高考立体几何知识点总结

合集下载

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)立体几何知识点1、柱、锥、台、球的结构特征1)棱柱:有两个对应边平行的全等多边形作为底面,侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2)棱锥:侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3)棱台:上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成,底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成,底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6)圆台:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成,上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,球的截面是圆,球面上任意一点到球心的距离等于半径。

2、柱体、锥体、台体的表面积与体积1)几何体的表面积为几何体各个面的面积的和。

2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线):直棱柱侧面积=chS,圆柱侧面积=2πrhS,正棱锥侧面积=1/2ch'S,圆锥侧面积=πrl2,正棱台侧面积=1/2(c1+c2)h'S,圆台侧面积=(r+R)πl,圆锥表面积=πr(r+l)S,圆台表面积=πr2+rl+Rl+R2S,圆柱表面积=2πr(r+l)。

3)柱体、锥体、台体的体积公式:直棱柱体积=ShV,圆柱体积=Sh=πr2hV,直棱锥体积=1/3ShV,圆锥体积=1/3πr2h,直棱台体积=(S+SS+S)h=π(r2+rR+R2)hV,圆台体积=1/3S(R2+rR+r2)hV。

4)球体的表面积和体积公式:球体体积=4/3πR3,球面积=4πR2.3、平面及基本性质公理1:如果点A在直线l上,点B也在直线l上,点A 在平面α上,点B也在平面α上,则直线l在平面α上。

高中立体几何知识点总结(通用5篇)

高中立体几何知识点总结(通用5篇)

高中立体几何知识点总结(通用5篇)高中立体几何知识点总结(通用5篇)总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。

你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中立体几何知识点总结篇11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

高考立体几何知识点总结(一)空间几何体的表面积与体积空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2Srl r ππ=+ 圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底锥体的体积 :13V S h =⨯底 台体的体积 : 1)3V S S S S h =++⨯下下上上(球体的体积:343V R π= (四)空间几何体的三视图和直观图正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

3、线面平行:(1)判定定理:(2)性质定理:4、线面垂直(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

判定定理:性质定理:(2)垂直于同一平面的两直线平行。

★1.5 三垂线定理及其逆定理5、面面平行(1)判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

(2)性质定理:两个平行平面被第三个面所截,两条交线互相平行 6、面面垂直: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。

判定定理:性质定理:(2)7、空间角(1)异面直线所成的角: o o 900≤<α;(2)线面所成的角:是斜线与它在平面内的射影所成的角。

范围090o o α≤≤(3)二面角:关键是找出二面角的平面角。

方法有:①定义法;②三垂线定理法;③垂面法;二面角的平面角的范围:0180o o α≤<;向量法一、运用法向量求空间角向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量图2-7 斜线定理''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量。

高三立体几何知识点归纳总结

高三立体几何知识点归纳总结

高三立体几何知识点归纳总结高三学生在学习数学时,立体几何是一个非常重要的内容。

掌握立体几何的知识点对于解决与空间有关的问题和应用数学都非常有帮助。

下面将对高三立体几何的知识点进行归纳总结。

1. 点、线、面、体的概念和性质- 点是几何学中最基本的图形,没有长度、面积和体积。

点用字母标记,如A、B、C等。

- 线是由无数个点按一定顺序排列而成,线没有厚度和宽度,只有长度。

线用两个点表示,如AB、CD等。

- 面是由无数个点组成的,有了宽度和长度,可以看得到的实物。

面用大写字母表示,如P、Q、R等。

- 体是由无数个面拼接在一起形成的,有了高度。

体用大括号表示,如{ABCD}、{EFGH}等。

2. 空间中的位置关系- 两条线平行,即两条线在同一个平面中,没有交点。

- 两条线相交,即两条线在同一个平面中,有一个公共点。

- 两个平面平行,即两个平面之间没有交点。

- 两个平面相交,即两个平面之间有一条直线作为交线。

3. 立体图形的表示与性质- 点、线、面、体都可以用二维图形来表示,如平面图和立体图。

- 平面图是在一个平面上画出物体的图形,只能看到一个物体的某一部分。

- 立体图是在一个空间中画出物体的图形,可以看到一个物体的不同部分。

4. 空间直线与平面的关系- 直线在平面上,直线与平面相交于一点。

- 直线与平面垂直,直线垂直于平面,直线上的一点到平面的距离为0。

- 直线与平面平行,直线与平面没有交点。

5. 球体与圆锥、圆台、棱锥、棱台的性质- 球体是由无数个半径相等的点组成,半径是球体最重要的性质。

- 圆锥是一种由顶点和底面圆所围成的几何体。

- 圆台是一种由底面圆、顶面圆和侧面所围成的几何体。

- 棱锥是一种由棱、顶点和底面所围成的几何体。

- 棱台是一种由棱、底面、顶面和侧面所围成的几何体。

6. 空间向量与直线、平面的关系- 空间向量是用来表示直线、平面的工具。

- 线向量是用于表示直线的方向和位置。

- 平面向量是用于表示平面的方向和位置。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

高考立体几何知识点总结一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3棱柱的面积和体积公式chS=直棱柱侧(c是底周长,h是高)S直棱柱表面= c·h+ 2S底V棱柱= S底·h2 、棱锥的结构特征2.1 棱锥的定义(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch=正棱椎(c为底周长,'h为斜高)体积:13V Sh=棱椎(S为底面积,h为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a22的正方体问题。

对棱间的距离为a2(正方体的边长)棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱A BCDPO H正四面体的高a 6(正方体体对角线l 32=)正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-)正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

高三立体几何知识点总结

高三立体几何知识点总结

高三立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是在三维空间中的图形和其性质。

在高中阶段,立体几何作为数学课程的一部分,对学生的综合能力以及解决实际问题的能力有着重要的提升作用。

本文将对高三立体几何的知识点进行总结,以帮助同学们更好地掌握这一内容。

一、直线与平面的关系1. 平面与平面的关系:(1)相交:两个平面相交于一条直线。

(2)垂直:两个平面相交的直线与第三个平面垂直。

(3)平行:两个平面相交的直线与第三个平面平行。

2. 直线与直线的关系:(1)相交:两条不平行直线相交于一点。

(2)平行:两条直线在平面上不相交。

(3)异面直线:两条直线在空间中不相交。

二、立体图形的性质1. 三棱柱:具有5个面、9条边和6个顶点的立体。

2. 四棱锥:具有5个面、8条边和5个顶点的立体。

3. 三棱锥:具有四个面、6条边和4个顶点的立体。

4. 正方体:具有六个面、12条边和8个顶点的立体,其中每个面都是正方形。

5. 正六面体:具有六个面、12条边和8个顶点的立体,其中每个面都是正六边形。

6. 正八面体:具有八个面、12条边和6个顶点的立体,其中每个面都是正八边形。

7. 正十二面体:具有十二个面、30条边和20个顶点的立体,其中每个面都是正五边形。

三、立体图形的体积与表面积计算1. 三棱柱的体积公式:体积 = 底面积 ×高2. 四棱锥的体积公式:体积 = (底面积 ×高)/ 33. 球的体积公式:体积 = (4/3)πr³,其中r为球的半径。

4. 直角三棱锥的体积公式:体积 = (1/3)×面积 ×高,其中面积为底面积。

5. 立方体的体积公式:体积 = 边长³,其中边长为立方体的边长。

6. 平行四边形棱台的体积公式:体积 = 底面积 ×高四、立体图形的投影1. 平行投影:图形在平行于某个平面的投影面上的投影。

2. 斜向投影:图形在斜向的投影面上的投影。

(完整版)高中立体几何知识点总结

(完整版)高中立体几何知识点总结

高中立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

立体几何的知识点整理归纳

立体几何的知识点整理归纳

一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底j 直棱柱底面是正多—正棱柱*夂[其他棱柱川② 四棱柱I 底面为平行四边形|平行六面体|侧棱垂直于底面|直平行六面体底面为矩形长方体底面为正方形■正四棱柱I 侧棱与底面边长相等.1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形; ④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】AC i 2二AB 2 • AD 2 • AA 2② (了解)长方体的一条对角线 AC 1与过顶点A 的三条 棱所成的角分别是:\, 那么cos 2 二 ' cos 2 : cos 2=1, sin 2 二 ' sin 2 “ - sin 2=2 ;③ (了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是 :-,则 cos 2 二'cos 2 : cos 2= 2, sin 2 口 " sin 2 : sin 2 = 1.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.绻棱柱侧一C h卄亠土宀KW1.6面积、体积公式:‘(其中c 为底面周长,hS直棱柱全=ch +2S 底,《柱二S 底h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴, 其 余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形•正方体底面B2.4面积、体积公式2 2 、 、,S 圆柱侧= 2- rh ; S 圆柱全=2irrh +2irr , V 圆柱=S 底h=ir r h (其中r 为底面半径,h 为圆柱高)3.棱锥离与顶点到底面的距离之比;② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;③ 正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面 边长一半,构成四个直角三角形。

高考立体几何知识点总结

高考立体几何知识点总结

高考立体几何知识点总结一、基本概念1.点、线、面、立体的定义与性质。

2.点线面的共面与异面判定方法。

3.直线与平面的位置关系。

二、棱柱1.棱柱的定义与性质。

2.平行截面与全等截面。

3.正棱柱的性质:底面形状与面数关系、对角线的长度关系。

4.斜棱柱的性质:母线、准线、侧面积、表面积、体积的计算公式。

三、棱锥1.棱锥的定义与性质。

2.正棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

3.斜棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

四、平面与立体的位置关系1.点到平面的距离。

2.点到直线的距离。

3.线沿直线的平行线、垂线、倾斜线的条件与性质。

4.点到立体的距离。

五、体积与表面积计算1.平面图形的面积计算。

2.立体图形的表面积计算。

3.立体图形的体积计算。

六、球与球内切关系1.球的定义与性质。

2.球内接关系与判定方法。

3.共切、内切球的性质及条件。

七、圆锥与圆台1.圆锥的定义与性质。

2.圆台的定义与性质。

3.正圆锥、正圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

4.斜圆锥、斜圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

八、立体几何的应用1.立体几何在建筑设计中的应用。

2.立体几何在工程测量中的应用。

3.立体几何在物体的表面积和体积计算中的应用。

以上是高考立体几何的知识点总结。

掌握这些知识点可以帮助学生在高考中更好地应对立体几何问题,提高解题的能力与准确性。

希望同学们能够认真复习并进行大量的练习,熟练掌握这些知识点,取得优异的成绩!。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。

在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。

下面是对2024年高考数学立体几何知识点的总结,供考生参考。

一、空间几何1. 空间几何中的点、线、面的概念和性质。

点是没有长度、宽度和高度的,只有位置的大小,用字母表示。

线是由一组无限多个点构成的集合,用两个点的字母表示。

面是由无限多条线构成的,这些线共面且没有相交或平行关系。

2. 空间几何中的垂直、平行等概念和性质。

两条线在同一平面内,如果相交角为90°,则称两线垂直。

两条线没有相交关系,称两线平行。

3. 点到直线的距离的计算。

点到直线的距离等于该点在直线上的正交投影点的距离。

二、立体图形的面积与体积1. 立体图形的分类和性质。

立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。

各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。

2. 立体图形的面积计算。

(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。

(2)圆柱体的侧面积计算公式:S = 2πrh。

(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。

(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。

(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。

3. 立体图形的体积计算。

(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。

(2)圆柱体的体积计算公式:V = πr²h。

(3)圆锥体的体积计算公式:V = 1/3πr²h。

(4)棱柱体的体积计算公式:V = ph。

(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h为高。

三、立体几何的一般理论1. 点、线、面的位置关系。

在空间中,点、线、面可以相互相交、平行、垂直等。

立体几何知识点总结高考

立体几何知识点总结高考

立体几何知识点总结高考1. 立体几何基本概念(1)点、线、面、体的概念立体几何中的基本概念有点、线、面、体等。

点是没有大小、只有位置的几何图形,用大写字母表示;线是由无限多个点连在一起形成的,具有长度的图形,用小写字母表示;面是由无限多个线构成的,具有面积的图形,用小写字母加上一个尖角字母表示;体是由无限多个面构成的,具有体积的图形,用大写字母加上一个倒三角字母表示。

(2)平行线、垂直线平行线是在同一个平面内,既不相交也不相交的直线,用平行线符号“||”表示;垂直线是两条直线相交的两条线段的夹角为90度。

(3)平面与直线的位置关系平面与直线的位置关系有相交、平行、重合等。

2. 空间几何图形的性质(1)点、线、面、体的性质点没有面积,没有长度;线有长度,但没有面积;面有面积,但体积为零;体有体积,具有长度、宽度和高度。

(2)平行线的性质平行线的性质包括对顶角相等,内错角相等等。

3. 空间几何图形的计算(1)立体图形的表面积和体积立体图形的表面积和体积是对立体几何知识点的重点掌握内容。

包括长方体、正方体、圆柱体、圆锥体、球体等的表面积和体积的计算方法。

(2)空间几何图形的相似性空间几何图形的相似性是指两个或两个以上的几何图形的形状和大小都相同,称为相似图形。

在计算中,可利用相似三角形的性质进行计算。

4. 空间几何图形的展开(1)立体图形的展开立体图形的展开是将一个立体图形展开成平面图形的过程。

对不同的立体图形有不同的展开方式和规则,需要灵活运用。

5. 线段和角的表示(1)线段的表示线段是由两个端点所确定的一段直线。

用两个大写字母表示。

(2)角的表示角是由两条射线分界的平面角色,用三个字母表示,其中中间字母是角的顶点。

6. 平面几何图形和立体几何图形的关系平面几何图形和立体几何图形在空间中是相互联系、相互影响的。

在图形的计算和应用中,需要注意两者之间的转化和联系。

以上就是对高考立体几何知识点的总结,掌握这些知识可以帮助学生在高考数学中取得更好的成绩。

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳
点:没有长度、宽度和高度的几何基本元素。

线:由一组点组成,具有长度但没有宽度和高度。

面:由一组线组成,具有长度和宽度但没有高度。

三棱柱:底面为三角形,侧面为三个矩形。

四棱柱:底面为四边形,侧面为四个矩形。

圆柱:底面为圆形,侧面为矩形。

锥:底面为任意多边形,侧面为三角形。

圆锥:底面为圆形,侧面为三角形。

球:所有点到球心的距离相等。

圆球:球的表面。

体积:立体几何体所占的空间大小。

表面积:立体几何体表面的总面积。

基本公式:
三棱柱体积公式:V = 底面积 * 高
四棱柱体积公式:V = 底面积 * 高
圆柱体积公式:V = 底面积 * 高
锥体积公式:V = 1/3 * 底面积 * 高
圆锥体积公式:V = 1/3 * 底面积 * 高
球体积公式:V = 4/3 * π * 半径³
圆球表面积公式:A = 4 * π * 半径²
正投影:由平行光线投射而成,可得到等比例的图形。

斜投影:由斜光线投射而成,图形会产生放大或缩小的效果。

直线与平面的关系:
相交:直线与平面交于一点。

平行:直线不与平面相交。

共面:直线在平面上。

线面垂直:直线与平面相交,且相交点在平面上。

同位角:以同一边为边的两个角。

对顶角:两个相对角。

互补角:两个角的和为90度。

相邻补角:两个角的和为180度。

高考数学立体几何知识点总结

高考数学立体几何知识点总结

高考数学立体几何知识点一1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑸夹在两个平行平面间的平行线段相等。

⑹经过平面外一点只有一个平面和已知平面平行。

以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

高考数学立体几何知识点二(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)垂直直线:相交成直角的直线。

三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。

四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。

五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。

改写:一。

空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。

侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。

俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。

二。

空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。

在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。

直观图与原图形的面积关系为S直观图= S原图/4.三。

空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。

柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。

高三的立体几何知识点总结

高三的立体几何知识点总结

高三的立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和体积。

在高三的学习中,立体几何是一个重要的知识点,它涉及到各种图形的性质和计算方法。

下面将对高中三年级立体几何的知识点进行总结和归纳。

一、平面与直线的位置关系1. 平面与平面的位置关系- 平面相交:两个平面相交于一条直线。

- 平面平行:两个平面没有交点,永远平行。

2. 直线与直线的位置关系- 直线相交:两个直线相交于一点。

- 直线平行:两个直线没有交点,永远平行。

二、立体几何的基本图形1. 三棱柱- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高2. 三棱锥- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高 ÷ 33. 正四面体- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高 ÷ 34. 正方体- 表面积 = 6 ×边长²- 体积 = 边长³5. 正六面体- 表面积 = 6 ×边长²- 体积 = 边长³6. 球- 表面积= 4πr²- 体积= (4/3)πr³三、立体几何的性质和判定方法1. 平行四边形的性质- 对角线互相平分- 对边平行2. 立体图形的重心- 三角形:重心位于中线上,离顶点为中线长的2/3处。

- 四边形:重心位于对角线交点处,各对角线分比为1:1。

3. 球的切线和切平面- 切线:与球面相切的直线。

4. 圆锥的切线和切圆- 切线:与圆锥侧面相切的直线。

- 切圆:与圆锥底面相切的圆。

五、立体几何计算题1. 高中立体几何计算题的解题步骤- 理清题意,根据已知条件找到关键信息。

- 利用几何性质和定理,进行推导和计算。

- 最后计算出结果,并写明答案及解题过程。

2. 空间几何体的计算题- 根据图形的性质和给定条件,计算其面积和体积。

六、解题技巧1. 利用平面几何的知识- 平行线的性质可以应用到立体几何中,例如利用平行线的对应角相等性质求解立体几何题目。

(完整word)高考立体几何知识点总结(详细),推荐文档

(完整word)高考立体几何知识点总结(详细),推荐文档

高考立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考立体几何知识点总结一、空间几何体(一)空间几何体的类型1多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二)几种空间几何体的结构特征1、棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2棱柱的分类棱柱底面是四边形四棱柱底面是平行四边形平行六面体侧棱垂直于底面直平行六面体底面是矩形长方体底面是正方形正四棱柱棱长都相等正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3棱柱的面积和体积公式(是底周长,是高)S 直棱柱表面=c·h+2S 底V 棱柱=S 底·h 2、棱锥的结构特征2.1棱锥的定义(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:(为底周长,为斜高)体积:(为底面积,为高)正四面体:对于棱长为正四面体的问题可将它补成一个边长为的正方体问题。

对棱间的距离为(正方体的边长)正四面体的高()正四面体的体积为()正四面体的中心到底面与顶点的距离之比为()ABCD POH3、棱台的结构特征3.1棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

3.2正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形;(3)正棱台的对角面也是等腰梯形;(4)各侧棱的延长线交于一点。

4、圆柱的结构特征4.1圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

4.2圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形。

4.3圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

4.4圆柱的面积和体积公式S圆柱侧面=2π·r·h(r为底面半径,h为圆柱的高)S圆柱全=2πr h+2πr2V圆柱=S底h=πr2h5、圆锥的结构特征5.1圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。

5.2圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5圆锥(3)母线的平方等于底面半径与高的平方和:l2=r2+h25.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

6、圆台的结构特征6.1圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。

6.2圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究。

6.3圆台的面积和体积公式S圆台侧=π·(R+r)·l(r、R为上下底面半径)S圆台全=π·r2+π·R2+π·(R+r)·lV圆台=1/3(πr2+πR2+πr R)h(h为圆台的高)7球的结构特征7.1球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。

空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。

7-2球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2=R2–d2★7-3球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;⑷注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。

7-4球的面积和体积公式S球面=4πR2(R为球半径)V球=4/3πR3(三)空间几何体的表面积与体积空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积:圆锥的表面积:圆台的表面积:球的表面积:扇形的面积公式(其中表示弧长,表示半径,表示弧度)空间几何体的体积柱体的体积:锥体的体积:台体的体积:球体的体积:(四)空间几何体的三视图和直观图正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

★画三视图的原则:正俯长相等、正侧高相同、俯侧宽一样注:球的三视图都是圆;长方体的三视图都是矩形直观图:斜二测画法斜二测画法的步骤:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x,z 轴的线长度不变;(3)画法要写好用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图二、点、直线、平面之间的关系(一)、立体几何网络图:公理4线线平行线面平行面面平行线线垂直线面垂直面面垂直三垂线逆定理三垂线定理⑴⑵⑷⑶⑸⑹⑾⑿⒀⒁⑼⑽⒂⒃⑺⑻1、线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):,则∥α(用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断)。

2线面斜交和线面角:∩α=A2.1直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。

2.2线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

图2-3线面角⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

即:(2)垂直于同一平面的两直线平行。

即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明。

⑵利用判定定理证明。

⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。

⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。

★1.5三垂线定理及其逆定理⑴斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。

如图:⑵三垂线定理及其逆定理已知PO⊥α,斜线PA 在平面α内的射影为OA,a 是平面α内的一条直线。

①三垂线定理:若a⊥OA,则a⊥PA。

即垂直射影则垂直斜线。

②三垂线定理逆定理:若a⊥PA,则a⊥OA。

即垂直斜线则垂直射影。

图2-7斜线定理⑶三垂线定理及其逆定理的主要应用①证明异面直线垂直;②作出和证明二面角的平面角;③作点到线的垂线段。

5、面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

6、面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

判定定理:性质定理:⑴若两面垂直,则这两个平面的二面角的平面角为90°;(2)(3)(4)(二)、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;图2-8三垂线定理图2-10面面垂直性质2图2-11面面垂直性质3(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。

(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。

(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。

(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。

(三)、唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。

(2)过已知平面外一点,有且只能作一平面和已知平面平行。

(3)过两条异面直线中的一条能且只能作一平面与另一条平行。

相关文档
最新文档