、一次函数y=2mx+m2—4的图象经过原点,则m的值为()A.0 B.2 C.-2 D.2或-23、如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元 D.0。

5元探究案一、合作探究(15min)探究一:1、已知一次函数的图象过点 (3,5) 与(—4,—9),求这个一次函数的解析式。

分析:求一次函数的解析式,关键是求出的值。

从已知条件列出二元一次方程组,得出答案。

结论:先 ,再根据条件确定解析式中,从而具体写出这个的方法,叫做待定系数法.待定系数法的一般步骤: 。

人教版数学八年级下册19.2.2一次函数的图像与性质 教案 (1)

人教版数学八年级下册19.2.2一次函数的图像与性质 教案 (1)

《19.2.2 一次函数(2)》教学设计
学校:
学科:
姓名:
《19.2.2 一次函数的图像和性质》教学设计
新课标理念下的数学教学,是师生之间、学生之间交流互动与共同发展的过程。

基于以上的教育教学理念,在新人教版教科书八年级下册第十九章《一次函数(2)》的教学设计中,我进行了教材分析、目标分析、学情分析、教法分析与学法指导、教学过程分析及教学评价等六个方面的分析。

下面我将结合这六个方面介绍本节课的教学设计。

一、教材分析
1、教材的地位和作用
本节课的教学内容是一次函数的图象和性质,它是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有着紧密联系。

本节课是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何以及其他数学分支的重要基础。

2、教学重点与难点
教学重点:一次函数的图象和性质。

教学难点:由函数的图象归纳得出函数的性质及对性质的理解。

3、教材处理
本节课是一节新知探究课。

为了使学生在探索的过程中理解并掌握一次函数的图象和性质,我将会充分调动学生的学习积极性,引导学生开展观察、猜想、操作、比较、归纳、交流等多种形式的活动。

的增大而增大的函数是
则在平面直角坐标系中它的大致图象是()A、B、C、D、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数和它的图象(1) 学习目标
知识目标:
1、理解正比例函数、一次函数的概念。

2、会根据数量关系,求正比例函数、一次函数的解析式。

3、会求一次函数的值。

能力目标:应用函数的思想观察现实世界中的函数关系
情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的乐趣。

学习重点:一次函数、正比例函数的概念和解析式。

学习难点:根据已知信息写出一次函数的表达式,确定自变量的取值范围
独立思考,复习反馈
(一)说一说:函数的概念及函数的判断方法
(二)填一填;
1.汽车以60 km/h 的速度匀速行驶,行驶路程S (km )与汽车行驶的时间t (h )之间的函数解析式为__________________.
2.一颗树现在高60 cm ,每个月长高2 cm ,x 月之后这棵树的高度为h cm ,则h 关于x 的函数解析式为___________________.
3.汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q (升)与行驶时间t (时)的函数解析式为_________________.
4.在Rt △ABC 中,∠C=90°,设∠A= x °,∠B= y °,则y 关于x 的解析式为_______.
二. 师生合作,共探新知
(一)一次函数,正比例函数的一般形式
1.比较下列各函数解析式,它们有哪些共同特征?
特征:(1) 等号两边的代数式都是( );
(2) 自变量的次数是( )。

2.定义____________________________________________________________ ___________________________________________________________________.
,60S t =,602+=x h ,550t Q -=x y -=90
3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?
(1)
(2) (3) (4) (5) (6)y=x
4.反思:(1)正比例函数与一次函数的联系与区别;
(2)正比例函数与小学学的“两个量成正比”的联系与区别;
(二)理解一次函数y=kx=b(k 0)的特征
已知一次函数y=1.6x+5
填表:
2.填空:观察上表发现:当自变量x 的值每增加1时,函数值y 的变化规律是_____________________________,
3.合作结论:一般地, 一次函数y=kx=b(k 0)自变量的值每增加1时,函数值都_________,这说明一次函数的函数值是随着自变量_________。

(三)一次函数自变量取值范围的确定
(1) 一般地, 一次函数y=kx=b(k 0)自变量的取值范围是怎样的?
(2) 学案开头4个函数的自变量取值范围又是怎样的?请说出来.
三 生生合作,巩固新知:
例1:一辆公共汽车在加油前油箱里还剩8L 汽油,已知加油枪的流量为12L/min ,若加油时间为x (min ),
k b ,2r C π=,20032+=x y ,200v t =(),32x y -=()x x s -=50≠≠≠
请写出此时油箱中的油量y(L)与x (min)的函数关系式;
若加油5min,则油箱中有多少升汽油?
例2:为了圆满完成2008年奥运会火炬的传递,奥运火炬手们从珠穆朗玛峰的北坡营地出

发向峰顶发起冲击。

已知奥运火炬手们出发地的气温为1C,当他们向上冲击时,海拔每升︒
高1km,气温则下降6C,
你能用解析式表示他们所在位置的温度y与向上登山的高度x之间的关系吗?
若火炬手们向上登高了0.2km,则他们所在位置的温度为多少?
四.总结反思,拓展升华:。

相关文档
最新文档