高考物理总复习配餐作业27带电粒子在复合场中的运动解析
高考物理带电粒子在复合场中的运动(一)解题方法和技巧及练习题含解析
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理带电粒子在复合场中的运动试题经典及解析
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t 时间内收集到的离子个数为N ,总电荷量Q = It Q = Nq M =" Nm" =(3)由以上分析可得:R =设m /为铀238离子质量,由于电压在U±ΔU 之间有微小变化,铀235离子在磁场中最大半径为:R max =铀238离子在磁场中最小半径为:R min =这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max <R min 即:< 得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u 则:<解得:<0.63%3.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理总复习 配餐作业27 带电粒子在复合场中的运动(2021年最新整理)
2018年高考物理总复习配餐作业27 带电粒子在复合场中的运动编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考物理总复习配餐作业27 带电粒子在复合场中的运动)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考物理总复习配餐作业27 带电粒子在复合场中的运动的全部内容。
(二十七)带电粒子在复合场中的运动A组·基础巩固题1.(2017·东城区统测)如图所示,界面MN与水平地面之间有足够大的正交的匀强磁场B 和匀强电场E,磁感线和电场线互相垂直.在MN上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面。
若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A.小球做匀变速曲线运动B.小球的电势能保持不变C.洛伦兹力对小球做正功D.小球动能的增量等于其电势能和重力势能减少量的总和解析带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以小球不可能做匀变速曲线运动,选项A错误;根据电势能公式E p=qφ知只有带电小球竖直向下做直线运动时,电势能才保持不变,选项B错误;洛伦兹力的方向始终和速度方向垂直,所以洛伦兹力不做功,选项C错误;从能量守恒角度分析,选项D正确。
答案D2.(2017·东北联考)如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应)()A.d随U1变化,d与U2无关B.d与U1无关,d随U2变化C.d随U1变化,d随U2变化D.d与U1无关,d与U2无关解析设带电粒子在加速电场中被加速后的速度为v0,根据动能定理有qU1=错误!mv错误!。
2020年高考物理专题精准突破 带电粒子在复合场中的运动问题(解析版)
2020年高考物理专题精准突破 专题 带电粒子在复合场中的运动问题【专题诠释】1.带电粒子在叠加场中无约束情况下的运动 (1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解. 【高考领航】【2019·新课标全国Ⅲ卷】空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。
从O 点沿水平方向 以不同速度先后发射两个质量均为m 的小球A 、B 。
A 不带电,B 的电荷量为q (q >0)。
A 从O 点发射时的速度 大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为2t 。
重力加速度为g ,求 (1)电场强度的大小; (2)B 运动到P 点时的动能。
【答案】(1)3mgE q = (2)222k 0=2()E m v g t +【解析】(1)设电场强度的大小为E ,小球B 运动的加速度为a 。
根据牛顿定律、运动学公式和题给条件,有mg +qE =ma ①2211()222t a gt =② 解得3mgE q =③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有2k 112E mv mgh qEh -=+④且有102t v v t =⑤212h gt =⑥ 联立③④⑤⑥式得222k 0=2()E m v g t +⑦【2017·全国卷Ⅰ·16】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )A.m a >m b >m cB.m b >m a >m cC.m c >m a >m bD.m c >m b >m a 【答案】 B【解析】 设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,则 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则 m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则 m c g +qvB =qE ③比较①②③式得:m b >m a >m c ,选项B 正确.【2016·天津理综·11】如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着垂直纸面向里的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2,求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.【答案】(1)20 m/s方向与电场方向成60°角斜向上(2)2 3 s【解析】(1)小球做匀速直线运动时受力如图甲,其所受的三个力在同一平面内,合力为零,有qvB=q2E2+m2g2①代入数据解得v=20 m/s②速度v的方向与电场E的方向之间的夹角满足tan θ=qEmg③代入数据解得tan θ=3θ=60°④(2)解法一撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图乙所示,设其加速度为a,有a=q2E2+m2g2m⑤设撤去磁场后小球在初速度方向上的分位移为x,有x=vt⑥设小球在重力与电场力的合力方向上的分位移为y,有y =12at 2⑦ tan θ=y x⑧联立④⑤⑥⑦⑧式,代入数据解得 t =2 3 s ⑨解法二 撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为 v y =v sin θ⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -12gt 2=0⑥联立⑤⑥式,代入数据解得t =2 3 s. 【方法技巧】带电粒子在叠加场中运动的分析方法【最新考向解码】【例1】(2019·兰州高三诊断考试)水平面上有一个竖直放置的部分圆弧轨道,A 为轨道的最低点,半径OA 竖直,圆心角AOB 为60°,半径R =0.8 m ,空间有竖直向下的匀强电场,场强E =1×104 N/C 。
2021届高考物理三轮冲刺专练:带电粒子在复合场中的运动 (解析版)
带电粒子在复合场中的运动【原卷】1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P点,第二次穿过MN时的位置记为Q点,P、Q两点间的距离记为d,从P点运动到Q点的时间记为t.不计粒子的重力,若增大v0,则()A.t不变,d不变B.t不变,d变小C.t变小,d变小D.t变小,d不变2.如图所示,在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小m/s,接着沿直线CD运球沿轨道AC下滑,至C点时速度为v C=1007动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.7.如图所示,两平行金属板A、B间的电势差为U=5×104 V.在B板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d1=d2=6.25 m,磁感应强度分别为B1=2.0 T、B2=4.0 T,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?8.如图所示,三块挡板围成截面边长L=1.2 m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N/C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外,磁感应强度大小为B2=3B1的=108C/kg的帯正电的粒子,从O点由静止匀强磁场.现将一比荷qm释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,6求该粒子的比荷及其从M点运动到N点的时间.10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒时刻通过S2垂直于边界进入子在电场力的作用下向右运动,在t=T02右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.11.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.12.(2020山东潍坊一模)如图所示为竖直平面内的直角坐标系xOy,x轴水平且上方有竖直向下的匀强电场,场强大小为E;在x轴下方有一圆形有界匀强磁场,与x轴相切于坐标原点,半径为R.已知质量为m、电量为q的粒子,在y轴上的(0,R)点无初速度释放,R,-R)点,粒子重力不计,求:粒子恰好经过磁场中(√33(1)磁场的磁感强度B;(2)若将该粒子的释放位置沿y=R直线向左移动一段距离L,将粒子无初速度释放,当L为多大时粒子在磁场中运动的时间最长,最长时间多大?带电粒子在复合场中的运动1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P 点,第二次穿过MN 时的位置记为Q 点,P 、Q 两点间的距离记为d ,从P 点运动到Q 点的时间记为t.不计粒子的重力,若增大v 0,则 ( )A .t 不变,d 不变B .t 不变,d 变小C .t 变小,d 变小D .t 变小,d 不变【答案】 D【解析】 粒子在电场中做类平抛运动,设第一次到达P 点时竖直速度为v 1(大小不变),则粒子进入磁场的速度大小为v=√v 02+v 12,速度方向与MN 的夹角θ的正切值为tan θ=v1v 0;粒子进入磁场后做匀速圆周运动,半径R=mv qB ;第二次经过MN 上的Q 点时,由几何关系可得:d=2R sin θ,又sin θ=√2=1√v 02+v 12,联立解得:d=2mv 1qB ,即当增大v 0时d 不变;运动的时间t=θ2π·2πm qB =θmqB ,则当增大v 0时,tan θ减小,θ减小,t 减小,故D 正确.2.如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.【答案】(1)√3BRE (2)qBRm【解析】(1)设粒子第一次在磁场中运动的速度为v,粒子在磁场中受到的洛伦兹力提供向心力,即:qvB=2√3R解得:v=√3qBRm粒子在电场中受到的电场力为qE,设运动的时间为t,则:qEt=mv-0联立可得:t=√3BRE(2)粒子在磁场中做匀速圆周运动的过程中,其周期T=2πmqB,可知粒子在磁场中运动的周期与其速度、半径都无关;根据t0T =θ2π,可知粒子在磁场中运动的时间由轨迹的圆弧对应的圆心角有关,圆心角越小,则时间越短;所以当轨迹与内圆相切时,所用的时间最短,设粒子此时的半径为r,如图所示.由几何关系可得:(r-R)2+(√3R)2=r2设粒子进入磁场时速度的方向与ab的夹角为θ,则圆弧所对的圆心角为2θ,由几何关系可得:tan θ=√3Rr-R粒子从Q点抛出后做类平抛运动,在电场方向上的分运动与从P 释放后的情况相同,所以粒子进入磁场时,沿竖直方向的分速度同样也为v,在垂直于电场方向的分速度始终为v0,则:tan θ=vv0联立可得:v0=qBRm.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.【答案】(1)√2v0,方向与x轴正方向成45°角斜向上(2)v02【解析】(1)在电场中,粒子做类平抛运动,设Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,有at22L=v0t,L=12设粒子到达O点时沿y轴方向的分速度为v y,有v y=at设粒子到达O点时速度方向与x轴正方向夹角为α,有tan α=v yv0联立可得α=45°即粒子到达O点时速度方向与x轴正方向成45°角斜向上.设粒子到达O点时速度大小为v,由平行四边形定则有v=√v02+v y2联立可得v=√2v0.(2)设电场强度的大小为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma又F=qE由于v y2=2aL解得E=mv022qL设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有qvB=m v 2R 由几何关系可知R=√2L联立可得EB =v0 2.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为v C=1007m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为G 点(未标出),求G 点到D 点的距离.【答案】 (1)正电荷 (2)27.6 J (3)2.26 m【解析】 (1)依题意可知小球在CD 间做匀速直线运动,在CD 段受重力、电场力、洛伦兹力且合力为零.若小球带负电,小球受到的合力不为零,因此带电小球应带正电荷. (2)小球在D 点时的速度为v D =v C =1007m/s设重力与电场力的合力为F 1,如图所示,则:F 1=F 洛=qv C B 又F 1=mg cos37°=5 N解得:qB=F1v C =720C·T在F 处由牛顿第二定律可得:qv F B+F 1=mv F 2R把qB=720 C·T 代入得R=1 m设小球在DF 段克服摩擦力做功W f ,从D 到F 的过程由动能定理可得:-W f -2F 1R=12m v F 2-12m v D 2解得:W f≈27.6 J.(3)小球离开F点后做类平抛运动,其加速度为a=F1m由2R=at 22解得:t=√4mRF1=2√25s交点G与D点的距离GD=v F t=8√25m≈2.26 m.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.【答案】(1) 10 V/m,方向竖直向上(2) π2s(3)N点右侧3 m和N点左侧√55m的范围内【解析】(1)小球在叠加场中做匀速圆周运动,则电场力与重力平衡,即:qE=mg解得:E=10 V/m,方向竖直向上.(2)当小球以速度v=3 m/s在磁场中做匀速圆周运动时,由洛伦兹力提供向心力得:qvB=m v 2r解得:r=3 m=h对应小球运动的轨迹如图所示.在0<v0≤3 m/s的速度范围内,此轨迹所对的圆心角最小,即小球在磁场中运动的时间最短.小球做圆周运动的周期:T=2πrv=2π s小球在磁场中运动的最短时间:t1=14T=π2s(3)当小球以3 m/s的速度进入磁场后落在N点的右侧最远,x1=r=3 m当小球的速度较小时,小球会在磁场中运动半周,然后从MN离开磁场而做平抛运动.设小球在磁场中运动的轨道半径为R,则:竖直方向:h-2R=12gt2水平方向:x=vt粒子做圆周运动的轨道半径:R=mvqB解得:x2=√2(h-2R)R2g当R=1 m时x2有最大值,解得:x2max=√55m所以,小球落在N点右侧3 m和N点左侧√55m的范围内.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.【答案】(1)mgq (2)mq√gl(3)(3π4+1)√lg【解析】 (1)微粒到达A (l ,l )之前做匀速直线运动,对微粒受力分析如图甲,可知:Eq=mg 解得:E=mg q.甲 乙(2)由平衡条件得:qvB=√2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙,则有:qvB=m v 2r由几何知识可得:r=√2l 联立解得:v=√2gl ,B=m q √gl.(3)微粒做匀速直线运动的时间:t 1=√2lv =√l g做匀速圆周运动的时间:t 2=34π·√2l v=3π4√lg故微粒在复合场中的运动时间:t=t 1+t 2=(3π4+1)√lg.7.如图所示,两平行金属板A 、B 间的电势差为U=5×104 V .在B 板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d 1=d 2=6.25 m ,磁感应强度分别为B 1=2.0 T 、B 2=4.0 T ,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?s(3)60°(4)9.375 m 【答案】(1)4.0×103 m/s(2)π1 920【解析】(1)粒子在电场中做匀加速直线运动,由动能定理mv2-0,解得v=4.0×103 m/s.有:qU=12(2)粒子运动轨迹如图甲.设粒子在磁场区域Ⅰ中做匀速圆周运动的半径为r,由洛伦兹力提,代入数据解得r=12.5 m供向心力得:qvB1=mv2r设粒子在Ⅰ区内做圆周运动的圆心角为θ,则 sin θ=d1r =6.25m 12.5m =12,所以θ=30°粒子在Ⅰ区运动的周期T=2πm qB 1则粒子在Ⅰ区运动时间t=θ360°T ,解得t=π1 920s(3)设粒子在Ⅰ区做圆周运动的轨道半径为R ,则qvB 2=mv 2R解得R=6.25 m如图甲所示,由几何关系可知△MO 2P 为等边三角形,所以粒子离开Ⅰ区域时速度方向与边界面的夹角为α=60°.(4)要使粒子不能从Ⅰ区右边界飞出磁场,粒子运动的轨迹与磁场边界相切时,由图乙可知Ⅰ区磁场的宽度至少为:d 2=R+R cos 60°=1.5R=9.375 m .8.如图所示,三块挡板围成截面边长L=1.2 m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E=4×10-4 N/C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外,磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷qm =108 C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).×10-5【答案】(1)6.6×10-6T(2)2.85×10-2s(3)B2'=4k+23T,k=0,1,2,3,….mv2【解析】(1)粒子从O点加速到C点,由动能定理得:qEx=12解得:v=400 m/s带电粒子经内部磁场偏转后直接垂直AN经过Q点进入外部磁场=0.6 m由几何关系可知R1=L2知磁感应强度B1=6.6×10-6T.由qvB1=m v2R1(2)由题可知B2=3B1=2×10-5 T,由qvB2=m v2R2可知:R2=R13=0.2 m粒子从O点出发,到再次回到O点的轨迹如图所示,则粒子进入电场做匀加速运动,则x=12vt1得到t1=0.01 s粒子在磁场B1中的周期为T1=2πmqB1则在磁场B1中的运动时间为t2=T13=3×10-3s在磁场B2中的运动周期为T2=2πmqB2在磁场B2中的运动时间为t3=180°+300°+180°360°T2=5.5×10-3s则粒子从O点出发,到再次回到O点经历的时间t=2t1+t2+t3=2.85×10-2s.(3)设挡板外磁场变为B2',粒子在磁场中的轨迹半径为r,则有qvB2'=m v2r粒子可以垂直于MA经孔P回到O点需满足条件:L2=(2k+1)r,k=0,1,2,3,…解得B2'=4k+23×10-5T,其中k=0,1,2,3,…9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.【答案】(1)见解析(2)2El'Bl (3)4√3El'B2l2BlE(1+√3πl18l')【解析】(1)粒子在电场中的轨迹为抛物线,在磁场中的轨迹为圆弧,整个轨迹上下对称,故画出粒子运动的轨迹,如图所示.(2)粒子从电场下边界入射后在电场中做类平抛运动,设粒子从M点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度大小为a ,粒子的电荷量为q 、质量为m ,粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图所示, 根据牛顿第二定律可得:Eq=ma Ⅰ 速度沿电场方向的分量为:v 1=at Ⅰ 垂直电场方向有:l'=v 0t Ⅰ 根据几何关系可得:v 1=v cos θ Ⅰ粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力可得:qvB=m v 2R Ⅰ根据几何关系可得:l=2R cos θ Ⅰ联立ⅠⅠⅠⅠⅠⅠ式可得粒子从M 点入射时速度的大小:v 0=2El 'BlⅠ(3)根据几何关系可得速度沿电场方向的分量:v 1=v 0tanπ6Ⅰ联立ⅠⅠⅠⅠⅠ式可得该粒子的比荷:q m =4√3El 'B 2l 2Ⅰ粒子在磁场中运动的周期:T=2πR v=2πm qBⅠ粒子由M 点到N 点所用的时间:t'=2t+2(π2-π6)2π·T联立ⅠⅠⅠ式可得:t'=BlE (1+√3πl18l').10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=T02时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.【答案】(1)√2qU0m T04√2qU0m(2)B<4L√2mU0q(3)74T08πm 7qT0【解析】(1)粒子由S1到S2的过程,根据动能定理得qU0=12mv2Ⅰ由Ⅰ式得v=√2qU0mⅠ设粒子的加速度大小为a,由牛顿第二定律得q U0d=maⅠ由运动学公式得d=12a(T02)2Ⅰ联立ⅠⅠ式得d=T04√2qU0mⅠ(2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R对粒子在磁场中由牛顿第二定律得qvB=m v 2RⅠ要使粒子在磁场中运动时不与极板相撞,应满足2R>L2Ⅰ联立ⅠⅠⅠ式得B<4L √2mU0qⅠ(3)设粒子在两边界之间无场区向左匀速运动的过程用时为t1,有d=vt1Ⅰ联立ⅠⅠⅠ式得t1=T04Ⅰ若粒子再次到达S2时速度恰好为零,粒子回到极板间做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得d=v2t2联立ⅠⅠ式得t2=T02-t1-t2设粒子在磁场中运动的时间t=3T0-T02联立式得t=7T04则粒子在匀强磁场中做匀速圆周运动的周期为T,由Ⅰ式结合运动学公式得T=2πmqB由题意可知T=t=7T04.联立式得B=8πm7qT011.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.【答案】(1)(0,12L)(2)mv022qL√2mv02qL(3)Lv0+√2(1+π)L2v0【解析】(1)粒子在电场中的运动为类平抛运动的逆运动水平方向:L=v0cos θ·t1竖直方向:y=v0 sin θ·t1解得:y=12L粒子从y轴上射出电场的位置坐标为(0,12L).(2)粒子在电场中的加速度:a=qEm竖直分位移:y=12a t12解得:E=mv022qL.粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子的运动轨迹如图所示,由几何知识得:AC与竖直方向的夹角为45°,且AD=√2y=√22L,因此AC刚好为有界磁场边界圆的直径,则粒子在磁场中做圆周运动的轨道半径:r=L粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m v2r,其中粒子的速度:v=v0cos θ解得:B=√2mv02qL.。
高考物理带电粒子在复合场中的运动解题技巧讲解及练习题
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
重难点08 带电粒子在复合场中的运动(解析版)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
带电粒子在复合场中的运动(含答案)
带电粒子在复合场中的运动一、 带电粒子在复合场中运动问题的解题思路和方法1、 电场和磁场成独立区域时分阶段求解电场中:匀变速直线运动求法:牛顿运动定律、运动学公式、动能定理。
类平抛运动求法;常规分解法、特殊分解法。
磁场中:匀速直线运动求法:匀速运动公式。
匀速圆周运动求法:圆周运动公式、牛顿运动定律以及几何知识。
2、 电场和匀强磁场共存区域求解方法① 匀速直线运动:用二平衡知识 ②复杂的曲线运动: 牛顿定律、功能关系 3、 电场、匀强磁场重力场共存区域求解方法:① 匀速直线运动:用平衡知识 ②匀速圆周运动必然重力与电场力平衡③复杂曲线运动牛顿定律、功能关系。
二、 典例分析1、 带电粒子在电场和磁场成独立区域运动问题例1.如图所示,在x 轴上方有垂直于xy 平面的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电量为—q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L ,求此时粒子射出时的速度和运动的总路程(重力不记)(4BqLv m=,221162qB L S L mE π=+) 解:画出粒子运动轨迹如图所示,形成“拱桥”图形,由题知粒子轨道半径4LR =① 由牛顿定律2v qvB m R = ② ,①②联立 4BqLv m=对粒子进入电场后沿y 轴负方向做减速运动的最大 路程y 由动能定理知:212qEy mv = 得232qBL y mE =,所以粒子运动的总路程为21322qBL S L mE π=+例2、如图所示,P 和Q 是两块水平放置的长为L 的导体板,间距为d ,在其间加有电压U ,下极板电势高于上极板。
电子(重力不计)以水平速度v 0从两板正中间射入,穿过两板后又沿垂直于磁场方向射入距两平行板右端为L 1的有竖直边界MN 的匀强磁场,经磁场偏转后又从其竖直边界MN 射出,求:(1) 电子从进入电场再进入磁场的瞬间运动的时间t 和 偏转的距离y(1120()tan ()22L L eULy L L mv dα=+=+) (2)电子进出磁场的两点间距离s(022cos mv S r eBβ==) 解:电子在水平方向作匀速直线运动1L L t v +=在电场中U E d =, F Ee =, F eU a m md==, 01L v t =,1y v at =,200tan y v eULv mv dα==,1120()tan ()22L L eULy L L mv dα=+=+在磁场中2v Bev m r =, mv r eB=, 2cos S r β=,αβ=, 0cos v v α=, 022cos mv S r eBβ==. 例3、(2014年高考大纲版 25题).(20 分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面向外;在第四象限存在匀强电场,方向沿x 轴负向。
【高考复习】2020版高考物理 全程复习课后练习28 带电粒子在复合场中的运动(含答案解析)
2020版高考物理全程复习课后练习28带电粒子在复合场中的运动1.如图所示,在粗糙的足够长的竖直木杆上套有一个带正电小球,整个装置处在有水平匀强电场和垂直于纸面向里的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中,下列关于描述小球运动的v—t图象中正确的是( )2.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电荷量不变),从图中情况可以确定( )A.粒子从a到b,带正电B.粒子从a到b,带负电C.粒子从b到a,带正电D.粒子从b到a,带负电3.如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M点以某一初速度垂直等势线进入正交电场、磁场中,运动轨迹如图所示(粒子在N点的速度比在M点的速度大),则下列说法正确的是( )A.粒子一定带正电B.粒子的运动轨迹一定是抛物线C.电场线方向一定垂直等势线向左D.粒子从M点运动到N点的过程中电势能增大4.如图所示,从S处发出的电子经加速电压U加速后垂直进入相互垂直的匀强电场和匀强磁场中,发现电子向下极板偏转.设两极板间电场强度为E,磁感应强度为B.欲使电子沿直线从电场和磁场区域通过,只采取下列措施,其中可行的是( )A.适当减小电场强度EB.适当减小磁感应强度BC.适当增大加速电压UD.适当增大加速电场极板之间的距离5.如图所示是电视机显像管及其偏转线圈的示意图.初速度不计的电子经加速电场加速后进入有限边界的匀强磁场中发生偏转,最后打在荧光屏上.如果发现电视画面幅度与正常的相比偏小,则引起这种现象可能的原因是( )A.电子枪发射能力减弱,电子数量减少B.加速电场的电压过低,电子速率偏小C.偏转线圈局部短路,线圈匝数减少D.偏转线圈中电流过大,偏转线圈的磁感应强度增强则该导体棒受到的安培力大小为A.3BILB.7.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M、N两端间的电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是( )A.M端的电势比N端的高B.电压表的示数U与a、b均成正比,与c无关C.电压表的示数U与污水的流量Q成正比D.若污水中正负离子数相同,则电压表的示数为0虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是A.该带电粒子可能刚好从正方形的某个顶点射出磁场10.如图甲,一带电物块无初速度地放在皮带轮底端,皮带轮以恒定大小的速率沿顺时针转动,该装置处于垂直于纸面向里的匀强磁场中,物块由底端E运动至皮带轮顶端F的过程中,其v-t图象如图乙所示,物块全程运动的时间为4.5 s,关于带电物块及运动过程的说法正确的是( )A.该物块带负电B.皮带轮的传动速度大小一定为1 m/sC.若已知皮带的长度,可求出该过程中物块与皮带发生的相对位移D.在2~4.5 s内,物块与皮带仍可能有相对运动11. (多选)如图所示,有一范围足够大的水平匀强磁场,磁感应强度为B,一个质量为m、电荷量为+q的带电小圆环套在一根固定的绝缘竖直长杆上,环与杆间的动摩擦因数为μ.现使圆环以初速度v0向上运动,经时间t0圆环回到出发点,不计空气阻力,取竖直向上为正方向,下列描述该过程中圆环的速度v随时间t、摩擦力F f随时间t、动能E k随位移x、机械能E随位移x变化规律的图象中,可能正确的是( )动时间为t2,则A.B2=sinθ1B.xOy平面内的运动.求:(1)电子从O点进入电场到离开(1)粒子的初速度大小.(2)M点在x轴上的位置.答案解析1.答案为:C;解析:在小球下滑的过程中,对小球进行受力分析,如图所示,小球受到重力mg、电场力qE、洛伦兹力qvB、摩擦力f,还有木杆对小球的支持力N.开始时,小球的速度较小,洛伦兹力qvB较小,支持力N较大,随着速度的增大,支持力N在减小,可以知道摩擦力f减小,竖直方向上的合力增大,小球的加速度增大;当速度增大到一定的程度时,洛伦兹力qvB和电场力qE相等,此时支持力N为零,摩擦力f为零,小球的加速度为g,加速度达到最大;当速度继续增大时,支持力N要反向增大,摩擦力f增大,竖直方向上的合力减小,小球的加速度减小,当摩擦力f与重力mg相等时,竖直方向上的加速度为零,小球的速度达到最大.所以选项ABD所示的v—t图象不符合分析得到的小球的运动规律,C选项符合.3.答案为:C;解析:根据粒子在电场、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势线向左,选项C正确;电场力做正功,电势能减小,选项D错误.解析:电视画面幅度比正常的偏小,是由于电子束的偏转角减小,即电子束的轨道半径增大.电子在磁场中偏转时的半径r=mvqB,当电子枪发射能力减弱,发射的电子数量减少时,由于运动的电子速率及磁感应强度不变,所以不会影响电视画面幅度的大小,故A 错误; 当加速电场电压过低,电子速率偏小时,会导致电子运动半径减小,从而使偏转角度增大, 导致画面幅度与正常的相比偏大,故B 错误;当偏转线圈局部短路,线圈匝数减少时, 会导致偏转线圈的磁感应强度减弱,从而使电子运动半径增大,电子束的偏转角减小, 则画面幅度与正常的相比偏小,故C 正确;当偏转线圈中电流过大, 偏转线圈的磁感应强度增强时,会导致电子运动半径变小, 所以画面幅度与正常的相比偏大,故D 错误. 6.答案为:C ;解析:如图所示,根据右手螺旋定则可知,C 点的直导线在M 点处的磁感应强度大小为2B ,D 点的直导线在M 点处的磁感应强度大小为2B ,根据磁感应强度的叠加得M 点处的磁感应强度大小为7B ,则M 点处固定的导体棒受到的安培力大小为7BIL ,选项C 正确.7.答案为:C ;解析:根据左手定则,知负离子所受的洛伦兹力方向向外,则向外偏转, 正离子所受的洛伦兹力向里,向里偏转,因此M 板带负电,N 板带正电,则M 板的电势比N 板电势低,故A 错误;最终离子在电场力和洛伦兹力作用下平衡,有:qvB=q U b ,解得U=Bbv ,与离子浓度无关,故BD 错误;因v=U Bb ,则流量Q=vbc=UcB ,因此U=BQc,与污水流量成正比,故C 正确.8.答案为:AB ;解析:由题意可知粒子可能的运动轨迹如图所示,所有圆弧的圆心角均为120°,所以粒子运动的半径为r=33·L n (n=1,2,3,…),由洛伦兹力提供向心力得Bqv=m v2r,则v=Bqr m =3BqL 3m ·1n(n=1,2,3,…),所以A 、B 正确.610.答案为:D;解析:对物块进行受力分析可知,开始时物块受到重力、支持力和摩擦力的作用,设动摩擦因数为μ,沿斜面的方向有μF N-mgsinθ=ma①物块运动后,又受到洛伦兹力的作用,加速度逐渐减小,由①式可知,一定是F N逐渐减小,而开始时F N=mgcosθ,后来F′N=mgcosθ-f洛,即洛伦兹力的方向是向上的.物块沿皮带向上运动,由左手定则可知物块带正电,故A错误.物块向上运动的过程中,洛伦兹力越来越大,则受到的支持力越来越小,结合①式可知,物块的加速度也越来越小,当加速度等于0时,物块达到最大速度,此时mgsinθ=μ(mgcosθ-f洛)②由②式可知,只要皮带的速度大于或等于1 m/s,则物块达到最大速度的条件与皮带的速度无关,所以皮带的速度可能是1 m/s,也可能大于1 m/s,则物块可能相对于传送带静止,也可能相对于传送带运动,故B错误、D正确.由以上分析可知,皮带的速度无法判断,所以若已知皮带的长度,也不能求出该过程中物块与皮带发生的相对位移,故C错误.11.答案为:ABD;解析:小圆环向上做减速运动,对小圆环受力分析,竖直方向:重力和竖直向下的摩擦力,由牛顿第二定律有mg+f=ma;水平方向:N=qvB,f=μN,解得f=μqvB.速度逐渐减小,滑动摩擦力逐渐减小,加速度逐渐减小,当速度减小到零时,加速度为g,此时摩擦力为零,然后小圆环向下做加速运动,竖直方向:mg-f=ma;水平方向:N=qvB,f=μN,随着速度的增大,弹力N增大,摩擦力增大,加速度减小,A、B正确.动能先减小后增大,E k-x图像的斜率大小表示合外力,从0~x过程,动能减小,合外力减小,从x~0的过程,动能增大,合外力减小,C错误.小圆环的机械能逐渐减小,E-x图像的斜率大小表示摩擦力f,上升过程中,从0~x过程,摩擦力逐渐减小,下滑过程,位移从x~0,摩擦力逐渐增大,D正确.解:由对称性可知OM=2×1.5l=3l.。
高考物理轮精细复习 (压轴题)带电粒子在复合场中的运动(含解析)
避躲市安闲阳光实验学校带电粒子在复合场中的运动(基础知识夯实+综合考点应用+名师分步奏详解压轴题,含精细解析)带电粒子在复合场中的运动[想一想]带电粒子在复合场中什么时候静止或做直线运动?什么时候做匀速圆周运动?[提示] 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。
当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内将做匀速圆周运动。
2.复合场中带电粒子在重力、电场力(为恒力时)、洛伦兹力三个力作用下能做匀变速直线运动吗?[提示] 不能,因为重力和电场力为恒力,而洛伦兹力随速度的增加而增加,故三力的合力一定发生变化。
带电粒子不能做匀变速直线运动。
[记一记]1.复合场复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在。
从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场。
2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。
(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动。
(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。
(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。
[试一试]1.地球大气层外部有一层复杂的电离层,既分布有地磁场,也分布有电场。
假设某时刻在该空间中有一小区域存在如图8-3-1所示的电场和磁场;电场的方向在纸面内斜向左下方,磁场的方向垂直纸面向里。
此时一带电宇宙粒子恰以速度v 垂直于电场和磁场射入该区域,不计重力作用,则在该区域中,有关该带电粒子的运动情况可能的是( )图8-3-1A.仍做直线运动 B.立即向左下方偏转C.立即向右上方偏转D.可能做匀速圆周运动解析:选ABC 比较Eq与Bqv,因二者开始时方向相反,当二者相等时,A 正确;当Eq>Bqv时,向电场力方向偏,当Eq<Bqv时,向洛伦兹力方向偏,B、C正确;有电场力存在,粒子不可能做匀速圆周运动,D错。
高考物理二轮复习专题--带电粒子在复合场中的运动(附答案)
近几年高考中,关于此部分内容的命题方向有:在带电粒子在组合场中的运动、带电体在复合场中的运动、电磁场技术的应用。
题目以计算题为主,难度较大。
1.带电粒子在叠加场中的运动(1)若只有两个场且正交,合力为零,则表现为匀速直线运动或静止状态。
例如电场与磁场中满足qE=qvB;重力场与磁场中满足mg=qvB;重力场与电场中满足mg=qE。
(2)三场共存时,若合力为零,则粒子做匀速直线运动;若粒子做匀速圆周运动,则有mg=qE,粒子在洛伦兹力作用下做匀速圆周运动,即qvB=mv2r。
(3)当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解。
带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及初始运动状态的速度,因此带电粒子的运动情况和受力情况的分析是解题的关键。
2.带电粒子在组合场中的运动1.(多选)如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M点水平射入场区,经一段时间运动到N点,关于小球由M到N的运动,下列说法正确的是( )A.小球可能做匀变速运动 B.小球一定做变加速运动C.小球动能可能不变 D.小球机械能守恒2.(2018•全国卷Ⅰ•25)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。
一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向。
已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。
11H的质量为m,电荷量为q。
不计重力。
求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)21H第一次离开磁场的位置到原点O的距离。
1.(多选)如图所示,平行纸面向下的匀强电场与垂直纸面向外的匀强磁场相互正交,一带电小球刚好能在其中做竖直面内的匀速圆周运动.若已知小球做圆周运动的半径为r,电场强度大小为E,磁感应强度大小为B,重力加速度大小为g,则下列判断中正确的是( )A.小球一定带负电荷B.小球一定沿顺时针方向转动C.小球做圆周运动的线速度大小为gBrED.小球在做圆周运动的过程中,电场力始终不做功2.如图所示,水平向右的匀强电场场强为E,且Eq=mg,垂直纸面向里的水平匀强磁场磁感应强度为B,一带电荷量为q 的液滴质量为m,在重力、静电力和洛伦兹力作用下在叠加场空间运动。
高考物理总复习--带电粒子在复合场中的运动及解析
一、带电粒子在复合场中的运动专项训练1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:2.如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.25m 的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。
一不带电的绝缘小球甲,以速度v0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙球在B点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v0;(3)甲仍以中的速度v0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题【答案】(1)5m/s ;(2)5m/s ;(3)m 2x '≤<。
2019届高考物理一轮总复习27 带电粒子在复合场中的运动
课堂互动探究
考点 01 带电粒子在组合场中的运动 [多角练透 ] 带电粒子在电场和磁场的组合场中运动,实际上是将粒子在 电场中的加速与偏转,跟磁偏转两种运动有效组合在一起,有效 区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的 关键.当带电粒子连续通过几个不同的场区时,粒子的受力情况 和运动情况也发生相应的变化,其运动过程则由几种不同的运动 阶段组成.
(2)粒子能否通过速度选择器,除与速度有关外,还与粒子的 带电正负有关. ( × )
(3)磁流体发电机中,根据左手定则,可以确定正、负粒子的 偏转方向,从而确定正、负极或电势高低.( √ )
(4)带电粒子在复合场中受洛伦兹力情况下的直线运动一定 为匀速直线运动. ( √ )
(5) 质 谱 仪 是 一 种 测 量 带 电 粒 子 质 量 并 分 析 同 位 素 的 仪 器. ( √ )
4π2d 由牛顿第二定律 Bqv= m 2 T 2πm T= =πd Bq 3 3 t2= T= πd 4 4 2m qU 2m qU
带电粒子第二次在电场中偏转,运动时间也为 t1 因此带电粒子从 O 点运动到 C 点的总时间 3 t 总= 2t1+t2=(2+ π)d 4 2m qU
【答案】 (1) (3)C 点
2qU m
1 (2) d
ቤተ መጻሕፍቲ ባይዱ
2mU q
3 (2+ π)d 4
2m qU
方法技巧 “ 5 步” 突破带电粒子在组合场中的运动问题
多角练透 1 . [先电场后磁场 ](2018· 长沙市望城一中高三调考 )如图所 示,某种带电粒子由静止开始经电压为 U1 的电场加速后,射入 水平放置、电势差为 U2 的两导体板间的匀强电场中,带电粒子 沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁 场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁 场的 M、N 两点间的距离 d 随着 U1 和 U2 的变化情况为(不计重 力,不考虑边缘效应)( )
2020版高考物理 考点规范练习本27 带电粒子在复合场中的运动(含答案解析)
2020版高考物理 考点规范练习本27带电粒子在复合场中的运动1.如图所示,一个质量为m 、电荷量为q 的带电小球从水平线PQ 上方M 点自由下落,以PQ 为边界下方有方向竖直向下、电场强度为E 的匀强电场,同时还有垂直于纸面的匀强磁场,小球从边界上的a 点进入复合场后,恰能做匀速圆周运动,并从边界上的b 点穿出,重力加速度为g ,不计空气阻力,则以下说法正确的是( )A .小球带负电荷,匀强磁场方向垂直于纸面向外B .小球的电荷量与质量的比值=q m g EC .小球从a 运动到b 的过程中,小球和地球组成的系统的机械能守恒D .小球在a 、b 两点的速度相同2.如图所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平地板上,地板上方空间有水平方向的匀强磁场。
现用水平恒力拉乙物块,使甲、乙一起保持相对静止向左加速运动。
在加速运动阶段,下列说法正确的是( )A.甲对乙的压力不断减小B.甲、乙两物块间的摩擦力不断增大C.乙对地板的压力不断减小D.甲、乙两物块间的摩擦力不断减小3.如图所示是磁流体发电机的原理示意图,金属板M 、N 正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是( )A .N 板的电势高于M 板的电势B .M 板的电势等于N 板的电势C .R 中有由b 向a 方向的电流D .R 中有由a 向b 方向的电流4.下图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核H)和氦核He)。
下列说法正确的是( )(21(42A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能5.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是( )A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外6.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是( )A.①②B.③④C.①③D.②④7.如图所示,从S处发出的热电子经加速电压U加速后垂直进入相互垂直的匀强电场和匀强磁场中,发现电子流向上极板偏转.设两极板间电场强度为E,磁感应强度为B.欲使电子沿直线从电场和磁场区域通过,只采取下列措施,其中可行的是( )A .适当减小电场强度EB .适当减小磁感应强度BC .适当增大加速电场极板之间的距离D .适当减小加速电压U8.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H)和α粒子(He),比较它们所加的高频交3142流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大9. (多选)电场强度为E 的匀强电场与磁感应强度为B 的匀强磁场正交,复合场的水平宽度为d ,竖直方向足够长,如图所示.现有一束带电荷量为q 、质量为m 的α粒子以相同的初速度v 0沿电场方向射入场区,则那些能飞出场区的α粒子的动能增量ΔE k 可能为( )A .dq(E +B) B. C .qEd D .0qEd B10. (多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图所示是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,通入图示方向的电流I ,C 、D 两侧面会形成电势差U CD ,下列说法中正确的是( )A .电势差U CD 仅与材料有关B .若霍尔元件的载流子是自由电子,则电势差U CD <0C .仅增大磁感应强度时,电势差U CD 变大D .在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平11. (多选)如图,为探讨霍尔效应,取一块长度为a 、宽度为b 、厚度为d 的金属导体,给金属导体加与前后侧面垂直的匀强磁场B,且通以图示方向的电流I 时,用电压表测得导体上、下表面M 、N 间电压为U 。
高考物理总复习--带电粒子在复合场中的运动及解析
一、带电粒子在复合场中的运动专项训练1.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、,和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-3.如图,M 、N 是电压U =10V 的平行板电容器两极板,与绝缘水平轨道CF 相接,其中CD 段光滑,DF 段粗糙、长度x =1.0m .F 点紧邻半径为R 的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O 在同一水平面上,圆筒内存在磁感应强度B =0.5T 、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E .一质量m =0.01kg 、电荷量q =-0.02C 的小球a 从C 点静止释放,运动到F 点时与质量为2m 、不带电的静止小球b 发生碰撞,碰撞后a 球恰好返回D 点,b 球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a 、b 均视为质点,碰时两球电量平分,小球a 在DF 段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s 2.求(1)圆筒内电场强度的大小; (2)两球碰撞时损失的能量;(3)若b 球进入圆筒后,与筒壁发生弹性碰撞,并从N 点射出,则圆筒的半径.【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题【答案】(1)20N/C;(2)0J;(3)16tan Rnπ=(n≥3的整数)【解析】【详解】(1)小球b要在圆筒内做圆周运动,应满足:12Eq=2mg解得:E=20 N/C(2)小球a到达F点的速度为v1,根据动能定理得:Uq-μmgx=12mv12小球a从F点的返回的速度为v2,根据功能关系得:μmgx=12mv22两球碰撞后,b球的速度为v,根据动量守恒定律得:mv1=-mv2+2mv则两球碰撞损失的能量为:ΔE=12mv12-12mv22-12mv2联立解得:ΔE=0(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:每段圆弧对应圆筒的圆心角为2nπ,则在磁场中做圆周运动的轨迹半径:r1=Rtannπ粒子在磁场中做圆周运动:21122vqvB mr=联立解得:16tanRnπ=(n≥3的整数)4.如图所示,在xOy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O 射入磁场,其入射方向与x的正方向成 45°角.当粒子运动到电场中坐标为(3L,L)的P点处时速度大小为 v0,方向与 x轴正方向相同.求:(1)粒子从 O 点射入磁场时的速度 v ;(2)匀强电场的场强 E 0 和匀强磁场的磁感应强度 B 0. (3)粒子从 O 点运动到 P 点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题 【答案】(1)02v;(2)02mv Lq;(3)0(8)4L v π+【解析】 【详解】解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=- 解得:22mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:22R L= 及mvR qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=5.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
专题27 带电粒子在复合场中的运动(解析版)
2021届高考物理一轮复习热点题型归纳与变式演练专题27 带电粒子在复合场中的运动【专题导航】目录热点题型一带电粒子在组合场中的运动 (1)类型一先电场,后磁场 (1)类型二. 先磁场,后电场 (9)热点题型二带电粒子在叠加场中的运动 (15)类型一磁场力,重力并存 (15)类型二.电场力、磁场力并存 (17)类型三.电场力、磁场力、重力并存 (17)热点题型三带电粒子在交变电、磁场中的运动 (22)【题型归纳】热点题型一带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现。
2.“3步”突破带电粒子在组合场中的运动问题第1步:分阶段(分过程)按照时间顺序和进入不同的区域分成几个不同的阶段;第2步:受力和运动分析,主要涉及两种典型运动.第3步:用规律磁偏转→匀速圆周运动→定圆心→画轨迹――→求法圆周运动公式、牛顿定律以及几何知识类型一先电场,后磁场(1)先在电场中做加速直线运动,然后进入磁场做圆周运动.(如图甲、乙所示)在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)先在电场中做类平抛运动,然后进入磁场做圆周运动.(如图丙、丁所示)在电场中利用平抛运动知识求粒子进入磁场时的速度.【例1】(2020·江苏南京市六校联考)如图所示,在矩形区域ABCD内存在竖直向上的匀强电场,在BC右侧Ⅰ、Ⅰ两区域存在匀强磁场,虚线L1、L2、L3是磁场的边界线(BC与L1重合),宽度相同,方向如图所示,区域Ⅰ的磁感应强度大小为B1.一电荷量为+q、质量为m的粒子(重力不计)从AD边中点以初速度v0沿水平向右方向进入电场,粒子恰好从B点进入磁场,经区域Ⅰ后又恰好从与B点同一水平高度处进入区域Ⅰ.已知AB长度是BC长度的3倍.(1)求带电粒子到达B 点时的速度大小;(2)求区域Ⅰ磁场的宽度L ;(3)要使带电粒子在整个磁场中运动的时间最长,求区域Ⅰ的磁感应强度B 2的最小值.【答案】(1)23v 03 (2)23mv 03qB 1(3)1.5B 1 【解析】(1)设带电粒子进入磁场时的速度大小为v ,与水平方向成θ角,粒子在匀强电场中做类平抛运动,由类平抛运动的速度方向与位移方向的关系有:tan θ=L BC L AB =33,则θ=30°,根据速度关系有:v =v 0cos θ=23v 03; (2)设带电粒子在区域Ⅰ中的轨道半径为r 1,由牛顿第二定律得:qvB 1=m v 2r 1,轨迹如图甲所示:由几何关系得:L =r 1解得:L =23mv 03qB 1; (3)当带电粒子不从区域Ⅰ右边界离开磁场时,在磁场中运动的时间最长.设区域Ⅰ中最小磁感应强度为B 2m ,此时粒子恰好不从区域Ⅰ右边界离开磁场,对应的轨迹半径为r 2,轨迹如图乙所示:同理得:qvB 2m =m v 2r 2根据几何关系有:L =r 2(1+sin θ)解得:B 2m =1.5B 1.【例2】(2019·全国卷Ⅰ)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。
高中物理总复习--带电粒子在复合场中的运动及解析
一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U LU L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二十七) 带电粒子在复合场中的运动A组·基础巩固题1.(2017·东城区统测)如图所示,界面MN与水平地面之间有足够大的正交的匀强磁场B和匀强电场E,磁感线和电场线互相垂直。
在MN上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面。
若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A.小球做匀变速曲线运动B.小球的电势能保持不变C.洛伦兹力对小球做正功D.小球动能的增量等于其电势能和重力势能减少量的总和解析带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以小球不可能做匀变速曲线运动,选项A错误;根据电势能公式E p=qφ知只有带电小球竖直向下做直线运动时,电势能才保持不变,选项B错误;洛伦兹力的方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度分析,选项D正确。
答案 D2.(2017·东北联考)如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应)( )A.d随U1变化,d与U2无关B.d与U1无关,d随U2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关解析 设带电粒子在加速电场中被加速后的速度为v 0,根据动能定理有qU 1=12mv 20。
设带电粒子从偏转电场中出来进入磁场时的速度大小为v ,与水平方向的夹角为θ,如图所示,在磁场中有r =mv qB ,v =v 0cos θ,而d =2r cos θ,联立各式解得d =2mv 0qB ,因而选项A 正确。
答案 A3.如图所示,在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面向外的磁感应强度为B 2的匀强磁场,一带负电的粒子从原点O 以与x 轴成30°角斜向上的速度v 射入磁场,且在x 轴上方运动,半径为R 。
则下列说法正确的是( )A .粒子经偏转一定能回到原点OB .粒子在x 轴上方和下方两磁场中运动的半径之比为2∶1C .粒子完成一次周期性运动的时间为2πm 3qBD .粒子第二次射入x 轴上方磁场时,沿x 轴前进3R解析 由r =mv qB可知,粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2,所以B错误;粒子完成一次周期性运动的时间t =16T 1+16T 2=πm 3qB +2πm 3qB =πm qB,所以C 错误;粒子第二次射入x 轴上方磁场时沿x 轴前进l =R +2R =3R ,粒子经偏转不能回到原点O ,所以A 错误、D 正确。
答案 D4.(2017·中卫模拟)(多选)如图所示,金属板放在垂直于它的匀强磁场中,当金属板中有电流通过时,在金属板的上表面A 和下表面A ′之间会出现电势差,这种现象称为霍尔效应。
若匀强磁场的磁感应强度为B ,金属板宽度为h 、厚度为d ,通有电流I ,稳定状态时,上、下表面之间的电势差大小为U 。
已知电流I 与导体单位体积内的自由电子数n 、电子电荷量e 、导体横截面积S 和电子定向移动速度v 之间的关系为I =neSv 。
则下列说法正确的是( )A .在上、下表面形成电势差的过程中,电子受到的洛仑兹力方向向上B .达到稳定状态时,金属板上表面A 的电势高于下表面A ′的电势C .只将金属板的厚度d 减小为原来的一半,则上、下表面之间的电势差大小变为U 2D .只将电流I 减小为原来的一半,则上、下表面之间的电势差大小变为U 2解析 电流向右、磁场向内,根据左手定则,安培力向上;电流是电子的定向移动形成的,故洛伦兹力也向上,故上极板聚集负电荷,下极板带正电荷,故下极板电势较高,故A 正确,B 错误;电子最终达到平衡,有:evB =e U h,则:U =vBh 。
电流的微观表达式: I =nevS =nevhd ,则:v =I nehd ,代入得:U =BI ned ∝BI d,只将金属板的厚度d 减小为原来的一半,则上、下表面之间的电势差大小变为2U ,故C 错误;只将电流I 减小为原来的一半,则上、下表面之间的电势差大小变为U 2,故D 正确。
答案 AD5.(多选)如图所示,虚线空间中存在由匀强电场E 和匀强磁场B 组成的正交或平行的电场和磁场(图中实线为电场线),有一个带正电小球(电荷量为+q ,质量为m )从正交或平行的电磁复合场上方的某一高度自由落下,那么,带电小球可能沿直线通过的是( )A B C D解析 带电小球进入复合场时受力情况:A B C D其中只有C 、D 两种情况下合外力可能为零或与速度的方向相同,所以有可能沿直线通过复合场区域,A 项中洛伦兹力随速度v 的增大而增大,所以三力的合力不会总保持在竖直方向,合力与速度方向将产生夹角,做曲线运动,所以A错。
答案CD6.如图所示,竖直平面内有一固定的光滑绝缘椭圆大环,水平长轴为AC,竖直短轴为ED。
轻弹簧一端固定在大环的中心O,另一端连接一个可视为质点的带正电的小环,小环刚好套在大环上,整个装置处在一个水平向里的匀强磁场中。
将小环从A点由静止释放,已知小环在A、D两点时弹簧的形变量大小相等。
下列说法中错误的是( )A.刚释放时,小环的加速度为重力加速度gB.小环的质量越大,其滑到D点时的速度将越大C.小环从A运动到D,弹簧对小环先做正功后做负功D.小环一定能滑到C点解析刚释放时,小环速度为零,洛伦兹力为零,只受重力,加速度为g,A正确。
因为在A、D两点时弹簧的形变量相同,且OA长度大于OD,所以OA处于拉伸,OD处于压缩,所以弹簧由伸长变为压缩,弹力先做正功,后做负功,C正确。
从A到D过程中洛伦兹力不做功,而弹簧的弹性势能不变,只有重力做功,所以无论小环的质量如何,小环到达D点的速度是一样的,因大环光滑,则小环一定能滑到C点,B错误,D正确。
答案 BB组·能力提升题7.(多选)一个带正电的小球穿在一根绝缘粗糙直杆上,杆与水平方向成θ角,如图所示。
整个空间存在着竖直向上的匀强电场和垂直于斜杆方向向上的匀强磁场,小球沿杆向下运动,在A点的动能为100 J,在C点时动能为零,B是AC的中点,在这个运动过程中( )A.小球在B点的动能是50 JB.小球电势能的增加量可能大于重力势能的减少量C.小球在AB段克服摩擦力做的功与BC段克服摩擦力做的功相等D.到达C点后小球可能沿杆向上运动解析由动能定理:mgh-qEh-W f=ΔE k,并注意到由于洛伦兹力随着速度的变化而变化,正压力(或摩擦力)也将随之变化,AB段克服摩擦阻力做的功显然不等于BC段克服摩擦阻力做的功,因此小球在中点B处动能也不是小球初动能的一半。
由题意及上述分析可知,电场力Eq >mg 是完全可能的,故选项B 、D 正确。
答案 BD8.(2017·河南联考)(多选)如图所示,在x 轴的上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴的下方等腰三角形CDM 区域内有垂直于xOy 平面由内向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,C 、D 、M 到原点O 的距离均为a ,现将一质量为m 、电荷量为q 的带正电粒子,从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响。
下列说法正确的是( )A .若h =B 2a 2q 2mE,则粒子垂直CM 射出磁场 B .若h =B 2a 2q 2mE,则粒子平行于x 轴射出磁场 C .若h =B 2a 2q 8mE,则粒子垂直CM 射出磁场 D .若h =B 2a 2q 8mE,则粒子平行于x 轴射出磁场 解析 粒子从P 点到O 点经电场加速,Eqh =12mv 2,粒子进入磁场后做匀速圆周运动,Bqv =m v 2r。
(1)若粒子恰好垂直CM 射出磁场时,其圆心恰好在C 点,如图甲所示,其半径为r =a 。
由以上两式可求得P 到O 的距离h =B 2a 2q 2mE,A 选项正确。
(2)若粒子进入磁场后做匀速圆周运动,恰好平行于x 轴射出磁场时,其圆心恰好在CO中点,如图乙所示,其半径为r =12a ,由以上两式可得P 到O 的距离h =B 2a 2q 8mE,D 选项正确。
答案 AD9.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B 2UEgC .小球做匀速圆周运动的周期为T =2πE BgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析 小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,则小球带负电,A 错误;因为小球做圆周运动的向心力为洛伦兹力,由牛顿第二定律和动能定理可得Bqv =mv 2r ,Uq =12mv 2,联立以上三式可得小球做匀速圆周运动的半径r =1B 2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,B 、C 正确,D 错误。
答案 BC10.(多选)空间存在一匀强磁场B ,其方向垂直纸面向里,另有一个点电荷+Q 的电场,如图所示,一带电-q 的粒子以初速度v 0从某处垂直电场、磁场入射,初位置到点电荷的距离为r ,则粒子在电、磁场中的运动轨迹可能( )A .以点电荷+Q 为圆心,以r 为半径的在纸平面内的圆周B .开始阶段在纸面内向右偏转的曲线C .开始阶段在纸面内向左偏转的曲线D .沿初速度v 0方向的直线解析 当电场力大于洛伦兹力时,如果电场力和洛伦兹力的合力刚好提供向心力,选项A 正确;如果电场力大于洛伦兹力,选项C 正确;当电场力小于洛伦兹力,选项B 正确;由于电场力的方向变化,选项D 错误。
答案 ABC11.(多选)如图所示,绝缘中空轨道竖直固定,圆弧段COD 光滑,对应的圆心角为120°,C 、D 两端等高,O 为最低点,圆弧的圆心为O ′,半径为R ;直线段AC 、HD 粗糙且足够长,与圆弧段分别在C 、D 端相切。
整个装置处于方向垂直于轨道所在的平面向里、磁感应强度大小为B 的匀强磁场中,在竖直虚线MC 左侧和竖直虚线ND 右侧还分别存在着电场强度大小相等、方向水平向右和水平向左的匀强电场。