北师大版新七年级上册数学期末模拟试卷及答案-百度文库

合集下载

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版七年级上学期数学《期末检测题》附答案

北师大版七年级上学期数学《期末检测题》附答案

北师大版数学七年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -13. ﹣2的绝对值是()A. 2B. 12C.12- D. 2-4.计算:(3)9-⨯的结果等于()A. 27- B. 6- C. 27 D. 65. 下列结果为负数的是( )A.-(-3)B. -32C. (-3)2D. |-3|6.若12m a b+-与323a b是同类项,则m=()A. 2 B. 3 C. 4 D. 5 7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) 星期 一 二 三 四 最高气温 21℃ 22℃ 14℃ 20℃ 最低气温 11℃14℃-1℃11℃A. 星期一B. 星期二C. 星期三D. 星期四9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在C 处,小强站在B 处,两人同时逆时针方向跑步,小斌每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A. 半圆跑道AB 上B. 直跑道BC 上C. 半圆跑道CD 上D. 直跑道AD 上10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 12.单项式232x y的次数是__________. 13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________.14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).18.计算: (1)21324()368-⨯-+ (2)22(3)|8|4-⨯---÷19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE =cm ; (2)若4AC cm =,求DE的长.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤<20第4组 6070x ≤<b第5组 5060x << 6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1500名学生,那么成绩低于70分的约有多少人?23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 月用水量(吨) 单价(元/吨) 不超过25吨 1.4 超过25吨的部分2.1另:每吨用水加收0.95元的城市污水处理费(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费 元; (2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简) (2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.【答案】C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -1【答案】D【解析】【分析】直接利用数轴得出结果即可.【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.3. ﹣2的绝对值是()A. 2B.12C. 12-D. 2-【答案】A 【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .4.计算:(3)9-⨯的结果等于( ) A. 27- B. 6-C. 27D. 6【答案】A 【解析】 【分析】根据有理数的乘法法则进行计算即可 【详解】解:(3)9=-27-⨯ 故选A【点睛】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则. 5. 下列结果为负数的是( ) A. -(-3) B. -32C. (-3)2D. |-3|【答案】B 【解析】试题分析:A 、-(-3)=3;B 、-23=-9;C 、2(3)-=9;D 、3-=3.考点:有理数的计算6.若12m a b +-与323a b 是同类项,则m =( ) A. 2 B. 3C. 4D. 5【答案】A 【解析】 【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同,据此列出方程m 13+=即可解答本题. 【详解】解:因为m 12a b +-与323a b 是同类项, 所以m 13+=,,所以m2故选:A.【点睛】本题考查的是同类项的定义,直接利用定义解决即可.7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校的每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查【答案】A【解析】【分析】抽取样本要注意样本必须有代表性.【详解】A. 从全校的每个班级中随机抽取几个学生作调查,有代表性,合适;B. 在低年级学生中随机抽取一个班级作调查,样本没有代表性,不合适;C. 在学校门口通过观察统计佩戴眼镜的人数,样本没有代表性,不合适;D. 从学校的男同学中随机抽取50名学生作调查,样本没有代表性,不合适.故选A【点睛】本题考核知识点:抽样调查.解题关键点:注意抽取的样本应该具有代表性.8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】C【解析】【分析】本题考查的是最大温差,先求出星期一、星期二、星期三、星期四的温差,再进行比较,找到最大的即可.【详解】解:星期一的温差是21-11=10,星期二的温差是22-14=8,星期三的温差是14-(-1)=15,星期四的温差是20-11=9,因为15>10>9>8,所以星期三的温差最大,故选:C.【点睛】本题考查的是温差,温差=最高温度-最低温度,依次计算这四天的温差,之后按照有理数的大小比较,找到最大的值就可以了.9.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小斌站在C处,小强站在B处,两人同时逆时针方向跑步,小斌每秒跑4m,小强每秒跑6m.当小强第一次追上小斌时,他们的位置在()A. 半圆跑道AB上B. 直跑道BC上C. 半圆跑道CD上D. 直跑道AD上【答案】D【解析】【分析】本题考查是一元一次方程,设小强第一次追上小彬的时间为x秒,根据小强的路程-小彬的路程=BC的长度,也就是85米,再进一步判断即可求解本题.【详解】解:设小强第一次追上小彬的时间为x秒,-=,根据题意,得:6x4x85解得x=42.5,则4x=170>115,170-115=55,所以他们的位置在直跑道AD上,故选:D.【点睛】本题主要考查一元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强的路程-小彬的路程=路程差BC 直跑道的长.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.【答案】C 【解析】 【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得. 【详解】由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有:故选C .【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 【答案】1 【解析】 【分析】本题要注意有理数运算中的加法法则:异号两数相加,取绝对值较大数的符号,并把绝对值相减. 【详解】解:-2+3=3-2=1, 故答案为:1.【点睛】解题的关键是理解加法的法则,先确定和的符号,再进行计算. 12.单项式232x y 的次数是__________. 【答案】3 【解析】【分析】本题考查的是单项式的次数,一个单项式中,所有字母的指数的和叫做单项式的次数,注意指数为1时省略不写.【详解】解:因为x 的指数为2,y 的指数为1, 所以单项式的次数是2+1=3, 故答案为:3.【点睛】本题正确理解单项式的次数,注意到y 的指数为1即可.13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________. 【答案】74.3110⨯ 【解析】 【分析】本题考查的是科学记数法,直接将题目中的数据43100000数出位数,位数-1即为10的指数就可以解答本题. 【详解】解:因为43100000是8位数, 所以43100000=4.31×107, 故答案为:74.3110⨯.【点睛】本题考查的是科学记数法,是指把一个数表示成a ×10的n 次幂的形式(1a 10≤<,n 为正整数). 14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 【答案】两点确定一条直线 【解析】 【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线, 故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________ 【答案】甲班 【解析】 【分析】分别求出甲班与乙班成绩为D 等级的人数进行比较即可. 【详解】由频数分布直方图知甲班成绩为D 等级的人数为13人, 由扇形统计图知乙班成绩为D 等级的人数为40×30%=12, ∴D 等级较多的人数是甲班, 故答案为甲班.【点睛】本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键. 16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________. 【答案】2134a b + 【解析】 【分析】认真读题可知,本题的规律是:从第3个数开始,每个数均为前两个数的和,从而可以得出答案. 【详解】解:由题意可知第7个数是5a+8b, 第8个数是8a+13b, 第9个数是13a+21b, 第10个数是21a+34b, 故答案为:21a+34b .【点睛】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).【答案】【解析】【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.18.计算:(1)21324()368-⨯-+(2)22(3)|8|4-⨯---÷【答案】(1)-21;(2)10 【解析】【分析】本题为基础的计算题:(1) 需要注意可以先算括号内,也可以运用运算律直接拆开,注意负号的存在; (2) 注意到绝对值,减数这部分要先算绝对值再算除法. 【详解】(1)原式213242424368=-⨯+⨯⨯- 1649=-+-21=-(2)原式4384=-⨯--÷()122=-10=【点睛】本题考查的是有理数的混合运算,这里掌握它们的运算法则是解题的关键. 19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 【答案】22a ab -+,-5 【解析】 【分析】根据去括号、合并同类项,可化简整式,之后将题目中的数值代入,即可求得答案. 【详解】原式22426a ab a ab =--+22a ab =-+当1a =-,2b =时原式21212=--+⨯-⨯()()14=-- 5=-【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前面是正数去括号不变号,括号前面是负数去括号都变号. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=【答案】(1)5x =;(2) 1.3x = 【解析】 【分析】根据一元一次方程的解法:(1) 去括号、移项,即可解答;(2) 先利用等式的性质去分母,之后去括号、移项,即可解答. 【详解】(1)4260x -+=246x -=--210x -=- 5x =(2) ()()341622x x --=+123624x x --=+ 122436x x -=++ 1013x =1.3x =【点睛】本题是一元一次方程的解法,属于基础题目,在解题的时候,需要注意:括号前面是负号去掉括号要变号;去分母的时候要注意每一项都要乘,不要漏项.21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE = cm ; (2)若4AC cm =,求DE 的长. 【答案】(1)6DE cm =;(2)6cm 【解析】 【分析】(1)C 是AB 的中点,先求AC 和CB ,再根据D 、E 是AC 和BC 的中点,即可求解; (2)由AC 和AB 可求BC ,再根据D 、E 分别是AC 和BC 的中点,即可求解. 【详解】(1)因为AB=12cm,C 是AB 的中点,所以AC=BC=6cm,因为D 、E 是AC 和BC 的中点,所以CD=CE=3cm, 所以DE=3+3=6cm, 所以DE=6cm .(2)1248BC AB AC =-=-=114222CDAC ==⨯= 118422CE BC ==⨯= ∴246DE DC CE cm =+=+=【点睛】本题考查的是线段的中点问题,注意线段中点的计算即可.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤< 20第4组 6070x ≤<b第5组 5060x <<6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1500名学生,那么成绩低于70分的约有多少人?【答案】(1)80,24,14;(2)27︒;(3)375人【解析】【分析】(1)抽取学生人数我们找到一组数据以及所占整体的百分率即可求解,之后可依次求出a、b的值;(2)由第5组学生的人数为6人,即可求得所占圆心角为63602780︒⨯=︒;(3)由样本估计整体,根据抽查学生中低于70分的学生占80名学生的比,即可求得答案.【详解】(1)20÷25%=80(人),b=20-6=14(人),a=80-16-20-20=24(人)(2)∵6 3602780︒⨯=︒∴“第五组”所在扇形的圆心角为27︒(3)∵614 150037580+⨯=∴成绩低于70分的约有375人.【点睛】本题主要考查的是数据的统计和分析,我们在解题的时候,需要注意认真计算,同时需要牢固掌握统计表和扇形统计图.23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费元;(2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?【答案】(1)42.3;(2)40吨;(3)74元【解析】分析】本题是一个实际应用题:(1)小明家用水量没有超过25吨,直接单价×数量即可;(2)设小明家2月份用水量为x 吨,可列方程()25 1.4x 25 2.10.95x 104.5⨯+-⨯+=,求出x 的值即可; (3)应先算出水表中3月的用水量,再计算实际的用水量,最后根据收费标准计算应缴纳水费. 【详解】(1)18×(1.4+0.95)=42.3(元) (2)∵25(1.40.95)58.75104.5⨯+=< ∴小明家2月份用水超过25吨. 设小明家2月份用水x 吨根据题意得:25 2.35(25)(2.10.95)104.5x ⨯+-⨯+= 解这个方程得:40x = 答:小明家2月份用水40吨 (3)水表计数:56.4 2.3524÷= 实际用水:2480%30÷=应缴水费:25 2.35(3025) 3.05⨯+⨯-74=(元) 答:小明家3月份实际应交水费74元.【点睛】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程;易错点是忽略污水处理费.24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE ∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.【答案】(1)45︒;(2)ACE BCF ∠=∠,理由见解析;(3)45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒ 【解析】 【分析】(1)根据角平分线的性质求出∠FCA ,即可求出∠ACE ; (2)根据同角的余角相等即可求出;(3)∠ACD 和∠BCF 都和∠ACF 关系紧密,分别表示它们与∠ACF 的关系即可求解. 【详解】(1)∵CF 平分ACB ∠ ∴11904522ACF ACB ∠=∠=⨯= ∴90ACE ACF ∠=︒-∠904545=︒-︒=︒(2)猜想:ACE BCF ∠=∠ 理由:∵90ACF BCF ∠=︒-∠90ACE ACF ∠=︒-∠∴9090ACE BCF ∠=︒-︒-∠()9090BCF =︒-︒+∠ BCF =∠(3)因为CA 在∠DCF 内侧,所以∠DCA=∠DCF -∠ACF=45°-∠ACF ,∠BCF=∠BCA -∠ACF=90°-∠ACF , 所以45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒【点睛】本题考查了角平分线的性质,角和角之间的关系,同角的余角相等的性质,要善于观察顶点相同的角之间的关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大? /x cm 12 3 4 5 3/cm V160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.【答案】(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.。

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)七年级数学上册期末试卷一、选择题(每小题3分,共30分)1.(3分)(-2)^3表示()A。

2乘以-3B。

2个-3相加C。

3个-2相加D。

3个-2相乘2.(3分)下列各式中,与3÷4÷5运算结果相同的是()A。

3÷(4÷5)B。

3÷(4×5)C。

3÷(5÷4)D。

4÷3÷53.(3分)数轴上表示-5和3的点分别是A和B,则线段AB的长为()A。

-8B。

-2C。

2D。

84.(3分)将正方体展开需要剪开的棱数为()A。

5条B。

6条C。

7条D。

8条5.(3分)用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A。

圆锥B。

五棱柱C。

正方体D。

圆柱6.(3分)2019年9月25日,北京大兴国际机场正式投入运营。

预计2022年实现年旅客吞吐量xxxxxxxx次。

数据xxxxxxxx科学记数法表示为()A。

4.5×10^6B。

45×10^6C。

4.5×10^7D。

0.45×10^87.(3分)如图,填在下面每个正方形中的四个数之间都有相同的规律,则m的值为()A。

107B。

118C。

146D。

1668.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A。

折线图B。

条形图C。

扇形图D。

不能确定9.(3分)下列调查中,适合用普查方式收集数据的是()A。

要了解我市中学生的视力情况B。

要了解某电视台某节目的收视率C。

要了解一批灯泡的使用寿命D。

要保证载人飞船成功发射,对重要零部件的检查10.(3分)已知,每本练本比每根水性笔便宜2元,小刚买了6本练本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A。

6(x+2)+4x=18B。

北师大版七年级上学期数学《期末考试卷》及答案

北师大版七年级上学期数学《期末考试卷》及答案
A.95元B.90元C.85元D.80元
二.填空题(共7小题)
11.多项式 次数是______.
12.如果x=2是关于x 方程 x﹣a=1的解,那么a的值是_____.
13.A为数轴上表示2的点,将点A沿数轴向左平移5个单位到点B,则点B所表示的数的绝对值为_____.
14.由若干个相同的小立方体搭成的几何体三视图如图所示,则搭成这个几何体的小立方体的个数是_____.
∴买4个足球、7个篮球共需要(4m+7n)元.
故选A.
[点睛]注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.
6.已知线段AB=10cm,C为直线AB上的一点,且BC=4cm,则线段AC=()
A.14cmB.6cmC.14cm或6cmD.7cm
[答案]C
[解析]
[分析]
根据点C在直线AB上,可分两种情况,即点C在点B的左侧和右侧,分别计算即可.
故选A.
考点:几何体的展开图.
5.买一个足球需要m元,买一篮球需要n元,则买4个足球和7个篮球共需要多少元()
A.4m+7nB.28mnC.7m+4nD.11mn
[答案]A
[解析]
[分析]
根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.
[详解]∵一个足球需要m元,买一个篮球需要n元.
3.下列运算中,正确的是()
A.(-2)+(+1)=-3B.(-2)-(-1)=-1
C.(-2)×(-1)=-2D.(-2)÷(-1)=-2
[答案]B
[解析]
A.(-2)+(+1)=-1,故A选项错误;B.(-2)-(-1)=-1,正确;C.(-2)×(-1)=2,故C选项错误;D.(-2)÷(-1)=2,故D选项错误,

北师大版七年级上学期数学《期末测试题》及答案解析

北师大版七年级上学期数学《期末测试题》及答案解析
故选C.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.有理数 , , 在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
[答案]A
[解析]
[分析]
根据数轴上点的位置作出判断即可.
(2)若 ,直接写出 的度数(用含 的代数式表示).
28.对数轴上的点 进行如下操作:先把点 表示的数乘以 ,再把所得数对应的点沿数轴向右平移 个单位长度,得到点 .称这样的操作为点 的“倍移”,对数轴上的点 , , , 进行“倍移”操作得到的点分别为 , , , .
(1)当 , 时,
①若点 表示的数为 ,则它的对应点 表示的数为.若点 表示的数是 ,则点 表示的数为;②数轴上的点 表示的数为1,若 ,则点 表示的数为;
[详解]由相反数的意义得,2的相反数是-2,
故选:D.
[点睛]本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.2019年12月16日,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星,卫星距离地球表面约21500000m,将数字21500000用科学记数法表示应为
二、填空题(本题共8个小题,每小题2分,共16分)
9.计算: =________; ________.
[答案](1).-1(2).18
[解析]
[分析]
根据有理数的乘方以及乘除法运算法则进行计算即可得到答案.
[详解] =-1;
,
故答案为:-1,18.

北师大版数学七年级上册期末试卷含答案

北师大版数学七年级上册期末试卷含答案

北师七年级(上)期末数学试卷1第一部分 选择题一.选择题(每小题3分)1. 下列选项中,比3-小的数是( )A. 1-B.0C.21D.5- 2. 第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是( )3. 下列各式符合代数式书写规范的是( )A.a b B.7⨯a C. 12-m 元 D. x 213 4.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为( ) A. 1110395.0⨯元 B.101095.3⨯元 C. 91095.3⨯ 元 D.9105.39⨯元5. 下列计算正确的是( )A. 2624a a a =+B.ab ba ab =-67C.ab b a 624=+D.325=-a a6. 如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是( )7. 现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为( )A. 两点之间线段的长度,叫做这两点之间的距离B. 过一点有无数条直线C. 两点确定一条直线D. 两点之间,线段最短8. 深圳市12月上旬每天平均空气质量指数(AQI )分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A. 折线统计图B.频数直方图C.条形统计图D.扇形统计图9. 如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD :CB=1:3,则DB 的长度为( )A.12B.18C.16D.2010. 若2=x 是方程01424=-+m x 的解,则m 的值为( )A.10B.4C.3D.-311. 在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是( )A.86B.78C.60D.10112. 下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC ,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有( )A.2B.3C.4D.5二、填空题(每小题3分)13. 已知323y x m 和n y x 22-是同类项,则式子n m +的值是 .14. 在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是 .15. 某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为 元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为 .三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+ (3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x(2)(2)142312-=+--y y20.(本题8分)为了解某校学生对A 《最强大脑》、B 《朗读者》、 C 《中国诗词大会》、D 《出彩中国人》四个电视节目的喜爱情况,随机抽取了m 学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1) m= ,n= ;(2) 扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角读书是 度.(3) 根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB ,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x 辆.(1)则小型汽车的车辆数为 (用含x 的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a-30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 __,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C,使AC=2BC,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?参考答案北师大版数学七年级上册期末试卷2一、选择题(每题3分,共30分)1.下列各数中,比-2小的数是()A.0 B.-3 C.-1 D.|-0.6|2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36 000千米的地球同步轨道.将36 000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.下面的调查中,适合采用普查的是()A.对全国中学生心理健康现状的调查B.对某市食品合格情况的调查C.对天水电视台《直播天水》收视率的调查D.对你所在班级同学身高情况的调查4.如图,该几何体从上面看是()5.下列立体图形的名称与平面展开图不相符...的是()6.下列计算正确的是()A.3-5=2 B.3a+2b=5abC.4-|-3|=1 D.3x2y-2xy2=xy7.某超市进了一批商品,每件进价为a元,若每件要想获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C .(1+25%)a 元D .a 1+25%元 8.如图是某市PM2.5来源统计图,根据该统计图,下列判断正确的是( )A .表示汽车尾气污染的圆心角约为72°B .建筑扬尘等约占6%C .汽车尾气污染约为建筑扬尘等的5倍D .煤炭以及其他燃料燃放占所有PM 2.5污染源的129.下图是一个数值运算的程序,若输出的y 值为3,则输入的x 值为( )A .3.5B .-3.5C .7D .-710.已知线段AB =8 cm ,在直线AB 上有一点C ,且BC =3 cm ,点M 为线段AC的中点,则线段AM 的长是( )A .2.5 cmB .5.5 cmC .2.5 cm 或5.5 cmD .4 cm 或12 cm 二、填空题(每题3分,共30分)11.-12πab 的系数为________,次数为________.12.林林的爸爸只用了两枚钉子就把一根木条固定在墙上,用到的数学原理是___________________________________________________________.13.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检测.在这个问题中,总体是__________________________________,样本是________________________________________.14.如图,在直角三角形ABC 中,∠ACB =90°,以边BC 所在的直线为轴旋转一周所得到的几何体是________.15.若4x 2m y n +1与-3x 4y 3的和是单项式,则m +n =________.16.如图,∠AOB 是直角,∠AOC =40°,OD 平分∠BOC ,则∠AOD 等于________.17.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有_____人.18.如图,这是一个正方体的展开图,如果将它折叠成一个正方体后相对面上的数相等,则xy 的值为_______________________________________.19.小明和小丽同时从甲村出发到乙村,小丽的速度为4 km/h ,小明的速度为5km/h ,小丽比小明晚到15 min ,则甲、乙两村的距离是__________.20.高杨同学用木棒和硬币摆成如图所示的“列车”形状,第1个图需要4根木棒、2枚硬币,第2个图需要7根木棒、4枚硬币,照这样的方式摆下去,第n 个图需要__________根木棒、__________枚硬币.三、解答题(21~23题每题8分,其余每题12分,共60分)21.计算:(1)-22+|5-8|+24÷(-3)×13; (2)-24×⎝ ⎛⎭⎪⎫-56+38-1112.22.先化简,再求值:2(ab 2-a 2b )-(-2a 2b -ab 2+1),其中a =4,b =12.23.解下列方程:(1)32x -64=16x +32;(2)1-x 3-x =3-x +24.24.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图: 等级次数 百分率 不合格100≤x <120 a 合格120≤x <140 b 良好140≤x <160 优秀 160≤x <180请结合上述信息完成下列问题:(1)a =________,b =________;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是________;(4)若该校有2 000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.25.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲木工组每天修桌凳16套,乙木工组每天修桌凳比甲木工组多8套,甲木工组单独修完这些桌凳比乙木工组单独修完这些桌凳多用20天,学校每天付甲木工组80元修理费,付乙木工组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元的生活补助费,现有三种修理方案:①由甲木工组单独修理;②由乙木工组单独修理;③由甲、乙两木工组同时修理.你认为哪种方案省时又省钱?为什么?26.阅读理解:已知A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点.例如,如图①,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)如图②,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数________所对应的点是【M,N】的好点;②在数轴上,数________和数________所对应的点都是【N,M】的好点.(2)如图③,A,B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒2个单位长度的速度向左运动,到达点A停止.当点P的运动时间t为何值时,点P,A和B中恰有一个点为其余两点的好点?答案一、1.B 2.C 3.D 4.B 5.A 6.C7.C 8.C 9.D 10.C二、11.-12π;2 12.两点确定一条直线13.该中学七年级学生的视力情况;抽取的25名学生的视力情况14.圆锥 15.4 16.65° 17.9018.4或-4 19.5 km 20.(3n +1);2n三、21.解:(1)原式=-4+3+24×⎝ ⎛⎭⎪⎫-13×13=-4+3+⎝ ⎛⎭⎪⎫-83=-1-83=-113; (2)原式=24×56-24×38+24×1312=20-9+26=37.22.解:原式=2ab 2-2a 2b +2a 2b +ab 2-1=3ab 2-1.当a =4,b =12时,3ab 2-1=3×4×⎝ ⎛⎭⎪⎫122-1=3-1=2. 23.解:(1)移项、合并同类项,得16x =96.系数化为1,得x =6.(2)去分母,得4(1-x )-12x =36-3(x +2).去括号,得4-4x -12x =36-3x -6.移项,得-4x -12x +3x =36-6-4.合并同类项,得-13x =26.系数化为1,得x =-2.24.解:(1)10%;35%(2)补全频数分布直方图如图所示.(3)108°(4)2 000×40-440=1 800(名).估计该校学生一分钟跳绳次数达到合格及以上的有1 800名.25.解:(1)设该中学库存x 套桌凳,则甲木工组单独修完需要x 16天,乙木工组单独修完需要x 16+8天. 由题意,得x 16-x 16+8=20. 解得x =960.答:该中学库存960套桌凳.(2)方案③省时又省钱.理由如下:设①②③三种修理方案的费用分别为y 1元、y 2元、y 3元,则y 1=(80+10)×96016=5 400,y 2=(120+10)×96016+8=5 200, y 3=(80+120+10)×96016+16+8=5 040. 因为5 040<5 200<5 400,且易知方案③最省时,所以方案③省时又省钱.26.解:(1)①2 ②0;-8(2)设点P 表示的数为y ,分四种情况:①点P 为【A ,B 】的好点.由题意,得y -(-20)=2(40-y ),解得y =20,则t =(40-20)÷2=10(秒).②点A 为【B ,P 】的好点.由题意,得40-(-20)=2[y -(-20)],解得y =10,则t =(40-10)÷2=15(秒).③点P 为【B ,A 】的好点.由题意,得40-y =2[y -(-20)],解得y =0,则t=(40-0)÷2=20(秒).④点B为【A,P】的好点.由题意,得40-(-20)=2(40-y),解得y=10,则t=(40-10)÷2=15(秒).综上可知,当t为10秒、15秒或20秒时,点P,A和B中恰有一个点为其余两点的好点.北师大版数学七年级上册期末试卷3一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0 B.-2 C.1 D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5 B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7 B.2x-2=3x+7C.3x-2=2x-7 D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40 cm,则绳子的原长为()A.30 cmB.60 cmC.120 cmD.60 cm或120 cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5 kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25 kg B.20 kgC.30 kg D.15 kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156 B.157C.158 D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37 000 t,把数37 000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1 dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20 m 3,每立方米收费2元;若用水量超过20 m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15); (2)⎝ ⎛⎭⎪⎫-911÷9121-⎝ ⎛⎭⎪⎫12+23-34×(-24).20.解方程:(1)3x +7=32-2x ; (2)x -1-x 3=x +56.21.化简求值:已知|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0,求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC 是∠AOD 的平分线,∠BOC =12∠COD ,那么∠BOC 是∠AOD的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.答案一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30 kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33 dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28 m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x =5.(2)去分母,得6x -2(1-x )=x +5,去括号,得6x -2+2x =x +5,移项、合并同类项,得7x =7,系数化为1,得x =1.21.解:由|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0得2x +1=0,y -14=0,即x =-12,y =14. 原式=4x 2y -6xy +12xy -6+x 2y +1=5x 2y +6xy -5.当x =-12,y =14时,原式=5x 2y +6xy -5=516-34-5=-5716.22.解:如图.23.解:∠BOC 是∠AOD 的四分之一.理由如下:因为OC 是∠AOD 的平分线,所以∠COD =12∠AOD .因为∠BOC =12∠COD ,所以∠BOC =12×12∠AOD =14∠AOD .24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1 375(元),在乙店付款:22.5×40+450=1 350(元),1 350<1 375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

2023—2024学年北师大新版七年级上学期数学期末考试试卷(附答案)

2023—2024学年北师大新版七年级上学期数学期末考试试卷(附答案)

最新北师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟选择题(每题只有一个正确选项,每小题3分,满分30分)一、的倒数是()1、A.2022B.﹣2022C.D.﹣2、中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利20元记作+20元,那么亏本10元记作()A.10元B.20元C.﹣10元D.﹣20元3、如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A.B.C.D.4、代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算5、下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批LED节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式6、数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣117、如果与﹣4x3y2b﹣1是同类项,那么a,b的值分别是()A.1,2B.0,2C.2,1D.1,18、已知x=﹣2是方程5x+12=﹣a的解,则a2+a﹣6的值为()A.0B.6C.﹣6D.﹣189、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A .x +1=2(x ﹣2)B .x +3=2(x ﹣1)C .x +1=2(x ﹣3)D .10、如图所示,图(1)表示1张餐桌和6张椅子(三角形表示餐桌,每个小圆表示一张椅子),图(2)表示2张餐桌和8张椅子,图(3)表示3张餐桌和10张椅子…;若按这种方式摆放25张桌子需要的椅子张数是( )A .25 张B .50 张C .54 张D .150 张二、填空题(每小题3分,满分18分)11、钟表上7点15分,时针与分针的夹角为12、某商场以每件200元的价格购进一批秋季夹克衫,由于季节突变导致滞销,于是商场决定在标价基础上打八折销售,每件夹克衫仍可获利20%,则该夹克衫的标价为 元.13、把一张长方形纸条按图的方式折叠后,量得∠AOB ′=110°,则∠B ′OC = .14、一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则(yz )x 的值为 . 15、如图所示,已知数 a ,b ,c 在数轴上对应点的位置:化简|a ﹣b |+|b ﹣c |得 .16、已知整数a 1,a 2,a 3,a 4⋯满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|⋯依此类推,则a 2023的值等于 .第13题图第14题图 第15题图最新北师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣16÷(﹣2)3﹣22×|﹣|+(﹣1)2023.18、解方程:﹣=1.19、先化简再求值:,其中x=﹣4,y=.20、我校为了响应国家“阳光体育”的号召,增设了排球、篮球、足球三项体育运动项目,要求每位学生必须参加,且只能参加其中一种球类运动.初一课题小组对同学们喜爱的球类运动做了一个调查,然后绘制了下面不完全的条形统计图和扇形统计图.请解答下列问题:(1)本次调查了多少名学生?(2)请把条形统计图补充完整.(3)在扇形统计图中,表示“排球”的扇形的圆心角的度数为.(4)在我校初中3000名学生中,选择篮球运动的大约有多少人?21、已知:A=3x2+2xy+10y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.22、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜出线段MN的长度吗?并说明理由.23、已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.24、若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足|x﹣y|=1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“美好方程”.例如:方程2x+1=5的解是x=2,方程y﹣1=0的解是y=1,因为|x﹣y|=1,方程2x+1=5与方程y﹣1=0是“美好方程”.(1)请判断方程5x﹣3=2与方程2(y+1)=3是不是“美好方程”,并说明理由;(2)若关于x的方程﹣x=2k+1与关于y的方程4y﹣1=3是“美好方程”,请求出k的值;(3)若无论m取任何有理数,关于x的方程=m(a,b为常数)与关于y的方程y+1=2y﹣5都是“美好方程”,求ab的值.25、如图1,已知∠AOC=140°,∠BOC的余角比它的补角的少10°.(1)求∠BOC的度数;(2)如图1,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,在旋转过程中,保持射线OP始终在∠BOA的内部,当∠POC=10°时,求旋转时间.(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O 顺时针旋转,当这两条射线重合于射线OE处(OE在∠DOC的内部)时,,求x的值.(注:本题中所涉及的角都是小于180°的角)最新北师大新版七年级上学期数学期末考试试卷(参考答案)11、127.5°;12、300 ;13、35°;14、﹣;15、2b﹣a﹣c;16、﹣1011三、解答题17、﹣1.18、x=﹣319、16.20、解:(1)40名学生;(2)8(人)(图略),(3)72°;(4)900人.21、解:(1)A﹣3B=5xy+10y﹣1;(2)x=﹣2.22、解:(1)7cm;(2)a(cm).23、解:(1)①115°;②OE平分∠BOC.(2)50°.24、解:(1)不是“美好方程”;(2)当x=0时,k=﹣;当x=2时,k=0;(3)ab的值为20或28.25、解:(1)20°;(2)旋转时间为2.5秒或7.5秒.(3)x=5.。

北师大版七年级上学期数学《期末检测题》含答案解析

北师大版七年级上学期数学《期末检测题》含答案解析
[答案]D
[解析]
[分析]
根据多项式与单项式的基本概念判断A、B,根据代数式的定义判断C,根据字母可以表示任何数判断D.
[详解]A.多项式 是二次三项式,正确,不符合题意;
B.单项式 系数是 ,次数是9,正确,不符合题意;
C.式子 , , , , 都是代数式,正确,不符合题意;
D.若 为有理数,则 一定大于 ,若a=0,则 ,D判断错误,符合题意.
13.计算:
[答案]0
[解析]
[分析]
根据有理数混合运算法则进行计算:先去括号,先算乘方,在算乘除,再算加减.
[详解]解:
=
=
=1+(-1)
=0
[点睛]考核知识点:含有乘方的混合运算.掌握运算法则是关键.
14.解方程:
[答案]x=-3.
[解析]
试题分析:首先进行去分母,然后去括号,移项,合并同类项求解.
[点睛]本题考查一元一次方程的解,将 代入方程得到关于a的方程是解题的关键.
10.若某次数学考试结束的时间为九时五十分,该时间钟面上的时针与分针的夹角是________度.
[答案]5
[解析]
[分析]
由九时五十分可知分针指向10,则时针在指向9后顺时针旋转了50分钟的角,用一大格表示的角度数 乘以 即为时针在指向9后旋转的角度,即可求出时针与分针的夹角.
[答案]
[解析]
[分析]
根据翻折变换表示出所得图形的面积,再根据各部分图形的面积之和等于正方形的面积减去剩下部分的面积进行计算即可得解.
[详解]由题意可知,
…,
剩下部分的面积=
所以,
故答案为
[点睛]属于规律型:图形的变化类,观察图形的变化发现每次折叠后的面积与正方形的关系,从而找出面积的变化规律.

【北师大版】初一数学上期末模拟试卷(带答案)

【北师大版】初一数学上期末模拟试卷(带答案)

一、选择题1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南2.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③3.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cmA .2B .3C .5D .6 4.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 5.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 6.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋7.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =8.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元9.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73810.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b 11.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样12.某市11月4日至7日天气预报的最高气温与最低气温如表:日期 11月4日 11月5日11月6日 11月7日 最高气温(℃) 19 12 209 最低气温(℃) 4 3-4 5其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.15.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.16.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.17.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.18.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.19.计算1-2×(32+12)的结果是 _____. 20.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.三、解答题21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.22.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧).(1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PB PC +是定值; ②PA PB PC-是定值,请作出正确的选择,并求出其定值. 23.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.24.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?25.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭ 26.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .2.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.3.A解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.4.D解析:D【分析】由点C 在直线AB 上,分别讨论点C 在线段AB 上和在线段AB 的延长线上两种情况,根据线段的和差关系求出AC 的长即可.【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C 在线段AB 上时,AC=AB-BC=8-2=6cm ,当点C 在线段AB 的延长线上时,AC=AB+BC=8+2=10cm ,∴AC 的长度是6cm 或10cm.故选D.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键. 5.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 6.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得到方程:2(x -1)-1-1=x +1,解得:x =5, 答:驴子原来所托货物的袋数是5, 故选A .【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号. 8.C解析:C【详解】解:设该商品的进价为x 元/件,依题意得:(x+20)÷510=200,解得:x=80. ∴该商品的进价为80元/件.故选C . 9.B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.10.B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.11.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.C解析:C运用减法算出每一天的温差,再进行比较即可.【详解】-=(℃);11月4日的温差为19415--=(℃);11月5日的温差为12(3)15-=(℃);11月6日的温差为20416-=(℃).11月7日的温差为19514所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三n+.解析:五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.15.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x道题则答错或没答的题有(20-x)道由题意得5x-(20-x)=76解得x=16故答案解析:16【分析】由题意可知,小明的得分=答对题目的得分-答错或不答所扣的分,据此列方程求解即可.【详解】解:设小明答对了x道题,则答错或没答的题有(20-x)道,由题意得5x-(20-x)=76,解得x=16.故答案为:16.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x场,则平了12x场,负了112x-场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x场,则平了12x场,负了112x-场,根据题意可得:11311021 22x x x⎛⎫+⨯+-⨯=⎪⎝⎭,解得:x=6,所以132x=,1122x-=,故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.17.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 18.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2.故答案为:n 2+2.【点睛】本题考查规律型:图形的变化类.19.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.20.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.三、解答题21.8cm【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【详解】∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.故答案为:8cm.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.(1)MN =9;(2)①PA PB PC +是定值2. 【分析】 (1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC ++-+=,进而可得结论.【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点,∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC+=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B 、点A 所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466,解得x =520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.25.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.26.(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;【详解】解:(1)a的5倍与b的平方的差可表示为:5a-b2;(2)m的平方与n的平方的和可表示为:m2+n2;(3)x,y两数的平方和减去它们积的2倍可表示为:x2+y2-2xy.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.。

北师大版七年级上册数学期末模拟试卷及答案-百度文库(1)

北师大版七年级上册数学期末模拟试卷及答案-百度文库(1)

北师大版七年级上册数学期末模拟试卷及答案-百度文库(1)一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A.504 B.10092C.10112D.10093.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.20134.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A .第80个图形B .第82个图形C .第84个图形D .第86个图形5.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .6.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .78.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损 9.已知232-m a b 和45n a b 是同类项,则m n -的值是( ) A .-2B .1C .0D .-110.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .511.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >012.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+13.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |16.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2217.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定18.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >019.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +2020.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定21.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24022.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-23.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7024.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式C .14ab 是二次单项式D .23xy π的系数是13,次数是4 26.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .627.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-< D .a b b a -<-<<28.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .1013cmC .25cmD .30cm29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 30.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数. 第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43 第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)= 1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24) =1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157. 故选B . 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.3.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =,∵673=84×8+1,∴2019不合题意,故A不合题意;当32018x=时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.4.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.5.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.6.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .7.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.8.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元).设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.9.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.10.C解析:C 【解析】 【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案. 【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有 3a +1+5b +1-1=60, 3a +5b =59,当a =3时,b =10,t =13; 当a =8时,b =7,t =15; 当a =13时,b =4,t =17; 当a =18时,b =1,t =19. 故t 可以取4个不同的值. 故选:C . 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.11.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.12.D解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.13.C解析:C 【解析】 【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可. 【详解】根据题意,设S=1+5+52+53+…52019, 则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.18.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.19.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.20.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..21.D解析:D【解析】【分析】先分别讨论x 和y 的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y ,则代数式中绝对值符号可直接去掉,∴代数式等于x ,②若y >x 则绝对值内符号相反,∴代数式等于y ,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D .【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.22.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得. 【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94, 故选:B .【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式. 23.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】A.25mn-的系数是25-,次数是2,正确,故该选项不符合题意,B.数字0是单项式,正确,故该选项不符合题意,C.14ab是二次单项式,正确,故该选项不符合题意,D.23xyπ的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.26.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫⎪⎝⎭,则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 27.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.28.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm , ∴底面周长=3030ππ⋅=cm ,∴BC=20cm,AC=1×30=15(cm),2∴AB=2222+=+=(cm).201525AC BC答:它需要爬行的最短路程为25cm.故选:C.【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.。

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版一、单选题1.计算314 +(–2 35 )+5 34 +(–8 25 )时,运算律用得最为恰当的是( )A .[3 14 +(–2 35 )]+[5 34 +(–8 25 )]B .(3 14 +5 34 )+[–2 35 +(–8 25 )]C .[3 14 +(–8 25 )]+(–2 35 +5 34 )D .(–2 35 +5 34 )+[3 14 +(–8 25)]2.以下调查中,适宜全面调查的是( )A .调查某批次汽车的抗撞击能力B .调查某市居民日平均用水量C .调查全国春节联欢晚会的收视率D .调查某班学生的身高情况3.把一条弯曲的高速路改为直道,可以缩短路程,其道理用几何知识解释为( ) A .两点之间,线段最短B .点到直线上所有点的连线中,垂线段最短C .两点确定一条直线D .平面内过一有且只有一条直与已知直线垂直4.下列计算,结果正确的是( ) A .4a 2b ﹣5ab 2=﹣a 2﹣b B .5a 2+3a 2=8a 4C .2x+3y =5xyD .3xy ﹣5yx =﹣2xy5.下列运算中,正确的是( )A .3x+2y=5xyB .4x-3x=1C .2ab-ab=abD .2a+a=2a 26.某同学解方程 513x x -=+ 时,把“ ”处的系数看错了,解得 4x =- ,他把“ ”处的系数看成了( ) A .4B .9-C .6D .6-7.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a-8.用火柴棒按右面的方式拼图形,①中有7根火柴棒,②中有12根火柴棒,③中有17根火柴棒……,则图形⑩中火柴棒的根数是( )A .42B .47C .52D .579.下列运用等式的性质对等式进行的变形中,错误的是( ) A .若m =n ,则mp =npB .若a (|x|+1)=b (|x|+1),则a =bC .若a =b ,则a b c c=D .若x =y ,则x ﹣2=y ﹣210.已知有理数a ≠1,我们把11a - 称为a 的差倒数,如:2的差倒数是 112- =-1,-1的差倒数 11(1)-- = 12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+……+a 100的值是( ) A .7.35B .-7.5C .5.5D .-5.5二、填空题11.若a 2b 10++-=,则3b 2a -的值是 .12.如图,点O 在直线 AB 上, OD OE ⊥ ,垂足为O , OC 是 DOB ∠ 的平分线,若 70AOD ∠=︒ ,则 COE ∠= 度.13.已知点C 是直线AB 上一点,且AC :BC =7:3,若AB =10,则AC = .14.下列图形均是用长度相同的火柴棒按一定的规律搭成,搭第1个图形需要4根火柴棒,搭第2个图形需要10根火柴棒,…,依此规律,搭第10个图形需要 根火柴棒.15.如图,点B 1在直线l :y =12x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n+1∁n 的边长为 (结果用含正整数n 的代数式表示).三、计算题16.计算: (1)()45834⎛⎫-⨯-⨯ ⎪⎝⎭(2)()412637921⎛⎫-+⨯- ⎪⎝⎭17.已知x+y= 15 ,xy=﹣ 12.求代数式(x+3y ﹣3xy )﹣2(xy ﹣2x ﹣y )的值. 四、解答题18.出租车司机小王某天上午的营运全是在东西方向的大道上运行的,若规定向东为正,向西为负,他这天上午的行车里程如下:10,-3,2,-1,8,-6,-2,12,3,-4(单位:km ).(1)将最后一位乘客送到目的地时,小王离最开始的出发点有多远?在出发点的哪个方向?(2)若汽车的耗油量是每千米耗油0.75(L ),这天上午小王共耗油多少升?19.把下列各数填入相应的横线上:4,122-,12-,3.14159,0,25负数:{ };非负数:{ };整数:{ };分数:{ }。

七年级数学上册期末测试卷含答案(北师大版)

七年级数学上册期末测试卷含答案(北师大版)

(北师大版)七年级数学上册期末测试卷含答案七年级数学上册期末测试卷班级姓名得分一、选择题(每题2分,共20分)1.对于如图所示几何体的说法正确的是().A.几何体是四棱柱 B. 几何体的底面是长方形C.几何体有3条侧棱 D.几何体有4个侧面(第1题)(第7题)2.火星围绕太阳公转的轨道半长径为230 000 000 km.将230 000 000用科学记数法表示为( ).A.23×107B. 2.3×108C.2.3×109D.0.23×1093.下列四组变形中,属于移项变形的是().A.由2x-1=0,得x=12B.由5 x+6=0,得5 x= -6C. 由x3=2,得x=6 D.由5 x=2,得x=254.最适合采用全面调查的是( ).A.调查全国中学生的体重B.调查“神舟十三号”载人飞船的零部件C.调查某市居民日平均用水量D.调查某种品牌电器的使用寿命5.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,照这样计算,若按标价的6折出售则().A.赚30元B.亏30元C.赚5元D.亏5元6.对于两个不相等的有理数α,b,我们规定符号min{α,b}表示α,b两数中较小的数,例如min{-2,3}=-2.按照这个规定,方程min{x,- x}= -2 x -1的解为( ).A. x=−13B. x= -1C. x=1D. x=-1或x=−137.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A B C D8.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有( ).A.1个 B.2个 C.3个 D.4个9.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( ).A.4(x-1)=2 x+8B.4(x+1)=2 x-8C.x4+1=x+82D.x4-1=x−8210.在直线l上有四个点A,B,C,D,已知AB=10,AC=6,点D是BC的中点,则线段AD的长是( ).A.2 B.8 C.4或8 D.2或8二、填空题(每题2分,共16分)11. 已知(k2-1)x2-(k+1)x+10=0是关于x的一元一次方程,则k的值为 .12.已知有理数a,b,c在数轴上的对应位置如图所示,则|a-b|-2|b-c|-|a-1|化简后的结果是(第12题)(第13题)(第15题)13.如图,已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3,OC与∠AOB的平分线所成的角的度数为。

北师大版2022-2023学年七年级数学上册期末模拟测试题(附答案)

北师大版2022-2023学年七年级数学上册期末模拟测试题(附答案)

2022-2023学年七年级数学上册期末模拟测试题(附答案)一、选择题:(共36分.)1.﹣5的相反数是()A.﹣5B.5C.D.﹣2.下列四个立体图形中,是棱锥的是()A.B.C.D.3.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对本校100名学生家长进行调查.这次调查的样本是()A.100名学生B.100名学生家长C.被抽取的100名学生家长D.被抽取的100名学生家长的意见4.下列四个数中,最小的是()A.|﹣2|B.0C.﹣(﹣1)2D.0.55.我国的“天河一号”超级计算机是当今世界上运算最快的超级计算机,它的运算速度达到每秒2570万亿次.将数据“2570万亿”用科学记数法表示为()A.2.57×1015B.0.257×1016C.25.7×1014D.2.57×1014 6.若a﹣5=6b,则(a+2b)﹣2(a﹣2b)的值为()A.5B.﹣5C.10D.﹣107.下列等式变形中错误的是()A.若a+c=b+c,则a=b B.若a=b,则a2=b2C.若ac=bc,则a=b D.若a=b,则8.已知4a2m b与﹣7a6b是同类项,则代数式m2﹣2m+7的值是()A.7B.8C.9D.109.将一副三角板按如图所示拼接,若∠ADE、∠CBE均小于平角,则∠ADE+∠CBE等于()A.300°B.285°C.270°D.265°10.已知点O、A、B、C在数轴上的位置如图所示,O为原点,若BC=1,OA=OC,点B 所对应的数为m,则点A所对应的数是()A.m﹣1B.m+1C.﹣(m﹣1)D.﹣(m+1)11.小明在体育器材店中,按标价的八折购买了一双跑步钉鞋,比按标价购买节省了40元,则这双跑步钉鞋的实际售价为()A.160元B.180元C.200元D.220元12.如图,已知直线AB与CD相交于点O,OE平分∠AOD,∠EOF=90°.对于下列结论:①∠BOC=2∠AOE;②OF平分∠BOD;③∠AOE是∠BOF的余角;④∠AOE是∠COE的补角.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(共18分.)13.单项式﹣xy3的次数是.14.如图,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=12,则线段AB的长为.15.如图是小明家今年1月份至5月份的每月用电量的折线图,由图中信息可知:小明家这五个月的月平均用电量为度.16.如图,已知∠AOB是直角,OC是∠AOB的平分线,∠AOD=2∠BOD,则∠COD的度数为.17.一个拖拉机队翻耕一片地,第一天翻耕了这片地的,第二天翻耕了剩下地的,这时还剩下38亩地没有翻耕,则这一片地总共有亩.18.有一列数:a1,a2,a3,a4,…,a n﹣1,a n,若a1=2×2﹣1,a2=2×3﹣2,a3=2×4﹣3,a4=2×5﹣4,a5=2×6﹣5,…,则a2021的值是.三、解答题(共66分.)19.计算:(1)﹣|﹣5|×2﹣5÷(﹣)+(﹣3)2;(2)﹣3x2﹣[7x﹣(4x﹣3)﹣2x2].20.利用直尺和圆规作图(只保留作图痕迹,不要求写出作法):如图,已知线段a,b,作线段AB,使AB=2a﹣b.21.解方程:(1)x﹣7=10﹣6(x+0.5);(2)=12(+).22.解答下列问题:(1)先化简,再求值:[x2﹣5(2x2﹣xy)]﹣(4xy﹣3x2),其中x=﹣3,y=2.(2)已知关于x的方程=x+与2x﹣1=x+2的解相同,求m的值.23.某中学在今年3月12日植树节这天组织以班为单位开展植树活动,校团委对全校各班的植树情况进行了统计,并绘制了两幅不完整的统计图.(1)该校的总班数是;(2)将条形统计图补充完整;(3)求该校在这次活动中植树的总棵数.24.如图,O是直线AB上一点,OC是任意一条射线,OD平分∠AOC,OE平分∠BOC.(1)∠BOC的补角为;(2)若∠BOC=56°,求∠AOD的度数;(3)∠COD与∠COE存在怎样的数量关系?请说明理由.25.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款1000元.由于甲单独做20天完成,乙单独做30天完成,为此甲、乙两人商定共同承包这项工程,并签订了承包合同.(1)在正常情况下,甲、乙两人能否履行承包合同?为什么?(2)在两人合作完成这项工程的75%时,因别处有急事,必须调走1人.为了能够履行承包合同,应该调走谁?请说明理由.26.如图,在数轴上A、B两点对应的数分别为10和16.点P从A点出发,以每秒1个单位长度的速度沿数轴正方向运动,同时点Q从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为ts.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=8时,求PQ的长;(3)当PQ=AB时,求t的值.参考答案一、选择题(共36分.)1.解:﹣5的相反数是5.故选:B.2.解:选项B的立体图形是棱锥,其它三个选项的立体图形不是棱锥,故选:B.3.解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对本校100名学生家长进行调查.这次调查的样本是被抽取的100名学生家长的意见.故选:D.4.解:|﹣2|=2,﹣(﹣1)2=﹣1,∵﹣1<0<0.5<2,∴﹣(﹣1)2<0<0.5<|﹣2|,∴所给的四个数中,最小的是﹣(﹣1)2.故选:C.5.解:2570万亿=2570 0000 0000 0000,用科学记数法表示是2.57×1015.故选:A.6.解:原式=a+2b﹣2a+4b=﹣a+6b,∵a﹣5=6b,∴﹣a+6b=﹣5,∴原式=﹣5,故选:B.7.解:∵若a+c=b+c,则a=b,∴选项A不符合题意;∵若a=b,则a2=b2,∴选项B不符合题意;∵若ac=bc,则c=0时,a=b或a≠b;c≠0时,a=b,∴选项C符合题意;∵若a=b,则,∴选项D不符合题意.故选:C.8.解:由题意可知:2m=6,∴m=3,∴原式=9﹣6+7=3+7=10,故选:D.9.解:由题意得:∠E=45°,∠DBE=90°,∠ABC=60°,∵∠ADE是△BDE的外角,∴∠ADE=∠E+∠DBE=135°,∵∠CBE=∠ABC+∠DBE,∴∠CBE=60°+90°=150°,∴∠ADE+∠CBE=285°.故选:B.10.解:由题意可知:OC=OB+BC=﹣m+1,∴点C表示的数为:﹣1+m,由于OA=OC,∴点A与点C所表示的数互为相反数,∴点A表示的数为1﹣m,故选:C.11.解:设这双跑步钉鞋的标价为x元,根据题意得x﹣80%x=40,解得x=200,∴200﹣40=160(元),∴这双跑步钉鞋的实际售价为160元,故选:A.12.解:∵直线AB与CD相交于点O,∵OE平分∠AOD,∴∠AOD=2∠AOE=2∠DOE,∴∠BOC=2∠AOE,故①正确;∵∠EOF=90°,∴∠EOD+∠DOF=90°,∠AOE+∠BOF=90°,即∠AOE是∠BOF的余角,故③正确;∴∠FOD=∠BOF,∴OF平分∠BOD,故②正确;∵∠AOE=∠DOE,∠DOE+∠COE=180°,∴∠COE+∠AOE=180°,即∠AOE是∠COE的补角,故④正确,故选:D.二、填空题(共18分.)13.解:单项式﹣xy3的次数是4.故答案为:4.14.解:设EC=x,∵点E为线段AC的中点,∴AC=2EC=2x,∵点C,D为线段AB的三等分点,∴AC=CD=BD=2x,∵ED=EC+CD,ED=12,∴x+2x=12,解得x=4,∴AB=3AC=24,故答案为:24.15.解:由图可知,今年1月份至5月份的总用电量为:140+160+150+130+140=720(度),故这五个月的月平均用电量是720÷5=144(度).故答案为:144.16.解:∵OC平分∠AOB,∠AOB=90°,∴∠BOC=∠AOB=45°,∴∠BOD=∠AOB=30°,∴∠COD=∠BOC﹣∠BOD=45°﹣30°=15°,故答案为:15°.17.解:设这一片地共有x亩,根据题意得x+(x﹣x)+38=x,解得x=114,∴这一片地共有114亩,故答案为:114.18.解:∵a1=2×2﹣1,a2=2×3﹣2,a3=2×4﹣3,a4=2×5﹣4,…,∴a n=2(n+1)﹣n,∴a2021=2×(2021+1)﹣2021=2023.故答案为:2023.三、解答题(共66分.)19.解:(1)原式=﹣5×2+25+9=﹣10+25+9=24.(2)原式=﹣3x2﹣7x+4x﹣3+2x2=﹣x2﹣3x﹣3.20.解:如图:AB为所求.①作射线AE;②在AE上截取AC=2a,③在AC上截取CB=b.21.解:(1)去括号,可得:x﹣7=10﹣6x﹣3,移项,可得:x+6x=10﹣3+7,合并同类项,可得:7x=14,系数化为1,可得:x=2.(2)∵=12(+),∴=x+3,去分母,可得:3(1﹣x)=8x+36,去括号,可得:3﹣3x=8x+36,移项,可得:﹣3x﹣8x=36﹣3,合并同类项,可得:﹣11x=33,系数化为1,可得:x=﹣3.22.解:(1)原式=(x2﹣10x2+5xy)﹣4xy+3x2=(﹣9x2+5xy)﹣4xy+3x2=﹣3x2+xy﹣4xy+3x2=﹣xy,当x=﹣3,y=2时,原式=﹣×(﹣3)×2=14.(2)解方程2x﹣1=x+2,得:x=3,将x=3代入方程,得:,则.23.解:(1)该校的班级总数=3÷﹣18;故答案为:18;(2)如图所示:(3)由题意,得:10×4+11×6+13×4+14×3+16×1=216(棵),答:该校在这次活动中植树的总棵数为216棵.24.解:(1)∵∠BOC+∠AOC=180°,∴∠BOC的补角为∠AOC;(2)∵∠AOC+∠BOC=180°,∠BOC=56°,∴∠AOC=180°﹣56°=124°,∵OD平分∠AOC,∴∠AOD=∠AOC==62°;(3)∠COD+∠COE=90°.理由:∵∠AOC+∠BOC=180°,又∵OD平分∠AOC,OE平分∠BOC,∴∠COD=∠AOC,∠COE=,∴∠COD+∠COE=.25.解:(1)能履行承包合同.理由:设甲、乙两人合作需x天完成,根据题意,得:,解得:x=12,因为12<15,所以甲、乙两人能履行承包合同;(2)设两人合作完成这项工程的75%用时y天,根据题意,得,解得:y=9.又∵剩下的由甲单独做需要的时间是,剩下的由乙单独做需要的时间是,而9+5=14<15,9+7.5=16.5>15,故应调走乙,才能履行承包合同.26.解:(1)BP=6﹣t,AQ=10﹣2t.故答案是:6﹣t;10﹣2t;(2)当t=8时,PO=AO+P A=10+1×8=18,QO=2×8=16.所以PQ=PO﹣QO=18﹣16=2;(3)∵PQ=AB=.∴①当P在Q的右侧时.有(10+t)﹣2t=3,解得t=7;②当P在Q的左侧时.有2t﹣(10+t)=3,解得t=13.则当PQ=AB时,t的值为7或13.。

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

【北师大版】七年级上学期数学《期末检测试题》及答案

【北师大版】七年级上学期数学《期末检测试题》及答案

北师大版七年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是( )A. B. C. D. 2.今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A. 338410⨯B. 53.8410⨯C. 438.410⨯D. 60.38410⨯3.下列说法错误的是 ( )A. 2231x xy --是二次三项式B. 1x -+不是单项式C. 223xy π-的系数是23π-D. 222xab -的次数是6 4.射线OC 在AOB ∠内部,下列条件不能说明OC 是AOB ∠的平分线的是( ) A. 12AOC AOB ∠=∠ B. 1BOC AOB 2∠=∠ C . AOC BOC AOB ∠+∠=∠D. AOC BOC ∠=∠ 5.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是( )A. 此次调查属于全面调查B. 样本容量是80C. 800名学生是总体D. 被抽取的每一名学生称为个体 6.已知线段AB =10cm ,在直线AB 上取一点C ,使AC =16cm ,则线段AB 的中点与AC 的中点的距离为( )A. 13cm 或26cmB. 6cm 或13cmC. 6cm 或25cmD. 3cm 或13cm7.(-2)2004+3×(-2)2003的值为 ( )A. -22003B. 22003C. -22004D. 220048.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=17∠AOD,则∠BOC的度数为()A. 22.5°B. 30°C. 45°D. 60°9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为A. 26元 B. 27元 C. 28元 D. 29元10.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x天,则所列方程为()A.13584x x++= B.-13584x x+= C.13-584x x+= D.-13-584x x=11.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A. 30°B. 35°C. 36°D. 45°12.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A. 504B. 10092C.10112D. 1009二、填空题13.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=_____.14.已知代数式312+n a b 与223--m a b 是同类项, 则23m n +=__________15.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .16.如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.三、解答题17.(1)计算:2211363()(2)32----⨯-+-÷(2)解方程: 212134x x -+=- 18.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 19.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是___;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对剪纸课程的兴趣情况.20.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.21.如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH 上一点,已知∠1+∠3=180°,(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).22.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1 2倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.答案与解析一、选择题1.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是( )A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】该主视图是:底层是3个正方形横放,上层靠左有2个正方形,故选:D .【点睛】本题考查了从不同方向看几何体,主视图是从物体的正面看得到的视图.2.今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A. 338410⨯B. 53.8410⨯C. 438.410⨯D. 60.38410⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将384000用科学记数法表示为:3.84×105. 故选:B.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.3.下列说法错误的是 ( )A. 2231x xy --是二次三项式B. 1x -+不是单项式C. 223xy π-的系数是23π-D. 222xab -的次数是6 【答案】D【解析】 【详解】试题分析:根据多项式和单项式的有关定义判断即可. A .根据多项式的次数:次数最高的那项的次数.22x 次数为2;3xy -次数为2;-1的次数为0,所以2231x xy --是二次三项式 ,正确;B .根据单项式是数字与字母的积可得1x -+不是单项式 ,正确;C .根据单项式系数:字母前边的数字因数可得223xy π-的系数是23π-,正确; D .根据单项式的次数是所有字母指数的和可得222xab -的次数是4,,错误.所以选D.考点:多项式、单项式4.射线OC 在AOB ∠内部,下列条件不能说明OC 是AOB ∠的平分线的是( )A. 12AOC AOB ∠=∠B. 1BOC AOB 2∠=∠ C. AOC BOC AOB ∠+∠=∠D. AOC BOC ∠=∠【答案】C【解析】【分析】 利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B 不一定正确.【详解】解:A 、当∠AOC=12 ∠AOB 时,OC 一定在∠AOB 的内部且OC 是∠4OB 的平分线,故本选项正确;B 、当1BOC AOB 2∠=∠时,OC 一定在∠A0B 的内部且OC 是∠A0B 的平分线,故本选项正确;C 、当AOC BOC AOB ∠+∠=∠,只能说明OC 在∠AOB 的内部,但不能说明OC 平分∠AOB,故本选项错误;D 、当∠AOC=∠BOC 时,OC 一定在∠AOB 的内部且OC 是∠AOB 的平分线,故本选项正确.故选C.【点睛】本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.5.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是( )A. 此次调查属于全面调查B. 样本容量是80C. 800名学生是总体D. 被抽取的每一名学生称为个体 【答案】B【解析】【分析】 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】本题的样本是80名学生的视力情况,故样本容量是80.故选B .【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握其定义.6.已知线段AB =10cm ,在直线AB 上取一点C ,使AC =16cm ,则线段AB 的中点与AC 的中点的距离为( )A. 13cm 或26cmB. 6cm 或13cmC. 6cm 或25cmD. 3cm 或13cm 【答案】D【解析】【分析】结合题意画出简单的图形,再结合图形进行分析求解.【详解】解:①如图,当C 在BA 延长线上时,∵AB=10cm ,AC=16cm ,D ,E 分别是AB ,AC 的中点,∴AD=12AB=5cm ,AE=12AC=8cm , ∴DE=AE+AD=8+5=13cm ; ②如图,当C 在AB 延长线上时,∵AB=10cm ,AC=16cm ,D ,E 分别是AB ,AC 的中点,∴AD=12AB=5cm,AE=12AC=8cm,∴DE=AE-AD=8-5=3cm;故选:D.【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.7.(-2)2004+3×(-2)2003的值为()A. -22003B. 22003C. -22004D. 22004【答案】A【解析】(-2)2004可以表示为(-2)(-2)2003,可以提取(-2)2003,即可求解.解:原式=(-2)(-2)2003+3×(-2)2003,=(-2)2003(-2+3),=(-2)2003,=-22003.故选A.点评:本题主要考查了有理数的乘方的性质,(-a)2n=a2n,(-a)2n+1=-a2n+1,正确提取是解决本题的关键.8.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=17∠AOD,则∠BOC的度数为()A. 22.5°B. 30°C. 45°D. 60°【答案】A【解析】【分析】此题由”两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=7x°,结合图形列方程即可求解.【详解】解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°,∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,∴∠DOB=∠AOC,设∠BOC=x°,则∠AOD=7x°,∴∠DOB+∠AOC=∠AOD﹣∠BOC=6x°,∴∠DOB=3x°,∴∠DOB+∠BOC=4x°=90°,解得:x=22.5.故选:A.【点睛】本题考查了直角三角形的简单性质,属于简单题,熟悉直角三角形的性质是解题关键.9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为A. 26元 B. 27元 C. 28元 D. 29元【答案】C【解析】【分析】根据题意,设电子产品的标价为x元,按照等量关系”标价×0.9-进价=进价×20%”,列出一元一次方程即可求解.【详解】设电子产品的标价为x元,由题意得:0.9x-21=21×20%解得:x=28∴这种电子产品的标价为28元.故选C.10.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x天,则所列方程为()A.13584x x++= B.-13584x x+= C.13-584x x+= D.-13-584x x=【答案】B【解析】【分析】题目默认总工程为1,设甲一共做x天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x天,乙做了(x-1)天∴列出方程:x x13 584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.11.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A. 30°B. 35°C. 36°D. 45°【答案】C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F ,∵BF 平分∠ABE∴∠ABE =2∠ABF=4∠F ,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.12.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A. 504B. 10092C. 10112D. 1009【答案】B【解析】【分析】 观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S 1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.二、填空题13.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=_____.【答案】10【解析】【分析】首先由正方体表面展开图,确定出相对面,再根据相对面上的数之和相等,进行计算即可.【详解】由图可知,”3”和”5”是相对面,3+5=8,“2”和”x ”是相对面,则2+x=8,所以x=6,“4”和”y ”是相对面,则4+y=8,所以y=4,所以x+y=6+4=10,故答案为:10.【点睛】本题考查了正方体的表面展开图,熟记正方体展开图的特点是关键.14.已知代数式312+n a b 与223--m a b 是同类项, 则23m n +=__________【答案】13【解析】【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得关于m 、n 的方程,根据解方程,可得m 、n 的值,然后可得答案.【详解】解:2m+n=2由题意,得m-2=3,n+1=2,解得m=5,n=1,23253113m n +=⨯+⨯=故答案为:13.【点睛】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.15.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .【答案】125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.16.如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.【答案】5.6.【解析】【分析】可设第1次相遇的时间为x 秒,根据速度和×时间=路程和,求出相遇时间;设第2次相遇的时间为y 秒,根据速度和×时间=路程和,求出相遇时间;设第3次相遇的时间为z 秒,根据速度和×时间=路程和,求出相遇时间;设第4次相遇的时间为t 秒,根据速度和×时间=路程和,求出相遇时间;【详解】设第1次相遇的时间为x 秒,依题意有:(2+4)x =24×4,解得:x =16;设第2次相遇的时间为y 秒,依题意有:(2+1+4+1)y =24×4,解得:y =12;设第3次相遇的时间为z 秒,依题意有:(2+1+1+4+1+1)z =24×4,解得:z =9.6;设第4次相遇的时间为t 秒,依题意有:(2+1+1+1+4+1+1+1)t =24×4,解得:y =8;2×16﹣(2+1)×12+(2+1+1)×9.6﹣(2+1+1+1)×8=32﹣36+38.4﹣40=﹣5.6故第四次相遇时甲与最近顶点的距离是5.6厘米.故答案为5.6.【点睛】本题考查了一元一次方程的应用、正方形的性质,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题17.(1)计算:2211363()(2)32----⨯-+-÷(2)解方程: 212134x x -+=- 【答案】(1)6-;(2)x=0.4-【解析】【分析】(1)根据有理数混合运算的法则和运算顺序计算即可;(2)根据去分母、去括号、移项合并同类项、系数化为1的步骤进行计算即可.【详解】解:(1)()2211363232⎛⎫----⨯-+-÷ ⎪⎝⎭ 96142=--++⨯148=-+6=-(2)212134x x -+=- 两边都乘以12,得:()()4213212x x -=+-去括号,得843612x x -=+-移项,合并同类项得52x =-两边都除以5,得0.4=-x【点睛】本题主要考查有理数混合运算以及解一元一次方程,熟练掌握相关的法则和解一元一次方程的一般步骤是解题的关键.18.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 【答案】-x 2y ;3.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=﹣2x 2y ﹣(2xy -2xy ﹣x 2y )= ﹣2x 2y ﹣2xy +2xy +x 2y =﹣x 2y .当x =3,y 13=-时,原式=2133⎛⎫-⨯- ⎪⎝⎭=3. 【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.19.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是___;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对剪纸课程的兴趣情况.【答案】(1)见解析;(2)100;(3)115.2°;(4)全校喜欢剪纸的学生360人【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)360°乘以女生中剪纸类人数所占百分比即可得;(4)用全校学生数×喜欢剪纸的学生在样本中所占比例即可求出.【详解】解:(1)被调查的女生人数为10÷20%=50人,则女生舞蹈类人数为50﹣(10+16)=24人,补全图形如下:(2)样本容量为50+30+6+14=100,故答案为100;(3)扇形图中剪纸类所占的圆心角度数为360°×1650=115.2°; (4)估计全校学生中喜欢剪纸的人数是1200×1416100 =360, 全校喜欢剪纸的学生有360人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知,O 为直线AB 上一点,∠DOE =90°.(1)如图1,若∠AOC =130°,OD 平分∠AOC .①求∠BOD 的度数;②请通过计算说明OE 是否平分∠BOC .(2)如图2,若∠BOE :∠AOE =2:7,求∠AOD 的度数.【答案】(1)①115°;②答案见解析;(2)∠AOD =50° 【解析】试题分析:(1)①先求出∠AOD 的度数,再根据邻补角求出∠BOD 即可;②分别求出∠COE ,∠BOE 的度数即可作出判断;(2)由已知设∠BOE =2x ,则∠AOE =7x , 再根据∠BOE +∠AOE =180°,求出∠BOE=40°,再根据互余即可求出∠AOD =90°-40°=50°. 试题解析:(1)①∵OD 平分∠AOC ,∠AOC =130°, ∴∠AOD =∠DOC =12∠AOC =12×130°=65°, ∴∠BOD =180°-∠AOD =180°-65°=115°; ②∵∠DOE =90°,又∠DOC =65°,∴∠COE =∠DOE -∠DOC =90°-65°=25°, ∵∠BOD =115°,∠DOE =90°, ∴∠BOE =∠BOD -∠DOE =115°-90°=25°,(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°-40°=50°.21.如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH 上一点,已知∠1+∠3=180°,(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).【答案】(1)证明见解析;(2)90+12α.【解析】【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】(1)∵∠3+∠DFE=180°,∠1+∠3=180°,∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠1=12∠BDE=12(180°−α)∴∠3=180°−12(180°−α)=90+12α【点睛】此题考查平行线的判定和性质,解题关键在于掌握其判定定理.22.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1 2倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?【答案】(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【解析】【分析】(1)设第一次购进甲商品x件,则购进乙商品(12x+15)件,根据题意列出方程即可求出x的值,然后根据”获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x件,则购进乙商品(12x+15)件由题意可得:22x+30(12x+15)=6000解得:x=150∴购进乙商品12×150+15=90件∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y折销售由题意可得:(29-22)×150+(40×10y-30)×90×3-1950=180解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP 的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【答案】(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm【解析】试题分析:(1) 观察图形可以看出,图中的线段PC和线段BD的长分别代表动点C和D的运动路程. 利用”路程等于速度与时间之积”的关系可以得到线段PC和线段BD的长,进而发现BD=2PC. 结合条件PD=2AC,可以得到PB=2AP. 根据上述关系以及线段AB的长,可以求得线段AP的长.(2) 利用”路程等于速度与时间之积”的关系结合题目中给出的运动时间,可以求得线段PC和线段BD的长,进而发现BD=2PC. 根据BD=2PC和PD=2AC的关系,依照第(1)小题的思路,可以求得线段AP的长.(3) 利用”路程等于速度与时间之积”的关系可知,只要运动时间一致,点C与点D运动路程的关系与它们运动速度的关系一致. 根据题目中给出的运动速度的关系,可以得到BD=2PC. 这样,本小题的思路就与前两个小题的思路一致了. 于是,依照第(1)小题的思路,可以求得线段AP的长.(4) 由于题目中没有指明点Q与线段AB的位置关系,所以应该按照点Q在线段AB上以及点Q在线段AB 的延长线上两种情况分别进行求解. 首先,根据题意和相关的条件画出相应的示意图. 根据图中各线段之间的关系并结合条件AQ-BQ=PQ,得到AP和BQ之间的关系,借助前面几个小题的结论,即可求得线段PQ 的长.试题解析:(1) 因为点C从P出发以1(cm/s)的速度运动,运动的时间为t=1(s),所以111PC=⨯=(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以212BD =⨯=(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以122PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以224BD =⨯=(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以PC t =(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以2BD t =(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm).(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为13AP AB =,所以13BQ AP AB ==.故13PQ AB AP BQ AB =--=.因为AB =12cm ,所以1112433PQ AB ==⨯=(cm).(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ=AP+PQ,所以AP=BQ.因为13AP AB=,所以13BQ AP AB==.故1433AQ AB BQ AB AB AB =+=+=.因为AB=12cm,所以411233PQ AQ AP AB AB AB=-=-==(cm).综上所述,PQ的长为4cm或12cm.点睛:本题是一道几何动点问题. 分析图形和题意,找到代表动点运动路程的线段是解决动点问题的重要环节. 利用速度、时间和路程的关系,常常可以将几何问题与代数运算结合起来,通过运算获得更多的线段之间的关系,从而为解决问题提供有利条件. 另外,分情况讨论的思想也是非常重要的,在思考问题时要注意体会和运用.。

2023-2024学年北师大版数学七年级上册期末考前模拟试卷+答案

2023-2024学年北师大版数学七年级上册期末考前模拟试卷+答案

2023-2024学年上学期七年级上期末模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.一种面粉的质量标识为“250.25±千克”,则下列面粉质量合格的是()A.24.70千克B.25.30千克C.25.51千克D.24.80千克2.经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过96000000党员的第一大政党.96000000用科学记数法表示为()A.89.610-⨯D.6⨯C.79.6100.9610⨯B.7⨯96103.如图所示,下列表示错误..的是()A.线段AB B.线段AC C.射线AC D.射线BA4.如图,从左面观察这个立体图形,得到的平面图形是()A.B.C.D.5.下列调查中,适宜采用全面调查方式的是()A.对全市每天丢弃的废旧电池数的调查B.对冷饮市场上冰淇淋质量情况的调查C.对全国中学生心理健康现状的调查D.对我国首架大型民用直升机各零件部件的调查6.如图,下列表示角的方法,错误的是()∠表示同一个角A.1∠与AOBB .AOC ∠也可用O ∠来表示C .图中共有三个角:AOB ∠,AOC ∠,BOC ∠D .∠β表示的是BOC ∠A .正数B .负数C .非正数D .非负数8.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”译文:“假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱。

问:有几个人共同出钱买鸡?鸡的价钱是多少?”设鸡的价钱为 x 钱,根据题意列一元一次方程, 正确的是( )9.如图,数轴上顺次有A 、B 、D 、E 、P 、C 六个点,且任意相邻两点之间的距离都相等,则原点在B 、D 之间;③若8c b -=,则2a b -=-;④若原点在D 、E 之间,则||2a b c +<,其中正确的结论有( )A .①②③B .①③C .③④D .①③④10.如图,甲、乙两动点分别从正方形ABCD 的顶点,A C 同时沿正方形的边开始匀速运动,甲按顺时针方向运动,乙按逆时针方向运动,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2023次相遇在哪条边上?( )A .ADB .CDC .BCD .AB二、填空题12.若216n x y +与237m x y --是同类项,则m n += .13.把一个20︒的角放在10倍的放大镜下看,这个角是 度.14.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是15.观察图形,探索规律.图1是三条长度都为a 的线段构成的小三角形;图2是4个边长都为a 的小角形拼成的大三角形:图3是9个边长都为a 的小三角形拼成的大三角形;图4是16个边长都为a 的小三角形拼成的大三角形、要使拼成的大三角形的边长为5a ,则需要 个边长为a 的小三角形来拼;按此规律排列,图n 中共有长度为a 的线段 条.三、解答题16.计算:(1)1371481224⎛⎫+-÷ ⎪⎝⎭;(2)24311112(3)25⎛⎫⎡⎤---⨯⨯+- ⎪⎣⎦⎝⎭17.某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图.请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生? (2)请把条形统计图补充完整;(3)若该校九年级共有350名学生,请估计该年级学生选择“听音乐”来缓解压力的人数.18.如图,OD 平分BOC ∠,OE 平分AOC ∠,60BOC AOC ∠=∠=︒.(1) 求AOB ∠的度数;(2) 试判断DOE ∠与AOB ∠是否互补,并说明理由.19.如图AB 、两点之间相距3个单位长度,BC 、两点之间相距7个单位长度,点A 、B C 、在数轴上表示的数分别为a b c 、、.(1) 若以B 为原点,求a c +.(2)若以C为原点,求a b-.(3)现有一动点P从点A开始沿数轴的正方向运动到达点C停止:、两点的距离之和为m,求m的最小值;①设点P到A B②设点P到、、A B C三点的距离之和为n,直接写出n的最大值与最小值.20.如图,大正方形的边长为a,小正方形的边长为b.(1)求阴影部分的面积S(用含a b,的代数式表示);(2)当104,时,求S的值.a b==21.如图,数轴上点A、B表示的数分别为9-和3,点O为原点.动点P从点A出发,以每秒1个单位长度的速度沿数轴向终点B运动,在点P出发的同时,点Q从点B出发,以每秒2个单位长度的速度向点A运动,到达点A后立即以每秒3个单位的速度沿数轴向终点O运动.设点P运动时间为t秒.(1)当2t=时,点P表示的数为_________;当点P与点B重合时,t的值为_________;(2)①在点Q由点B向点A运动的过程中,点Q表示数为_________(用含t的代数式表示);②当t=_________时,P、Q第一次相遇;。

北师大版七年级上册数学期末试卷及答案-百度文库

北师大版七年级上册数学期末试卷及答案-百度文库

北师大版七年级上册数学期末试卷及答案-百度文库一、选择题1.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 3.方程114xx --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-14.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .45.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块6.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .2407.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .8.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .89.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形10.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .201311.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .412.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____.14.一个三角形内有n 个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有99个点时,此时有_____个小三角形.15.如图,填在下面各正方形中的四个数字之间有一定的规律,据此规律可得a b c ++=_____________.16.观察下列等式:12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);…,则第n 个等式可表示为_____.17.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm . 18.若自然数n 使得三个数的竖式加减法运算“(1)(2)n n n ++++”产生进位现象,则称n 为连加进位数,例如10不是“连加进位数”因为10+11+12=33不产生进位现象;14是连加进位数,因为14+15+16=45产生进位现象,如果从10,11,12,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版新七年级上册数学期末模拟试卷及答案-百度文库一、选择题1.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快2.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-703.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-4.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .915.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .946.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .7.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .58.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .39.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >010.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4 B .5C .6D .711.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y - B .1019x y +C .1021x y -D .1017x y -12.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .20162015二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.观察算式:1325+=;23211+=;33229+=;43283+=;532245+=;632731+=;…….则201932019+的个位数字是_____.15.月球沿着一定的轨道围绕地球运动,它在近地点时与地球相距约为363000千米,这个数据用科学记数法表示,应记为_____千米.16.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________17.观察下列等式:12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);…,则第n 个等式可表示为_____. 18.已知方程2x ﹣a =8的解是x =2,则a =_____. 19.已知254a b -=-,则13410a b -+的值为__________.20.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.21.若25m n a b 与569a b -是同类项,则m n +的值是____.22.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.三、解答题23.如图,阶梯图的每个台阶都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻的4个台阶上标着的数的和都相等.尝试:(1)求前4个台阶上标着的数的和; (2)求第5个台阶上标着的数x .应用:(3)求从下到上的前2018个台阶上标着的数的和.发现:(4)试用含k (k 为正整数)的式子表示出“1”所在的台阶数. 24.计算: (1)11124834⎛⎫-⨯-+⎪⎝⎭(2)()()()322132633-+⨯---÷⨯-25.“一分钟跳绳”是重庆市中考体考项目之一,为了解初一年级学生的跳绳情况,我校体育老师从初一年级学生中随机抽取了部分学生进行一分钟跳绳测试,成绩如下:67,72,77,83,89,97,100,108,110,112,115,118,123,127,129,133,138,142,145,147,149,152,154,157,159,163,165,169,172,174,177,179,180,181,181,183,184,195,203,210,并将测试结果统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题: 组别 次数x频数(人) 频率 第1组 6595x ≤<5 0.125第2组 95125x ≤< 8 a第3组 125155x ≤<100.25第4组 155185x ≤< 第5组 185215x ≤<b合计c1一分钟跳绳次数频数分布表一分钟跳绳次数频数分布直方图(1)频数分布表中,a =________,b =________,c =________; (2)请补全频数分布直方图;(3)按规定,跳绳次数x 满足125185x ≤<时,等级为“良好”.若我校初一年级共有学生1800人,则其中跳绳等级为“良好”的学生约有多少人?26.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.27.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ; (2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.28.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项. 【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C . 【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.2.C解析:C 【解析】 【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案. 【详解】解:根据题意,客车从A 地到B 地的路程为:70S x = 卡车从A 地到B 地的路程为:60(1)S x =+ 则7060(1)x x =+ 故答案为:C . 【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.3.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.4.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.6.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.8.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.9.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.10.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.11.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时, 代入到得到x n +(-1)n+1y 2n-1=x 10-y 19. 故选:A . 【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.12.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.二、填空题13.16【解析】【分析】【详解】∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2,∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=1解析:16【解析】【分析】【详解】∵x=8是偶数,∴代入-12x+6得:m=-12x+6=-12×8+6=2,∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=16,故答案是:16.【点睛】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.14.【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35解析:【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35=243,36=729⋯∴末位数字分别是3,9,7,1,每四组一个循环,∵2019÷4=504⋯3,∴32019的末位数字是7,因此,32019+2019的末位数字是6.故答案为6.【点睛】本题考查了数学的变化规律,知道末位数字每四组一循环是解题的关键.15.63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:363000千米=3.63×105千米.故答案为:3.63×105【点睛】考核知识点:科学记数法.理解科学记数法的要求是关键.16.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.17.【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1解析:23(3)n n n n -=-【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);……∴第n 个等式可表示为n 2-3n=n (n-3).故答案为:23(3)n n n n -=-.【点睛】此题主要考查了因式分解的应用,首先通过观察得到等式隐含的规律,然后利用规律即可解决问题. 18.-4【解析】把x=2代入方程计算即可求出a 的值.【详解】解:把x =2代入方程得:4﹣a =8,解得:a =﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a 的值.【详解】解:把x =2代入方程得:4﹣a =8,解得:a =﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 19.21【解析】【分析】将所求式子变形为,然后利用整体代入的方法进行求解即可.【详解】因为,所以===21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题解析:21【解析】【分析】将所求式子变形为()13225a b --,然后利用整体代入的方法进行求解即可.【详解】因为254a b -=-,所以13410a b -+=()13225a b --=()1324-⨯-=21,故答案为:21.本题考查了代数式求值,利用整体代入思想进行求解是解题的关键.20.3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=∠AOB =35°时,解析:3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.21.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m =5,2n =6,∴m =5,n =3,∴m +n =8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型. 22.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题23.(1)3;(2)5-;(3)1505;(4)41k -【解析】【分析】(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;(3)根据(1)中的结果和题目中的数据可以求得从下到上的前2018个台阶上标着的数的和;(4)由循环规律即可知“1”所在的台阶数为41k -.【详解】(1)由题意得前4个台阶上数的和是52193--++=;(2)由题意得2193x -+++=,解得:5x =-,则第5个台阶上的数x 是5-;(3)由题意知台阶上的数字是每4个一循环,∵2018÷4=504…2,∴5043521505⨯--=,即从下到上前2018个台阶上数的和为1505;(4)根据题意可知数“1”所在的台阶数为:41k -.【点睛】本题考查了探索规律-数字的变化类,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.24.(1) 1-;(2)7-【解析】【分析】(1)根据乘法分配律可以算得答案;(2)根据有理数的混合运算法则计算.【详解】解:(1)原式=()()1112424243861834⎛⎫-⨯+-⨯-+-⨯=-+-=- ⎪⎝⎭; (2)原式=()()138********-+⨯---⨯=--+=-.【点睛】本题考查有理数的运算,熟练掌握有理数的混合运算顺序、运算法则及运算律是解题关键.25.(1)a=0.2,b=3;(2)见解析;(3)1080【解析】【分析】(1)由第1组的频数及频率,依据总数=频数÷频率计算可得c 的值,用第2组频数除以总数c 即可得出a 的值,再根据题目所给具体数据可得b 的值;(2)根据题目所给数据得出第4组的频数,结合b 的值即可补全图形;(3)算出第3、4组频数和占总数的比例,然后用总人数乘以该比例即可.【详解】解:(1)c=5÷0.125=40,a=8÷40=0.2,由题意知185≤x<215的数据为195,203,210,∴b=3,故答案为:0.2,3,40;(2)155≤x<185的数据有157,159,163,165,169,172,174,177,179,180,181,181,183,184,共14个,补全图形如下:(3) 第3、4组频数和占总数的百分比为:(10+14)÷40×100%=60%,故1800人中,跳绳等级为“良好”的学生约有1800×60%=1080人,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A类人数及其所占百分比可得调查的总人数;(2)由C类人数所占百分比乘(1)求得的总人数可得n的值,再用调查的总人数减去A、C、D类人数可以得到B类总人数;(3)算出B类人数所占百分比,再乘以360度可以得到答案;(4)用“A:非常喜欢”和“B:喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】÷=,∴本次调查中,一共调查了80名学生;解:()13645%80()();=⨯==-++=28030%24803624416n m()3解:1636072⨯︒=︒80答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.27.(1)9;(2)a 的值为10或-10;(3)见解析,c 的值为6或607【解析】【分析】(1)依据|a-b|=15,a ,b 异号,即可得到a 的值;(2)分点A 在原点左、右两侧两种情况讨论,依据OA=2OB ,即可得到a 的值;(3)分点C 在点B 左、右两侧两种情况进行讨论,依据O 为AC 的中点,OB=3BC ,设未知数列方程即可得到所有满足条件的c 的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A 和点B 分别位于原点O 两侧,b=-6,∴a >0,∴a=9,故答案为:9;(2)当A 在原点左侧时,点A 表示的数为a ,又|a-b|=15,即A ,B 两点间的距离为15,则可知B 点对应的数为a+15,如图,由OA =2OB 得,2(a+15-0)=0-a ,解得a=-10;当A 在原点右侧时,可知B 点对应的数为a-15,如图,由OA =2OB 得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C 有两种情况:①当点C 在点B 左侧时,如图,设BC=x ,由O 为AC 的中点,OB =3BC ,则OC=OA=2x ,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C 在点B 右侧时,如图,设BC=x ,由O 为AC 的中点,OB =3BC ,则OB=3x ,OA=OC=4x ,∴AB=3x+4x=15,解得x=157, ∴OC=4x=607, 则c =607, 综上所述,c 的值为6或607. 【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.28.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm ); (2)由AC a =,M 是AC 的中点,得 1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=; (3)线段MN 的长度会变化. 当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= ,同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。

相关文档
最新文档