(完整版)八年级下数学单元测试卷答案

合集下载

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

人教版八年级数学下册全册单元测试卷及答案

人教版八年级数学下册全册单元测试卷及答案

《第十六章 二次根式》测试卷(A 卷)(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 43.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 4..计算的结果是( ) A. 6 B.C. 2D.5.下列计算正确的是( ) A. 2×3=6B.+=C. 5﹣2=3D.÷=6.下列二次根式,不能与合并的是( )A. B. C. D.7.化简的结果是( ).A. B. C. D.8.计算25)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 982 ) 16410a b+(a >0,b >0),分别作了如下变形:甲:()()()()==a b a ba ba b a ba ba b----++-乙:()()==a ba ba ba b a ba b-+--++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 12.=____=.13.13.13.已知32,32x y =+=-,则33_________x y xy +=.14.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____.15.化简:(1)______;(2)______;(3)______.16.计算: ()3327+=________.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.18.计算()2252-的结果是________.19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a b a b +-,如3※2=3232+-=5.那么12※4=____. 三、解答题(共60分) 21.(15分).计算与化简(1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 【答案】B【解析】∵二次根式1x -有意义,∴x ﹣1≥0,解得:x ≥1.故选B . 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 4 【答案】B 【解析】=.故选B.3.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 【答案】C4..计算的结果是()A. 6B.C. 2D.【答案】D【解析】.故选D.5.下列计算正确的是()A. 2×3=6B. +=C. 5﹣2=3D. ÷=【答案】D【解析】根据二次根式的性质和运算,可知×3=18,故不正确;根据最简二次根式和同类二次根式,可知+不能计算,故不正确;根据最简二次根式和同类二次根式,可知5﹣2不能计算,故不正确;根据二次根式的除法和化简,可知÷=,故正确.故选:D. 学6.下列二次根式,不能与合并的是( )A. B. C. D.【答案】B7.化简的结果是( ).A. B. C. D.【答案】A【解析】原式=,故选A.825)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 【答案】B ()22555-==.故答案为:5.982 ) 164【答案】C82164==. 故选C.10a b+(a >0,b >0),分别作了如下变形:甲:()()()=a b a ba b a ba ba b-++-乙:=a ba ba b a ba b++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 【答案】D二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 【答案】【解析】根据=a ,可知a , 故2019=;2x =. 故答案为:;12.=____=.【答案】|a|【解析】由二次根式的性质得=|a|=.故答案为:|a| 学 13.13.13.已知32,32x y ==33_________x y xy +=.【答案】1014.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____. 【答案】 1 1【解析】最简二次根式125a a ++与34b a +是同类二次根式, ∴12{2534a a b a +=+=+,解得1{1.a b == 故答案为:1,1. 15.化简:(1)______;(2) ______;(3)______.【答案】 42 0.45【解析】原式原式原式故答案为:(1). 42 (2). 0.45 (3).16.计算: ()3327+=________.【答案】12 【解析】原式()33333433412.=+=⨯=⨯=故答案为:12.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.【答案】-3b【解析】由数轴知:c<a<0<b , ∴a+c<0,c-b<0,a-2b<0,∴原式=|a+c|-|c -b|-|a -2b|=(-a-c )-(b-c )-(2b-a )=-a-c-b+c-2b+a=-3b , 故答案为:-3b. 18.计算()2252-的结果是________.【答案】22﹣410 【解析】原式()()22252252220410222410.=-⨯⨯+=-+=-故答案为: 22410.-19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______. 【答案】3所以m =5.49 3.m +== 故答案为:3.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a b +,如32+5那么12※4=____. 【答案】12【解析】根据题意可得: 1241641124.124882+====-※故答案为: 1.2三、解答题(共60分) 21.(15分).计算与化简 (1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 【答案】(1)10-5(2)3314(3)5-2【解析】22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 【答案】当x ≥-23且x ≠-1时,1132+++x x 在实数范围内有意义.【解析】考点:1、二次根式有意义的条件;2、分式有意义的条件. 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 【答案】1. 【解析】试题分析:先把原式y 2-4y+4写成(y-2)2的形式,x y -(y-2)2=00x y -=,(y-2)2=0,从而求出x 、y 的值,再求yx 11+的值就容易了. 2440x y y y --+= x y -(y-2)2=00x y -=,(y-2)2=0, ∴x=2,y=2 ∴1111122x y +=+=. 考点:1.偶次方;2.算术平方根;3.二次根式. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.【答案】7【解析】考点:1、二次根式有意义的条件;2、算术平方根. 25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 【答案】(1)255x(2)x=20,周长25 【解析】试题分析:(1)将三边相加即可;(2)去x=20,答案不唯一,符合题意即可. 试题解析:(1)周长1545205245x x x=2552555xx x x =++.(2)当x=20时,周长=22055⨯=25.(答案不唯一,符合题意即可) 学考点:二次根式的加减.26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 【答案】(1)x=4,y=3;(2)5 【解析】试题分析:(1)根据同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式,即可列出关于x 、y 的方程组,再解出即可;考点:1.同类二次根式;2.二次根式的计算 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++【答案】(111n n n n=+++;(2)2311;(3101.【解析】试题分析:根据观察,可得规律,根据规律,可得答案. 试题解析:(1)写出第n 11n n n n=+++(2)原式121123111211==+(3)原式213243109101⋅⋅⋅+考点:1.探索规律题(数字的变化类);2.分母有理化.第十七章一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.新人教版八年级下册第18章 平行四边形单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).1S 2S 第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12 BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,3602.2,223.84.四边形ABCD是菱形或四条边都相等或四边形ABCD是正方形等5.56.207.一组邻边相等或对角线互相垂直8.24+4 29.510.41511.6,7512.②13.120 14.1 12n-⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D三、解答题19.∠DAE=20°20.略21.14cm或16cm22.略23.2601块24.略25.(1)OE=OF;(2)当点O运动到AC的中点时,四边形AECF•是矩形26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF是矩形;(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y=1x-3+x-1的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0(第3题)4.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t/s123 4下落高度h/m5204580则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4至8 s内甲的速度都大于乙的速度(第9题)10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x 的函数图象大致为()(第10题)二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a+b=________.16.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑的全程为________m.(第16题)17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x轴上存在点P,使点P到A,B两点的距离之和最小,则点P的坐标为__________.(第18题)三、解答题(19~21题10分,其余每题12分,共66分)19.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?(第19题)20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.(第21题)22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?(第22题)23.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲,乙两个仓库分别可运出80 t和100 t有机化肥;A,B两个果园分别需要110 t和70 t有机化肥,两个仓库到A,B两个果园的路程如下表:路程/ km甲仓库乙仓库A果园15 25B果园2020设甲仓库运往A果园x t有机化肥,若汽车每吨每千米的运费为2元.(1)根据题意,填写下表:运量/t 运费/元甲仓库乙仓库甲仓库乙仓库A果园x 110-x 2×15x 2×25(110-x)B果园(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省.最省的总运费是多少元?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.B7.B8.C 点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12. ∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1.9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.1616.2 200 点拨:设小明的速度为a m/s ,小刚的速度为b m/s ,由题意得⎩⎨⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎨⎧a =2,b =4.故这次越野跑的全程为1 600+300×2=2 200(m).17.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧,∴图象过第一、二、四象限.∴图象与y 轴的交点在正半轴上,故1-m >0,解得m <1.∴m 的取值范围是m <-2.18.(-1,0) 点拨:如图,∵B (-2,1),∴点B 关于x 轴的对称点B ′的坐标为(-2,-1).作直线AB ′,与x 轴交于点P ,此时点P 即为所求.(第18题)设直线AB ′对应的函数解析式为y =kx +b ,∵A (2,3),B ′(-2,-1),∴⎩⎨⎧2k +b =3,-2k +b =-1,解得⎩⎨⎧k =1,b =1.∴直线AB ′对应的函数解析式为y =x +1.当y =0时,x =-1,∴点P 的坐标为(-1,0).三、19.解:(1)由图象可知,对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①由函数图象可知,当t =0.7 s 时,h =0.5 m ,它的实际意义是秋千摆动0.7 s 时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2, 解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2.(1)把x =-2代入y =-2x +2,得y =6;把x =3代入y =-2x +2,得y =-4.∴y 的取值范围是-4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n =-2m +2.∵m -n =4,∴m -(-2m +2)=4,解得m =2.∴n =-2.∴点P 的坐标为(2,-2).21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内,∴S =12OA ·BC =12×6y =3y .∵x +y =8,∴y =8-x.∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.(第21题)22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2).(3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元.23.解:(1)80-x ;x -10;2×20(80-x );2×20(x -10)(2)y =2×15x +2×25(110-x )+2×20(80-x )+2×20(x -10),即y =-20x +8 300.在一次函数y =-20x +8 300中,∵-20<0,且10≤x ≤80,∴当x =80时,y 最小=6 700.答:当甲仓库运往A 果园80 t 有机化肥时,总运费最省,最省的总运费是6 700元.24.解:(1)当1≤x ≤8,x 取整数时,每平方米的售价应为y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,每平方米的售价应为y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x≤8,x 取整数),50x +3 600(9≤x≤23,x 取整数). (2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2).按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =485 760-a (元),按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1>W 2时,即485 760-a >475 200,解得a <10 560;当W 1<W 2时,即485 760-a <475 200,解得a >10 560.∴当0<a <10 560时,方案二更合算;当a =10 560时,两种方案一样合算;当a >10 560时,方案一更合算.第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( C)A.220 B.218 C.216 D.2092.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( C)尺码(cm)2222.52323.52424.525销售量(双)4661021 1A.平均数 B.中位数 C.众数 D.方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是( D) A.甲 B.乙 C.丙 D.丁4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( A)成绩(分)272830人数23 1A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,55.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d +9,e+2的平均数是( C)A.x-1 B.x+3 C.x+10 D.x+126.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是( A)A.33 ℃,33 ℃ B.33 ℃,32 ℃C.34 ℃,33 ℃ D.35 ℃,33 ℃7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是( C) A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( B) A.0 B.1 C.2 D.49.下列说法正确的是( C)A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0 D.一组数据的方差是这组数据的平均数的平方10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C)A.2.25 B.2.5 C.2.95 D.3,第10题图),第15题图)二、填空题(每小题3分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分. 12.已知一组数据0,2,x ,4,5的众数是4,那么这组数据中位数是__4__.13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)14.一组数据3,5,a ,4,3的平均数是4,这组数据的方差为__0.8__.15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s 12,s 22,根据图中的信息判断两人方差的大小关系为__s 12<s 22__.16.甲、乙两人各射击5次,成绩统计表如下:环数(甲) 6 7 8 9 10次数 1 1 1 1 1环数(乙) 6 7 8 9 10次数 0 2 2 0 1那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”)17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.18.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.三、解答题(共66分)19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A __.A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情年收入(万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1(1)(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲 1 1 0 2 1 3 2 1 1 0 乙 0 2 2 0 3 1 0 1 3 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x 甲=1.2(个),x 乙=1.3(个);s 甲2=0.76,s 乙2=1.21 (2)由(1)知x 甲<x 乙,。

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。

八年级数学(下)第十九章《一次函数》单元测试卷含答案

八年级数学(下)第十九章《一次函数》单元测试卷含答案

八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。

北师大版八年级数学下册单元测试题全套(含答案)

北师大版八年级数学下册单元测试题全套(含答案)

北师大版八年级数学下册单元测试题全套(含答案)第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成直角三角形的是()A.4,5,6B.2,3,4C.1,1,2D.1,2,22.若三角形三个内角的比为1∶2∶3,则它的最长边与最短边的比为()A.3∶1B.2∶1C.3∶2D.4∶13.如图,∠ABC=∠ADC=90°,E是AC的中点,若BE=3,则DE的长为()A.3B.4C.5D.无法求出第3题图第4题图4.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()3m B.4m C.43m D.8mA.835.如图,OP平分∠MON,PA⊥ON于点A,Q是射线OM上的一个动点,若PA=3,则PQ的最小值为() A.3B.2C.3D.23第5题图第6题图6.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E,AE=2,则CE的长为()A.1 B.2 C.3 D.57.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2B.2.6C.3D.4第7题图第8题图8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P 到BC的距离是()A.8B.6C.4D.29.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是() A.1.5B.2C.2.5D.310.如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P在四边形ABCD 边上的个数为()A.0B.2C.3D.4二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠C=90°,斜边上的中线CD=3,则斜边AB的长是________.12.已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,且AD=3,AC=6,则AB=________.13.如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△ABC,你添加的条件是____________.第13题图第14题图14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是________cm.15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)第15题图第16题图16.在底面直径长为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图的圈数缠绕,则丝带的最短长度为________cm(结果保留π).17.如图,在等腰三角形ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC 的周长等于________cm.第17题图第18题图18.如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP=____________.三、解答题(共66分)19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得到四边形ABCE.求证:EC∥AB.20.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,________________________________________.求证:________.请你补全已知和求证,并写出证明过程.21.(10分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(10分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F在AC上,BD =DF.求证:(1)CF=EB;(2)AB=AF+2EB.23.(10分)如图,一根长63的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑到点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1时,求BB′的长.24.(10分)如图,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.25.(12分)如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我国边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我国领海靠近,便立即通知正在PQ上B处巡逻的103号艇注意其动向,经测量AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我国领海?参考答案1.C2.B3.A4.B5.C6.A7.D8.C 9.D10.A 【解析】如图,过点D 作DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F .在Rt △ABC 中,AC =AB 2+BC 2=10,BF =6×810=4.8<5;在△ACD 中,∵AD =CD ,∴AE =CE =5,DE =72-52=26<5,则点P 在四边形ABCD 边上的个数为0.故选A.11.612.1213.AC =AD (答案不唯一)14.215.2.916.3π2+1【解析】如图,∵无弹性的丝带从A 至C ,绕了1.5圈,∴展开后AB =1.5×2π=3π(cm),BC =3cm ,由勾股定理,得AC =AB 2+BC 2=9π2+9=3π2+1(cm).17.125【解析】由AB ·CE =BC ·AD ,得8AB =6BC .设BC =8x cm ,则AB =6x cm ,BD =4x cm.在Rt △ADB 中,AB 2=AD 2+BD 2,∴(6x )2=62+(4x )2,解得x =355.∴△ABC 的周长为2AB +BC =12x +8x =125(cm).18.3或33或37【解析】当∠APB =90°时,分两种情况讨论.情况一:如图1,∵AO =BO ,∴PO=BO .∵∠1=120°,∴∠PBA =∠OPB =12×(180°-120°)=30°,∴AP =12AB =3;情况二:如图2.∵AO =BO ,∠APB =90°,∴PO =BO .∵∠1=120°,∴∠BOP =60°,∴△BOP 为等边三角形,∴∠OBP =60°,∴∠A =30°,BP =12AB =3,∴由勾股定理,得AP =AB 2-BP 2=33;当∠BAP =90°时,如图3,∵∠1=120°,∴∠AOP =60°,∴∠APO =30°.∵AO =3,∴OP =2AO =6,由勾股定理得AP =OP 2-AO 2=33;当∠ABP =90°时,如图4,∵∠1=120°,∴∠BOP =60°.∵OA =OB =3,∴OP =2OB =6,由勾股定理得PB =OP 2-AO 2=33,∴PA =PB 2+AB 2=37.综上所述,当△APB 为直角三角形时,AP 为3或33或37.19.【证明】∵CD是AB边上的中线,且∠ACB=90°,∴CD=AD,∴∠CAD=∠ACD.又∵△ACE是由△ACD沿AC边所在的直线折叠而成的,∴∠ECA=∠ACD,∴∠ECA=∠CAD,∴EC∥AB.20.【解】PD⊥OA,PE⊥OB,垂足分别为D,E.PD=PE.证明如下:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO PDO=∠PEO,AOC=∠BOC,=OP,∴△PDO≌△PEO(AAS),∴PD=PE.21.【解】(1)全等.理由如下:∵∠1=∠2,∴DE=CE.∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC(HL).(2)△CDE是直角三角形.理由如下:∵Rt△ADE≌Rt△BEC,∴∠AED=∠BCE.∵∠BCE+∠BEC=90°,∴∠BEC+∠AED=90°,∴∠DEC=90°,∴△CDE是直角三角形.22.【证明】(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.在Rt△DCF和Rt△DEB =BD,=DE,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.(2)在Rt△ADC与Rt△ADE中,=DE,=AD,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB. 23.【解】(1)∵OA⊥OB,∠ABO=60°,∴∠BAO=30°,∴BO=12AB=12×63=33.(2)在Rt△ABO中,AO=AB2-BO2=9,∴A′O=AO-AA′=9-1=8.又由题意可知A′B′=AB=6 3.在Rt△A′OB′中,B′O=A′B′2-A′O2=211,∴BB′=B′O-BO=211-3 3.24.【解】如图,过E 点作EF ⊥AB ,垂足为F .∵∠EAB =30°,AE =2,∴EF =1,∴BD =1.又∵∠CED =60°,ED ⊥BC ,∴∠ECD =30°.而AB =CB ,AB ⊥BC ,∴∠EAC =∠ECA =45°-30°=15°,∴CE =AE =2.在Rt △CDE 中,∠ECD =30°,∴ED =1,CD =22-12=3,∴CB =CD +BD =1+ 3.25.【解】∵AB =6海里,BC =8海里,∴AB 2+BC 2=100=BC 2,∴△ABC 为直角三角形,且∠ABC =90°.又∵S △ABC =12AC ·BD =12AB ·BC ,∴12×10×BD =12×6×8,∴BD =4.8海里.在Rt △BCD 中,CD 2=BC 2-BD 2=82-4.82,∴CD =6.4海里,∴可疑船只从被发现到进入我国领海的时间为6.4÷12.8=0.5(时),∴可疑船只最早10时58分进入我国领海.第二章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.“x 的3倍与y 的和不小于2”用不等式可表示为()A .3x +y >2B .3(x +y )>2C .3x +y ≥2D .3(x +y )≥22.已知a >b >0,下列结论错误的是()A .a +m >b +mB .ac 2>bc 2(c ≠0)C .-2a >-2bD.a 2>b23.一元一次不等式2(x +1)≥4的解集在数轴上表示为()A. B.C.D.4x <2x +4,-1≥2的解集是()A .x >4B .x ≤3C .3≤x <4D .无解5.与不等式x -33<-1有相同解集的是()A .3x -3<4x -5B .2(x -3)<3(4x +1)-1C .3(x -3)<2(x -6)+3D .3x -9<4x -46.在平面直角坐标系内,点P (2x -6,x -5)在第四象限,则x 的取值范围是()A .3<x <5B .-3<x <5C .-5<x <3D .-5<x <-37.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是()A .m >-54B .m <-54C .m >54D .m <548a ,1≥x +13-1有解,则实数a 的取值范围是()A .a <-36B .a ≤-36C .a >-36D .a ≥-369.如图,直线y =kx +b 经过点A (-1,-2)和点B (-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为()A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <010.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为()A .5B .6C .7D .5或6二、填空题(每小题3分,共24分)11.不等式-3x +1<-2的解集为________.12.已知一次函数y 1=2x -6,y 2=-5x +1,则当x ________时,y 1>y 2.13x +1>0,>2x -5的正整数解为________.14.若代数式3m -12的值在-1和2之间,则m 的取值范围是__________.15.某人10:10离家赶11:00的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走________千米才能不误当次火车(进站时间忽略不计).16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,当x ________时,kx +b >x +a .17.如果关于x x>m-1,x>m+2的解集是x>-1,那么m=________.18.对于任意实数m,n,定义一种运算:m※n=mn-m-n+3,等式的右边是通常的加减法和乘法运算,如3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是__________.三、解答题(共66分)19.(6分)解下列不等式,并把它们的解集分别表示在数轴上.(1)x+12≥3(x-1)-4;(2)2x-13-5x+12≥1.20.(8分)x-1<2①,2x+3≥x-1②.请结合题意解答下列问题.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式的解集在数轴上表示出来;(4)不等式组的解集为__________.21.(8分)关于x的两个不等式3x+a2<1①与1-3x>0②.(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a 的取值范围.22.(9分)在下列平面直角坐标系中画出函数y 1=-x +3,y 2=3x -4的图象.观察图象,回答下列问题:(1)当x 取何值时,y 1=y 2?(2)当x 取何值时,y 1>y 2?(3)当x 取何值时,y 1<y 2?23.(10分)已知关于x ,y -2y =m ①,x +3y =2m +4②x +y ≤0,+5y >0,求满足条件的m 的整数值.24.(10分)今年冬天受寒潮影响,淘宝上的电热取暖器销售火爆.某电商销售每台成本价分别为200元、170元的A、B两种型号的电热取暖器,下表是近两天的销售情况:销售时段销售数量A种型号B种型号销售收入第一天3台5台1800元第二天4台10台3100元(1)求A、B两种型号的电热取暖器的销售单价;(2)若该电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,问:A种型号的电热取暖器最多能采购多少台?25.(15分)去冬今春,我市部分地区遭受了罕见的旱灾.“旱灾无情人有情”,某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜分别有多少件;(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案1.C 2.C 3.A 4.C 5.C 6.A7.A8.C9.B10.D【解析】设这家参加登山的有x x+3≤4(x-1)+2,x+3>4(x-1),解得5≤x<7,所以x=5或x=6,故这家参加登山的有5人或6人.故选D.11.x>112.>113.1,2,3,414.-13<m<5 315.1316.<317.-318.4≤a<5解析:根据题意,得2※x=2x-2-x+3=x+1.∵a<x+1<7,∴a-1<x<6.∵解集中有两个整数解,∴3≤a-1<4,∴a的取值范围为4≤a<5. 19.【解】(1)去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-8-1.合并同类项,得-5x≥-15.系数化为1,得x≤3.在数轴上表示如下.(2)去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15x-3≥6.移项,得4x-15x≥6+2+3.合并同类项,得-11x≥11.系数化为1,得x≤-1.在数轴上表示如下.20.【解】(1)x <3.(2)x ≥-4.(3)在数轴上表示如下.(4)-4≤x <3(8分)21.【解】(1)由①得x <2-a3.由②得x <13.(2分)∵两个不等式的解集相同,∴2-a 3=13,解得a =1.(2)∵不等式①的解都是②的解,∴2-a 3≤13,解得a ≥1.22.【解】先作出y 1=-x +3与y 2=3x -4的函数图象,令y 1=y 2,得x =74.故两直线交点的横坐标为74,如图.观察图象可知,(1)当x =74时,y 1=y 2(此时两图象交于一点).(2)当x <74时,y 1>y 2(y 1的图象在y 2的图象的上方).(3)当x >74时,y 1<y 2(y 1的图象在y 2的图象的下方).23.【解】①+②,得3x +y =3m +4③.②-①,得x +5y =m +4④.m +4≤0,+4>0,解得-4<m ≤-43.故满足条件的m 的整数值为-3,-2.24.【解】(1)设A、B两种型号的电热取暖器的销售单价分别为x元、y元,x+5y=1800,x+10y=3100,=250,=210.答:A、B两种型号的电热取暖器的销售单价分别为250元和210元.(2)设采购A种型号的电热取暖器a台,则采购B种型号的电热取暖器(30-a)台.由题意,得200a+170(30-a)≤5400,解得a≤10.答:最多能采购A种型号的电热取暖器10台.25.【解】(1)设饮用水有x件,则蔬菜有(x-80)件.根据题意,得x+(x-80)=320,解得x=200.∴x-80=120.答:饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.m+20(8-m)≥200,m+20(8-m)≥120,解得2≤m≤4.∵m为正整数,∴m=2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆.(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.第三章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文,能用其中一部分平移得到的是()2.如图,五星红旗上的每一个五角星()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形3.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1)B.(2,3)C.(0,1)D.(4,1)4.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是()A.a=5,b=1B.a=-5,b=1C.a=5,b=-1D.a=-5,b=-15.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.45°B.55°C.65°D.75°6.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q7.在如图的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2B.4C.8D.169.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)①→②是旋转;(2)①→③是平移;(3)①→④是平移;(4)②→③是旋转.A.1个B.2个C.3个D.4个10.如图,在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题(每小题3分,共24分)11.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.12.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是________.第12题图第13题图13.如图,将△ABC沿直线AB向右平移后到△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.14.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,在这四次旋转中,旋转角度最小是________度.第14题图第15题图15.如图,在△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.16.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第16题图第18题图17.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,那么BB′的长度为________.18.如图,在Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题(共66分)19.(6分)如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.20.(7分)如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.21.(9分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在的直线向右平移3个单位长度,记平移后的对应三角形为△DEF.求:(1)DB的长;(2)此时梯形CAEF的面积.24.(12分)如图,4×4网格图都是由16个相同小正方形组成的,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图①中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图②中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.25.(12分)两块等腰直角三角形纸片AOB和COD按图①放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图②.(1)在图②中,求证:AC=BD,且AC⊥BD;(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.参考答案1.D 2.A 3.A 4.D 5.B 6.B7.A8.A9.C10.B【解析】由旋转的性质,得BE=BD,∠EBD=60°,∴△BDE是等边三角形,故C正确;∵△ABC 是等边三角形,∴∠C=∠BAC=60°.由旋转的性质,得∠EAB=∠C=60°,∴∠EAC+∠C=180°,∴AE∥BC,故A正确;∵△BDE是等边三角形,∴∠EDB=60°.若∠ADE=∠BDC,则∠ADE=12 (180°-∠EDB)=60°=∠C,∴ED∥BC,这与AE∥BC矛盾,故B错误;易知AD+AE=AD+DC=BC=5,ED=BD=4,∴△ADE的周长为9,故D正确.故选B.11.(-1,1)12.80°13.30°14.7215.1316.-517.25cm18.3019.【解】如图,△DEF即为所求.20.【证明】∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF =CE ,∴OF =OE .在△DOF 和△BOE 中,OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE (SAS),∴FD =BE .21.【解】(1)如图,△AB ′C ′即为所求.(2)如图,△A ′B ″C ″即为所求.(3)∵AB =42+32=5,∴线段AB 在变换到AB ′的过程中扫过区域的面积为半径长为5的圆的面积的14,即14×π×52=254π.22.(1)【解】补全图形,如图.(2)【证明】由旋转的性质,得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD .∵EF ∥DC ,∴∠EFC +∠DCF =180°,∴∠EFC =90°.在△BDC 和△EFC =FC ,BCD =∠ECF ,=EC ,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.23.【解】(1)∵将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,∴AD =BE =CF =3.∵AB =5,∴DB =AB -AD =2.(2)过点C 作CG ⊥AB 于点G .在△ACB 中,∵∠ACB =90°,AC =3,AB =5,∴由勾股定理,得BC =AB 2-AC 2=4.由三角形的面积公式,得12AC ·BC =12CG ·AB ,∴3×4=5×CG ,解得CG =125.∴梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.24.【解】(1)如图.(2)如图.25.(1)【证明】如图,延长BD 交OA 于点G ,交AC 于点E .∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .在△AOC 和△BOD =OB ,AOC =∠BOD ,=OD ,∴△AOC ≌△BOD ,∴AC =BD ,∠CAO =∠DBO .又∵∠DBO +∠OGB =90°,∠OGB =∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(2)【解】由(1)可知,AC =BD ,AC ⊥BD .∵BD ,CD 在同一直线上,∴△ABC 是直角三角形.由勾股定理,得BC =AB 2-AC 2=252-72=24.∴CD =BC -BD =BC -AC =17.第四章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列各式从左到右的变形,是因式分解的为()A.x(a-b)=ax-bx B.x2-1+y2=(x-1)(x+1)+y2C.x2-1=(x+1)(x-1)D.ax+bx+c=x(a+b)+c2.下列四个多项式能因式分解的是()A.a-1B.a2+1C.x2-4y D.x2-6x+93.若多项式x2+mx-28可因式分解为(x-4)(x+7),则m的值为()A.-3B.11C.-11D.34.若a+b=3,a-b=7,则b2-a2的值为()A.-21B.21C.-10D.105.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1B.a2+a C.a2+a-2D.(a+2)2-2(a+2)+16.把代数式3x3-12x2+12x因式分解,结果正确的是()A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)27.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系下列式子成立的是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-b2=(a-b)28.已知x,y满足2x+x2+x2y2+2=-2xy,则x+y的值为()A.-1B.0C.2D.19.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2-4,乙与丙相乘为x2+15x-34,则甲与丙相加的结果与下列式子相同的是()A.2x+19B.2x-19C.2x+15D.2x-1510.已知a=2018x+2017,b=2018x+2018,c=2018x+2019,则多项式a2+b2+c2-ab-bc-ac的值为()A.0B.3C.2D.1二、填空题(每小题3分,共24分)11.分解因式:(1)a2-9=__________;(2)a2b+2ab+b=__________.12.分解因式:4+12(x-y)+9(x-y)2=________________.13.比较大小:a2+b2________2ab-1(选填“>”“≥”“<”“≤”或“=”).14.甲、乙、丙三家汽车销售公司的同款汽车的售价都是20.15万元,为了盘活资金,甲、乙分别让利7%,13%,丙的让利是甲、乙两家公司让利之和,则丙共让利________万元.15.若m-n=-2,则m2+n22-mn的值是________.16.若多项式25x2+kxy+4y2可以分解为完全平方式,则k的值为________.17.若|x-2|+y2-4y+4=0,则x y=________.18.观察下列各式:22-1=1×3;32-1=2×4;42-1=3×5;……将你猜想到的规律用只含一个字母n的式子表示出来____________________.三、解答题(共66分)19.(8分)利用因式分解计算:(1)3.62-5.62;(2)40×3.52+80×3.5×1.5+40×1.52.20.(8分)利用因式分解化简求值.(1)已知a+2b=0,求a3+2ab(a+b)+4b3的值;(2)已知m+n=3,mn=23n-m2n2+mn3的值.3,求m21.(8分)如图,在一块边长为a cm的正方形纸板上,在正中央剪去一个边长为b cm的正方形,当a=6.25,b=3.75时,请利用因式分解计算阴影部分的面积.22.(10分)将下列各式因式分解:(1)a2b-abc;(2)m4-2m2+1;(3)(2a+b)2-8ab;(4)(a+b)2-4(a+b-1);(5)(x-3y)2m+1+9(3y-x)2m-1.23.(10分)已知A=a+10,B=a2-a+7,其中a>3,指出A与B哪个大,并说明理由.24.(10分)已知实数a,b满足条件2a2+3b2+4a-12b+14=0,求(a+b)2018的值.25.(12分)阅读与思考:整式乘法与因式分解是方向相反的变形.由(x+p)(x+q)=x2+(p+q)x+pq,得x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式因式分解.例如,将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2).请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x-18=______________;启发应用:(2)利用因式分解法解方程:x2-6x+8=0;(3)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是______________.参考答案1.C 2.D 3.D 4.A 5.C 6.D7.A8.B9.A【解析】∵x2-4=(x+2)(x-2),x2+15x-34=(x+17)·(x-2),∴乙为x-2,∴甲为x+2,丙为x +17,∴甲与丙相加的结果x+2+x+17=2x+19.故选A.10.B【解析】∵a=2018x+2017,b=2018x+2018,c=2018x+2019,∴a-b=-1,b-c=-1,a-c=-2,则原式=12(2a 2+2b 2+2c 2-2ab -2bc -2ac )=12[(a -b )2+(b -c )2+(a -c )2]=12×(1+1+4)=3.故选B.11.(1)(a +3)(a -3)(2)b (a +1)212.(3x -3y +2)213.>14.4.0315.216.±2017.418.(n +1)2-1=n (n +2)(n 为正整数)19.【解】(1)原式=(3.6-5.6)×(3.6+5.6)=-2×9.2=-18.4.(2)原式=40×(3.52+2×3.5×1.5+1.52)=40×(3.5+1.5)2=40×52=1000.20.【解】(1)原式=a 3+2a 2b +2ab 2+4b 3=a 2(a +2b )+2b 2(a +2b )=(a 2+2b 2)(a +2b ).当a +2b =0时,原式=0.(2)原式=mn (m 2-mn +n 2)=mn [(m 2+2mn +n 2)-3mn ]=mn [(m +n )2-3mn ].当m +n =3,mn =23时,原式=23×2-423.21【解】设阴影部分的面积为S .依题意,得S =a 2-b 2=(a +b )(a -b ).当a =6.25,b =3.75时,S =(6.25+3.75)×(6.25-3.75)=10×2.5=25(cm 2).即阴影部分的面积为25cm 2.22.【解】(1)原式=ab (a -c ).(2)原式=(m 2-1)2=[(m +1)(m -1)]2=(m +1)2(m -1)2.(3)原式=4a 2+4ab +b 2-8ab =4a 2-4ab +b 2=(2a -b )2.(4)原式=(a +b )2-4(a +b )+4=(a +b -2)2.(5)原式=(x -3y )2m +1-9(x -3y )2m -1=(x -3y )2m -1[(x -3y )2-9]=(x -3y )2m -1(x -3y +3)(x -3y -3).23.【解】B >A .理由如下:B -A =a 2-a +7-a -10=a 2-2a -3=(a +1)(a -3).∵a >3,∴a +1>0,a -3>0,即B -A >0,∴B >A .24.【解】由题可知,2a 2+4a +2+3b 2-12b +12=2(a +1)2+3(b -2)2=0,则a +1=0,b -2=0,解得a =-1,b =2.∴(a +b )2018=(-1+2)2018=1.25.【解】(1)(x -2)(x +9)(2)∵常数项8=(-2)×(-4),一次项系数-6=(-2)+(-4),∴x 2-6x +8=(x -2)(x -4).∴方程x 2-6x +8=0可变形为(x -2)(x -4)=0.∴x -2=0或x -4=0,∴x =2或x =4.(3)±7±2∵-8=-1×8,-8=-8×1,-8=-2×4,-8=-4×2,∴p 的所有可能值为-1+8=7,-8+1=-7,-2+4=2,-4+2=-2.第五章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列各式是分式的是()A .2xB.x -y 6C.x 3D.x 2x2.要使分式3x -2有意义,则x 的取值范围是()A .x >2B .x <2C .x ≠-2D .x ≠23.分式x 2-1x 2+2x +1的值为0,则x 的值为()A .-1B .0C .±1D .14.当x =6,y =-2时,代数式x 2-y 2(x -y )2的值为()A .2B.43C .1D.125.分式方程3x =4x +1的解是()A .x =-1B .x =1C .x =2D .x =36.当a =2时,计算a 2-2a +1a 2÷()A.32B .-32C.12D .-127.下列计算错误的是()A.0.2a +b 0.7a -b =2a +b 7a -b B.x 3y 2x 2y 3=x y C.a -bb -a=-1 D.1c +2c =3c8.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意下面所列方程正确的是()A.66x =60x -2B.66x -2=60xC.66x =60x +2D.66x +2=60x9.关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为()A .-5B .-8C .-2D .510.一项工程需在规定日期完成,如果甲队单独做,就要超过规定日期1天,如果乙队单独做,要超过规定日期4天.现在先由甲、乙两队一起做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为()A .6天B .8天C .10天D .7.5天二、填空题(每小题3分,共24分)11.若把分式xyx -y 中的x ,y 都扩大5倍,则分式的值____________.12.化简m -1m ÷m -1m2的结果是________.13.若代数式1x -2和32x +1的值相等,则x =________.14.已知1a -1b =13,则2ab a -b的值等于________.15.如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则k =________.16.当x =2-1时,代数式x 2-2x +1x +1÷x -1x 2+x+x 的值是________.17.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走________步.18.若关于x 的分式方程x x -3-2=mx -3有增根,则增根为________,m =________.三、解答题(共66分)19.(8分)计算:(1)x +3x 2-9+1x -3;+1·2a -2a +2.20.(8分)解分式方程:(1)2x =3x +2;(2)x +1x -1+4x 2-1=1.21.(8分)(1)÷1a -2,其中a =3;(2)·x 2-xx 2-6x +9,再在1,2,3中选取一个适当的数代入求值.22.(10分)为了加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km 缩短至114km ,城际铁路的设计平均时速要比现在运行的平均时速快110km ,运行时间仅是现在运行时间的25,求建成后的城际铁路在A ,B 两地间的运行时间.23.(10分)若关于x 的分式方程x x -1=3a 2x -2-2的解为非负数,求a 的取值范围.24.(10分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.(12分)设A=a-21+2a+a2÷(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4)……解关于x的不等式:x-22-7-x4≤f(3)+f(4)+…+f(11),并将它的解集在数轴上表示出来.参考答案1.D 2.D 3.D 4.D 5.D 6.D7.A8.D9.A10.B【解析】首先设工作总量为1,未知的规定日期为x天.则甲队单独做需(x+1)天,乙队单独做需(x+4)天.由“工作总量=工作时间×工作效率”,得+x-3x+4=1,解得x=8.故选B. 11.扩大5倍12.m13.714.-615.a+ba16.3-2217.3018.x=3319.【解】(1)原式=1x-3+1 x-3=2 x-3.(2)原式=(a+1)(a-1)-3a-1·2(a-1)a+2=a2-4a-1·2(a-1)a+2=(a+2)(a-2)a-1·2(a-1)a+2=2a-4.20.【解】(1)方程两边都乘x(x+2),得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0,所以原分式方程的解为x=4.(2)方程两边都乘(x+1)(x-1),得(x+1)2+4=(x+1)(x-1),解得x=-3.检验:当x=-3时,(x+1)(x-1)≠0,所以原分式方程的解是x=-3.21.【解】(1)原式=a-2(a+2)(a-2)-a+2(a-2)(a+2)÷1a-2=a-2-a-2(a+2)(a-2)·(a-2)=-4 a+2.当a=3时,原式=-4 5 .(2)原式=x-1-2x-1·x(x-1)(x-3)2=xx-3.∵x-1≠0,x-3≠0,∴x≠1且x≠3,∴x只能选取2.把x=2代入,得原式=22-3=-2. 22.【解】设城际铁路现行速度是x km/h.由题意,得120x×25=114x+110,解得x=80.经检验,x=80是原分式方程的根,且符合题意.则120x×25=12080×25=0.6(h).答:建成后的城际铁路在A,B两地间的运行时间是0.6h.23.【解】方程两边同时乘2x -2,得2x =3a -2(2x -2),整理,得6x =3a +4,∴x =3a +46.∵方程的解为非负数,∴3a +46≥0,解得a ≥-43.又∵x ≠1,∴3a +46≠1,∴a ≠23.故a 的取值范围是a ≥-43且a ≠23.24.【解】(1)设原计划每天生产零件x 个.依题意,得24000x =24000+300x +30,解得x =2400.经检验,x =2400是原分式方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.(2)设原计划安排的工人人数为y .依题意,得[5×20×(1+20%)×2400y +2400]×(10-2)=24000,解得y =480.经检验,y =480是原分式方程的根,且符合题意答:原计划安排的工人人数为480人.25.【解】(1)化简,得A =1a 2+a.(2)当a =3时,f (3)=132+3=112=13×4;当a =4时,f (4)=142+4=120=14×5;当a =5时,f (5)=152+5=130=15×6;……∵x -22-7-x 4≤f (3)+f (4)+…+f (11),即x -22-7-x 4≤13×4+14×5+…+111×12,∴x -22-7-x 4≤13-14+14-15+…+111-112,∴x -22-7-x 4≤13-112,解得x ≤4.∴原不等式的解集是x ≤4,在数轴上表示如图.第六章检测卷时间:100分钟满分:120分一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,AB=3,AD=2,则CD等于()A.2 B.3C.4D.52.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°3.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D5.如图,在▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.12cm B.9cm C.6cm D.3cm6.如图,在平面直角坐标系内,原点O恰好在▱ABCD对角线的交点处,若点A的坐标为(2,3),则点C 的坐标为()A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)7.如图,在四边形ABCD中,对角线AC,BD相交于点O,则下列五组条件:①AB=CD,AD=BC;②AD∥BC,AD=BC;③AB∥CD,AD=BC;④OA=OC,OB=OD;⑤AB∥CD,OB=OD.其中能判定四边形ABCD是平行四边形的有()A.5组B.4组C.3组D.2组第7题图第8题图8.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG 的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S29.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,下列结论中:=S△CDE;⑤S△ABE=S△CEF.其中正确的①△ABC≌△ADE;②△ABE是等边三角形;③AD=AF;④S△ABE是()A.①②③B.①②④C.①②⑤D.①③④第9题图第10题图10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.23B.43C.4D.8二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AE=CG,DH=BF,连接E,F,G,H,E,则四边形EFGH是____.第11题图第12题图12.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF=____.13.如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4=____°.14.在▱ABCD中,∠B=4∠A,则∠C=____.15.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动,则经过__秒后四边形ABQP 为平行四边形.16.一个多边形的所有内角与它的一个外角之和等于2400°,则这个多边形的边数为____,这个外角的度数是____.17.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=22,则平行四边形ABCD的周长是____.第17题图第18题图18.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是____.三、解答题(共66分)19.(8分)如图,在平行四边形ABCD中,E,F分别在AD,BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.20.(8分)如图,E,F是▱ABCD对角线BD上的两点,给出下列三个条件:①BE=DF;②∠AEB=∠DFC;。

(完整版)八年级数学下册第一单元测试题及答案

(完整版)八年级数学下册第一单元测试题及答案

八年级数学下册第一单元测试题及答案一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B。

2个C.3个D.4个2。

如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC 于点D,则BD的长为()A。

B。

C.D。

3.如图,在△ABC中,,点D在AC边上,且,则∠A的度数为()A。

30°B。

36°C.45°D.70°4.(2015&#8226;湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A。

8或10B。

8C.10D.6或125。

如图,已知,,,下列结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6。

在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边cm,则最长边AB的长是()A.5cmB。

6cmC。

cmD.8cm7.如图,已知,,下列条件能使△≌△的是( )A。

B。

C.D。

三个答案都是8.(2015&#8226;陕西中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A。

2个B。

3个C。

4个D。

5个9。

已知一个直角三角形的周长是2,斜边上的中线长为2,则这个三角形的面积为()A.5B.2C.D.110。

如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E,如果cm,那么△的周长是()A。

6cmB.7cmC.8cmD.9cm二、填空题(每小题3分,共24分)11。

如图所示,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC 的度数是.12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是______三角形.13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(下)《平行四边形》单元测试卷一、选择题的对角线,图中平行四边形的个数有( )1、如图,AD,BE,CF是正六边形ABCDEFA.2个 B.4个 C.6个 D.8个2、已知在四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较长边的长度是A.8cm B.10cm C.12cm D.14cm3、如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()127°A.37° B.47° C.53° D.4、下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC5、如图,在▱ABCD中,CD=3,AD=5,AE平分交∠BAD边于点E,则线段BE,CE的长分别是( )A.2和3 B.3和2 C.4和1 D.1和46、四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC7、如图,在周长为20cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( )A.10cm B.8cm C.6cm D.4cm8、一个四边形的三个内角的度数依次如下,其中是平行四边形的是()A.88°,108°,88 °B.88°,92°,88 °C.88°, 92°,92 °D.88°,104°,108 °9、如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )A.AB∥CD B.AB=CD C.AC=BD D.OA=OC10、如图,平行四边形ABCD的对角线AC、BD相交于O,EF过点O与AD、BC分别相交于E、F.若A.16 B.14 C.10 D.1211、如图,在□ABCD中,∠ODA=90°,AC=10,BD=6,则AD的长为()A.4 B.5 C.6 D.8二、填空题12、如图,点E 在▱ABCD 的边BC 上,BE=CD .若∠EAC=20°,∠B+∠D=80°,则∠ACD的度数为 .13、如图,已知四边形ABCD 中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.14、如图,平行四边形ABCD 的对角线相交于点O ,且DC≠AD,过点O 作OE⊥BD 交BC 于点E .若△CDE 的周长为6cm ,则平行四边形ABCD 的周长为 .15、如图,平行四边形 ABCD 的两条对角线AC 与BD 相交于点O ,且AC⊥AB,已知AC=10,BD=26,那么平行四边形ABCD 的面积为 .16、如图,已知AB∥DC,要使四边形ABCD 是平行四边形,还需增加条件 .(只填写一个条件即可,不再在图形中添加其它线段).17、在平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,且BE=3,若平行四边形ABCD 的周长是16,则EC等于 .18、如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,AE=4, AF=6,□ABCD的周长为40,则□ABCD的面积为 .19、在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC 等于 .三、简答题20、如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;是平行四边形.(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD21、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.22、如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.23、如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD 是平行四边形.24、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;的面积.(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD25、已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.26、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;的长度.(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG27、如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.八年级数学(下)《平行四边形》单元测试卷参考答案一、选择题1、C2、C3、A4、C5、B.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故选6、D.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选7、A【解答】解:∵AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,△ABE的周长=AB+AE+BE=AB+AD=×20=10(cm),8、B 9、C.10、D 11、A二、填空题12、90° .【考点】平行四边形的性质.【分析】由在▱ABCD的边BC上,BE=CD,可得AB=BE,又由∠B+∠D=80°,可求得∠B的度数,继而求得∠BAE的度数,则可求得∠BAC的度数,然后由平行线的性质,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵∠B+∠D=80°,∴∠B=∠D=40°,∵BE=CD,∴AB=BE,∴∠BAE=70°,∴∠BAC=∠BAE+∠EAC=70°+20°=90°,∵AB∥CD,∴∠ACD=∠BAC=90°.故答案为:90°.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△ABE是等腰三角形是解此题的关键.13、(略)14、12 15、120 16、 AD∥BC AB=DC .(只填写一个条件即可).17、2 18、 4819、2 三、简答题20、【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,∵在△BEO和△DFO 中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21、【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA 中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.22、解:四边形AECF是平行四边形。

…………………………………………1分因为四边形ABCD是矩形,所以DC∥AB,所以∠DFA=∠BAF, …………………………………………………………3分又因为∠DCE=∠BAF,所以∠DCE=∠DFA所以FA∥CE, ……………………………………………………………………6分所以四边形AECF是平行四边形。

………………………………………………8分23、【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∵AD∥BC,∴四边形ABCD是平行四边形.24、【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF 中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.25、【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠BCE,∵AF∥CE,∴∠BCE=∠AFB,∴∠1=∠AFB,在△ABF和△CDE 中,,∴△ABF≌△CDE(AAS);(2)解:∵CE平分∠BCD,∴∠DCE=∠BCE=∠1=65°,∴∠B=∠D=180°﹣2×65°=50°.26、【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.27、【考点】平行四边形的性质.【分析】(1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=20°,证出∠AEB=∠ABE=20°,由三角形内角和定理求出结果即可;(2)求出DE,由勾股定理求出CE,即可得出结果.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=20°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=20°,∴AE=AB,∠A=÷2=140°;(2)∵AE=AB=5,AD=BC=8,CD=AB=5,∴DE=AD﹣AE=3,∵CE⊥AD,∴CE===4,∴▱ABCD的面积=AD•CE=8×4=32. 。

相关文档
最新文档