高中数学数列单元测试及答案新人教版必修5
高中数学第二章数列训练卷(一)新人教A版必修5(2021年整理)
2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修51 / 1312018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5的全部内容。
数列(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}na中,12=a,1=221n na a++,则101a的值为( )A.49 B.50 C.51D.522.已知等差数列{}na中,7916a a+=,41a=,则12a的值是( ) A.15 B.30 C.31D.643.等比数列{}na中,29a=,5243a=,则{}n a的前4项和为( )A.81 B.120 C.168D.1924.等差数列{}na中,12324a a a++=-,18192078a a a++=,则此数列前20项和等于()A.160 B.180 C.200D.2205.数列{}na中,37 ()na n n+=∈N-,数列{}n b满足113b=,1(72)2n nb b n n+≥=∈N-且,若logn k na b+为常数,则满足条件的k值()A.唯一存在,且为132 / 1323 / 133B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( ) A .8 B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C.1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4 B .2:3 C.1:2D .1:39.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C.1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21 B .20 C.19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .2X Z Y +=B .()()Y Y X Z Z X =--C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项 C .第50项D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)1311的等比中项是________.4 / 13414.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知{}n a 为等差数列,且36a =-,60a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.5 / 13518.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =.(1)求数列{}n a 的通项公式;6 / 136(2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.7 / 13721.(12分)已知数列{}n a 的前n项和为n S ,且11a =,11,2,1(,)23n n a S n +==. (1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.8 / 13822.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .2018-2019学年必修五第二章训练卷数列(一)答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D . 2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B 【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B .6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠,∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C .8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =.所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B . 11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--, 即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个,即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫ ⎪-⎝⎭,则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个,其项数为1239)550(++++=+.故选C .二、填空题13.【答案】1±【解析】11的等比中项为a ,由等比中项的性质可知,)2111a ==,∴1a =±. 14.【答案】4- 【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a , 则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误.④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =, ∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =.∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-.【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--, ∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----.20.【答案】(1)见解析;(2)1()21n n S n -⋅=+.【解析】(1)证明由已知122n n n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n n n n S n n n ++-=-=-++⋅----=,∴1()21n n S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析. 【解析】(1)解由已知()1112,212n nn n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=.∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-. 【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,① ∴当1n =时,有1111112()()6S a a a ==++, 解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.② ①-②并整理得113()()0n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,∴13n n a a --=.当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=-- 242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-.。
版新人教A版必修五第二章数列单元测试卷带答案
新人教A版必修五第二章数列单元测试卷(带答案)(120分,分15 0分)一、(每小5分,共60分)1.数列2,5,22,11L的一个通公式是(,.n3n3.an3n1C.an3n1D.a n3n3.已知数列a n,a13,a26,且a n2an1a n,数列的第五().B.C.12D.6.是数列7,13,19,25,31,L,中的第().2011A.332B.333C.334D.335.在等差数列a n中,若a3a4a5a67450,a2a8()C.180一个首23,公差整数的等差数列,假如前六均正数,第七起数,它的公差是()A.-2B.-3C.-4D.-56.在等差数列{an}中,公差d,若S10=4S5,a1等于()d11A. C.24数列{an}和{bn}都是等差数列,此中a1=25,b1=75,且a100+b100=100,数列{an+bn}的前100之和是()8.已知等差数列{an}的公差d=1,且a1+a2+a3+⋯+a98=137,那么a2+a4+a6+⋯+a98的等于()9.在等比数列{an}中,a1=1,q∈R且|q|≠1,若am=a1a2a3a4a5,m等于()1 0.公差不0的等差数列{a}中,a、a、a挨次成等比数列,公比等于()236A .1B.3n-1(a≠0),个数列的特点是}的前n和()11.若数列{aS =aA.等比数列B.等差数列C.等比或等差数列 D.非等差数列Sn2n1 2.等差数列{a}和{b}的前n和分S与,全部自然数n,都有=nTn Tn3n1a5等于(2920D.11b5 A.B. C.17314311二、填空(每小4分,共16分)13.数列{a n}的前n和S n=n2+3n+1,它的通公式.1 4.已知{1}是等差数列,且a2=2-1,a4=2+1,a10=.a n1 5.在等比数列中,若S10=10,S20=30,S30=.1 6.数列11,21,31,41,⋯的前n和.2441 6三、解答:17.(本小分12分)已知等差数列{an}中,Sn=m,Sm=n(m≠n),求Sm+n.18.(安分12分)等差数列{an}的前n和Sn,已知a3=12,S12>0,S13<0.求公差d的取范. (安分12分)已知等差数列{an1102?并求此最大.}中,a =29,S=S,个数列的前多少和最大20.(安分12分)2a1=5,an+1=2an+3(n≥1),求{an}的通公式.21.(安分12分)乞降:1+4+7+⋯+3n25525n122.(安分14分)已知数列{an}中,Sn是它的前n和,而且Sn+1=4an+2(n=1,2,⋯),a1=1.(1) bn=an+1-2an(n=1,2,⋯)求{bn}是等比数列;(2) cn=an n(n=1,2⋯)求{cn}是等2差数列;(3)求数列{an}的通公式及前 n和公式.数列元量参照答案一、3二、填空13.a n5n12715.70n2n2114.-4716.22n2n2n2三、解答1 7.分析:np2+qn np2+qn=m;①S=n2+qm=n②m①-②得:p(n2-m2)+q(n-m)=m-n即p(m+n)+q=-1(m ≠n)Sm+n=p(m+n)2+q(m+n)=(m+n)[p(m+n)+q]=-(m+n).121112a1d018.分析:由S12>0及S13<0可得2131213a1d022a+11d>024+7d>01即又∵a3=12,∴a1=12-2d∴a+6d<03+d <01∴-24<d<-3.7分析:数列{a n}的公差d∵S10201092019解得d=-2=S,∴10×29+d=20×29+d∴a n=-2n +3122个数列的前n和最大,a≥0-2n+31≥0n需:即an+1≤0-2(n+1)+31≤0∴≤n≤∵n∈N,∴n=15∴当n=15,Sn最大,最大151514S=15×29+(-2)=225.20.分析:令an=bn+k,an+1=bn +1+k2∴b n+1+k=2(bn +k)+3即bn+1-2bn=k+3令k+3=0,即k=-3an=bn-3,bn+1=2bn明{bn}等比数列,q=2b1=a1-k=8,∴b n=8·2n-1=2n+2∴a n=2n+2-3.2分析:++⋯+3n23n1.Sn7+2=1+525n25n11Sn=+4+7+⋯+3n5+3n2②552535n15n①-②得:443333n2(15n1)3n25S n1552L5n15n13115n575n12n7Sn75n12n7.45n16n12 2.分析:(1)∵S n+1n+n+1+2②=4a+2①∴S=4a②-①得Sn+2n+1n+1n即an+2n+,-S=4a-4a(n=1,2,⋯)=4a-4a形,得an+2-2an+1=2(an +1-2an)∵b n=an+1-2an(n=1,2,⋯)∴b n+1=2bn.由此可知,数列{b n}是公比2的等比数列;由S2=a1+a2=4a1+2,又a1=1,得a2=5故b1=a2-2a1=3∴b n=3·2n-1.(2) Qc nan(n1,2,L),cn1nan1an a n12a nbnn122n12n1,将bn=3·2n-1代入,得cn +1-cn=(n=1,2,⋯)由此可知,数列{cn}是公差的等差数列,它的首a11c1=,故c3(n)3n1.n44( 3)Qc n3n11(3n1)∴a n=2n·c n=(3n-1)·2n-2(n=1,2,⋯);44当n≥2,S-n-1+2,因为Sn =4an1+2=(3n-4)·21=a1=1也合适于此公式,因此所求{an nn-1 (3n-4)·2+2.}的前n和公式是:5。
2021年新人教版高一数学必修5第二章数列单元测试及答案
浙江省瓯海中学高一数学必修5第二章《数列》单元测试班级 姓名 座号一、选择题(每小题6分)1、数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .)12()1(--=n a nnC .)21()1(n a n n --=D .)12()1(+-=n a nn2、等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3、等比数列{}n a 中,已知112733n a a q ===,,,则n 为( )A .3B .4C .5D .64、等比数列{}n a 中,9696==a a ,,则3a 等于( )A .3B .23C .916D .45、若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或156、等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么等于( )A .3B .2C .-2D .2±7、等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( )A .130B .170C .210D .2608、 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( )A .12B .11C .10D .9二、填空题(每小题6分)9、等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________ 10、{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______11、在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += __________12、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =______三、解答题13、(本题10分)求数列11111,2,3,424816…的前n 项和。
(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .354.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,6.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .28.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ).A .2B .1C .32D .129.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202210.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______. 14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________. 15.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 23.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T . 25.已知数列{}n a ,11a =,121n n a a +=+.(1)求证数列{}1n a +是等比数列; (2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立,所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C .【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.10.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn nn na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号, 又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576.【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232nn n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-.【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩, 所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭,所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++.【分析】选①,(1)列出关于首项与公差、首项与公比的方程组,求出首项与公差、首项与公比,从而求出数列{}n a 和{}n b 的通项公式;(2)由(1)知2nn n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.选②,(1)列出关于首项与公差的方程组可求出数列{}n a 的通项公式,利用1n n n b S S -=-可求{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可. 【详解】 选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.由题意知132452,24b b b b ⎛⎫=⋅=+⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=,解得2q,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式.2n n b =(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++, ()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.【点睛】方法点睛:利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-,又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解. 24.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】 (1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12.【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭, 则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >,由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a na a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n=++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
新人教版必修5第二章数列练习题及答案
数学5(必修)第二章 数列[基础训练A 组]一、选择题 1 在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A 11 B 12 C 13 D 14 2 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A 66B 99C 144D 297 3 等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A 81B 120C 168D 192 4 12+与12-,两数的等比中项是( ) A 1 B 1- C 1± D 21 5 已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A 2 B 4 C 6 D 8 6 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A 513 B 512 C 510 D 8225 二、填空题 1 等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________ 2 数列{n a }是等差数列,47a =,则7s =_________ 3 两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________ 4 在等比数列{}n a 中, 若,75,393==a a 则10a =___________ 5 在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________ 6 计算3log 33...3n =___________三、解答题1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数2. 在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值3. 求和:)0(),(...)2()1(2≠-++-+-a n a a a n4. 设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q(数学5必修)第二章数列 [基础训练A 组]参考答案一、选择题 1 C 12n n n a a a +++= 2 B 147369464639,27,339,327,13,9a a a a a a a a a a ++=++===== 91946999()()(139)99222S a a a a =+=+=+= 3 B 43521423(13)27,3,3,12013a a q q a S a q -=======- 4C 21)1,1x x ===± 5 B 2(33)(22),14,14x x x x x x x +=+=-=-≠-⇒=-或而 133313,134(),422222n x q n x -+==-=-⨯=+ 6 C 332112131(1)18,()12,,2,22q a q a q q q q q q ++=+====+或 而89182(12),2,2,2251012q Z q a S -∈====-=- 二、填空题 1 85233985252a a d --===-- 2 49 71747()7492S a a a =+== 3 1265 1955199"55199199()2792652929312()2a a a a a a S b b b b S b b ++⨯+======+++ 4 3375±610925,q q a a q ===⋅=±5 2- 471102a a a a ==- 6 112n - 111111...242422333log 33...3log (333)log (3)n n n +++=⋅⋅⋅⋅= 211[1()]111122 (11222212)n n n -=+++==--三、解答题1. 解:设四数为3,,,3a d a d a d a d --++,则22426,40a a d =-= 即1333,222a d ==-或, 当32d =时,四数为2,5,8,11 当32d =-时,四数为11,8,5,2 2. 解:1819202122201255,7 2.8,0.4a a a a a a a a d d ++++=-===20128 3.1 3.2 6.3a a d =+=+=∴1819202122205 6.3531.5a a a a a a ++++==⨯=3. 解:原式=2(...)(12...)n a a a n +++-+++2(1)(...)2n n n a a a +=+++- 2(1)(1)(1)12(1)22n a a n n a a n n a ⎧-+-≠⎪⎪-=⎨⎪-=⎪⎩ 4. 解:显然1q ≠,若1q =则3619,S S a +=而91218,S a =与9632S S S =+矛盾 由369111369(1)(1)2(1)2111a q a q a q S S S q q q---+=⇒+=--- 96332333120,2()10,,1,2q q q q q q q --=--==-=得或 而1q ≠,∴243-=q。
高一数学《必修五》数列测试题(含答案)
7 n 2 , 则 a5 =___________ . n 3 b5
14、数列 a n 的前 n项的和 Sn 3n n 1 ,则此数列的通项公式 a n=_
.
15、数列 a n 中, a1 1, an
1 1 ,则 a4
.
an 1
16、设 Sn 是等差数列 an 的前 n 项和,且 S5 S6 S7 S8 ,则下列结论一定正确的有
3、已知 a
1 ,b
32
1 , 则 a,b 的等差中项为(
32
A)
A. 3
B. 2
1
C.
3
1
D.
2
4、已知等差数列 { a n} 的前 n 项和为 Sn,若 a4 18 a5 ,则 S8 等于( D )
A . 18
B. 36
C. 54
D . 72
5、设 a1,a 2 , a3, a 4成等比数列,其公比为 2,则 2a1 a 2 的值为( A ) 2 a3 a 4
(Ⅱ )若列数{ bn}满足
b1=1, bn+1=bn+ 2an ,求证:
bn
·bn+2
<
b
2 n+1
.
解析:(Ⅰ)由已知得 an+1=an+1
即 an+1-an=1 又 a1=1,所以数列{ an}是以 1 为首项,公差为 故 an=1+( n-1) ×1=n. (Ⅱ ) 由(Ⅰ)知: an=n 从而 bn+1-bn=2n. bn=(bn-bn-1)+( bn-1-bn-2)+ ···+( b2-b1)+b1
,
且
a1
a n , 解得 a1
(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)
一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。
必修五数列单元测试包含详细答案
必修五数列复习综合练习题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2011是等差数列:1,4,7,10,…的第几项( ) (A )669 (B )670 (C )671 (D )6722.数列{a n }满足a n =4a n-1+3,a 1=0,则此数列的第5项是( ) (A )15 (B )255 (C )20 (D )83.等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为( ) (A )4 (B )23 (C )916(D )2 4.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=( ) (A )-1 (B )1 (C )3 (D )75.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=( ) (A )40 (B )42 (C )43 (D )456.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=( ) (A)2 (B)3 (C)6 (D)77.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )(A )90 (B )100 (C )145 (D )190 8.在数列{a n }中,a 1=2,2a n+1-2a n =1,则a 101的值为( ) (A )49 (B )50 (C )51 (D )529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如 (1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数{16111⋅⋅⋅位转换成十进制数的形式是( ) (A )217-2 (B )216-1 (C )216-2 (D )215-110.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( ) (A )45 (B )50 (C )75 (D )6011.(2011·江西高考)已知数列{a n }的前n 项和S n 满足:S n +S m =S n+m ,且a 1=1,那么a 10=( )(A )1 (B )9 (C )10 (D )5512.等比数列{a n }满足a n >0,n=1,2,…,且a 5·a 2n-5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n-1=( ) (A )n(2n-1) (B )(n+1)2 (C )n 2 (D )(n-1)2二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.等差数列{a n }前m 项的和为30,前2m 项的和为100,则它的前3m 项的和 为______.14.(2011·广东高考)已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q=______.15.两个等差数列{a n },{b n },12n 12n a a a 7n 2b b b n 3++⋯++=++⋯++,则55a b =______.16.设数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n =_____.3.数列{a n }、{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60,则{a n +b n }的前20项和为( ) (A)700 (B)710 (C)720 (D)7304.(2012·泉州模拟)设曲线y=x n(1-x)在x=2处的切线与y 轴交点的纵坐标为a n ,则数列na {}n 1的前n 项和S n 等于_________.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }是等差数列,a 2=3,a 5=6,求数列{a n }的通项公式与前n 项的和M n .18.(12分)(2011·铁岭高二检测)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .19.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n-1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.20.(12分)如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m ,a 2=a m-1,…,a m =a 1,即a i =a m-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n }是7项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=2,b 4=11.依次写出{b n }的每一项;(2)设{c n }是49项的“对称数列”,其中c 25,c 26,…,c 49是首项为1,公比为2的等比数列,求{c n }各项的和S.21.(12分)已知数列{a n }的前n 项和为()nn n 1S ,S 312=-(*n N ∈),等差数列{b n }中,b n >0(*n N ∈),且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列. (1)求数列{a n },{b n }的通项公式; (2)求数列{a n +b n }的前n 项和T n .2.已知函数()31xf x x =+,数列{}n a 满足111,()(*)n n a a f a n N +==∈ (Ⅰ)求证:数列1{}na 是等差数列(Ⅱ)记n 12231n n S a a a a a a +=+++L ,求nS .3.已知点(1,31)是函数,0()(>=a a x f x且1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(, 数列}{n b )0(>n b 的首项为c ,且前n 项和n S 满足:n S -1n S -=n S +1n S -(2n ≥).(1)求数列}{n a 和}{n b 的通项公式;(2)若数列{}n c 的通项1()3nn n c b =⋅,求数列{}n c 的前n 项和n R ; (3)若数列{}11+n n b b 前n 项和为n T ,问n T >20091000的最小正整数n 是多少?安徽省方山中学高一下学期数列专题单元测试答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1), ∴n=671.2.【解析】选B.由a n =4a n-1+3,a 1=0, 依次求得a 2=3,a 3=15,a 4=63,a 5=255.3.【解析】选A.等比数列{a n }中,a 3,a 6,a 9也成等比数列,∴a 62=a 3a 9,∴a 3=4. 4.【解析】选B.a 1+a 3+a 5=105,∴a 3=35,同理a 4=33, ∴d=-2,a 1=39,∴a 20=a 1+19d=1.5.【解析】选B.设公差为d,由a 1=2,a 2+a 3=13,得d=3,则a 4+a 5+a 6=(a 1+3d)+(a 2+3d)+(a 3+3d) =(a 1+a 2+a 3)+9d=15+27=42.6.【解析】选B.S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d), ∵d ≠0,∴d=2,从而S 10=100.8.【解析】选D.∵2a n+1-2a n =1,∴n 1n 1a a 2+-=, ∴数列{a n }是首项a 1=2,公差1d 2=的等差数列, ∴()1011a 21011522=+-=.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1. 10.【解析】选B.由已知a 1+a 2+a 3+a 11+a 12+a 13=150,∴3(a 1+a 13)=150,∴a 1+a 13=50,∴a 4+a 10=a 1+a 13=50.11.【解析】选A.∵S n +S m =S n+m ,∴令n=9,m=1,即得S 9+S 1=S 10,即S 1=S 10-S 9=a 10,又∵S 1=a 1,∴a 10=1.12.【解析】选C.a 5·a 2n-5=22n (n ≥3), ∴a n 2=22n ,a n >0,∴a n =2n ,log 2a 1+log 2a 3+…+log 2a 2n-1 =1+3+…+(2n-1)=n 2.13.【解析】由题意可知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,2(S 2m -S m )=S m +S 3m -S 2m ∴S 3m =3(S 2m -S m )=3×(100-30)=210.14.【解析】由a 4-a 3=4得a 2q 2-a 2q=4,即2q 2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去).15.【解析】设两个等差数列{a n },{b n }的前n 项和分别为A n ,B n .则()()195919599a a a A 7926529b b b B 93122+⨯+====++.16.【解析】∵a 1=2,a n+1=a n +(n+1), ∴a n =a n-1+n,a n-1=a n-2+(n-1),a n-2=a n-3+(n-2),…,a 3=a 2+3,a 2=a 1+2,a 1=2=1+1将以上各式相加得:()()2n n n 1n na [n n 121]111222+=+-+⋯+++=+=++. 17.【解析】设{a n }的公差为d, ∵a 2=3,a 5=6,∴11a d 3a 4d 6+=⎧⎨+=⎩,∴a 1=2,d=1, ∴a n =2+(n-1)=n+1.()2n 1n n 1n 3nM na d .22-+=+=18.【解析】(1)依题意有a 1+(a 1+a 1q)=2(a 1+a 1q+a 1q 2)由于a 1≠0,故2q 2+q=0,又q ≠0,从而1q 2=-. (2)由已知得a 1-a 1(12-)2=3,故a 1=4从而nn n 141812S 113212⎛⎫-- ⎪⎝⎭==----[][()]().19.【解析】(1)∵a 1=S 1,a n +S n =n ①, ∴a 1+S 1=1,得11a 2=.又a n+1+S n+1=n+1 ②, ①②两式相减得2(a n+1-1)=a n -1, 即n 1n a 11a 12+-=-,也即n 1n c 1c 2+=, 故数列{c n }是等比数列. (2)∵111c a 12=-=-, ∴n n n n n11c ,a c 1122=-=+=-, n 1n 11a 12--=-.故当n ≥2时,n n n 1n 1n n111b a a 222--=-=-=. 又111b a 2==,即n n 1b 2=. 20.【解析】(1)设数列{b n }的公差为d ,则b 4=b 1+3d=2+3d=11,解得d=3, ∴数列{b n }为2,5,8,11,8,5,2. (2)S=c 1+c 2+…+c 49 =2(c 25+c 26+…+c 49)-c 25=2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a 1=1,a n =S n -S n-1=3n-1,n>1,∴a n =3n-1(*n N ∈),∴数列{a n }是以1为首项,3为公比的等比数列, ∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中, ∵b 1+b 2+b 3=15,∴b 2=5.又因a 1+b 1,a 2+b 2,a 3+b 3成等比数列,设等差数列{b n }的公差为d, ∴(1+5-d )(9+5+d)=64,解得d=-10或d=2, ∵b n >0(*n N ∈),∴舍去d=-10,取d=2,∴b 1=3. ∴b n =2n+1(*n N ∈). (2)由(1)知 ∴T n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )()n n 32n 113132++-=+- n 231n 2n 22=++-. 22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论.【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则 第1次付款金额为a 1=200+2 000×0.01=220(元); 第2次付款金额为a 2=200+(2 000-200)×0.01=218(元)……第n 次付款金额为a n =200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为()10109S 102202 2 1102⨯=⨯+⨯-= (元),实际共付2 260元. 第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2 000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x 元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为()101011.01S x 11.01-=⋅-.应有()1010S 2 0001.01=⨯,所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱. 【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解; (2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.。
高二必修5数列单元练习题及答案.doc
高二必修五《数列》单元练习命题人:荔城中学高二数学备课组一、选择题(每小题5分,共50分)1数列{a」满足坷=2, a n -a n_x +1 = 0, (nWN),则此数列的通项色等于()A /I? +1 B〃 + l C 1 - ri D 3 - n2个数a,b,c ,既是等差数列,又是等比数列,则a,b,c间的关系为()A b-a = c-bB b2 = acC a = b = cD a = b = c3差数列[a n}的前m项和为30,前2m项和为100,贝陀的前3m项和是()A 130B 170C 210D 2604差数列{Q讣中,已知% = +。
5 =4,色=33 ,贝壮为()・A 48 B49 C 50 D 515知等比数列{a”}的公比厂-丄,则⑷+乞+冬+如等于()3A --B -3C -D 33 36各项都为正数的等比数列{«…}中,若导6 =9,则logs a Y + log3 «2 + • • • + log3a w = ().A 12B 10C 8D 2 + log3 57和81之间插入两个正数,使前三个数成等斧数列,后三个数成等比数列,则这两个数的和等于()・A 80B 70C 18D 16A 7n -I- 18两各等斧数列{a”}、{〃”}前"项和分别为&、B”,满足一=—:——(” wN+),B”4“+ 27则鱼的值为() %7 3A -B -4 2 c 13D虫719S”是等差数列{%}的前"项和,Se,=36,S” =324,S”“ =144("〉6),则n等于().A 15B 16C 17D 1810列1丄,3丄,5-,7 —前n项和为()2 4 8 16A — + \B n2-- + 丄C n2-ii- — + l2" 2"+i 2 2"n,11Dn -n -------- ------2n 2二、填空题:(每小题4分,共16分)11 等比数列{a”}中,a6 = 6,a9 = 9 ,那么a, = ___________ .12差数列{a”}共有2“ + 1项,其中奇数项之和为319,偶数项之和为290,则中间项为 ______ .13斧数列{a”}前"项和为S”,已知= 13,S.=S n,n为 ___________ 时,S”最大.14 列{a”}的前"项的和S n = 2n2 -n + 1,则a n = ____________三、解答题15(本小题满分8分)在等比数列{a”}中,Qj -«3 = 27 , a2 + a4 = 30试求:(I)⑷和公比q;(II)前6项的和S6.16(本小题满分8分)求和 1 + 2x + 3.r2 H --- 1- ”17(本小题满分9分)已知数列{a”}的前n项和S” = n2 -48"(1)求数列的通项公式;(2)求S”的最大或最小值.18(本小题满分9分)某城市1995年底人口总数为500万,人均住房面积为6平方米,如果该市每年人口的平均增长率为1%.而每年平均新建住房面积为30万平方米.那么到2005 年年底,该市的人均住房面积数约为多少?(精确到0.01平方米)(—l)x[l —(—3)6] 1 + 336 -14=182必修五《数列》单元练习参考答案二、填空题:(每小题4分,共16分)2 n = l11、4 12、29 13、7 14、a” =<4n - 3 n>2三、解答题15、(本小题满分8分)解:(I)在等比数列{a”冲,由已知可得:I a} - a x q•a” = 27[a^q + a}q3 = 30[a A = 1 亠[a A =—1解得:\ c或4g = 3 [q = ~3(II) “”=5(17")n 1i_q.•.当卜“时,S6= 1X(1~36) =^ = 364<7 = 3 1-3 -216、(本小题满分8分)解:当x=l 时,S, =l+2+3+...+n= +2当xZl 时,S n = 1+2x+3x2+• • • 4-nx11-1①xS”= x+2x2+•••+(!!-1) x n_1+nx n②由又 neN +:.n = 24 即S”最小①一②:(l —x)= 1 + x + x 2 + x 3 H --- x n ~l - nx n --―-——nx l1-xc l-(n + l)xn+ nx n+i n ~ (1-x)217、解(1) 6z 1=S 1=l 2-48xl = -47当n>2时c 1” = S” - S,i = n~- 48“ — [(n-1)2- 48(— 1)]=2n - 49a }也适合上式/. a n = 2n-49 (n w NJ(2)勺=—49,d = 2,所以S”有最小值a” - 2n -49 <0 得23丄 < ” < 241 %=2(“+ 1) — 49〉0 2 224x 23S24 =24x(-47) + —于 x2 = -576或:由 S” = n 2 — 48M = (n — 24)2 - 576 当"=24时,S”取得最小值-576.18、解:依题意1995年共有住房面积为6x500 = 3000 (万平方米)从1995年开始,各年住房面积是以首项珀=3000,公差d = 30的等差数列 所以到2005年底,该市共有住房面积为 3000 + 10x30 = 3300 (万平方米)又从1995年开始,人口数组成首项勺=500,公比g = 1.01的等比数列 所以到2005年底该市人口数为5OOxl.Ol 10 =552.31 (万人)故2005年底人均住房面积为丄型5.97 (平方米)552.31。
最新人教版高中数学必修5第二章数列测评(a卷)(附答案)
第二章 数列测评(A 卷)(总分:120分 时间:90分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.等差数列-2,0,2,…的第15项为A .11 2B .12 2C .13 2D .142 答案:C ∵a 1=-2,d =2,∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等比数列{a n }的首项a 1=1002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为A .8B .9C .10D .11答案:C a n =1002×(12)n -1<1⇒n>10,即等比数列{a n }前10项大于1,从第11项起小于1,故p 10最大.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于 A .64 B .81 C .128 D .243答案:A 公比q =a 2+a 3a 1+a 2=63=2.由a 1+a 2=a 1+2a 1=3a 1=3,得a 1=1,a 7=26=64.4.设{a n }是等差数列,a 1+a 3+a 5=9,a 6=9,则这个数列的前6项和等于 A .12 B .24 C .36 D .48答案:B {a n }是等差数列,a 1+a 3+a 5=3a 3=9,a 3=3,a 6=9.∴d =2,a 1=-1,则这个数列的前6项和等于6(a 1+a 6)2=24.5.数列{a n }的通项公式为a n =(-1)n -1(4n -3),则它的前100项之和S 100等于 A .200 B .-200 C .400 D .-400答案:B 设数列可记为1,-5,9,-13,…,393,-397.其奇数项与偶数项分别是公差为8,-8的等差数列.于是,S 100=(1+9+13+…+393)-(5+13+…+397)=50×(1+393)2-50×(5+397)2=-200.6.各项都是正数的等比数列{a n }的公比q ≠1,且2a 2,a 3,a 1成等差数列,则a 5+a 6a 3+a 4的值为A .1+32B .1-32 C.1-52 D.5+12答案:A 由2a 2,a 3,a 1成等差数列得2a 3=2a 2+a 1,∴2a 1q 2=2a 1q +a 1,整理得2q 2-2q -1=0,解得q =1+32或q =1-32<0(因等比数列各项都是正数,故舍去).∴a 5+a 6a 3+a 4=a 3q 2+a 4q 2a 3+a 4=q 2=(1+32)2=1+32.7.(2009广东高考,理4)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于A .n(2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C 由{a n }为等比数列,则a 5·a 2n -5=a 1·a 2n -1=22n , 则(a 1·a 3·a 5·…·a 2n -1)2=(22n )n ⇒a 1·a 3·…·a 2n -1=2n 2, 故log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1·a 3·…·a 2n -1)=n 2.8.在各项均不为零的等差数列{a n }中,若a n +1-a n 2+a n -1=0(n ≥2),则S 2n -1-4n 等于 A .-2 B .0 C .1 D .2 答案:A 由a n +1-a n 2+a n -1=0(n ≥2),2a n =a n +1+a n -1,得a n 2=2a n ,即a n =2或a n =0(舍去),所以S 2n -1-4n =(2n -1)×2-4n =-2.9.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是A .i<4?B .i<5?C .i ≥5?D .i<6? 答案:D 该程序的功能是求和∑i =1n1i(i +1),由输出结果56=11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,得n =5. 10.(2009山东潍坊高三第二次质检,11)已知函数f(x)=log 2x 的反函数为f -1(x),等比数列{a n }的公比为2,若f -1(a 2)·f -1(a 4)=210,则2f(a 1)+f(a 2)+…+f(a 2009)等于A .21004×2008B .21005×2009C .21005×2008D .21004×2009答案:D 由题意,得f -1(x)=2x ,故f -1(a 2)·f -1(a 4)=4222aa ⋅=210, ∴a 2+a 4=10,即2a 1+8a 1=10. ∴a 1=1.则f(a 1)+f(a 2)+…+f(a 2009)=log 2(a 1·a 2·…·a 2009)=log 220+1+2+…+2008=1+20082×2008=1004×2009.第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上) 11.若等差数列{a n }中,a 1+4a 7+a 13=96,则2a 2+a 17的值是__________. 答案:48 ∵a 1+4a 7+a 13=96,a 1+a 13=2a 7, ∴a 7=16.∴2a 2+a 17=a 1+a 3+a 17=a 7+a 11+a 3=a 7+2a 7=3a 7=48.12.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无数项为0,其中正确判断的序号是__________.答案:①④ 从定义可知,数列{a n }若构成“等差比数列”,则相邻两项不可能相等,所以①正确;而等差数列与等比数列均可能为常数列,就有可能不能构成“等差比数列”,所以②③错误;如数列为{2,0,2,0,2,0,…},则能构成“等差比数列”,所以④正确.综上所述,正确的判断是①④.13.在等比数列{a n }中,若a 5+a 6=a(a ≠0),a 15+a 16=b ,则a 25+a 26等于__________.答案:b 2a 由a 15+a 16a 5+a 6=(a 5+a 6)q 10a 5+a 6=b a ,则q 10=ba ,则a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)(q 10)2=a ×(b a )2=b 2a.14.对于一切实数x ,令[x]为不大于x 的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若a n =f(n3),n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =__________.答案:3n 2-n 2 ∵f(x)=[x],∴a n =f(n 3)=[n3],n ∈N *.于是,S 3n =(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3n -2+a 3n -1+a 3n ) =(0+0+1)+(1+1+2)+…+[(n -1)+(n -1)+n]=1+4+…+(3n -2)=n[1+(3n -2)]2=3n 2-n 2.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)(2009福建高考,文17)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .答案:解:(1)设{a n }的公比为q. 由已知得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. ∴数列{b n }的前n 项和S n =n(-16+12n -28)2=6n 2-22n.16.(本小题满分10分)已知数列{a n }的前n 项和S n =n(2n -1)(n ∈N *). (1)证明数列{a n }为等差数列;(2)设数列{b n }满足b n =S 1+S 22+S 33+…+S nn(n ∈N *),试判定:是否存在自然数n ,使得b n =900,若存在,求出n 的值;若不存在,请说明理由.答案:(1)证明:当n ≥2时,a n =S n -S n -1=n(2n -1)-(n -1)(2n -3)=4n -3, 当n =1时,a 1=S 1=1,适合. ∴a n =4n -3.∵a n -a n -1=4(n ≥2),∴{a n }为等差数列.(2)解:由(1)知,S n =2n 2-n ,∴S nn=2n -1.∴b n =S 1+S 22+S 33+…+S nn=1+3+5+7+…+(2n -1)=n 2.由n 2=900,得n =30,即存在满足条件的自然数,且n =30.17.(本小题满分10分)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n}是等比数列;(2)求数列{a n }的前n 项和S n .答案:(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *. 又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =(1+4+…+4n -1)+(1+2+…+n)=4n -13+n(n +1)2.18.(本小题满分12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求和:1S 1+1S 2+…+1S n.答案:解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(9+3d)q 2=960,S 2b 2=(6+d)q =64.解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎨⎧d =-65,q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n(n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n(n +2) =12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2). 19.(本小题满分12分)在数列{a n }中,a 1=2,a 4=8,且满足a n +2=2a n +1-a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2n -1·a n ,求数列{b n }的前n 项和S n .答案:解:(1)∵a n +2=2a n +1-a n (n ∈N *), ∴a n +2-a n +1=a n +1-a n . ∴{a n }为等差数列.设公差为d ,则由题意,得8=2+3d ,∴d =2. ∴a n =2+2(n -1)=2n.(2)∵b n =2n -1·2n =n·2n ,∴S n =b 1+b 2+b 3+…+b n =1×21+2×22+3×23+…+n ×2n .①∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =21+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n)×2n +1-2.∴S n =(n -1)·2n +1+2.。
高中数学必修五数列综合测试题(中等难度,含答案)
高中数学必修五数列综合测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上) . 1.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.56 2.11两数的等比中项是( ) A . 1- B .1± C . 1 D .123.数列}{n a 满足 321+=+n n a a ,其中294=a , 则这个数列的首项是( ) A 4B 2C 3D 14.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A 15B 30C 31D 645.在等比数列{}n a 中,已知,11=a 84=a ,则=5a ( )A .16B .16或-16C .32D .32或-326.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为21,则=++543a a a ( ) A .33 B .72 C .84 D .1897.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么d 等于( ) A 3 B 2 C -2 D 2±8.已知数列{}n a 的前n 项和n n S n 32-=,若它的第k 项满足52<<k a ,则=k ( ) A .2 B .3 C .4 D .5 9.设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .1- C .2 D .2110.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A 、3 B 、4 C 、5 D 、611.等比数列{}n a 中,36a =,前三项和318S =,则公比q 的值为( )A .1B .12-C .1或12-D .-1或12-12.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += ( ) A .95 B .100 C .135 D .80二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为n a = 14.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .15.在等比数列{}n a 中,,则= ;16. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤) 17.(10分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和.18.(12分)已知数列{}n a 的前n 项和n n S 23+=,求n a19.(12分)设等比数列{n a }的公比为q ,前n 项和为S n ,若21,,++n n n S S S 成等差数列,求q 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修⑤ 数列单元测试 (A 卷)
一、
选择题(每题3分,共54分)
1、等差数列n a a a a ,,,,321 的公差为d ,则数列n ca ca ca ca ,,,,321 (c 为常数,且0 c )是( )
A .公差为d 的等差数列
B .公差为cd 的等差数列
C .非等差数列
D .以上都不对
2、在数列 n a 中,122,211 n n a a a ,则101a 的值为( )
A .49
B .50
C .51
D .52
3、已知,2
31,2
31
b a 则b a ,的等差中项为(
)
A .3
B .2
C .
3
1 D .
2
1
4、等差数列 n a 中,12010 S ,那么101a a 的值是( )
A .12
B .24
C .36
D .48
5、2
b a
c 是c b a 、、成等比数列的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
6、设4321,,,a a a a 成等比数列,其公比为2,则
4
32
122a a a a 的值为( )
A .
4
1 B .
2
1
C .8
1 D .1
7、数列3,5,9,17,33,…的通项公式n a 等于(
) A .n
2
B .12 n
C .12 n
D .1
2
n
8、数列 n a 的通项公式是1
1
n n a n ,若前n 项的和为10,则项数n 为( )
A .11
B .99
C .120
D .121
9、计算机的成本不断降低,若每隔3年计算机价格降低3
1
,现在价格为8100元的计算机,9年后的价格可降为( )
A .2400元
B .900元
C .300元
D .3600元
10、数列 n a 、 n b 都是等差数列,其中100,75,2510010011 b a b a ,那么 n n b a 前100项的和为(
)
A .0
B .100
C .10000
D .102400
11、若数列 n a 的前n 项和为2
n S n ,则(
)
A .12 n a n
B .12 n a n
C .12 n a n
D .12 n a n
12、等比数列 n a 中, q a a a a 则,8,63232(
)
A .2
B .
2
1 C .2或
2
1
D .-2或2
1
13、等差数列—3,1,5,…的第15项的值是( )
A .40
B .53
C .63
D .76
14、在等比数列中,3
2
,31,891
q a a n ,则项数n 为( ) A .3
B .4
C .5
D .6 15、已知实数c b a 、、满足122,62,32 c
b
a
,那么实数c b a 、、是(
)
A .等差非等比数列
B .等比非等差数列
C .既是等比又是等差数列
D .既非等差又非等比数列
16、若c b a 、、成等比数列,则关于x 的方程02
c bx ax ( )
A .必有两个不等实根
B .必有两个相等实根
C .必无实根
D .以上三种情况均有可能
17、已知等差数列 n a 满足011321 a a a a ,则有(
) A .0111 a a B .0102 a a C .093 a a
D .66 a
18、数列 ,16
1
4
,813,412,211前n 项的和为( )
A .22
12n n n
B .12212 n
n n C .22
12n
n n
D . 2
2121
n
n n
二、填空题(每题3分,共15分)
19、在等差数列 n a 中,已知2054321 a a a a a ,那么3a 等于
20、某厂在1995年底制定生产计划,要使2020年底的总产量在原有基础上翻两番,则年平均增长率为
21、已知等差数列 n a 的公差0 d ,且931,,a a a 成等比数列,则
10
429
31a a a a a a 的值是
22、数列 n a 中,11,11
1
n n a a a ,则 4a
23、已知在等比数列 n a 中,各项均为正数,且,7,13211 a a a a 则数列 n a 的通项公式是_________ n a
三、解答题(第2 4、25两题每题7分,第26题8分,第27题9分,共31分) 24、等差数列 n a 中,已知33,4,3
1
521 n a a a a ,试求n 的值
25、数列 n a 中,*
11,3,2N n n a a a n n ,求数列 n a 的通项公式n a
26、在等比数列 n a 的前n 项和中,1a 最小,且128,66121 n n a a a a ,前n 项和
126 n S ,求n 和公比q
27、已知等比数列 n b 与数列 n a 满足*
,3N n b n a
n
(1) 判断 n a 是何种数列,并给出证明; (2) 若2021138,b b b m a a 求 ]
数列单元测试 (A 卷)答案
一、
二、19、4 20、1410 21、1613 22、3
5
23、12 n 三
、
24
、
50
333
1
32 ,3331
3232)1(31,32 31,452411152
n n a n n a d a d a d d a a a n n 得又
25、由 )
1(36
3
3123121n a a a a a a n a a n n
n n
将上面各等式相加,得2
)
1(32)1(3631 n n a n a a n n 26
、
因
为
n a 为等比数
列
,
所
以
64,2,,128
66
1111121
n n n n n n a a a a a a a a a a a a 解得且 依题意知1 q 21261,1261
q q
q
a a S n n 6,6421 n q n
27、(1)设 n b 的公比为q , q n a a q
b n a n a
a
n n
n 311
log 10(33,31
所以 n a 是以q 3log 为公差的等差数列
(2)m a a 138 所以由等差数列性质得m a a a a 138201
m a a a b b b m a a a a a 102021201202133102
20
)(2021。