全等三角形与辅助线
全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中罕有的帮助线的作法(有答案)泛论:全等三角形问题最重要的是结构全等三角形,结构二条边之间的相等,结构二个角之间的相等【三角形帮助线做法】图中有角等分线,可向双方作垂线. 也可将图半数看,对称今后关系现.角等分线平行线,等腰三角形来添. 角等分线加垂线,三线合一尝尝看.线段垂直等分线,常向两头把线连. 要证线段倍与半,延伸缩短可实验.三角形中两中点,衔接则成中位线. 三角形中有中线,延伸中线等中线.1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题2.倍长中线:倍长中线,使延伸线段与原中线长相等,结构全等三角形3.角等分线在三种添帮助线4.垂直等分线联络线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30.60度的作垂线法:碰到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目标是组成30-60-90的特别直角三角形,然后盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角.从而为证实全等三角形创造边.角之间的相等前提.8.盘算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或40-60-80的特别直角三角形,常盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角,从而为证实全等三角形创造边.角之间的相等前提.罕有帮助线的作法有以下几种:最重要的是结构全等三角形,结构二条边之间的相等,二个角之间的相等.1)碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题,思维模式是全等变换中的“半数”法结构全等三角形.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,运用的思维模式是全等变换中的“扭转”法结构全等三角形.3)碰到角等分线在三种添帮助线的办法,(1)可以自角等分线上的某一点向角的双方作垂线,运用的思维模式是三角形全等变换中的“半数”,所考常识点经常是角等分线的性质定理或逆定理.(2)可以在角等分线上的一点作该角等分线的垂线与角的双方订交,形成一对全等三角形.(3)可以在该角的双DCBAEDF CBA方上,距离角的极点相等长度的地位上截取二点,然后从这两点再向角等分线上的某点作边线,结构一对全等三角形.4)过图形上某一点作特定的等分线,结构全等三角形,运用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再运用三角形全等的有关性质加以解释.这种作法,合适于证实线段的和.差.倍.分等类的标题.6)已知某线段的垂直等分线,那么可以在垂直等分线上的某点向该线段的两个端点作连线,出一对全等三角形.特别办法:在求有关三角形的定值一类的问题时,常把某点到原三角形各极点的线段衔接起来,运用三角形面积的常识解答. 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE. 运用:1.(09崇文二模)以ABC ∆的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是BC.DEEDCBADCBAPQCBA的中点.探讨:AM 与DE 的地位关系及数目关系.(1)如图①当ABC ∆为直角三角形时,AM 与DE 的地位关系是, 线段AM 与DE 的数目关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由. 二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC. 3.如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.求证:BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证:0180=∠+∠C A5.如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上随意率性一点,求证;AB-AC >PB-PC 运用: 三.平移变换例1AD 为△ABC 的角等分线,直线MNDCBFED CBA⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC 中,∠B=60°,△ABC 的角等分线AD,CE订交于点O,求证:OE=OD2.如图,△ABC 中,AD 等分∠BAC,DG ⊥BC BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 五.扭转例1正方形ABCD 中,E 为BC 上的一点,F 为(第23题图)OP AMNEB CD F ACEFBD图①图②图③ACD 上的一点,BE+DF=EF,求∠EAF 的度数.例2D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分离交BC,CA 于点E,F.(1)当MDN ∠绕点D 迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF 的面积例3如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以060角,使其双方分离交AB 于点M,交AC 于点N,衔接MN,则AMN ∆的周长为;运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.2.(西城09年一模)已知,PB=4,以AB 为一边作正方形(图1) A B CDEFM N(图2)C(图3)ABC DE F MNDC BAABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示). 参考答案与提醒 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.解:延伸AD 至E 使AE =2AD,连BE,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值规模是1<AD<4EDF CBA例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.解:(倍长中线,等腰三角形“三线合一”法)延伸FD 至G 使FG =2EF,连BG,EG, 显然BG =FC,在△EFG 中,留意到DE ⊥DF,由等腰三角形的三线合一知 EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE.解:延伸AE 至G 使AG =2AE,连BG,DG, 显然DG =AC,∠GDC=∠ACD 因为DC=AC,故∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG,AD =AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG,故有∠BAD=∠DAG,即AD 等分∠BAE 运用:1.(09崇文二模)以的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是ABC ∆BC.DE的中点.探讨:AM与DE的地位关系及数目关系.∆为直角三角形时,AM与DE的地位关系是,(1)如图①当ABC线段AM与DE的数目关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由.C∴DE AM ⊥,DE AM 21=二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC 解:(截长法)在AB 上取中点F,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC解:(截长法)在AB 上取点F,使AF =AD,△ADE ≌△AFE (SAS )∠ADE =∠AFE, ∠ADE+∠BCE =180° ∠AFE+∠BFE =180°CBA故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3.如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.BQ+AQ=AB+BP解:(补短法, 盘算数值法)延伸AB 至D,使BD BP,连DP在等腰△BPD 中,可得∠BDP =40° 从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证: 0180=∠+∠C A解:(补短法)延伸BA 至F,使BF =BC,连△BDF ≌△BDC (SAS ) 故∠DFB =∠DCB ,FD =DC 又AD =CD故在等腰△BFD中∠DFB=∠DAF故有∠BAD+∠BCD=180°5.如图在△ABC中,AB>AC,∠1=∠2,P为AD上随意率性一点,求证;AB-AC>PB-PC解:(补短法)延伸AC至F,使AF=AB,连PD△ABP≌△AFP(SAS)故BP=PF由三角形性质知PB-PC=PF-PC < CF=AF-AC=AB-AC运用:剖析:此题衔接AC,把梯形的问题转化成等边三角形的问题,然后运用已知前提和等边三角形的性质经由过程证实三角形全等解决它们的问题.B∴FEC AED ∠=∠ 在ADE ∆与FCE ∆中CFE EAD ∠=∠,EF AE =,FEC AED ∠=∠∴FCE ADE ∆≅∆ ∴FC AD = ∴AE AD BC +=点评:此题的解法比较新鲜,把梯形的问题转化成等边三角形的问题,然后运用全等三角形的性质解决. 三.平移变换例1 AD 为△ABC 的角等分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .解:(镜面反射法)延伸BA 至F,使AF =AC,连FEAD 为△ABC 的角等分线, MN ⊥AD 知∠FAE =∠CAE 故有△FAE ≌△CAE (SAS ) 故EF =CE在△BEF 中有: BE+EF>BF=BA+AF=BA+AC 从而P B =BE+CE+BC>BF+BC=BA+AC+BC=P A例 2 如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:O ED CB AAB+AC>AD+AE.证实:取BC中点M,连AM并延伸至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延伸ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC中,∠B=60°,△ABC的角等分线AD,CE 订交于点O,求证:OE=OD,DC+AE =AC证实(角等分线在三种添帮助线,盘算数值法)∠B=60度,则∠BAC+∠BCA=120度;AD,CE均为角等分线,则∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取线段AF=AE,衔接OF.又AO=AO;∠OAE=∠OAF.则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2.如图,△ABC中,AD等分∠BAC,DG⊥BC且等分BC,DE⊥AB于E,DF⊥AC于F.(1)解释BE=CF的来由;(2)假如AB=a,AC=b,求AE.BE的长.解:(垂直等分线联络线段两头)衔接BD,DCDG垂直等分BC,故BD=DC因为AD等分∠BAC, DE⊥AB于E,DF⊥ACEDGFC BA于F,故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF. AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 解:(1)FE 与FD 之间的数目关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立.证法一:如图1,在AC 上截取AE AG =,贯穿连接FG ∵21∠=∠,AF 为公共边, ∴AGF AEF ∆≅∆(第23题图) OP A MN E B C D F ACEFBD图①图②图③FED CBA∴AFG AFE ∠=∠,FG FE =∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠的等分线 ∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2,过点F 分离作AB FG ⊥于点G ,BC FH ⊥于点H ∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠∴可得︒=∠+∠6032,F 是ABC ∆的心坎 ∴160∠+︒=∠GEF ,FG FH =又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE = 五.扭转例 1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.证实:将三角形ADF 绕点A 顺时针扭转90度,至三角形ABG图 1图 2则GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF又∠EAF+∠BAE+∠DAF=90所以∠EAF=45度例 2 D为等腰Rt ABC∆斜边AB的中点,DM⊥DN,DM,DN分离交BC,CA于点E,F.(1)当MDN∠绕点D迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF的面积.解:(盘算数值法)(1)衔接DC,D为等腰Rt ABC∆斜边AB的中点,故有CD⊥AB,CD=DA CD等分∠BCA=90°,∠ECD=∠DCA=45°因为DM⊥DN,有∠EDN=90°因为 CD⊥AB,有∠CDA=90°从而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2, S四DECF= S△ACD=1例3 如图,ABC∆是等腰三角形,且∆是边长为3的等边三角形,BDC60角,使其双方分离交AB于点M,∠=,以D为极点做一个0BDC120交AC于点N,衔接MN,则AMN∆的周长为;解:(图形补全法, “截长法”或“补短法”, 盘算数值法) AC 的延伸线与BD的延伸线交于点F,在线段CF上取点E,使CE=BM∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30° ∴△DMN ≌△DEN (AAS), ∴MA=FEAMN ∆的周长为AN+MN+AM=AN+NE+EF=AF=6运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.解:(1)∵AD AB ⊥,CD BC ⊥,BC AB =,CF AE =∴CBF ABE ∆≅∆(SAS ); ∴CBF ABE ∠=∠,BF BE =∵︒=∠120ABC ,︒=∠60MBN∴︒=∠=∠30CBF ABE ,BEF ∆为等边三角形 ∴BF EF BE ==,BE AE CF 21==∴EF BE CF AE ==+(图1) A B C D EF MN (图2)AB C DE F MN(图3)ABC DE F MN(2)图2成立,图3不成立.证实图2,延伸DC 至点K ,使AE CK =,衔接BK 则BCK BAE ∆≅∆∴BK BE =,KBC ABE ∠=∠ ∵︒=∠60FBE ,︒=∠120ABC ∴︒=∠+∠60ABE FBC ∴︒=∠+∠60KBC FBC ∴︒=∠=∠60FBE KBF ∴EBF KBF ∆≅∆ ∴EF KF = ∴EF CF KC =+ 即EF CF AE =+图3不成立,AE .CF .EF 的关系是EF CF AE =- 2.(西城09年一模)已知以AB 为一边作正方形ABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.剖析:(1)作帮助线,过点A 作PB AE ⊥于点E ,在PAE Rt ∆中,已知APE ∠,AP 的值,依据三角函数可将AE ,PE 的值求出,由PB 的值,可求BE 的值,在ABE Rt ∆中,依据勾股定理可将AB 的值求出;求PD 的值有两种解法,解法一:可将PAD ∆绕点A 顺时针扭转︒90得到K ABCDE FMN图 2AB P '∆,可得AB P PAD '∆≅∆,求PD 长即为求B P '的长,在P AP Rt '∆中,可将P P '的值求出,在B P P Rt '∆中,依据勾股定理可将B P '的值求出;解法二:过点P 作AB 的平行线,与DA 的延伸线交于F ,交PB 于G ,在AEG Rt ∆中,可求出AG ,EG 的长,进而可知PG 的值,在PFG Rt ∆中,可求出PF ,在PDF Rt ∆中,依据勾股定理可将PD 的值求出;(2)将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值即为B P '的最大值,故当P '.P .B 三点共线时,B P '取得最大值,依据PB P P B P +'='可求B P '的最大值,此时︒='∠-︒=∠135180P AP APB .解:(1)①如图,作PB AE ⊥于点E ∵PAE Rt ∆中,︒=∠45APB ,2=PA∴()1222===PE AE∵4=PB∴3=-=PE PB BE 在ABE Rt ∆中,︒=∠90AEB ∴1022=+=BE AE AB②解法一:如图,因为四边形ABCD 为正方形,可将将PAD ∆绕点A 顺时针扭转︒90得到AB P '∆,,可得AB P PAD '∆≅∆,B P PD '=,A P PA '=∴︒='∠90P PA ,︒='∠45P AP ,︒='∠90PB P ∴2='P P ,2=PA∴52422222=+=+'='=PB P P B P PD ;解法二:如图,过点P 作AB 的平行线,与DA 的延伸线交于F ,设DA 的延伸线交PB 于G .EPA DCBP ′PA CBDEP ′PACBDP ′PACBD在AEGRt ∆中,可得310cos cos =∠=∠=ABE AE EAG AE AG ,31=EG ,32=-=EG PE PG在PFG Rt ∆中,可得510cos cos =∠=∠=ABE PG FPG PG PF ,1510=FG 在PDF Rt ∆中,可得(2)如图所示,将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值,即为B P '的最大值∵B P P '∆中,PB P P B P +'' ,22=='PA P P ,4=PB 且P .D 两点落在直线AB 的两侧∴当P '.P .B 三点共线时,B P '取得最大值(如图)此时6=+'='PB P P B P ,即B P '的最大值为6此时︒='∠-︒=∠135180P AP APB3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之G FP A CBDE间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).剖析:(1)假如DN DM =,DNM DMN ∠=∠,因为DC BD =,那么︒=∠=∠30DCB DBC ,也就有︒=︒+︒=∠=∠903060NCD MBD ,直角三角形MBD .NCD 中,因为DC BD =,DN DM =,依据HL 定理,两三角形全等.那么NC BM =,︒=∠=∠60DNC BMD ,三角形NCD 中,︒=∠30NDC ,NC DN 2=,在三角形DNM 中,DN DM =,︒=∠60MDN ,是以三角形DMN 是个等边三角形,是以BM NC NC DN MN +===2,三角形AMN 的周长=++=MN AN AM QABAC AB NC MB AN AM 2=+=+++,三角形ABC 的周长ABL 3=,是以3:2:=L Q .(2)假如DN DM ≠,我们可经由过程构建全等三角形来实现线段的转换.延伸AC 至E ,使BM CE =,衔接DE .(1)中我们已经得出,︒=∠=∠90NCD MBD ,那么三角形MBD 和ECD 中,有了一组直角,CEMB =,DCBD =,是以两三角形全等,那么DE DM =,CDE BDM ∠=∠,︒=∠-∠=∠60MDN BDC EDN .三角形MDN 和EDN中,有DE DM =,︒=∠=∠60MDN EDN ,有一条公共边,是以两三角形全等,NE MN =,至此我们把BM 转换成了CE ,把MN 转换成了NE ,因为CE CN NE +=,是以CN BM MN +=.Q与L 的关系的求法同(1),得出的成果是一样的.图 1N MAD CB (3)我们可经由过程构建全等三角形来实现线段的转换,思绪同(2)过D 作MDB CDH ∠=∠,三角形BDM 和CDH 中,由(1)中已经得出的︒=∠=∠90MB DCH ,我们做的角CDH BDM ∠=∠,CD BD =,是以两三角形全等(ASA ).那么CH BM =,DH DM =,三角形MDN 和NDH 中,已知的前提有DH MD =,一条公共边ND ,要想证得两三角形全等就须要知道HDN MDN ∠=∠,因为MDB CDH ∠=∠,是以︒=∠=∠120BDC MDH ,因为︒=∠60MDN ,那么︒-︒=∠60120NDH︒=60,是以NDH MDN ∠=∠,如许就组成了两三角形全等的前提.三角形MDN 和DNH 就全等了.那么BM AC AN NH NM -+==,三角形AMN 的周长+++=++=BM AB AN MN AM AN QAB AN BM AC AN 22+=-+.因为x AN =,L AB 31=,是以三角形AMN 的周长L x Q 322+=. 解:(1)如图1,BM .NC .MN 之间的数目关系:MN NC BM =+;此时32=LQ .(2)猜测:结论仍然成立.证实:如图2,延伸AC 至E ,使BM CE =,衔接DE ∵CD BD =,且︒=∠120BDC ∴︒=∠=∠30DCB DBC 又ABC ∆是等边三角形 ∴︒=∠=∠90NCD MBD 在MBD ∆与ECD ∆中 ∴ECD MBD ∆≅∆(SAS )E 图 2NMAD CB NA∴DE DM =,CDE BDM ∠=∠ ∴︒=∠-∠=∠60MDN BDC EDN 在MDN ∆与EDN ∆中 ∴EDN MDN ∆≅∆(SAS ) ∴BM NC NE MN +== 故AMN∆的周长=++=MN AN AM Q ()()AB AC AB NC AN BM AM 2=+=+++而等边ABC ∆的周长AB L 3= ∴3232==ABAB LQ(3)如图3,当M .N 分离在AB .CA 的延伸线上时,若x AN =,则L x Q 322+=(用x .L 暗示).点评:本题考核了三角形全等的剖断及性质;标题中线段的转换都是依据全等三角形来实现的,当题中没有显著的全等三角形时,我们要依据前提经由过程作帮助线来构建于已知和所求前提相干的全等三角形.。
2024八年级上《全等三角形》常见辅助线作法总结
全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。
常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。
下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。
一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。
2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。
3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。
根据中位线的性质,可以判断和证明两个三角形全等。
4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。
5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。
根据角高线和中线的性质,可以判断和证明两个三角形全等。
二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。
2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。
3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。
4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。
以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。
在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。
同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。
我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。
全等三角形作辅助线的常用方法
全等三角形作辅助线的常用方法全等三角形是指具有相同形状和大小的三角形。
在解决几何问题时,我们常常会用到全等三角形作为辅助线来辅助推导和证明。
下面介绍几种常用的方法:1. SSS法:如果两个三角形的三边分别相等,则它们是全等三角形。
在使用SSS法时,我们要注意较长边对应较长边,较短边对应较短边。
2. SAS法:如果两个三角形的两边和夹角分别相等,则它们是全等三角形。
在使用SAS法时,我们要注意两个已知边的夹角位置,确保它们对应正确。
3. ASA法:如果两个三角形的两个夹角和一边分别相等,则它们是全等三角形。
在使用ASA法时,我们要注意两个已知夹角的边位置,确保它们对应正确。
4. RHS法:如果两个直角三角形的斜边和一个锐角分别相等,则它们是全等三角形。
在使用RHS法时,我们要注意斜边和锐角的位置,确保它们对应正确。
以上四种方法是解决全等三角形问题时常用的方法,根据具体情况选择合适的方法来辅助推导和证明。
除了这些方法,我们还可以利用全等三角形的性质来简化问题。
例如,当我们需要证明两条线段相等时,可以构造一个全等三角形,利用全等三角形的性质得出结论。
同样地,当我们需要证明两个角相等时,也可以构造一个全等三角形来简化问题。
在解决几何问题时,我们经常会遇到一些特殊的情况,例如等腰三角形、全等三角形的性质等。
在这些情况下,我们可以利用全等三角形的性质来推导出一些结论,进而解决问题。
总结一下,全等三角形作为几何问题中常用的辅助线,可以帮助我们推导和证明一些结论。
在解决几何问题时,我们可以根据题目给出的条件选择合适的方法来构造全等三角形,进而简化问题。
熟练掌握全等三角形的性质和常用方法,可以提高解题效率,解决更加复杂的几何问题。
(完整版)全等三角形经典题型——辅助线问题
全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
全等三角形六种辅助线方法及例题
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
全等三角形的辅助线的常见添法
全等三角形的辅助线的常见添法一、前言全等三角形是初中数学中一个重要的概念,其性质和应用十分广泛。
在解决全等三角形相关问题时,辅助线的运用是非常常见的方法之一。
本文将介绍几种常见的全等三角形辅助线添法。
二、中线中线是连接三角形一个顶点和对边中点的线段。
在全等三角形的证明中,经常使用到中线。
1. 作平移假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上取一点N,连接MN,并作平移使得BC重合于EF,即可证明ABC和DEF完全重合。
2. 作垂线假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上作MN垂直于EF,并延长至交于P,则BP=FP,CP=EP,因此可以通过SAS(边-角-边)准则证明ABC和DEF完全重合。
三、高线高线是从一个顶点向对边所在直线作垂线所得到的线段。
在证明两个直角三角形相似时常用到高线。
1. 作垂心假设有两个直角三角形ABC和DEF,需要证明它们相似。
可以在ABC 中作垂心H,连接AH、BH、CH,并在DEF中作DH垂直于EF,延长至交于K,则AK=DK,因此可以通过AA(角-角)准则证明ABC 和DEF相似。
2. 作中线假设有两个三角形ABC和DEF,其中BC=EF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,连接MN,并作垂线PH 垂直于MN且交于O,则PO为MN的中线。
由于BM=FN,BO=EO(因为PH平分MN),因此可以通过SAS准则证明ABC和DEF相似。
四、角平分线角平分线是从一个顶点出发将角分成两个相等的角所得到的线段。
在证明两个三角形相似时常用到角平分线。
1. 作等腰三角形假设有两个三角形ABC和DEF,其中∠BAC=∠EDF且AC=DF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,并连接AN、BM以及CN与AM的交点为P,则AP=PN(因为AP是∠BAC 的平分线),BP=PM(因为BP是∠ABM的平分线),因此可以通过SAS准则证明ABC和DEF相似。
完整版)全等三角形常用辅助线做法
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(完整版)全等三角形经典题型——辅助线问题
(完整版)全等三⾓形经典题型——辅助线问题全等三⾓形问题中常见的辅助线的作法(含答案) 总论:全等三⾓形问题最主要的是构造全等三⾓形,构造⼆条边之间的相等,构造⼆个⾓之间的相等【三⾓形辅助线做法】图中有⾓平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
⾓平分线平⾏线,等腰三⾓形来添。
⾓平分线加垂线,三线合⼀试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三⾓形中两中点,连接则成中位线。
三⾓形中有中线,延长中线等中线。
1.等腰三⾓形“三线合⼀”法:遇到等腰三⾓形,可作底边上的⾼,利⽤“三线合⼀”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三⾓形3.⾓平分线在三种添辅助线4.垂直平分线联结线段两端5.⽤“截长法”或“补短法”:遇到有⼆条线段长之和等于第三条线段的长,6.图形补全法:有⼀个⾓为60度或120度的把该⾓添线后构成等边三⾓形7.⾓度数为30、60度的作垂线法:遇到三⾓形中的⼀个⾓为30度或60度,可以从⾓⼀边上⼀点向⾓的另⼀边作垂线,⽬的是构成30-60-90的特殊直⾓三⾓形,然后计算边的长度与⾓的度数,这样可以得到在数值上相等的⼆条边或⼆个⾓。
从⽽为证明全等三⾓形创造边、⾓之间的相等条件。
8.计算数值法:遇到等腰直⾓三⾓形,正⽅形时,或30-60-90的特殊直⾓三⾓形,或40-60-80的特殊直⾓三⾓形,常计算边的长度与⾓的度数,这样可以得到在数值上相等的⼆条边或⼆个⾓,从⽽为证明全等三⾓形创造边、⾓之间的相等条件。
常见辅助线的作法有以下⼏种:最主要的是构造全等三⾓形,构造⼆条边之间的相等,⼆个⾓之间的相等。
1)遇到等腰三⾓形,可作底边上的⾼,利⽤“三线合⼀”的性质解题,思维模式是全等变换中的“对折”法构造全等三⾓形.2)遇到三⾓形的中线,倍长中线,使延长线段与原中线长相等,构造全等三⾓形,D C BAED F CB A利⽤的思维模式是全等变换中的“旋转”法构造全等三⾓形.3)遇到⾓平分线在三种添辅助线的⽅法,(1)可以⾃⾓平分线上的某⼀点向⾓的两边作垂线,利⽤的思维模式是三⾓形全等变换中的“对折”,所考知识点常常是⾓平分线的性质定理或逆定理.(2)可以在⾓平分线上的⼀点作该⾓平分线的垂线与⾓的两边相交,形成⼀对全等三⾓形。
全等三角形几何证明常用辅助线
全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。
二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。
2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。
3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。
三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。
2.根据定义,确定三角形全等的前提条件,并假设三角形全等。
3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。
全等三角形(4种模型2种添加辅助线方法)(学生版)
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是咼频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目, 不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:证明:延长BA, CE交于点Xl、倍长中线法遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点•延长AD至点E,使得DE = AD,并连接BE,贝UAADC 也zEDB (SAS)我们来看一个例题:三、遇角平分线作双垂线法在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!例 3;已知,如SLAC 平分ZBAD, CD=CB, AB>AD, 求证畫ZB+ZADC=18O0・AC证明:作CE丄AB于E,CF丄AD于F. TAC 平分 ZBADr ACE=CF.在 RtACBE 和RtACDF 中,%心RtACBE^RtACDF (HL),二ZB二ZCDF,VZCDF+ZADC=180° , A ZB+ZATC=180°四、作平行线法在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
例4如ffl, A ABC中,是朋上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF.求证當DE=DF.五、截长补短法题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系例6;如图甲.AD/BC.点E 在线段AB 上.ZADE 二ZCDE, ZDCE=ZECB,求证:CRAMBU证明:在CD 上截取CF-BC.如图乙(T - < Ji在厶 FCE^ABCE 中 - netCE CLAAFCE^ABCE(SAS), .\Z2=Z1- 又VAD/7BC,AZADC+ZBCD^180° , :.ZXE+ZCDE=90<>, /- Z2+Z3=90* , •\ ZUZ4=90° . :. Z3=Z14 LH 3)1加十 z5 = Z4A AFDE^AADli (ASA) , ADF-DAr 又 VCD=DF+CF, <\CD=AD+BC O D D{。
全等三角形六种辅助线方法
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
全等三角形问题中常见的辅助线的作法
全等三角形问题中常见的辅助线的作法1. 引言在我们学习几何的时候,三角形简直就像是个“明星”,不管走到哪里,都是焦点。
全等三角形更是个令人心动的概念,简单来说,就是那些形状和大小完全相同的三角形。
可是,老实说,要搞清楚这些三角形的关系,有时候可得借助一些“秘密武器”——辅助线!今天,我们就来聊聊这其中的门道,让大家在几何世界中游刃有余,像“鱼在水中”一样轻松。
2. 辅助线的魅力2.1 什么是辅助线?辅助线,顾名思义,就是我们在解题过程中为了搞清楚某些关系而“加”的线。
就像大厨做菜,总得有点调料才能让菜更加美味。
辅助线能帮我们理清三角形之间的关系,让复杂的问题变得简单,哎呀,那感觉就像是拨开云雾见青天,简直爽得不得了。
2.2 辅助线的类型说到辅助线,种类可多了,像什么垂线、平行线、角平分线等等,真是应有尽有。
每种线都有它的“个性”,有的能帮我们证明角度相等,有的则让边长对比变得轻而易举。
比如说,画一条角平分线,就像是把一个三角形分成两个完美的小三角,没准你还会发现“哦,原来这两个小家伙是全等的呢!”3. 实战应用3.1 画辅助线的技巧画辅助线的时候,可得注意点细节。
首先,咱们得了解题目给出的信息,想清楚我们要解决的问题。
想象一下,就像开车前得先看清路线,心里有个谱,才能开得顺畅。
其次,画线的时候别心急,慢慢来,越是仔细,效果越好。
记得多试几种方法,像“试错法”一样,最后总能找到那条“金线”。
3.2 辅助线的作用辅助线的作用可大了,能帮助我们找出全等三角形的对应边和角,有时候只需一条简单的线,就能让复杂的关系变得一目了然。
就像是魔术师一挥手,困扰你的难题就瞬间消失了。
举个例子,假如我们要证明两个三角形全等,画条平行线就能帮助我们找到相等的角,哇,真是神奇!4. 结语在学习全等三角形的过程中,辅助线就像是我们的小帮手,能够帮助我们搞清楚三角形之间的关系。
无论你是新手还是老手,掌握了这些技巧,绝对能让你在几何的海洋中乘风破浪,所向披靡。
全等三角形中的常见辅助线
D
B
二.过角平分线上的点向两边作垂线段
二.角平分线上点向两边作垂线段
典例1:如图,△ABC中, ∠C =90o,BC=10,BD=6, AD平分∠BAC,求点D到AB的距离.
A
过点D作DE⊥AB
构造全等的直角三角形
E
B
C
D
二.角平分线上点向两边作垂线段
典例2:如图,△ABC中, ∠C =90o,AC=BC, AD平分∠BAC,求证:AB=AC+DC.
全等三角形中的常见辅助线
----几何证明中常见的 “添辅助线”方法
一.连结
一.连结
典例1:如图,AB=AD,BC=DC,求证:∠B=∠D.
B
1.连结AC
构造全等三角形
A
C 2.连结BD
构造两个等腰三角形
D
一.连结
典例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD, 求证:点M是CD的中点.
求证:AD+BC=AB D
E
C
1
2
A
4 3
F
B
在AB上取点F使得AF=AD,连接EF
线段与角求相等,先找全等试试看。 图中有角平分线,可向两边作垂线。 线段计算和与差,巧用截长补短法。 三角形里有中线,延长中线=中线。 想作图形辅助线,切莫忘记要双添。
C B
D
E
四、截长与补短
四、截长与补短
典例1、已知在△ABC中,∠C=2∠B, ∠1=∠2
求证:AB=AC+CD
A
E
12
B
D
C
在AB上取点E使得AE=AC,连接DE
F
在AC的延长线上取点F使得CF=CD,连接DF
全等三角形经典题型辅助线问题
全等三角形经典题型辅助线问题(总31页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
DC B AA1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形画辅助线的方法
全等三角形画辅助线的方法以全等三角形画辅助线的方法为标题,写一篇文章。
全等三角形是指具有相同形状和大小的三角形。
在几何学中,我们可以使用一些方法来画辅助线,以帮助我们证明两个三角形是全等的。
本文将介绍几种常见的辅助线方法。
一、SAS判据法SAS(边角边)判据法是全等三角形的一个常见判定方法。
当两个三角形的两边和夹角分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以先根据已知条件画出两个已知边长相等的线段,然后再连接这两个线段的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过画出这两个三角形的高线,并证明它们相等,从而得出这两个三角形全等的结论。
二、ASA判据法ASA(角边角)判据法也是全等三角形的一个常见判定方法。
当两个三角形的一个角和两个边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以先根据已知条件画出两个已知角度相等的角,然后再连接这两个角的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过画出这两个三角形的高线,并证明它们相等,从而得出这两个三角形全等的结论。
三、SSS判据法SSS(边边边)判据法是全等三角形的另一种常见判定方法。
当两个三角形的三条边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以根据已知条件直接画出两个已知边长相等的线段,然后再连接这两个线段的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过证明这两个三角形的内角相等,从而得出它们全等的结论。
四、AAS判据法AAS(角角边)判据法是全等三角形的另一种常见判定方法。
当两个三角形的两个角和一条边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以根据已知条件画出两个已知角度相等的角,然后再连接这两个角的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题 一.填空题: 1、粗圆体的汉字“口,天,土”等多是轴对称图形。请再写出至少三个以上这样的汉 字 。
2、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个与其他三个不同?请指 .. .. 出这个图形,并说明理由。
3.在等边三角形 ABC 中,AD 是 BC 上的高,则∠BAD= 4.在镜中看到的一串数字是“ 780903” ,则这串数字是
H C N E B
三,作图题: (不写作法,但必须保留作图痕迹) 1, 如图,已知点 M、N 和∠AOB,求作一点 P,使 P 到点 M、N 的距离相等,•且到∠AOB 的两边的 距离相等.
M A
N 0 B
2,某中学八(4)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子, OB桌面上摆满了糖果, 坐在C处的学生小明先拿桔子再拿糖果, 然后回到座位, 请你帮助他设计一条行 走路线,使其所走的总路程最短?
x
4.如图,A、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出。 (不写做法,保留痕迹) .B
A .
5.已知点 M (3a b,5) ,N (9,2a 3b) 关于 x 轴对称,求 b a 的值.
一、填空题 1.已知点 P 在线段 AB 的垂直平分线上,且 PA=8cm,则 PB=___________。 2.若一个三角形是轴对称图形,且有一个角是 60 ,则这个三角形是_________三角形。 3.已知三角形三个顶点的坐标依次为 (2,1), (0,3), (4,0) ,若作此三角形关于 x 轴对称的三角形,则 所得的三角形的三个顶点坐标分别为 。
F
C
二.有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例:如图 2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF
A
E 23 4 1 D
F
C
B
图2
M
三.有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图 3:AD 为 △ABC 的中线,求证:AB+AC>2AD。
O
A C. 。. B
3、如图所示,在平面直角坐标系中,A(-1,5) ,B(-1,0) ,C(-4,3). ⑴求出△ABC 的面积. (2)在图形中作出△ABC 关于 y 轴的对称图形△A1B1C1. (4)写出点 A1,B1,C1 的坐标. y
6 5 4 3 2 1 –6 –5 –4 –3 –2 –1 O –1 –2 –3 1 2 3 4 5 6
课
题
全等三角形与辅助线
备课时间:
授课时间: 教学目标
1.了解三角形全等中的一些辅助线做法。 教学内容(包括知识点、典型例题、课后作业)
全等三角形与辅助线
[知识要点] (一) 、全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1) 遇到等腰三角形, 可作底边上的高, 利用 “三线合一” 的性质解题, 思维模式是全等变换中的 “对 折” . 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式 是全等变换中的“旋转” . 3) 遇到角平分线, 可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变 换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理. 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或 “翻转折叠” 5) 截长法与补短法, 具体做法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长, 使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的 和、差、倍、分等类的题目.
6.如图,已知 AD 是线段 BC 的垂直平分线,且 BD=3cm,△ABC 的周长为 20cm,求 AC 的长.
A
B
D
C
7、已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C、D. 求证: (1)∠ECD=∠EDC ; (2)OE是CD的垂直平分线.
B D
E
O
C
A
轴对称 练习题
A E B
A
D
C
9、 如图, 在△ABC 中, AB=AC, 是 BC 边上的高, E、 是 AD 的三等分点, AD 点 F 若△ABC 的面积为 12 cm 2 , 则图中阴影部分的面积为
cm 2 .
E F B
二,选择题: 1.下列图形中对称轴最多的是 A,圆 B,正方形 ( ) C,等腰三角形 ( ) D,线段
A D
1
3
4 B
图7
2
C
六、连接已知点,构造全等三角形。 例:已知:如图 9;AC、BD 相交于 O 点,且 AB=DC,AC=BD,求证:∠A=∠D。
A
O
D
B
图10 1
C
七、取线段中点构造全等三有形。 例:如图 10:AB=DC,∠A=∠D 求证:∠ABC=∠DCB。
A
NDBM Nhomakorabea 10C
练习题 1、“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线 AD 的取值范围是_________. ( A
轴对称. 5. 线段的垂直平分线 (1) 经过线段的中点并且垂直于这条线段的直线, •叫做这条线段的垂直平分线 (或线段的中垂线) . (2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距 离相等的点在这条线段的垂直平分线上. 6. 轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换.• 成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到. 7. 轴对称变换的性质 (1)经过轴对称变换得到的图形与原图形的形状、大小完全一样 (2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点. (3)连接任意一对对应点的线段被对称轴垂直平分. 8. 作一个图形关于某条直线的轴对称图形 (1)作出一些关键点或特殊点的对称点. (2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形. 9. 关于坐标轴对称\原点对称 点 P(x,y)关于 x 轴对称的点的坐标是(x,-y) 点 P(x,y)关于 y 轴对称的点的坐标是(-x,y) 点 P(x,y)关于原点对称的点的坐标是(-x,-y)
B A
l
A D
二、选择题 1.如图 2 所示, l 是四边形 ABCD 的对称轴,AD∥BC,现给出下列结论: ①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有( ) A.1 个 B 2个 C 3个 D 4个
O C 图2
D
C
2.下列平面图形中,不是轴对称图形的是
A
B
3.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是
C
D
(
)
4.如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )
A
B
C
D
5.当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是( A.右手往左梳 B.右手往右梳 C.左手往左梳
E E
D M A C N
B
4.如图,在△ABC 中,∠B=60°,AD,CE 是△ABC 的角平分线,且交于点 O. 求证:AC=AE+CD
A E
B
D
C
5.如图所示,A,E,F,C 在一条直线上,AE=CF,过 E,F 分别作 DE⊥AC,BF⊥AC,若 AB=CD, 可以得到 BD 平分 EF,为什么?若将△DEC 的边 EC 沿 AC 方向移动,变为图时,其余条件不变, 上述结论是否成立?请说明理由.
. .
5.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.
6.已知点 A(a,-2)和 B(3,b) ,当满足条件
时,点 A 和点 B 关于 y 轴对称。
7.长方形的对称轴有______________条. 8.如图,△ABC 中,DE 是 AC 的垂直平分线,AE=3cm,△ABD 的周长 为 13cm,则△ABC 的周长为____________.
B E G F D C
B GE C
A
A
F
D
典型例题 (二) 、全等三角形中的常见辅助线的添加方法举例 一.有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图 1,已知 AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。
A
N
E 23 1 4 B D 图 1
A
B
D
C
E
练习:已知△ABC,AD 是 BC 边上的中线,分别以 AB 边、AC 边为直角边各向形外作等腰直角三角形, 如图 4, 求证 EF=2AD。 E F A
B
D 图4
C
四、截长补短法作辅助线。 例:已知如图 5:在△ABC 中,AB>AC,∠1=∠2,P 为 AD 上任一点。 求证:AB-AC>PB-PC。
) D.左手往右梳
6.如图,先将正方形纸片对折,折痕为 MN,再把 B 点折叠在折痕 MN 上,折痕为 AE,点 B 在 MN 上的对应 点为 H,沿 AH 和 DH 剪下,这样剪得的三角形中 A, AH DH AD C, AH AD DH ( )
D M A
B, AH DH AD D, AH DH AD
A 2 1 P
N
D
图 5
C
B
M
例;已知,如图 1-1,在四边形 ABCD 中,BC>AB,AD=DC,BD 平分∠ABC. 求证:∠BAD+∠BCD=180°.