2017-2018学年人教B版高中数学必修5全册学案含答案
人教版B版高中数学必修5等差数列
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也 成等差数列.
【思路点拨】 只要证明b+a c+a+c b=2ab+c,而已知条
件为1a+1c=2b,因此,这其实就是一个条件等式的证明问题.
【证明】 ∵1a,1b,1c为等差数列, ∴2b=1a+1c,即 2ac=b(a+c). ∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c =a2+ca2c+2ac=2baa++cc2=2ab+c. ∴b+a c,a+b c,a+c b为等差数列.
【解析】 设数列{an}的公差为 d,由题意知:
a1+4d=11 a1+7d=5
,解得ad1==-192
,
故 an=19+(n-1)×(-2)=-2n+21. ∴a10=-2×10+21=1.
在等差数列{an}中,首项a1与公差d是两个最基本的元素;有 关等差数列的问题,如果条件与结论间的联系不明显,则均
【解析】 (1)数列{ an}是等差数列,理由如下: 由 an+1- an+1=an+ an得 an+1-an= an+1+ an, 即( an+1+ an)( an+1- an) = an+1+ an. 由于 an>0,故 an+1+ an>0, ∴ an+1- an=1 即数列{ an}是首项为 a1=1,公差为 1 的等差数列.
(1)注意定义中“从第2项起”这一前提条件的两层含义:其一, 第1项前面没有项,无法与后续条件中“与前一项的差”相吻 合;其二,定义中包括首项这一基本量,且必须从第2项起保 证使数列中各项均与其前面一项作差.
(2)注意定义中“每一项与它的前一项的差”这一运算要求, 它的含义也有两个:其一是强调作差的顺序,即后面的项减 前面的项;其二是强调这两项必须相邻.
2017_2018学年高中数学 第三章不等式课时作业17均值不等式 新人教B版 必修5
x+1
(x>-1),当 x=a 时,y 取得最小值 b,则 a+b=(
)
x+1
=x+1+ 9
9
x+1
-5,
因数 x>-1,所以 x+1>0,
x+1
>0. 9 -5≥2 x+1× 9 -5=1,
所以由均值不等式得 y=x+1+ 当且仅当 x+1= 1,a+b=3,选 C. 答案:C 7.已知 x>0,则 解析:因为 9
a+b
a+b
2
2 2ab 2ab 解析:v= = < = ab. 1 1 a+b 2 ab +
a b
因为
2ab 2ab-a -ab ab-a a -a 2ab -a= = > =0,所以 >a,即 v>a.故选 A. a+b a+b a+b a+b பைடு நூலகம்+b
2
2
2
2
答案:A 6.已知函数 y=x-4+ A.-3 B.2 C.3 D.8 解析:y=x-4+ 9 9
x y x y x+y
=2 3 =18 3.
5
C.9 D.18 解析:∵m>0,n>0,由 log3m+log3n=log3mn=4, ∴mn=81.∴m+n≥2 mn=18. 答案:D 2 3 3.已知第一象限的点(a,b)在直线 2x-3y-1=0 上,则 + 的最小值为(
a b
)
A.24 B.25 C.26 D.27 解析:因为第一象限的点(a,b)在直线 2x+3y-1=0 上, 所以有 2a+3b-1=0,a>0,b>0,即 2a+3b=1, 2 3 2 3 6b 6a 所以 + = + (2a+3b)=4+9+ + ≥13+2
高中数学第三章不等式3.2均值不等式名师讲义新人教B版必修5(2021学年)
2017-2018学年高中数学第三章不等式3.2 均值不等式名师讲义新人教B版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第三章不等式 3.2 均值不等式名师讲义新人教B版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第三章不等式 3.2 均值不等式名师讲义新人教B版必修5的全部内容。
3。
2 均值不等式预习课本P69~71,思考并完成以下问题(1)均值不等式的形式是什么?需具备哪些条件?(2)在利用均值不等式求最值时,应注意哪些方面?(3)一般按照怎样的思路来求解实际问题中的最值问题?错误!1.均值定理如果a,b∈R+,那么错误!≥错误!.当且仅当a=b时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a,b,数\f(a+b,2)称为a,b的算术平均值(平均数),数\r(ab)称为a,b的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛](1)“a=b”是\f(a+b,2)≥ab的等号成立的条件.若a≠b,则\f(a+b,2)≠错误!,即错误!>错误!。
(2)均值不等式错误!≥错误!与a2+b2≥2ab成立的条件不同,前者a>0,b>0,后者a∈R,b ∈R。
2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值;(2)两个正数的和为常数时,它们的积有最大值.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)对任意a,b∈R,a2+b2≥2ab,a+b≥2错误!均成立( )(2)若a≠0,则a +错误!≥2错误!=4( )(3)若a 〉0,b 〉0,则ab ≤错误!2( )解析:(1)错误.任意a ,b∈R,有a 2+b2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2错误!成立.(2)错误.只有当a >0时,根据均值不等式,才有不等式a+错误!≥2错误!=4成立. (3)正确.因为\r(ab )≤a +b2,所以ab ≤错误!2。
人教课标版(B版)高中数学必修5导学案-不等式的实际应用
3.4不等式的实际应用学习目标:1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤,2、让学生经历从实际情景中抽象出不等式模型的过程。
3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。
学习重点和难点:重点:不等式的实际应用难点:数学建模【预习达标】1.实际问题中,有许多不等式模型,必须在首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设 ,将量与量间的关系变成 或不等式组.2.实际问题中的每一个量都有其 ,必须充分注意定义域的变化.3.探究:一个正的真分数的分子与分母同时增加同一个数,分数值变 。
若一个假分数呢?试证明之。
【典例解析】例1.某工厂有一面14m 的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m 2的厂房。
工程条件是:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a 元;③用拆去1m 旧墙所得的材料建1m 新墙的费用为2a 元。
现在有两种建设方案:(Ⅰ)利用旧墙的一段Xm(x<14)为矩形厂房的一个边长;(Ⅱ)利用旧墙的矩形厂房的一个边长为Xm(x≥14)。
问如何利用这堵旧墙,才使建墙费用最低?(Ⅰ)(Ⅱ)两个方案哪个更好?例2.有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?分析:若桶的容积为x, 倒前纯农药为x 升第一次 :倒出纯农药8升,纯农药还剩(x-8)升,桶内溶液浓度xx 8- 第二次 :倒出溶液4升,纯农药还剩[(x-8)—(x x 8-)4], 中本题的不等关系是:桶中的农药不超过容积的28%解答:学生完成。
例3.某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上一年减少51,本年度当地旅游业收入估计万400万元,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度万第一年)总投入万a n 万元,旅游业总收入万b n 万元,写出a n 、b n 的表达式。
人教B版高中数学必修5-3.2导学案2-均值不等式
3.2 均值不等式(一)一、学习目标:1.掌握均值定理的推导2.培养学生应用均值定理分析问题、解决问题的能力.二、重点难点:重点:均值定理的推导极其应用难点:均值定理在实际问题中的应用三、学习过程:(一)自学教材,填空1.正数a 、b 的算术平均数为 ;几何平均数为 .2.均值不等式是 。
其中前者是 ,后者是 .如何给出几何解释?3.在均值不等式中a 、b 既可以表示数,又可以表示代数式,但都必须保证 ;另外等号成立的条件是 .4.试根据均值不等式写出下列变形形式,并注明所需条件(1)a 2+b 2 ( )(2)2b a ( ) (3)a b +ba ( )(4)ab≤ ( ) (5)x +x 1 (x>0)(6)x +x1 (x<0) 5.在用均值不等式求最大值和最小值时,必须注意a+b 或ab 是否为 值,并且还需要注意等号是否成立.(二)典型例题例1.已知a 、b 、c ∈(0,+∞),且a+b+c=1,求证a 1 +b 1+c1≥9.例2.(1)一个矩形的面积为100m 2。
问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36m 。
问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?(三)课堂训练1.已知a 、b ∈(0,1)且a≠b ,下列各式中最大的是( )A .a 2+b 2B .2abC .2a bD .a +b2.判断下列不等式的证明过程中的正误,并指出错因。
(1)若a 、b ∈R ,则a b +ba ≥2b a a b ∙=2( ) (2)若x 、y ∈R +,则lgx +lgy≥2y x lg lg ∙( )(3)x ∈R -,则x +x4≥-2x x 4∙=-4( ) (4)若x ∈R ,则x 2+x -2≥2x x -∙22=2( )3.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 4.设x>0,则函数y=2-x 4-x 的最大值为 ;此时x 的值是 。
人教课标版(B版)高中数学必修5参考教案-不等式的性质
3.1.2不等式的性质教学目标:掌握不等式的性质及其推论,并能证明这些结论.进一步巩固不等式性质定理,并能应用性质解决有关问题.教学重点:不等式的性质及证明教学过程1、复习:b>baa⇔->aba=b⇔-=aba<b<-⇔2、不等式的性质及证明定理1:a>b⇔b<a定理2:a>b,b>c⇒a>c(或c<b,b<a⇒c<a)(传递性)说明:(1)相等关系的第一条性质是“自反性”;任何一个数量都等于它自身,即a=a。
不等关系“>”、“<”没有自反性,但“非常格”不等关系“≥”、“≤”具有自反性。
(2)相等关系的第二条性质是“对称性”:a=b必须且只需b=a。
不等关系“>”、“<”没有对称性(例如a>b不是必须且只需b>a);不等关系“≠”与非常格不等关系“≥”、“≤”具有对称性,其中“≥”、“≤”显然同时具有反对称性。
(3)相等关系的第三条性质是“传递性”:如果a=b,且b=c,那么a=c。
不等关系“>”、“<” 与非常格不等关系≥”、“≤”也有些传递性,但不等关系“≠”没有传递性(例如2≠3,且3≠2,但2=2)定理3:a>b⇒a+c>b+c(或a<b⇒a+c<b+c)定理3说明:不等式的两边都加上同一个实数,所得不等式与原不等式同向.推论1:a+b>c⇒a>c-b(移项法则)也就是说:不等式中任何一项改变符号后,可以把它从一边移到另一边.推论2:a>b,c>d⇒a+c>b+d显然,这一推论可以推广到任意有限个同向不等式两边分别相加,即两个或更多个同向不等式两边分别相加,所得不等式与原不等式同向定理4、若a>b,且c>0,那么ac>bc;若a>b,且c<0,那么ac<bc.推论1、若a>b>0,且c>d>0,则ac>bd显然,这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘,即两个或更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向,由此,还可以得到:推论2、若a>b>0,则a n >b n (n ∈+N ,且n>1)推论3、若a>b>0,则n n b a > (n ∈+N ,且n>1)例1.适当增加不等式条件使下列命题成立:(1)若a>b ,则ac≤bc ; (2)若ac 2>bc 2,则a 2>b 2;(3)若a>b ,则lg(a+1)>lg(b+1); (4)若a>b ,c>d ,则d a >cb . (1)c≤0 解析:乘以负数不等号方向才会改变(2)b≥0解析:∵ac 2>bc 2 ∴a>b 但只有均正时,才有a 2>b 2(3)b>-1解析:∵a>b ∴a+1>lb+1但作为真数,还需为正,∴需要b>-1(4)b>0,d>0解析:同向同正具有可除性例2.设f(x)=ax 2+bx 且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.解析:解一:∵f(-1)=a-b ,f(1)=a+b ∴a=21[f(1)+f(-1)],b=21[f(1)-f(-1)]∴f(-2)=4a -2b=3f(-1)+f(1),∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(2)≤10。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
(新课标)高中数学第1章解三角形1.1正弦定理和余弦定理第1课时正弦定理课时作业新人教B版必修5
2017春高中数学 第1章 解三角形 1。
1 正弦定理和余弦定理 第1课时 正弦定理 课时作业 新人教B 版必修5基 础 巩 固一、选择题 1.在△ABC 中,AB =3,∠A =45°,∠C =75°,则BC 等于错误!( A )A .3- 3B . 2C .2D .3+错误![解析] 由正弦定理,得错误!=错误!,即错误!=错误!,∴BC =错误!=错误!=3-错误!.2.已知△ABC 的三个内角之比为A ︰B ︰C =3︰2︰1,那么对应的三边之比a ︰b ︰c 等于错误!( D )A .3︰2︰1B .错误!︰2︰1C .错误!︰错误!︰1D .2︰错误!︰1 [解析] ∵⎩⎨⎧ A ︰B ︰C =3︰2︰1A +B +C =180°,∴A =90°,B =60°,C =30°.∴a ︰b ︰c =sin A ︰sin B ︰sin C =1︰错误!︰错误!=2︰错误!︰1。
3.在△ABC 中,a =3,b =5,sin A =错误!,则sin B =错误!( B )A .错误!B .错误!C .错误!D .1 [解析] 由正弦定理,得a sin A =错误!,∴错误!=错误!,即sin B =错误!,选B .4.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若错误!=错误!,则角B 的大小为错误!( B )A .错误!B .错误!C.错误!D.错误![解析]由错误!=错误!及错误!=错误!,可得sin B=cos B,又0<B<π,∴B=错误!。
5.在△ABC中,角A、B、C的对边分别为a、b、c,向量m=(3,-1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角A、B的大小分别为错误!( C )A.错误!,错误!B.错误!,错误!C.π3,错误!D.错误!,错误![解析]∵m⊥n,∴错误!cos A-sin A=0,∴tan A=错误!,则A=错误!。
高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5
学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。
2017_2018学年高中数学课时跟踪检测十四均值不等式新人教B版必修5
C.a2+b2≤2|ab|D.a2+b2>2|ab|
解析:选A∵a2+b2-2|ab|=(|a|-|b|)2≥0,∴a2+b2≥2|ab|(当且仅当|a|=|b|时,等号成立).
2.已知实数a,b,c知足条件a>b>c且a+b+c=0,abc>0,那么 + + 的值( )
∴ + ≥1+ ,
故 + 的最小值为1+ .
10.设a,b,c都是正数,试证明不等式: + + ≥6.
证明:因为a>0,b>0,c>0,
因此 + ≥2, + ≥2, + ≥2,
因此 + + ≥6,
当且仅当 = , = , = ,
即a=b=c时,等号成立.
因此 + + ≥6.
层级二 应试能力达标
1.a,b∈R,那么a2+b2与2|ab|的大小关系是( )
答案:
8.假设对任意x>0, ≤a恒成立,那么a的取值范围是________.
解析:因为x>0,因此x+ ≥2.当且仅当x=1时取等号,
因此有 = ≤ = ,
即 的最大值为 ,故a≥ .
答案:
9.(1)已知x<3,求f(x)= +x的最大值;
(2)已知x,y是正实数,且x+y=4,求 + 的最小值.
解:∵x>0,y>0,
∴不等式 x+ky≥ 恒成立等价于 +k ≥ 恒成立.又k> ,
∴ +k ≥2 ,
∴2 ≥ ,解得k≤- (舍去)或k≥ ,
∴kmin= .
解:(1)∵x<3,
∴x-3<0,
∴f(x)= +x= +(x-3)+3
=- +3≤-2 +3=-1,
第三章3.2第2课时均值不等式的应用-人教B版高中数学必修5学案
第2课时 均值不等式的应用学习目标 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问题.3.能够运用均值不等式解决生活中的应用问题.知识点一 均值不等式及变形均值不等式的常见变形,试用不等号连接,并说明等号成立的条件. 当a >0,b >01a +1ba 2+b 22; 当且仅当a =b 时,以上三个等号同时成立. 知识点二 用均值不等式求最值 用均值不等式x +y2≥xy 求最值应注意:(1)x ,y 是否是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值;(3)等号成立的条件是否满足.1.y =x +1x的最小值为2.( × )2.因为x 2+1≥2x ,当且仅当x =1时取等号.所以当x =1时,(x 2+1)min =2.( × ) 3.由于sin 2x +4sin 2x≥2sin 2x ·4sin 2x =4,所以sin 2x +4sin 2x的最小值为4.( × )4.当x >0时,x 3+2x =x 3+1x +1x ≥2x 2+1x =2x +1x≥22,∴⎝⎛⎭⎫x 3+2x min =22.( × )题型一 利用均值不等式求最值 命题角度1 求一元解析式的最值例1 (1)若x >0,求函数y =x +4x的最小值,并求此时x 的值;(2)已知x >2,求x +4x -2的最小值;(3)设0<x <32,求函数y =4x (3-2x )的最大值.解 (1)当x >0时,x +4x≥2x ·4x=4, 当且仅当x =4x ,即x 2=4,x =2时,取等号.∴函数y =x +4x (x >0)在x =2处取得最小值4.(2)∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.∴x +4x -2的最小值为6.(3)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32, ∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. 反思感悟 在利用均值不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备. 跟踪训练1 函数y =2x +2x (x <0)的最大值为________.答案 -4解析 ∵x <0,∴-x >0, ∴(-2x )+⎝⎛⎭⎫-2x ≥2(-2x )·⎝⎛⎭⎫-2x =4, 即y =2x +2x≤-4⎝⎛⎭⎫当且仅当-2x =-2x ,即x =-1时等号成立.命题角度2 求二元解析式的最值例2 (1)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________; (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案 (1)18 (2)233解析 (1)∵xy =2x +y +6≥22xy +6,设xy =t (t >0),即t 2≥22t +6,(t -32)(t +2)≥0,∴t ≥32,则xy ≥18,当且仅当2x =y 且2x +y +6=xy ,即x =3,y =6时等号成立,故xy 的最小值为18.(2)根据题意,1=(x +y )2-xy ≥(x +y )2-⎝⎛⎭⎫x +y 22=34(x +y )2,所以43≥(x +y )2,所以x +y ≤233,当且仅当x =y >0且x 2+y 2+xy =1,即x =y =33时等号成立. 反思感悟 均值不等式连接了和“x +y ”与积“xy ”,使用均值不等式就是根据解题需要进行和、积的转化.跟踪训练2 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.答案 9解析 ∵x +y =1,∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4x y =4,∴5+y x +4xy≥9. 当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y ,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.题型二 均值不等式在实际问题中的应用例3 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? 解 设该厂每x 天购买一次面粉,其购买量为6x 吨. 由题意可知,面粉的保管及其他费用为3×[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1). 设平均每天所支付的总费用为y 元, 则y =1x [9x (x +1)+900]+6×1 800=9x +900x+10 809≥29x ·900x+10 809=10 989(元),当且仅当9x =900x,即x =10时,等号成立.所以该厂每10天购买一次面粉时,才能使平均每天所支付的总费用最少. 引申探究若受车辆限制,该厂至少15天才能去购买一次面粉,则该厂应多少天购买一次面粉,才能使平均每天所支付的费用最少? 解 设x 1,x 2∈[15,+∞),且x 1<x 2. 则⎝⎛⎭⎫9x 1+900x 1+10 809-⎝⎛⎭⎫9x 2+900x 2+10 809 =9(x 1-x 2)+900⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎫9-900x 1x 2 =(x 1-x 2)⎝⎛⎭⎫9x 1x 2-900x 1x 2 .∵15≤x 1<x 2,∴x 1-x 2<0,x 1x 2>225, ∴(x 1-x 2)⎝⎛⎭⎫9x 1x 2-900x 1x 2<0,即y =9x +900x+10 809在[15,+∞)上为增函数.∴当x =15,即每15天购买一次面粉时,平均每天所支付的费用最少.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用均值不等式求最值,要注意验证等号是否成立,若等号不成立,可考虑利用函数单调性求解.跟踪训练3 高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上、下楼耗费的精力增多,因此不满意度升高,已知当教室在n 层楼时,上、下楼造成的不满意度为n ,但高处嘈杂声较小,环境较好,因此随着教室所在楼层的升高,环境不满意度降低,设教室在第n 层楼时,环境不满意度为8n ,则同学们认为最适宜的教室所在的楼层应为( )A .2B .3C .4D .8答案 B解析 由题意知,教室在第n 层楼时,同学们总的不满意度y =n +8n ≥42,当且仅当n =8n ,即n =22时,不满意度最小,又n ∈N +,分别把n =2,3代入y =n +8n ,易知n =3时,y最小.故最适宜的教室应在3楼.一种常见的函数模型y =x +ax(a >0)典例 某市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某种新能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.(1)设使用n 年该车的总费用(包括购车费用)为f (n ),试写出f (n )的表达式;(2)问这种新能源汽车使用多少年报废最合算(即该车使用多少年年平均费用最少)?年平均费用的最小值是多少?解 (1)由题意得,f (n )=14.4+(0.2+0.4+0.6+…+0.2n )+0.9n =14.4+0.2n (n +1)2+0.9n =0.1n 2+n +14.4.(2)设该车的年平均费用为S 万元,则有S =1n f (n )=1n (0.1n 2+n +14.4)=n 10+14.4n +1≥2 1.44+1=3.4,当且仅当n 10=14.4n ,即n =12时等号成立,此时S 取得最小值3.4.故这种新能源汽车使用12年报废最合算,年平均费用的最小值是3.4万元.[素养评析] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程,其过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例(2)中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.不等式9x -2+(x -2)≥6(x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-5答案 C解析 ∵x >2,∴x -2>0. ∴9x -2+(x -2)≥29x -2(x -2)=6, 当且仅当x -2=9x -2,即x -2=3,x =5时取等号.故选C .2.设x >0,则y =3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则y =3-3x -1x≤3-23,故选D .3.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值12和最大值1B .最小值34和最大值1C .最小值12和最大值34D .最小值1 答案 B解析 ∵x 2y 2≤⎝⎛⎭⎫x 2+y 222=14,当且仅当x 2=y 2=12时,等号成立,∴(1-xy )(1+xy )=1-x 2y 2≥34.∵x 2y 2≥0,∴34≤1-x 2y 2≤1.4.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14答案 B解析 由题意知3a ·3b =3,即3a +b =3,所以a +b =1.因为a >0,b >0,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =12时,等号成立.5.设a ,b ,c ∈R ,ab =2,且c ≤a 2+b 2恒成立,则c 的最大值是( ) A .12 B .2 C .14 D .4答案 D解析 ∵ab =2,∴a 2+b 2≥2ab =4.又c ≤a 2+b 2恒成立,∴c ≤4.故选D .1.用均值不等式求最值(1)利用均值不等式,通过恒等变形以及配凑,使得“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用均值不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用均值不等式的条件.(3)在求最值的一些问题中,若运用均值不等式求最值,等号取不到,这时通常可以借助函数y =x +px (p >0)的单调性求得函数的最值.2.求解应用题的方法与步骤(1)审题;(2)建模(列式);(3)解模;(4)作答.一、选择题1.下列函数中,最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x(0<x <π) C .y =e x +4e -xD .y =x 2+1+2x 2+1答案 C解析 ∵y =x +4x 中x 可取负值,∴其最小值不可能为4;由于0<x <π,∴0<sin x ≤1,又∵y =sin x +4sin x在(0,1]上单调递减,∴最小值为5;由于e x >0,∴y =e x +4e -x ≥2e x ·4e -x=4,当且仅当e x =2时取等号,∴其最小值为4,∵x 2+1≥1,∴y =x 2+1+2x 2+1≥22,当且仅当x =±1时取等号,∴其最小值为22.2.已知x >1,y >1且lg x +lg y =4,则lg x lg y 的最大值是( ) A .4 B .2 C .1 D .14答案 A解析 ∵x >1,y >1, ∴lg x >0,lg y >0,lg x lg y ≤⎝⎛⎭⎫lg x +lg y 22=4,当且仅当lg x =lg y =2,即x =y =100时取等号.3.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A .72B .4C .92 D .5答案 C解析 ∵a +b =2,∴a +b 2=1.∴1a +4b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a +b 2=52+2a b +b 2a ≥52+2 2a b ·b 2a =92⎝⎛⎭⎫当且仅当2a b =b 2a ,即b =2a =43时,等号成立,故y =1a +4b 的最小值为92.4.若0<x <12,则函数y =x 1-4x 2的最大值为( )A .1B .12C .14D .18答案 C解析 因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x 1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x =1-4x 2,即x =24时等号成立,故选C . 5.若xy 是正数,则⎝⎛⎭⎫x +12y 2+⎝⎛⎭⎫y +12x 2的最小值是( ) A .3 B .72 C .4 D .92答案 C解析 ⎝⎛⎭⎫x +12y 2+⎝⎛⎭⎫y +12x 2 =x 2+x y +14y 2+y 2+y x +14x 2=⎝⎛⎭⎫x 2+14x 2+⎝⎛⎭⎫y 2+14y 2+⎝⎛⎭⎫x y +y x ≥1+1+2=4, 当且仅当x =y =22或x =y =-22时取等号. 二、填空题6.(2018·天津)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案 14解析 由a -3b +6=0,得a =3b -6,所以2a +18b =23b -6+123b ≥223b -6×123b =2×2-3=14,当且仅当23b -6=123b ,即b =1时等号成立.7.设x >-1,则函数y =(x +5) (x +2)x +1的最小值是________.答案 9解析 ∵x >-1,∴x +1>0, 设x +1=t >0,则x =t -1, 于是有y =(t +4) (t +1)t =t 2+5t +4t=t +4t+5≥2t ·4t+5=9, 当且仅当t =4t ,即t =2时取等号,此时x =1.∴当x =1时,函数y =(x +5) (x +2)x +1取得最小值9.8.周长为2+1的直角三角形面积的最大值为______. 答案 14解析 设直角三角形的两条直角边边长分别为a ,b , 则2+1=a +b +a 2+b 2≥2ab +2ab , 解得ab ≤12,当且仅当a =b =22时取等号,所以直角三角形的面积S =12ab ≤14,即S 的最大值为14.9.设a ,b >0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 由a ,b >0,a +b2≤a 2+b 22, 所以a +b ≤2a 2+b 2.所以a +1+b +3≤2·a +1+b +3=32,当且仅当a +1=b +3,即a =72,b =32时“=”成立,所以所求最大值为32.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和 f (x )=4x +400x ×4=4x +1 600x≥24x ·1 600x =160,当且仅当4x =1 600x ,即x =20时取等号.三、解答题11.已知不等式x 2-5ax +b >0的解集为{x |x >4或x <1}. (1)求实数a ,b 的值;(2)若0<x <1,f (x )=a x +b1-x ,求函数f (x )的最小值.解 (1)依题意可得方程x 2-5ax +b =0的根为4和1,∴⎩⎪⎨⎪⎧ 4+1=5a ,4×1=b ,即⎩⎪⎨⎪⎧a =1,b =4.(2)由(1)知f (x )=1x +41-x ,∵0<x <1,∴0<1-x <1,1x >0,41-x>0,∴1x +41-x =⎝⎛⎭⎫1x +41-x [x +(1-x )]=1-x x +4x 1-x +5≥21-x x ·4x1-x+5=9, 当且仅当1-x x =4x 1-x ,即x =13时,等号成立,∴f (x )的最小值为9.12.已知x >0,y >0,2xy =x +4y +a .(1)当a =6时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值. 解 (1)由题意,知x >0,y >0,当a =6时,2xy =x +4y +6≥4xy +6,即(xy )2-2xy -3≥0,∴(xy +1)(xy -3)≥0, ∴xy ≥3,∴xy ≥9,当且仅当x =4y =6时,等号成立,故xy 的最小值为9.(2)由题意,知x >0,y >0,当a =0时,可得2xy =x +4y .两边都除以2xy ,得12y +2x=1, ∴x +y +2x +12y =x +y +1=(x +y )·⎝⎛⎭⎫12y +2x +1=72+⎝⎛⎭⎫x 2y +2y x ≥72+2x 2y ·2y x =112, 当且仅当x 2y =2y x ,即x =3,y =32时,等号成立, 故x +y +2x +12y 的最小值为112. 13.为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n 年需要付出的维修费用记作a n 万元,已知{a n }为等差数列,相关信息如图所示.(1)设该公司前n 年总盈利为y 万元,试把y 表示成n 的函数,并求出y 的最大值;(总盈利即n 年总收入减去成本及总维修费用)(2)该公司经过几年经营后,年平均盈利最大,并求出最大值.解 (1)由题意知,每年的维修费用是以6为首项,2为公差的等差数列,则a n =6+2(n -1)=2n +4(n ∈N +),所以y =25n -n [6+(2n +4)]2-36=-n 2+20n -36 =-(n -10)2+64,当n =10时,y 的最大值为64万元.(2)年平均盈利为y n =-n 2+20n -36n =-n -36n +20=-⎝⎛⎭⎫n +36n +20≤-2× n ×36n+20=8 (当且仅当n =36n,即n =6时取“=”). 故该公司经过6年经营后,年平均盈利最大,为8万元.14.已知a >0,b >0,则1a +1b+2ab 的最小值是( ) A .2B .2 2C .4D .5 答案 C解析 ∵a >0,b >0,∴1a +1b+2ab ≥21ab +2ab ≥4 1ab ·ab =4,当且仅当a =b =1时,等号同时成立.15.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )A .2∈M ,0∈MB .2∉M ,0∉MC .2∈M ,0∉MD .2∉M ,0∈M答案 A解析 M =⎝⎛⎦⎥⎤-∞,k 4+4k 2+1. 当k ∈R 时,k 4+4k 2+1=(k 2+1)2-2k 2+3k 2+1=(k 2+1)2-2(k 2+1)+5k 2+1=(k 2+1)+5k 2+1-2 ≥2(k 2+1)·5k 2+1-2=25-2>2(当且仅当k 2=5-1时,取等号).∴2∈M ,0∈M .。
2017-2018学年北师大必修5《等差数列的前n项和》习题精选含答案
第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为 ()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10×a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6×23+×(-4)=78.(3)S n=23n+×(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10×(-2)=0,所以a1=20.答案:B2.(2019全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为() A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3×,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1 260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.。
原创1:第一章 解三角形
=( + )= (+),
其中 =
,α是第一象限角.
∵ ° < < °,且α是第一象限角
∴ 当C+α=90°时,AB+2BC有最大值 .
同学们,再见!
水域,并说明理由.
典例突破
(二)正、余弦定理的实际应用
(1) 如图,= ,= ,∠=,=
° < < °知 =
=
−(
.
)
.
由余弦定理,得= + − ∙ = .
∴ 船的行驶速度为
例3. 在△ABC中,=°,= ,则AB+2BC的最大值为
________.
【解析】 由正弦定理知
=
=
°
∴ AB=2sin C,BC=2sin A.
又 A+C =120°
∴ AB+2BC=2sin C+4sin(120 °-C)
典例突破
(三)解三角形与三角函数的综合
∴ ∠ =
∴
,∠
= −
∠
=
∙∠
在△ABC中,由正弦定理得=
°
=
典例突破
(一)正、余弦定理解三角形
方法1)
∴ 在△ABC中,由余弦定理得
BC2=AB2+AC2-2AB·ACcos∠2
即 25=AB2+49-11AB,即(AB-8)·(AB-3)=0,
刻测得一艘匀速直线行驶的船只位于点A北偏东 45°且
与点A相距 海里的位置B,经过40分钟又测得该船
已行驶到点A北偏东°+ (其中=
°)且与点A相距 海里的位置C.
2017-2018学年高中数学 第一章 数列 1.2 等差数列 1.2.1.1 等差数列的概念和通项公式讲义 北师大版必修5
������1 + ������1 + ������ = 3,
������1 + 2������ + ������1 + 3������ = 5,
解得
a1=
5 4
,
������
=
12.
所以a7+a8=a1+6d+a1+7d=9.
答案:9
12345
5若{an}为等差数列,且a15=8,a60=20,求a75.
题型一 题型二 题型三
题型二 等差数列的通项公式 【例2】 在等差数列{an}中, (1)an=2n+3,求a1和d; (2)a7=131,a14=61,求a100,并判断0是不是该数列的项. 分析:(1)在an的表达式中,令n=1即可得到a1,然后再令n=2求出a2, 而d=a2-a1,或者根据等差数列的定义求d; (2)利用等差数列的通项公式和已知条件,可以列方程解决.
解得
������1 = 191, ������ = -10.
故an=a1+(n-1)·d=-10n+201.
所以a100=-10×100+201=-799.
令-10n+201=0,解得n=20.1∉N+, 故0不是该数列的项.
题型一 题型二 题型三
反思在等差数列{an}中,首项a1与公差d是两个最基本的元素;有 关等差数列的问题,若条件与结论间的关系不明显,则均可化成有 关a1,d的关系列方程组求解,但是,要注意公式的变形及整体计算,以 减少计算量.
=
24.
A.an=4-2n B.an=2n-4 C.an=6-2n D.an=2n-6
解析:通项公式an=a1+(n-1)d=4+(n-1)×(-2)=6-2n.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年高中数学人教B版必修5全册同步学案目录第一章 1.1.1 正弦定理(一)第一章 1.1.1 正弦定理(二)第一章 1.1.2 余弦定理(一)第一章 1.1.2 余弦定理(二)第一章 1.2 应用举例(一)第一章 1.2 应用举例(二)第一章习题课正弦定理和余弦定理第一章章末复习提升第二章 2.1.1 数列第二章 2.1.2 数列的递推公式(选学)第二章 2.2.1 等差数列(一)第二章 2.2.1 等差数列(二)第二章 2.2.2 等差数列的前n项和(一)第二章 2.3.1 等比数列(一)第二章 2.3.1 等比数列(二)第二章 2.3.2 等比数列的前n项和(一)第二章 2.3.2 等比数列的前n项和(二)第二章习题课数列求和第二章章末复习提升第三章 3.1.1 不等关系与不等式第三章 3.1.2 不等式的性质第三章 3.2 均值不等式(一)第三章 3.2 均值不等式(二)第三章 3.3 一元二次不等式及其解法第三章 3.4 不等式的实际应用第三章 3.5.1 二元一次不等式(组)所表示的平面区域第三章 3.5.2 简单线性规划第三章习题课线性规划问题的几个重要题型第三章章末复习提升第一章 解三角形1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)[学习目标] 1.通过对任意三角形边角关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.[知识链接]下列说法中,正确的有________.(1)在直角三角形中,若C 为直角,则sin A =ac .(2)在△ABC 中,若a >b ,则A >B . (3)在△ABC 中,C =π-A -B .(4)利用AAS 、SSA 都可以证明三角形全等. (5)在△ABC 中,若sin B =22,则B =π4. 答案 (1)(2)(3)解析 根据三角函数的定义,(1)正确;在三角形中,大边对大角,大角对大边,(2)正确;三角形的内角和为π,(3)正确;AAS 可以证明三角形全等,SSA 不能证明,(4)不正确;若sin B =22,则B =π4或3π4,(5)不正确,故(1)(2)(3)正确. [预习导引]1.在Rt △ABC 中的有关定理 在Rt △ABC 中,C =90°,则有: (1)A +B =90°,0°<A <90°,0°<B <90°; (2)a 2+b 2=c 2(勾股定理); (3)a sin A =c ;b sin B =c ;csin C =c . 2.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是其外接圆的直径2R . 3.解三角形一般地,我们把三角形的三个角及其对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.要点一 正弦定理的推导与证明例1 在锐角△ABC 中,证明:a sin A =b sin B =c sin C.证明 如图,在锐角△ABC 中,过点C 作CD ⊥AB 于点D ,有CD b =sin A ,CDa=sin B .∴CD =b sin A =a sin B .∴a sin A =bsin B .同理,b sin B =c sin C .∴a sin A =b sin B =csin C 成立.规律方法 从正弦定理可以推出它的常用变形有: (1)a sin A =b sin B ,b sin B =c sin C ,a sin A =c sin C . (2)a b =sin A sin B ,a c =sin A sin C ,b c =sin B sin C. (3)a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B . (4)a ∶b ∶c =sin A ∶sin B ∶sin C .跟踪演练1 在钝角△ABC 中,如何证明a sin A =b sin B =csin C 仍然成立?证明 如图,过点C 作CD ⊥AB ,交AB 的延长线于点D ,则 CDb=sin A ,即CD =b sin A ; CDa=sin(180°-B )=sin B , 即CD =a sin B . 因此b sin A =a sin B ,即a sin A =b sin B. 同理可证,b sin B =c sin C .因此a sin A =b sin B =csin C .要点二 已知两角及一边解三角形例2 已知△ABC ,根据下列条件,解三角形: (1)a =20,A =30°,C =45°; (2)a =8,B =60°,C =75°.解 (1)∵A =30°,C =45°;∴B =180°-(A +C )=105°, 由正弦定理得b =a sin B sin A =20sin 105°sin 30°=40sin(45°+60°)=10(6+2);c =a sin C sin A =20sin 45°sin 30°=202,∴B =105°,b =10(6+2),c =20 2. (2)A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由正弦定理a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1). ∴A =45°,b =46,c =4(3+1).规律方法 已知三角形的两角和任一边解三角形,基本思路是:(1)若所给边是已知角的对边时,可由正弦定理求另一角所对边,再由三角形内角和定理求出第三个角.(2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.跟踪演练2 在△ABC 中,a =5,B =45°,C =105°,求边c . 解 由三角形内角和定理知A +B +C =180°, 所以A =180°-(B +C )=180°-(45°+105°)=30°. 由正弦定理a sin A =csin C,得c =a ·sin C sin A =5·sin 105°sin 30°=5·sin (60°+45°)sin 30°=5·sin 60°cos 45°+cos 60°sin 45°sin 30°=52(6+2).要点三 已知两边及一边的对角解三角形 例3 在△ABC 中,分别根据下列条件解三角形:(1)a =1,b =3,A =30°; (2)a =3,b =1,B =120°.解 (1)根据正弦定理,sin B =b sin A a =3sin 30°1=32.∵b >a ,∴B >A =30°,∴B =60°或120°.当B =60°时,C =180°-(A +B )=180°-(30°+60°)=90°, ∴c =b sin C sin B =3sin 60°=2;当B =120°时,C =180°-(A +B )=180°-(30°+120°)=30°=A ,∴c =a =1. (2)根据正弦定理,sin A =a sin B b =3sin 120°1=32>1.因为sin A ≤1.所以A 不存在,即无解.规律方法 已知三角形两边和其中一边的对角解三角形时的方法: (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.跟踪演练3 已知△ABC ,根据下列条件,解三角形: (1)a =2,c =6,C =π3;(2)a =2,c =6,A =π4.解 (1)∵a sin A =c sin C ,∴sin A =a sin C c =22. ∵c >a ,∴C >A .∴A =π4.∴B =5π12,b =c sin B sin C=6·sin 5π12sin π3=3+1.(2)∵a sin A =c sin C ,∴sin C =c sin A a =32. 又∵a <c ,∴C =π3或2π3.当C =π3时,B =5π12,b =a sin B sin A =3+1.当C =2π3时,B =π12,b =a sin B sin A=3-1.1.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B (R 为△ABC 外接圆的半径)⇔a >b ⇔A >B . 2.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin A D .a cos B =b sin A 答案 C解析 由正弦定理a sin A =bsin B,得a sin B =b sin A ,故选C.3.在△ABC 中,已知A =150°,a =3,则其外接圆的半径R 的值为( ) A .3 B.3 C .2 D .不确定 答案 A解析 在△ABC 中,由正弦定理得a sin A =3sin 150°=6=2R ,∴R =3. 4.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形答案 B解析 由sin A =sin C 知a =c , ∴△ABC 为等腰三角形.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 答案 25解析 由正弦定理,得c =a sin Csin A=2a =2 5.1.正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0).2.正弦定理的应用范围(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.3.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.1.1.1 正弦定理(二)[学习目标] 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题.2.能根据条件,判断三角形解的个数.3.能利用正弦定理、三角变换、三角形面积公式解决较为复杂的三角形问题.[知识链接]以下关于正弦定理的叙述或变形错误的是 . (1)在△ABC 中,若sin A a =cos B b =cos C c ,则A =90°.(2)在△ABC 中,若sin 2A =sin 2B ,则a =b .(3)在△ABC 中,若sin A >sin B ,则A >B ;反之,若A >B ,则sin A >sin B . (4)在△ABC 中,asin A =b +c sin B +sin C .答案 (2)解析 对于(1),由正弦定理可知,sin B =cos B ,sin C =cos C ,∴B =C =45°,故A =90°,故(1)正确.对于(2),由sin 2A =sin 2B 可得A =B 或2A +2B =π, ∴a =b 或a 2+b 2=c 2,故(2)错误.对于(3),在△ABC 中,sin A >sin B ⇔a >b ⇔A >B ,故(3)正确. 对于(4),因为a sin A =b sin B =csin C ,所以asin A =b +c sin B +sin C ,故(4)正确.[预习导引]1.正弦定理的常见变形 (1)sin A ∶sin B ∶sin C =a ∶b ∶c .(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C=2R .(3)a =2R sin A ,b =2R sin B ,c =2R sin C . (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R .2.三角变换公式(1)sin(α+β)=sin αcos β+cos αsin β. (2)sin(α-β)=sin αcos β-cos αsin β. (3)sin2α=2sin αcos α.要点一 利用正弦定理判断三角形的形状例1 在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状. 解 方法一 在△ABC 中,根据正弦定理:a sin A =b sin B =csin C =2R (R 为△ABC 外接圆的半径).∵sin 2A =sin 2B +sin 2C , ∴(a 2R )2=(b 2R )2+(c2R)2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ), ∴sin 2B =12.∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形.方法二 在△ABC 中,根据正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R (R 为△ABC 外接圆的半径).∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C . ∴sin B cos C -cos B sin C =0, 即sin(B -C )=0.∴B -C =0,即B =C . ∴△ABC 是等腰直角三角形.规律方法 依据条件中的边角关系判断三角形的形状时,主要有以下两种途径:(1)利用正弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 跟踪演练1 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 在△ABC 中,由正弦定理得a sin A =bsin B ,∴a b =sin A sin B ,∴a 2b 2=sin 2A sin 2B . 又∵a 2tan B =b 2tan A ,∴a 2b 2=tan A tan B ,∴tan A tan B =sin 2Asin 2B, ∴sin A cos A =sin B cos B ,即sin 2A =sin 2B . ∴2A =2B 或2A +2B =π,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 要点二 利用正弦定理求最值或范围例2 在锐角△ABC 中,角A ,B ,C 分别对应边a ,b ,c ,且a =2b sin A ,求cos A +sin C 的取值范围.解 设R 为△ABC 外接圆的半径. ∵a =2b sin A ,∴2R sin A =4R sin B sin A , ∴sin B =12.∵B 为锐角,∴B =π6.令y =cos A +sin C =cos A +sin [π-(B +A )] =cos A +sin(π6+A )=cos A +sin π6cos A +cos π6sin A=32cos A +32sin A =3sin(A +π3). 由锐角△ABC 知,π2-B <A <π2,∴π3<A <π2.∵2π3<A +π3<5π6, ∴12<sin(A +π3)<32, ∴32<3sin(A +π3)<32,即32<y <32. ∴cos A +sin C 的取值范围是(32,32).规律方法 在三角形中解决三角函数的取值范围或最值问题的方法: (1)利用正弦定理理清三角形中基本量间的关系或求出某些量.(2)将要求最值或取值范围的量表示成某一变量的函数(三角函数),从而转化为函数的值域或最值问题.跟踪演练2 在△ABC 中,若C =2B ,求cb 的取值范围.解 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.要点三 正弦定理与三角变换的综合应用例3 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a +c =2b ,且2cos 2B -8cos B +5=0,求角B 的大小,并判断△ABC 的形状. 解 ∵2cos 2B -8cos B +5=0, ∴2(2cos 2B -1)-8cos B +5=0. ∴4cos 2B -8cos B +3=0, 即(2cos B -1)(2cos B -3)=0. 解得cos B =12或cos B =32(舍去).∵0<B <π,∴B =π3.∵a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin π3= 3.∴sin A +sin(2π3-A )=3,∴sin A +sin2π3cos A -cos 2π3sin A = 3. 化简得32sin A +32cos A =3,∴sin(A +π6)=1.∵0<A <π,∴A +π6=π2.∴A =π3,C =π3,即A =B =C .∴△ABC 是等边三角形.规律方法 借助正弦定理可以实现三角形中边角关系的互化,在转化为角的关系后,常常利用三角变换公式进行化简,从而进行三角形形状的判断、三角恒等式的证明.跟踪演练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.解 设方程的两根为x 1、x 2,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=b cos A ,x 1x 2=a cos B ,∴b cos A =a cos B .由正弦定理得2R sin B cos A =2R sin A cos B (R 为△ABC 外接圆的半径), ∴sin A cos B -cos A sin B =0,sin(A -B )=0. ∵A 、B 为△ABC 的内角, ∴0<A <π,0<B <π,-π<A -B <π, ∴A -B =0,即A =B . 故△ABC 为等腰三角形.1.在△ABC 中,AC =6,BC =2,B =60°,则角C 的值为( ) A. 45° B. 30° C .75° D .90° 答案 C解析 由正弦定理,得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6, ∴A 为锐角. ∴A =45°.∴C =75°.2.在△ABC 中,若a cos A =b cos B =ccos C ,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,2a sin A -b sin B -csin C = .答案 0 解析 由于a sin A =b sin B =c sin C ,所以2a sin A -b sin B -c sin C =(a sin A -b sin B )+(a sin A -c sin C)=0. 4.在△ABC 中,a =23,b =6,A =30°,判断三角形是否有解,若有解,解该三角形.解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43; 当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.1.已知两边和其中一边的对角,求第三边和其他两个角,这时三角形解的情况可能无解,也可能一解或两解.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,最终目的是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.1.1.2 余弦定理(一)[学习目标] 1.理解余弦定理的证明.2.初步运用余弦定理及其变形形式解三角形.[知识链接]1. 以下问题可以使用正弦定理求解的是 .(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角. (2)已知两角和一边,求其他角和边.(3)已知一个三角形的两条边及其夹角,求其他的边和角. (4)已知一个三角形的三条边,解三角形. 答案 (1)(2)2.如图所示,在直角坐标系中,若A (0,0),B (c,0),C (b cos A ,b sin A ).利用两点间距离公式表示出|BC |,化简后会得出怎样的结论?解 a 2=|BC |2=(b cos A -c )2+(b sin A -0)2 =b 2(sin 2A +cos 2A )-2bc cos A +c 2 =b 2+c 2-2bc cos A . 得出a 2=b 2+c 2-2bc cos A . [预习导引] 1.余弦定理三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍.即 a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 2.余弦定理的变形 cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.要点一 已知两边及一角解三角形例1 已知△ABC ,根据下列条件解三角形: (1)b =3,c =33,B =30°; (2)a =3,b =2,B =45°.解 (1)方法一 由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6.当a =3时,由于b =3,∴A =B =30°,∴C =120°. 当a =6时,由正弦定理得sin A =a sin Bb =6×123=1.∴A =90°,∴C =60°.方法二 由正弦定理得sin C =c sin B b =33×123=32,由b <c ,∴C =60°或120°,当C =60°时,A =90°,由勾股定理a =b 2+c 2=32+(33)2=6, 当C =120°时,A =30°,△ABC 为等腰三角形. ∴a =b =3.(2)由余弦定理知b 2=a 2+c 2-2ac cos B . ∴2=3+c 2-23·22c . 即c 2-6c +1=0,解得c =6+22或c =6-22, 当c =6+22时,由余弦定理,得cos A =b 2+c 2-a 22bc =2+(6+22)2-32×2×6+22=12.∵0°<A <180°,∴A =60°,∴C =75°.当c =6-22时,由余弦定理,得cos A =b 2+c 2-a 22bc =2+(6-22)2-32×2×6-22=-12.∵0°<A <180°,∴A =120°,C =15°. 故c =6+22,A =60°,C =75°或c =6-22,A =120°,C =15°. 规律方法 已知两边及一角解三角形有以下两种情况:(1)若已知角是其中一边的对角,有两种解法,一种方法是利用正弦定理先求角,再求边;另一种方法是用余弦定理列出关于另一边的一元二次方程求解.(2)若已知角是两边的夹角,则直接运用余弦定理求出另外一边,然后根据边角关系利用正弦定理求解或者直接利用余弦定理求角.跟踪演练1 在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边长c .解 5x 2+7x -6=0可化为(5x -3)(x +2)=0. ∴x 1=35,x 2=-2(舍去).∴cos C =35.根据余弦定理,c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16.∴c =4,即第三边长为4.要点二 已知三边或三边关系解三角形例2 (1)已知△ABC 的三边长为a =23,b =22,c =6+2,求△ABC 的各角度数. (2)已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 解 (1)由余弦定理得:cos A =b 2+c 2-a 22bc =(22)2+(6+2)2-(23)22×22×(6+2)=12,∴A =60°.cos B =a 2+c 2-b 22ac =(23)2+(6+2)2-(22)22×23×(6+2)=22,∴B =45°,∴C =180°-A -B =75°.(2)∵c >a ,c >b ,∴角C 最大.由余弦定理, 得c 2=a 2+b 2-2ab cos C , 即37=9+16-24cos C , ∴cos C =-12,∵0°<C <180°, ∴C =120°.∴△ABC 的最大内角为120°.规律方法 (1)已知三角形三边求角时,可先利用余弦定理求角,再用正弦定理求解,在用正弦定理求解时,要根据边的大小确定角的大小,防止产生增解或漏解.(2)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边解三角形. 跟踪演练2 在△ABC 中,已知BC =7,AC =8,AB =9,试求AC 边上的中线长. 解 由余弦定理和条件,得cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理,得 x 2=(AC 2)2+AB 2-2·AC2·AB cos A=42+92-2×4×9×23=49,∴x =7.所以所求AC 边上的中线长为7. 要点三 三角形形状的判断例3 在△ABC 中,已知cos 2 A 2=b +c2c ,判断△ABC 的形状.解 方法一 在△ABC 中,由已知cos 2 A 2=b +c2c ,得1+cos A 2=b +c2c,∴cos A =bc.根据余弦定理,得b 2+c 2-a 22bc =bc .∴b 2+c 2-a 2=2b 2,即a 2+b 2=c 2. ∴△ABC 是直角三角形.方法二 在△ABC 中,设其外接圆半径为R ,由正弦定理,b =2R sin B ,c =2R sin C , 由cos 2 A 2=b +c 2c 知,cos A =bc .∴cos A =sin Bsin C ,即sin B =sin C cos A .∵B =π-(A +C ), ∴sin(A +C )=sin C cos A , ∴sin A cos C =0.∵A ,C 都是△ABC 的内角, ∴A ≠0,A ≠π.∴cos C =0,∴C =π2.∴△ABC 是直角三角形.规律方法 (1)方法一是用余弦定理将等式转化为边之间的关系式,方法二是借助于正弦定理,将已知等式转化为角的三角函数关系式.这两种方法是判断三角形形状的常用手段. (2)一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪演练3 在△ABC 中,若(a -c cos B )sin B =(b -c cos A )sin A ,判断△ABC 的形状. 解 方法一 由正弦定理及余弦定理知,原等式可化为(a -c ·a 2+c 2-b 22ac )b =(b -c ·b 2+c 2-a 22bc )a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2,∴a 2+b 2-c 2=0或a 2=b 2,故三角形为等腰三角形或直角三角形.方法二 由正弦定理,原等式可化为(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A , ∴sin B cos B =sin A cos A ,∴sin 2B =sin 2A , ∴2B =2A 或2B +2A =π,∴A =B 或A +B =π2,故△ABC 为等腰三角形或直角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的另一边长为( )A .52B .213C .16D .4 答案 B解析 设另一边长为x ,则x 2=52+32-2×5×3×(-35)=52,∴x =213.2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32.∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 答案 D解析 设顶角为C ,∵l =5c ,∴a =b =2c , 由余弦定理得:cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,已知A =60°,最大边长和最小边长恰好是方程x 2-7x +11=0的两根,则第三边的长为 . 答案 4解析 设最大边为x 1,最小边为x 2, 则x 1+x 2=7,x 1x 2=11,∴第三边长=x 21+x 22-2x 1x 2cos A =(x 1+x 2)2-2x 1x 2(1+cos A )=4.5.在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5,所以可令a =2k ,b =4k ,c =5k (k >0).c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而△ABC 为钝角三角形.1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形.(2) 若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形.2.当所给的条件是边角混合关系时,判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.3.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角.(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角.(3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.1.1.2余弦定理(二)[学习目标] 1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.[知识链接]1.以下问题不能用余弦定理求解的是.(1)已知两边和其中一边的对角,解三角形.(2)已知两角和一边,求其他角和边.(3)已知一个三角形的两条边及其夹角,求其他的边和角.(4)已知一个三角形的三条边,解三角形.答案(2)2.利用余弦定理判断三角形的形状,正确的是.(1)在△ABC中,若a2=b2+c2,则△ABC为直角三角形.(2)在△ABC中,若a2<b2+c2,则△ABC为锐角三角形.(3)在△ABC中,若a2>b2+c2,则△ABC为钝角三角形.答案(1)(3)[预习导引]1.正弦定理及其变形(1)asin A=bsin B=csin C=2R(R为△ABC外接圆半径).(2)a=2R sin A,b=2R sin B,c=2R sin C.2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C . (2)cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.三角变换公式(1)cos(α+β)=cos αcos β-sin αsin β. (2)cos(α-β)=cos αcos β+sin αsin β.(3)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.要点一 正、余弦定理的综合应用例1 如图所示,在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 在△ABD 中,AD =10,AB =14,∠BDA =60°,设BD =x , 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos ∠BDA , ∴142=102+x 2-2×10·x cos 60°,即x 2-10x -96=0,解得x 1=16,x 2=-6(舍去), ∴BD =16.∵AD ⊥CD ,∠BDA =60°,∴∠CDB =30°. 在△BCD 中,由正弦定理:BC sin ∠CDB =BDsin ∠BCD,∴BC =16sin 30°sin 135°=8 2.规律方法 余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. 跟踪演练1 在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .解 方法一 在△ABC 中,∵sin A cos C =3cos A sin C , 则由正弦定理及余弦定理有:a ·a 2+b 2-c 22ab =3(b 2+c 2-a 22bc )c ,化简并整理得: 2(a 2-c 2)=b 2.又由已知a 2-c 2=2b ,∴4b =b 2.解得b =4或b =0(舍). 方法二 由余弦定理得:a 2-c 2=b 2-2bc cos A . 又a 2-c 2=2b ,b ≠0.所以b =2c cos A +2. ①又sin A cos C =3cos A sin C ,∴sin A cos C +cos A sin C =4cos A sin C , sin(A +C )=4cos A sin C , 即sin B =4cos A sin C ,由正弦定理得sin B =bc sin C ,故b =4c cos A . ②由①②解得b =4.要点二 利用正、余弦定理证明三角形中的恒等式 例2 在△ABC 中,有: (1)a =b cos C +c cos B ; (2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ;这三个关系式也称为射影定理,请给出证明. 证明 方法一 (1)设△ABC 外接圆半径为R , 由正弦定理得b =2R sin B ,c =2R sin C , ∴b cos C +c cos B =2R sin B cos C +2R sin C cos B =2R (sin B cos C +cos B sin C ) =2R sin(B +C )=2R sin A =a . 即a =b cos C +c cos B同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A . 方法二 (1)由余弦定理得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a =a .∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A .规律方法 (1)证明三角恒等式的关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正、余弦定理证明三角形中的恒等式的途径有两种途径:一是把角的关系通过正、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化. 跟踪演练2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证:cos B cos C =c -b cos Ab -c cos A .证明 方法一 因为左边=a 2+c 2-b 22ac a 2+b 2-c 22ab =b (a 2+c 2-b 2)c (a 2+b 2-c 2),右边=c -b ·b 2+c 2-a 22bc b -c ·b 2+c 2-a 22bc =b (a 2+c 2-b 2)c (a 2+b 2-c 2),∴等式成立.方法二 设△ABC 外接圆半径为R , ∵右边=2R sin C -2R sin B ·cos A2R sin B -2R sin C ·cos A=sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C=左边.∴等式成立.要点三 利用正、余弦定理判断三角形形状例3 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.解 由(a +b +c )(b +c -a )=3bc , 得b 2+2bc +c 2-a 2=3bc , 即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,又A ∈(0,π),∴A =π3,又sin A =2sin B cos C ,由正、余弦定理,得a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a ,∴b 2=c 2,b =c ,∴△ABC 为等边三角形.规律方法 题中边的大小没有明确给出,而是通过一个关系式来确定的,可以考虑利用正弦定理将边的关系转化为角的关系,也可以利用余弦定理将边、角关系转化为边的关系来判断. 跟踪演练3 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状. 解 方法一 根据余弦定理得b 2=a 2+c 2-2ac cos B .∵B =60°,2b =a +c , ∴⎝⎛⎭⎫a +c 22=a 2+c 2-2ac cos 60°,整理得(a -c )2=0,∴a =c . 又∵2b =a +c ,∴2b =2a ,即b =a . ∴△ABC 是等边三角形. 方法二 根据正弦定理,2b =a +c 可转化为2sin B =sin A +sin C . 又∵B =60°,∴A +C =120°.∴C =120°-A , ∴2sin 60°=sin A +sin(120°-A ), 整理得sin(A +30°)=1, ∴A =60°,C =60°. ∴△ABC 是等边三角形.1.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为 ( )A.13 B .-23 C.14 D .-14 答案 A解析 根据正弦定理, a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶3,设a =3k ,b =2k ,c =3k (k >0). 则有cos C =9k 2+4k 2-9k 22×3k ×2k=13.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 C解析 ∵2cos B sin A =sin C ,∴2×a 2+c 2-b 22ac ×a =c ,∴a =b .故△ABC 为等腰三角形.3.在△ABC 中,若a 2+c 2-b 2=3ac ,则角B 的值为 . 答案 π6解析 根据余弦定理,cos B =a 2+c 2-b 22ac =3ac 2ac =32,又B ∈(0,π),所以B =π6.4.在△ABC 中,若B =30°,AB =23,AC =2,则满足条件的三角形有几个? 解 设BC =a ,AC =b ,AB =c , 由余弦定理,得b 2=a 2+c 2-2ac cos B , ∴22=a 2+(23)2-2a ×23cos 30°, 即a 2-6a +8=0,解得a =2或a =4. 当a =2时,三边为2,2,23可组成三角形; 当a =4时,三边为4,2,23也可组成三角形. ∴满足条件的三角形有两个.1.已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单. 2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角,并利用三角恒等变形进行化简; (2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一. 4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.1.2 应用举例(一)[学习目标] 1.利用正、余弦定理解决生产实践中的有关距离的测量问题.2.利用正、余弦定理解决生产实践中的有关高度的测量问题.3.培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神.[知识链接]“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?通过本节的学习,我们将揭开这个奥秘. [预习导引] 1.仰角与俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图.2.方位角和方向角从正北方向顺时针转到目标方向线的水平角叫方位角,方位角的范围是[0,2π].从指定方向线到目标方向线所成的小于90°的水平角叫方向角,如北偏东30°,南偏东45°. 3.坡角与坡度坡面与水平面所成的二面角叫坡角,坡面的铅直高度与水平宽度之比叫坡度.要点一 测量底部不能到达的建筑物的高度例1 如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD . 解 在△ABC 中, ∠BCA =90°+β, ∠ABC =90°-α,∠CAD =β ,∠BAC =α-β.根据正弦定理得AC sin ∠ABC =BC sin ∠BAC ,即AC sin (90°-α)=BCsin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin (α-β).答 山的高度为h cos αsin βsin (α-β).规律方法 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练1 某登山队在山脚A 处测得山顶B 的仰角为35°,沿倾斜角为20°的斜坡前进1 000m 后到达D 处,又测得山顶的仰角为65°,则山的高度为________ m(精确到1 m ,sin 35°≈0.574). 答案 812解析 过点D 作DE ∥AC 交BC 于E ,因为∠DAC =20°, 所以∠ADE =160°,于是∠ADB =360°-160°-65°=135°. 又∠BAD =35°-20°=15°,所以∠ABD =30°.在△ABD 中,由正弦定理,AB =AD sin ∠ADBsin ∠ABD =1 0002(m).在Rt △ABC 中,BC =AB sin 35°≈812(m). 要点二 测量仰角求高度问题例2 如图所示,A 、B 是水平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD .解 由于CD ⊥平面ABD ,∠CAD =45°, 所以CD =AD .在△ABD 中,∠BDA =180°-45°-120°=15°,由AB sin 15°=AD sin 45°,得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1) (m). 即山的高度为800(3+1) m.规律方法 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.和高度有关的问题往往涉及直角三角形的求解.跟踪演练2 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 和D .现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠BCD =α,∠BDC =β, ∴∠CBD =180°-(α+β), ∴BC sin β=s sin[180°-(α+β)],即BC sin β=ssin (α+β). ∴BC =sin βsin (α+β)·s .在△ABC 中,由于∠ABC =90°,∴ABBC =tan θ,∴AB =BC ·tan θ=sin β·tan θsin (α+β)·s .要点三 测量两个不能到达点之间的距离问题例3 如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BCD 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°= 64( km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形. ∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+616-2×32×64×22=38,∴AB =64(km). 所以河对岸A 、B 两点间距离为64km. 规律方法 测量两个不可到达的点之间的距离,一般是把求距离问题转化为应用余弦定理求三角形的边长问题,然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量。