湖南省衡阳县2018-2019学年高二学业水平第一次模拟考试数学试题Word版含答案
衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i2. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .3. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725-C. 725±D .24254. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)5. 直线的倾斜角是( )A .B .C .D .6. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .27. 圆()与双曲线的渐近线相切,则的值为( )222(2)x y r -+=0r >2213y x -=rA B . C . D .2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在9. 已知空间四边形,、分别是、的中点,且,,则( )ABCD M N AB CD 4AC =6BD =A .B .C .D .15MN <<210MN <<15MN ≤≤25MN <<10.若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为()A .﹣2B .2C .﹣4D .411.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33% B .49% C .62%D .88%12.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是()A .2B .8C .﹣2或8D .2或8二、填空题13.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 17.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .三、解答题19.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.20.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值. 21.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.22.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.23.(本小题满分12分)的内角所对的边分别为,,ABC ∆,,A B C ,,a b c (sin ,5sin 5sin )m B A C =+垂直.(5sin 6sin ,sin sin )n B C C A =--(1)求的值;sin A(2)若,求的面积的最大值.a =ABC ∆S 24.已知函数f (x )=xlnx+ax (a ∈R ).(Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986) 衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解:由复数性质知:i 2=﹣1故i+i 2+i 3=i+(﹣1)+(﹣i )=﹣1故选A【点评】本题考查复数幂的运算,是基础题. 2. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解. 3. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化.4. 【答案】D【解析】解:若a=0,则函数f (x )=﹣3x 2+1,有两个零点,不满足条件.若a ≠0,函数的f (x )的导数f ′(x )=6ax 2﹣6x=6ax (x ﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.5.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握. 6. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查. 7. 【答案】C8. 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,则θ为钝角.故选:C .9. 【答案】A 【解析】试题分析:取的中点,连接,,根据三角形中两边之和大于第三边,两边之BC E ,ME NE 2,3ME NE ==差小于第三边,所以,故选A .15MN <<考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.10.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.11.【答案】B【解析】12.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.二、填空题13.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值.【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.14.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.15.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.16.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).17.【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,为连续两项和,为接下来三3m 3233项和,故的首个数为.3m 12+-m m ∵的分解中最小的数为91,∴,解得.)(3+∈N m m 9112=+-m m 10=m 18.【答案】 3 .【解析】解:直线l 的方程为ρcos θ=5,化为x=5.点(4,)化为.∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.三、解答题19.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称,有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.20.【答案】【解析】解:(Ⅰ)∵,∴(x >0),当a=2时,则在(0,+∞)上恒成立,当1<a <2时,若x ∈(a ﹣1,1),则f ′(x )<0,若x ∈(0,a ﹣1)或x ∈(1,+∞),则f ′(x )>0,当a >2时,若x ∈(1,a ﹣1),则f ′(x )<0,若x ∈(0,1)或x ∈(a ﹣1,+∞),则f ′(x )>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.22.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…23.【答案】(1);(2)4.45【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已cos A sin A 知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式 A 22265bc b c a +-=10bc ≤可得面积的最大值.1sin 2S bc A =试题解析:(1)∵,垂直,(sin ,5sin 5sin )m B A C =+ (5sin 6sin ,sin sin )n B C C A =-- ∴,2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]24.【答案】【解析】解:(I )a=﹣2时,f (x )=xlnx ﹣2x ,则f ′(x )=lnx ﹣1.令f ′(x )=0得x=e ,当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,∴f (x )的单调递减区间是(0,e ),单调递增区间为(e ,+∞).(II )若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,则xlnx+ax >k (x ﹣1)+ax ﹣x 恒成立,即k (x ﹣1)<xlnx+ax ﹣ax+x 恒成立,又x ﹣1>0,则k <对任意x ∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.。
衡阳县一中2018-2019学年上学期高二数学12月月考试题含解析
衡阳县一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .32. 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( ),m n ,,αβγA .若,则,m βαβ⊂⊥m α⊥B .若,则,//m m n αγ= //αβC .若,则,//m m βα⊥αβ⊥D .若,则,αγαβ⊥⊥βγ⊥3. 设,为正实数,,,则=( )a b 11a b+≤23()4()a b ab -=log a b A.B. C.D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.4. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .5. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )6. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]7. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .28. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 309. 如图,程序框图的运算结果为()A .6B .24C .20D .12010.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是()A .5B .4C .4D .211.已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z zA .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.12.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .B . C.D .二、填空题13.设是空间中给定的个不同的点,则使成立的点的个数有_________个.14.=.-23311+log 6-log 42(15.圆心在原点且与直线相切的圆的方程为_____.2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.16.不等式恒成立,则实数的值是__________.()2110ax a x +++≥17.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .18.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥三、解答题19.(本小题满分10分)选修4-1:几何证明选讲选修:几何证明选讲41-如图,为上的三个点,是的平分线,交,,A B C O A AD BAC ∠O A 于点,过作的切线交的延长线于点.D B O A AD E (Ⅰ)证明:平分;BD EBC ∠(Ⅱ)证明:.AE DC AB BE ⨯=⨯20.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项.(1)求数列{a n }、{b n }的通项公式;(2)设c n =,求{c n }的前n 项和S n .21.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式;(2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:.()00f x '>22.设A=,,集合2{x|2x+ax+2=0}2A ∈2{x |x 1}B ==(1)求的值,并写出集合A 的所有子集;a (2)若集合,且,求实数的值。
衡阳县高级中学2018-2019学年高二上学期第一次月考试卷数学
衡阳县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.2. 如果执行如图所示的程序框图,那么输出的a=( )A .2 B. C .﹣1 D .以上都不正确3. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.4. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[,86C .31[,)162D .3[,3)85. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.6. 设集合( )A .B .C .D .7. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a8. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种9. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或C .{}|33x x x <->或D . {}|303x x x <-<<或10.已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >211.已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=112.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .72二、填空题13.阅读右侧程序框图,输出的结果i 的值为 .14.(﹣)0+[(﹣2)3] = .15.不等式的解集为 .16.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .17.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .18.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.三、解答题19.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。
湖南省衡阳县高二数学学业水平第一次模拟考试试题
衡阳县2017年高中学业水平第一次模拟考试数 学本试卷包括选择题、填空题和解答题三部分。
时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={0,1,2},N ={x },若M∪N={0,1,2,3},则x 的值为( ) A .3 B .2C .1D .02.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台D.球3.在区间内任取一个实数,则此数大于3的概率为 A.51 B.52C.53 D.54 4.某程序框图如图所示,若输入x 的值为1,则输出y 的值是 A.2 B.3 C.4D.55.已知向量a =(1,2),b =(x ,4),若a ∥b ,则实数x 的值为( ) A .8B .2C .-2D .-86.某学校高一、高二、高三年级的学生人数分别为600,400,800,为了了解教师的教学情况,该校采用分层抽样的方法,从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为( ) A .15,5,25 B .15,15,15C .10,5,30D .15,10,207.如图,在正方体ABCD -A 1B 1C 1D 1中,直线 BD 与A 1C 1的位置关系是 A.平行B.相交C.异面但不垂直D. 异面且垂直8.不等式(x +1)(x -2)≤0的解集为 A.{x|-1≤x ≤2}B. {x|-1<x <2}C. {x|x ≥2或x ≤-1}D. {x|x >2或x <-1}9.已知两点P(4,0),Q(0,2),则以线段PQ 为直径的圆的方程是( ) A .(x +2)2+(y +1)2=5 B .(x -2)2+(y -1)2=10 C .(x -2)2+(y -1)2=5D .(x +2)2+(y +1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A 、B 到点C 的距离AC =BC =1km ,且∠ACB =120A 、B 两点间的距离为( ) A .3km B .2kmC .1.5kmD .2km二、填空题:本大题共5小题,每小题4分,满分20分. 11.计算:log 21+log 24=____________。
湖南衡阳第一中学2018-2019学年高二数学上学期第一次月考试题 理
2018年衡阳市一中下学期高二第一次月考理科数学试题一.选择题(本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的.)1.已知命题()()0)()(,,:121221≥--∈∀x x x f x f R x x p ,则p ⌝是( D ) A . ()()0)()(,,121221<--∉∀x x x f x f R x x B . ()()0)()(,,121221<--∉∃x x x f x f R x x C . ()()0)()(,,121221<--∈∀x x x f x f R x x D . ()()0)()(,,121221<--∈∃x x x f x f R x x2.直线022=-+y x 与椭圆1422=+y x 的位置关系为 ( C ) A. 相离 B. 相切 C. 相交 D. 无法确定3.已知21,F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于B A ,两点,若1222=+B F A F ,则=AB ( B )A .5B .8C .15D .204.已知命题()x x x p >+∞∈∀2,,0:,命题0210log 21,:0x R x q x =⎪⎭⎫ ⎝⎛∈∃,则下列命题中的真命题为( C )A .q ⌝B .q p ∧C .()q p ∧⌝D .()q p ⌝∨5.不等式03522≥--x x 成立的一个必要不充分条件是(C )A .2≥xB .21-≤x C .20><x x 或D .321≥-≤x x 或 6.若椭圆1222=+m y x 的离心率为21,则实数=m ( A ) A .3823或B .8323或 C .23 D .837.P 是椭圆15922=+x y 上的动点,过点P 作椭圆长轴的垂线,垂足为点M ,则PM 的中点的轨迹方程为( A )A .154922=+x yB .159422=+x yC .153622=+x yD .120922=+x y 8.若点P 是椭圆14922=+y x 上的一动点,21,F F 是椭圆的两个焦点,则21cos PF F ∠最小值为(B) A .95-B .91-C .91D .959. 椭圆15622=+y x 内过点()1,2-P 的弦恰好被P 点平分,则这条弦所在的直线方程是( D )A .01335=-+y xB .01335=++y xC .01335=+-y xD .01335=--y x10.在平面直角坐标系xOy 中,ABC ∆上的点C A ,的坐标分别为()()0,22,0,22-,若点B 在椭圆181622=+y x 上,则()=++C A CA sin sin sin ( A ) A.2B.22C.35D.5311.如图,焦点在x 轴上的椭圆)0(13222>=+a y a x 的左、右焦点分别为21,F F ,P 是椭圆上位于第一象限内的一点,且直线P F 2与y 轴的正半轴交于A 点,1APF ∆的内切圆在边1PF 上的切点为Q ,若41=Q F ,则该椭圆的离心率为( A ) A .413B .47C .21D .4112.已知F 是椭圆159:22=+y x C 的左焦点,P 为C 上一点,⎪⎭⎫ ⎝⎛34,1A ,则PF PA +的最小值为(B ) A .4B .313 C .310D .311二.填空题(本大题共4小题,每小题5分,共20分.) 13.“1>x ”是“11<x”成立的____充分不必要______条件. 14.已知点()0,31-F 和()0,32F ,动点P 满足412=-PF PF ,则点P 的轨迹方程为____)0(15422<=-x y x ____________. 15.已知实数y x ,满足()()4332222=-++++y x y x ,则3-x y的最大值等于_______22_________. 16.已知函数12)(22+-=x a x x f ,xx g 3)(=,[]1,21--∈∀x ,[]1,22--∈∃x ,使)()(21x g x f =,则实数a 的取值范围为__⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--1,2222,1 ______. 三.解答题(本大题共6小题,共70分.应写出文字说明、证明过程或推演步骤) 17.(本题10分)已知双曲线过点()1,4P ,且它的两条渐近线方程为02=±y x .求双曲线的方程;写出它的顶点坐标,焦点坐标,并求离心率.【解析】(1)根据题意,双曲线的两条渐近线方程为x±2y=0,设其方程为:x 2−4y 2=λ,(λ≠0)又由双曲线过点P(4,1),有16−4=λ,解可得λ=12,∴双曲线的标准方程为:131222=-y x ; (2)由(1)可得15312,3,32=+===c b a ,其顶点坐标为()0,32±,焦点坐标为()015,±,离心率25==a c e .18.(本题12分)已知命题141:22=-+-m y m x p 表示双曲线,命题142:22=-+-my m x q 表示椭圆.(1)若命题p 为真命题,求实数m 的取值范围及双曲线的焦距长; (2)判断命题p 为真命题是命题q 为真命题的什么条件.【解析】(1)∵命题141:22=-+-m y m x p 表示双曲线为真命题,则()()041<--m m , ∴41<<m ,3)4()1(=---=m m c∴双曲线的焦距长为32.(2)∵命题142:22=-+-my m x q 表示椭圆为真命题, 则⎪⎩⎪⎨⎧-≠->->-m m m m 420402,∴4332<<<<m m 或, ∵集合{}4332<<<<m m m 或是集合{}41<<m m 的真子集, ∴p 是q 的必要不充分条件19.(本题12分)已知椭圆的中心在坐标原点O ,长轴长为22,离心率22=e ,过右焦点F 的直线l 交椭圆于Q P ,两点.求椭圆的方程;当直线l 的斜率为1时,求OPQ ∆的面积.【解析】(1)由已知,椭圆方程可设为)0(12222>>=+b a by a x由题意22,222===a c e a , 易得1,2===c b a .∴所求椭圆方程为1222=+y x . (2)∵直线l 过椭圆右焦点F(1,0),且斜率为1,∴直线l 的方程为y=x −1. 设P(x 1,y 1),Q(x 2,y 2),联立⎩⎨⎧=+-=22122y x y x ,得01232=-+y y , 解得31,121=-=y y . ∴322121=-⋅=∆y y OF S ABC20.(本题12分)已知集合A 是函数()2820lg xx y -+=的定义域,集合B 是不等式)0(01222>≥-+-a a x x 的解集, B x q A x p ∈∈:,:.(1)若∅=B A ,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围.【解析】(1){}102<<-=x x A , {}a x a x x B -≤+≥=11或.∅=B A ,则⎪⎩⎪⎨⎧>-≤-≥+021101a a a ,解得9≥a ,所以a 的取值范围是9≥a .(2)由(1)知210:-≤≥⌝x x p 或. ∵p ⌝是q 的充分不必要条件,∴{}210-≤≥x x x 或是{}a x a x x B -≤+≥=11或的真子集,即⎪⎩⎪⎨⎧>-≥-<+⎪⎩⎪⎨⎧>->-≤+021*********a a a a a a 或,解得30≤<a ,∴a 的取值范围是30≤<a .21.(本题12分)过椭圆1222=+y x 的左焦点1F 的直线l 交椭圆于B A ,两点.求10AF A ⋅的范围;若OB OA ⊥,求直线l 的方程. 【解析】(1)由椭圆方程有1,2===c b a ,()0,11-∴F设()00,y x A ,A 点在椭圆上,122020=+∴y x ()()00100,1,,y x y x ---=--=()21121121)21(200202002020021++=++=-++=++=⋅∴x x x x x x y x x AF AO又[]2,2-∈x ,⎥⎦⎤⎢⎣⎡+∈⋅∴22,211AF AO(2)设B A ,两点的坐标为()()2211,,,y x B y x A当l 垂直于x 轴时,⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-22,1,22,1B A ,此时021≠=⋅OB OA ,不符题意 即直线l 斜率必存在,设为k ,则直线l 方程为()1+=x k y联立()()022421221222222=-+++⎩⎨⎧=++=k x k x k y x x k y 得 222122212122,214k k x x k k x x +-=+-=+∴0,=⋅∴⊥OB OA()021421221)()1()1()1(2222222221221*********=++⋅-+-⋅+=++++=+⋅++=+k kk k k k k k x x k x x k x k x k x x y y x x解得2,22±=∴=k k故所求的直线方程为()12+±=x y22.(本题12分)椭圆)0(1:2222>>=+b a b y a x C 的离心率为23=e ,且椭圆与直线01=-+y x 相于Q P ,两点,且528=PQ . (1)求椭圆C 的方程;(2)若直线l 经过椭圆C 的左焦点与椭圆C 相交于N M ,两点,A 为椭圆C 的右顶点,求AMN ∆面积的最大值.【解析】(1)由23==a c e ,得ab ac 21,23== ∴椭圆方程可化为2224a y x =+联立⎩⎨⎧=++-=22241ay x x y 得048522=-+-a x x 设()()2211,,,y x Q y x P ,则54,5822121a x x x x -==+由()5285445824122212212=-⋅-⎪⎭⎫⎝⎛⋅=-+⋅+=a x x x x k PQ 解得42=a ,∴所求椭圆方程为1422=+y x (2)由题意设直线l 方程为:3-=ty x ,()()4433,,,y x N y x M 联立⎩⎨⎧=+-=44322y x ty x 得()0132422=--+ty y t41,432243243+-=+=+∴t y y t t y y()()619113224)1(4432232212222243++++⋅+=+-⋅-⎪⎪⎭⎫ ⎝⎛+⋅+=-⋅=∆t tt t t y y AF S AMN当且仅当2,22±==t t 即时AMN ∆面积最大为3323+。
湖南省衡阳市第一中学2018-2019学年高二数学上学期第一次月考试题 文
湖南省衡阳市第一中学2018-2019学年高二数学上学期第一次月考试题 文一.选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题所给的四个选项中,只有一个是正确的.请把正确答案涂在答题卡上.)平面内有两个定点 F1 , F2 和一动点M ,设命题甲: MF1 MF2 是定值,命题乙:点M 的轨迹是椭圆,则命题甲是命题乙的( B )A .充分但不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件命题“若 a = ,则tan a 1 ”的逆否命题是( C ) 4A.若a ≠ ,则tan a ≠1B. 若 a = ,则tan a ≠1 4 4 4已知命题p :∃x ∈ 0 , sin x 2 cos x ,命题q :若 a2<b2,则 a <b ,下,2列命题为真命题的是( B )p qC. 若tan a ≠1,则a ≠ 4 3.下列命题中的假命题是(C D. 若tan a ≠1,则 a =) A .∃x 0∈R ,lg x 0>0 C .∀x ∈R ,x 3>0 B .∃x 0∈R ,tan x 0=1 D .∀x ∈R ,2x >0解:命题 p 为真命题;当 a=1,b=﹣2 时,a2<b2 成立,但 a<b 不成立,故命题 q 为假命题,命题 p∧¬q 为真命题,故选:B.5. 已知命题 p: “∀ x ∈ [1,2],≥ 0 ” , 命题 q: “x0 R ,x 2 2ax 2 a 00 0”.若命题“( p)∧q”是真命题,则实数 a的取值范围是( A )A. a 1D. - 2 a 1解析过程:本题主要考查命题真假的判断、逻辑联结词、全称命题与特称命题. 因为∀x∈[1,2],x2-a≥0,所以 p: ,p:a>1;因为∃x0 ∈ R, + 2ax0 + 2 -a= 0 ,所以, 则 q:,因为命题“( p)∧q”是真命题,所以p与 q均为真命题,则,所以 a>1若椭圆 x163532y 21过点(-2, 3 ),则其焦距为( D )b2A.2 51如图,把椭圆 x2 y2 的长轴 AB 分成8 等份,过每个分点作 16 12 x 轴的垂线交椭圆的上半部分于 P1 , P2 , P3 , P4 , P5 , P6 , P7 七个点,F 是椭圆的一个焦点,则 P1F P2 F P3 F P4 F P5 F P6 F P7 F3( B )A. 48B.28C. 8D. 32已知点 p (4,3)在双曲线 C:( C )经典资料2x y2 1a2上,则此双曲线的离心率是A. 2 B. 2 552 2 2已知椭圆 C: x y 4 221 ,过点 P(1,-1)作直线交椭圆于 A,B 两点,弦 AB 恰好被 P 点平分,则这条弦所在的直线方程是( D )A. x 2 y 1 0C. 5x 3 y 13 0B. 5x 3y 13 0D. x 2 y 3 0在平面直角坐标系 xOy中,△ABC上的点 A,C的坐标分别为(- 22,0 ,0),( 2yx2 22,0 ,0),若点 B 在椭圆16 81 上,则sin A sin C sin A C=( A ) A. B.22 3 5 设F1,F2 为双曲线x2 y21 16 9的两个焦点,点在双曲线上,且满足F PF 600 ,则 F PF3 3 3. 的面积为 ( C ) 1 2 1 2A. 3B. 6C. 9D.9如图,椭圆与双曲线有公共焦点 F1,F2,它们在第一象限的交点为 A ,且 AF1⊥AF2 ,∠AF1F2=30°,则椭圆与双曲线 的离心率之积为( A ) A .2 B 1 C. 2解析:选 A 设椭圆的长轴长为 2a1,双曲线的实轴长为 2a2,焦距为 2c,由椭圆与双曲线的定义可知, |AF1|+|AF2|=2a1, |AF1|-|AF2|=2a2,在 Rt △AF1F2 中,∠AF1F2=30°,1 3则|AF2|= |FF|21 =c |AF|1 =3D.2 3|F1F2|= 3c,2 2所以 2a1=( 3+1)c,2a2=( 3-1)c,c 2即 e1==3-1c 2,e2= = , a1 3+1 a2 2 2所以 e1·e2=3-13+1即椭圆与双曲线的离心率之积为 2.二.填空题(本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案写在答题纸上.)已知 f (x)= x2 x m ,如果 f (1)>0 是假命题,则实数 m 的取值范围是m 2 .x 2已知椭圆C : a 2b 21( a > b >0)的左焦点为 F ,右顶点为 A ,上顶点为 B ,若 AB BF , 则称其为“黄金椭圆”,那么“黄金椭圆”的离心率为5 -1 .215.已知圆C :x 4 2 y2 9,圆C : x 4 2 y2 1,动圆C 与定圆C C经典资料都外切则1 2动圆C3 的圆心 M 的轨迹方程为x 23 y2 1(x 1)152 1, 216.已知点P (m, n )是椭圆 x y 4 321 上的一个动点,则m2n22m 的取值范围是0,8三.解答题(本大题共 6 小题,17 小题 10 分,其它各小题每题 12 分,共 70 分.) 17(本题 10 分)已知;不等式恒成立,若是的必要条件,求实数的取值范围.解:,即, 是的必要条件,是的充分条件, 不等式对恒成立, 对恒成立,,当且仅当时,等号成立. .18. (本题 12 分)已知m R, 命题P : 对x 0,1, 不等式2x 2 m2 3m恒成立;命题q : x 1,1。
湖南省衡阳市2018-2019学年高二(实验班)上学期第一次月考数学(理)试题Word版含答案
湖南省衡阳市2018-2019学年高二(实验班)上学期第一次月考数学(理)试题1.本卷为衡阳八中高二年级理科实验班第一次月考试卷,分两卷。
其中共22题,满分150分,考试时间为120分钟。
2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。
开考15分钟后,考生禁止入场,监考老师处理余卷。
3.请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。
考试结束后,试题卷与答题卡一并交回。
★预祝考生考试顺利★第I 卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。
1.下列命题中错误的是( ) A .若p ∨q 为真命题,则p ∧q 为真命题B .“x>5”是“x 2﹣4x ﹣5>0”的充分不必要条件C .命题p :∃x 0∈R ,x 02+x 0﹣1<0,则¬p:∀x ∈R ,x 2+x ﹣1≥0D .命题“若x 2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x ≠1且x ≠2,则x 2﹣3x+2≠0” 2.已知命题p :“∃x ∈R ,e x﹣x ﹣1≤0”,则命题¬p ( ) A .∀x ∈R ,e x ﹣x ﹣1>0 B .∀x ∉R ,e x ﹣x ﹣1>0 C .∀x ∈R ,e x﹣x ﹣1≥0D .∃x ∈R ,e x﹣x ﹣1>03.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( )A .B .C .D .4.已知2x=3y=5z,且x ,y ,z 均为正数,则2x ,3y ,5z 的大小关系为( ) A .2x <3y <5z B .3y <2x <5z C .5z <3y <2x D .5z <2x <3y5.在区间中随机取一个实数k ,则事件“直线y=kx 与圆(x ﹣3)2+y 2=1相交”发生的概率为( )A .B .C .D .6.某产品的广告费用x 与销售额y 的统计数据如表已知由表中4组数据求得回归直线方程=8x+14,则表中的a的值为()A.37 B.38 C.39 D.407.设M是圆O:x2+y2=9上动点,直线l过M且与圆O相切,若过A(﹣2,0),B(2,0)两点的抛物线以直线l为准线,则抛物线焦点F的轨迹方程是()A.﹣=1(y≠0)B.﹣=1(y≠0)C. +=1(y≠0)D. +=1(y≠0)8.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A.B.C.2 D.9.已知数列{a n}通项公式为a n=,其前m项和为,则双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±xD.y=±x10.已知直线与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,,则λ﹣μ=()A.B.C.D.11.已知函数f(x)=,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是()(注:e为自然对数的底数)A.(0,)B.[,)C.(0,)D.[,e]12.已知椭圆: +=1(a,b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.若椭圆上存在点P,使得•=0,则椭圆离心率e的取值范围是()A.[,1) B.(0,] C.[,1)D.[,]第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,如果a=8,∠B=60°,∠C=75°,那么b等于.14.若两个等差数列{a n}和{b n}的前n项和分别是S n,T n,已知=,则等于.15.某程序框图如图所示,该程序运行后输出的k的值是.双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,若在C上存16.在一点P,使得PO=|F1F2|(O为坐标原点),且直线OP的斜率为,则,双曲线C的离心率为.三.解答题(共6题,共70分)17.(本题满分10分)已知等比数列{a n}的前n项和为S n,且S6=S3+14,a6=10﹣a4,a4>a3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}中,b n=log2 a n,求数列{a n•b n}的前n项和T n.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的中点,四棱锥D﹣ABCM的体积为V,求三棱锥E﹣ADM的体积.19.(本题满分12分)某食品安检部门调查一个养殖场的养殖鱼的有关情况,安检人员从这个养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:千克),并将所得数据进行统计得如表.若规定重量大于或等于1.20kg的鱼占捕捞鱼总量的15%以上时,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.(1)根据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否有问题?(2)上面所捕捞的100条鱼中,从重量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼的重量在[1.00,1.05)和[1,.25,1.30)中各有1条的概率.如图,已知椭圆M: +=1(a>b>0)的离心率为,且经过过点P(2,1).(1)求椭圆M的标准方程;(2)设点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,直线OA,OB的斜率分别为k1,k2,且k1k2=﹣.①求x12+x22的值;②设点B关于x轴的对称点为C(点C,A不重合),试求直线AC的斜率.21.(本题满分12分)设点C(x,y)是平面直角坐标系的动点,M(2,0),以C为圆心,CM为半径的圆交y轴于A,B两点,弦AB的长|AB|=4.(Ⅰ)求点C的轨迹方程;(Ⅱ)过点F(1,0)作互相垂直的两条直线l1,l2,分别交曲线C于点P、Q和点K、L.设线段PQ,KL的中点分别为R、T,求证:直线RT恒过一个定点.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]上是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“等域区间”.(1)求证:函数不存在“等域区间”;(2)已知函数(a∈R,a≠0)有“等域区间”[m,n],求实数a的取值范围.湖南省衡阳市2018-2019学年高二(实验班)上学期第一次月考数学(理)试题参考答案13.414.15.416.17.(Ⅰ)由已知a4+a5+a6=14,∴a5=4,又数列{a n}成等比,设公比q,则+4q=10,∴q=2或(与a4>a3矛盾,舍弃),∴q=2,a n=4×2n﹣5=2n﹣3;(5分)(Ⅱ)b n=n﹣3,∴a n•b n=(n﹣3)×2n﹣3,T n=﹣2×2﹣2﹣1×2﹣1+0+…+(n﹣3)×2n﹣3,2T n=﹣2×2﹣1﹣1×20+0+…+(n﹣3)×2n﹣2,相减得T n=2×2﹣2﹣(2﹣1+20+…+2n﹣3)+(n﹣3)×2n﹣2=﹣(2n﹣2﹣)+(n﹣3)×2n﹣2=(n﹣4)×2n﹣2+1(10分)18.(1)证明:∵长方形ABCD中,AB=2AD,M为DC的中点,∴AM=BM,则BM⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面ADM,∵AD⊂平面ADM,∴AD⊥BM;(6分)(2)解:当E为DB的中点时,∵,∴===.(12分)19.(1)捕捞的100条鱼中,数据落在[1.20,1.30)中的概率约为P1==0.11,由于0.11×100%=11%<15%,故饲养的这批鱼没有问题.(4分)(2)重量在[1.00,1.05)的鱼有3条,把这3条鱼分别记作A1,A2,A3,重量在[1.25,1.30)的鱼有2条,分别记作B1,B2,那么从中任取2条的所有的可能有:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}共10种.(7分)而恰好所取得鱼的重量在[1.00,1.05)和[1.25,1.30)中各有1条的情况有:{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共6种.(10分)所以恰好所取得鱼的重量在[1.00,1.05)和[1.25,1.30)中各有1条的概率p==.(12分)20.(1)由题意可得e==, +=1,a2﹣b2=c2,解得a=2,b=,可得椭圆标准方程为+=1;(3分)(2)①由题意可得k1k2==﹣,即为x12x22=16y12y22,又点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,可得4y12=8﹣x12,4y22=8﹣x22,即有x12x22=(8﹣x12)(8﹣x22),化简可得x12+x22=8;(6分)②由题意可得C(x2,﹣y2),由4y12=6﹣x12,4y22=6﹣x22,可得y12+y22==,(8分)由x12+x22=(x1﹣x2)2+2x1x2=6,可得(x1﹣x2)2=6﹣2x1x2,由y12+y22=(y1+y2)2﹣2y1y2=,可得(y1+y2)2=+2y1y2=(3+4y1y2),(9分)由=﹣,即x1x2=﹣4y1y2,可得(x1﹣x2)2=6﹣2x1x2=6+8y1y2,(10分)则直线AC的斜率为k AC==±=±.(12分)21.(Ⅰ)设动点C的坐标为(x,y),由题意得,,化简得y2=4x,所以抛物线的标准方程为y2=4x.(3分)(Ⅱ)设P、Q两点坐标分别为(x1,y1),(x2,y2),则点R的坐标为.显然直线l1斜率存在且不为0,由题意可设直线l1的方程为y=k(x﹣1)(k≠0),代入椭圆方程得k2x2﹣(2k2+4)x+k2=0.(5分)△=(2k2+4)2﹣4k4=16k2+16>0,x1+x2=2+,y1+y2=k(x1+x2﹣2)=.所以点R的坐标为(1+,).(6分)由题知,直线l2的斜率为﹣,同理可得点T的坐标为(1+2k2,﹣2k).当k≠±1时,有,此时直线RT的斜率.(8分)所以,直线RT的方程为y+2k=(x﹣1﹣2k2),整理得yk2+(x﹣3)k﹣y=0,于是,直线RT恒过定点E(3,0);(10分)当k=±1时,直线RT的方程为x=3,也过E(3,0).综上所述,直线RT恒过定点E(3,0)(12分)22.(1)证明:设[m,n]是已知函数定义域的子集.∵x≠0,∴[m,n]⊆(﹣∞,0),或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“等域区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“等域区间”.(6分)(2)设[m,n]是已知函数定义域的子集,∵x≠0,∴[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“等域区间”,则故m、n是方程,即a2x2﹣(2a+2)x+1=0的同号的相异实数根.∵,∴m,n同号,故只需△=(﹣(2a+2))2﹣4a2=8a+4>0,解得,∴实数a的取值范围为.(12分)。
2018-2019湖南省衡阳市高二下学期数学(文)试题 解析版
绝密★启用前湖南省衡阳市第一中学2018-2019学年高二下学期第一次月考数学(文)试题评卷人得分一、单选题1.已知集合,,则()A.B.C.D.【答案】C【解析】【分析】先求出集合,然后再求集合,的交集即可【详解】由中不等式可得:,即,则,故选.【点睛】本题主要考查了集合交集的基本运算,属于基础题。
2.已知为虚数单位,复数满足,则复数的虚部为()A.- B.-1 C.1 D.【答案】B【解析】【分析】利用复数的除法运算求的表达式,由此求得复数的虚部.【详解】依题意,故虚部为,所以选B.【点睛】本小题主要考查复数的除法运算,考查复数的虚部的概念,属于基础题. 求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即的形式,再根据题意求解.3.若,则()A.B.C.D.【答案】A【解析】【分析】先由诱导公式得,然后再运用二倍角求出结果【详解】,.故选.【点睛】本题主要考查了三角函数诱导公式和二倍角公式的运用,熟练运用公式用已知角表示未知角是关键,这样就可以求解结果4.下列说法正确的是A.若命题p,都是真命题,则命题“”为真命题B.命题“若,则或”的否命题为“若则或”C.“”是“”的必要不充分条件D.命题“,”的否定是“,”【答案】D【解析】【分析】根据含有且、或、非等逻辑连接词真假性,判断A选项是否正确;根据否命题的概念判断B选项是否正确;根据必要不充分条件的含义判断C选项是否正确;根据全称命题的否定是特称命题判断D选项是否正确.【详解】由于为真命题,故为假命题,所以为假命题,故A选项错误.原命题的否命题是“若则且”,故B选项错误.当时,,为充分条件,故C选项判断错误.根据全称命题的否定是特称命题的知识可以判断D选项正确,故选D.【点睛】本小题主要考查常用逻辑用语,考查四种命题,考查充要条件,考查全称命题与特称命题,属于基础题.5.下图是计算的值的一个流程图,其中判断框内应填入的条件是()A.B.C.D.【答案】B【解析】【分析】模拟程序的运行,运算4次后跳出计算,计算出的值,从而得到判断框中的条件【详解】根据流程图得到,执行过程如下:,;,;,;,.此时输出的是要求的数值,需要输出,之前的不能输出,故得到应该在判断框中填写.故选【点睛】本题主要考查了程序框图,正确求解各次循环得到的的值并判断是否满足判断框中的条件是解题的关键,属于基础题。
衡阳县高中2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合( )A .B .C .D .2. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .3. 不等式的解集为( )A .{x|x <﹣2或x >3}B .{x|x <﹣3或x >2}C .{x|﹣2<x <3}D .{x|﹣3<x <2}4. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .135. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣206. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .7. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24258. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( ) A .31 B . C .35D .9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .11.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+1812.已知f (x )=,若函数f (x )是R 上的增函数,则a 的取值范围是( )A .(1,3)B .(1,2)C .[2,3)D .(1,2]二、填空题13.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .14.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .17.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .18.已知角α终边上一点为P (﹣1,2),则值等于 .三、解答题19.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.20.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.21.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.22.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.23.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .24.已知函数f(x)=,求不等式f(x)<4的解集.衡阳县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.3.【答案】A【解析】解:不等式,即>0,即(x﹣3)•(x+2)>0,求得x>3,或x<﹣2,故选:A.4.【答案】D【解析】考点:等差数列.5.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a (0≤a <7), ∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x ﹣3的系数为=﹣4320,故选:B .. 6. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.7. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 8. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 9. 【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C 10.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D12.【答案】C 【解析】解:∵f (x )=是R 上的增函数,∴,解得:a∈[2,3),故选:C.【点评】本题考查的知识点是分段函数的单调性,正确理解分段函数单调性的含义是解答的关键.二、填空题13.【答案】①③④.【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.14.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0, +=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.15.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】.【解析】解:如图,将AM 平移到B 1E ,NC 平移到B 1F ,则∠EB 1F 为直线AM 与CN 所成角设边长为1,则B1E=B 1F=,EF=∴cos ∠EB 1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.17.【答案】.【解析】解:已知数列1,a 1,a 2,9是等差数列,∴a 1+a 2 =1+9=10.数列1,b 1,b 2,b 3,9是等比数列,∴ =1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),∴b 2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.18.【答案】.【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.三、解答题19.【答案】【解析】(1)当111,12n a a =+=时,解得11a =. (1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+,(3分)即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.即12n n a +=故21n n a =-(*n N ∈).(5分)20.【答案】【解析】解:(Ⅰ)∵,∴(x >0),当a=2时,则在(0,+∞)上恒成立,当1<a <2时,若x ∈(a ﹣1,1),则f ′(x )<0,若x ∈(0,a ﹣1)或x ∈(1,+∞),则f ′(x )>0, 当a >2时,若x ∈(1,a ﹣1),则f ′(x )<0,若x ∈(0,1)或x ∈(a ﹣1,+∞),则f ′(x )>0, 综上所述:当1<a <2时,函数f (x )在区间(a ﹣1,1)上单调递减, 在区间(0,a ﹣1)和(1,+∞)上单调递增; 当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a >2时,函数f (x )在区间(0,1)上单调递减,在区间(0,1)和(a ﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f (x )在区间(0,+∞)上单调递增,(1)因为a 1=10,所以a 2=f (a 1)=f (10)=30+ln10,可知a 2>a 1>0, 假设0<a k <a k+1(k ≥1),因为函数f (x )在区间(0,+∞)上单调递增, ∴f (a k+1)>f (a k ),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.22.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.23.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.24.【答案】【解析】解:函数f(x)=,不等式f(x)<4,当x≥﹣1时,2x+4<4,解得﹣1≤x<0;当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.综上x∈(﹣3,0).不等式的解集为:(﹣3,0).。
衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i2. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .3. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24254. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)5. 直线的倾斜角是( )A .B .C .D .6. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .27. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( ) A .2 B .2 C .3 D .22【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在9. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 10.若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .411.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 12.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或8二、填空题13.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .17.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .三、解答题19.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.20.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.21.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.22.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.23.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直. (1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.24.已知函数f (x )=xlnx+ax (a ∈R ). (Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986)衡阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:由复数性质知:i 2=﹣1 故i+i 2+i 3=i+(﹣1)+(﹣i )=﹣1故选A【点评】本题考查复数幂的运算,是基础题.2. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.3. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 4. 【答案】D【解析】解:若a=0,则函数f (x )=﹣3x 2+1,有两个零点,不满足条件.若a ≠0,函数的f (x )的导数f ′(x )=6ax 2﹣6x=6ax (x ﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.5.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°, ∴α=30° 故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.6. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.7. 【答案】C8. 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论. 【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角. 故选:C . 9. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.10.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.11.【答案】B【解析】12.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.二、填空题13.【答案】1【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1. 14.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 15.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.16.【答案】(﹣∞,]∪[,+∞).【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).17.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .18.【答案】 3 .【解析】解:直线l 的方程为ρcos θ=5,化为x=5.点(4,)化为.∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.三、解答题19.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.20.【答案】【解析】解:(Ⅰ)∵,∴(x >0),当a=2时,则在(0,+∞)上恒成立,当1<a <2时,若x ∈(a ﹣1,1),则f ′(x )<0,若x ∈(0,a ﹣1)或x ∈(1,+∞),则f ′(x )>0, 当a >2时,若x ∈(1,a ﹣1),则f ′(x )<0,若x ∈(0,1)或x ∈(a ﹣1,+∞),则f ′(x )>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.22.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…23.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 24.【答案】【解析】解:(I )a=﹣2时,f (x )=xlnx ﹣2x ,则f ′(x )=lnx ﹣1. 令f ′(x )=0得x=e ,当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,∴f (x )的单调递减区间是(0,e ),单调递增区间为(e ,+∞). (II )若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,则xlnx+ax >k (x ﹣1)+ax ﹣x 恒成立,即k (x ﹣1)<xlnx+ax ﹣ax+x 恒成立,又x ﹣1>0,则k <对任意x ∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.。
湖南省衡阳县第一中学2018-2019学年高二9月月考数学试题解析
湖南省衡阳县第一中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φω的值为( )A.18 B .14C.12D .12. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA B A.直线 B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 3. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11a b< C .22a b > D .33a b > 4. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 5. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 6. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 7. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π D .72π8. 复数121ii-+在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.10.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π 11.已知函数,,若,则( )A1 B2C3 D-112.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .7二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.不等式()2110ax a x +++≥恒成立,则实数的值是__________.16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.三、解答题(本大共6小题,共70分。
衡阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 2. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .43. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-4. 执行如图所示的程序框图,则输出的S 等于( )A .19B .42C .47D .895. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<6. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .7. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称8. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.9. 已知函数f (x )=,则=( )A .B .C .9D .﹣910.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣11.已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.612.设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n二、填空题13.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 14.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.15.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .16.函数的单调递增区间是 .17.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .18.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .三、解答题19.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.20.解不等式|2x ﹣1|<|x|+1.21.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.22.已知矩阵A =,向量=.求向量,使得A 2=.23.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.24.已知椭圆C :+=1(a >b>0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.衡阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确; B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确; C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确.故选:A .2. 【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数,作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知, m 的可能值有2,3,4; 故选A .3. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 4. 【答案】B【解析】解:模拟执行程序框图,可得 k=1 S=1满足条件k <5,S=3,k=2 满足条件k <5,S=8,k=3 满足条件k <5,S=19,k=4 满足条件k <5,S=42,k=5不满足条件k <5,退出循环,输出S 的值为42. 故选:B .【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S ,k 的值是解题的关键,属于基础题.5. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 6. 【答案】 D【解析】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D .7. 【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.8. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .9. 【答案】A【解析】解:由题意可得f ()==﹣2,f[(f ()]=f (﹣2)=3﹣2=,故选A .10.【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D11.【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.12.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.二、填空题13.【答案】【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(-x)(e-x+a e x)=x(e x+a e-x),∴a(e x+e-x)=-(e x+e-x),∴a=-1.答案:-10,114.【答案】()【解析】15.【答案】﹣12.【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,∴==,解得x=﹣6,y=6,x﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.16.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).17.【答案】(﹣3,﹣2)∪(﹣1,0).【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).18.【答案】2i.【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i)(cos60°+isin60°)=(+i)()=2i,故答案为2i.【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)(cos60°+isin60°),是解题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的定义域A=(﹣∞,﹣1)∪(2,+∞);由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);(Ⅱ)∵A∪B=B,∴A⊆B.∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1].20.【答案】【解析】解:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为﹣2x+1<﹣x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当时,原不等式可化为﹣2x+1<x+1,解得x >0,又,此时其解集为{x|}.③当时,原不等式可化为2x ﹣1<x+1,解得,又由,此时其解集为{x|},∅∪{x|}∪{x|}={x|0<x <2};综上,原不等式的解集为{x|0<x <2}.【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解.21.【答案】【解析】解:(1)∵a >0,是R 上的偶函数.∴f (﹣x )=f (x ),即+=,∴+a •2x =+,2x (a ﹣)﹣(a ﹣)=0,∴(a ﹣)(2x+)=0,∵2x+>0,a >0,∴a ﹣=0,解得a=1,或a=﹣1(舍去), ∴a=1;(2)证明:由(1)可知,∴∵x >0,∴22x >1, ∴f'(x )>0,∴f (x )在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.22.【答案】=【解析】A 2=.设=.由A 2=,得,从而解得x =-1,y =2,所以=23.【答案】(1)131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)证明见解析.【解析】试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⋅- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,其前项和为()1114414n -<+.考点:数列与裂项求和法.124.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.。
衡阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()A.()B.(,]C.()D.(]2.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i3.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A.i>4?B.i>5?C.i>6?D.i>7?4.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.5.已知直线l1经过A(﹣3,4),B(﹣8,﹣1)两点,直线l2的倾斜角为135°,那么l1与l2()A.垂直B.平行C.重合D.相交但不垂直6.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()A.(1﹣1,]B.(0,1]C.[﹣1,1]D.(﹣1,2]7. 执行下面的程序框图,若输入,则输出的结果为( )2016x =-A .2015B .2016C .2116D .20488. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A .4320B .2400C .2160D .13209. 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C .D .不是定值,随点的变化而变化413121M 10.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( )A .﹣13B .6C .79D .3711.已知数列的各项均为正数,,,若数列的前项和为5,则{}n a 12a =114n n n n a a a a ++-=+11n n a a +⎧⎫⎨⎬+⎩⎭n( )n =A . B .C .D .353612012112.若函数是偶函数,则函数的图象的对称轴方程是()])1(+=x f y )(x f y =A .B .C .D .1=x 1-=x 2=x 2-=x 二、填空题13.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).正确命题的个数是 . 14.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-26121a a a =∙12n n S -⎧⎫⎨⎬⎩⎭的最大值为_________.15.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 . 16.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.17.已知实数x ,y 满足约束条,则z=的最小值为 .18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.三、解答题19.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.20.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.[)[)[)0,0.5,0.5,1,,4,4.5(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.21.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.22.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).(I)若∠AOB=α,求cosα+sinα的值;(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.23.如图,已知椭圆C : +y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上(Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.24.(本题满分13分)已知函数.x x ax x f ln 221)(2-+=(1)当时,求的极值;0=a )(x f (2)若在区间上是增函数,求实数的取值范围.)(x f ]2,31[a 【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.衡阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.2.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.4.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.5.【答案】A【解析】解:由题意可得直线l1的斜率k1==1,又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A6.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 7. 【答案】D 【解析】试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于20160-<2x =1y =,则进行循环,最终可得输出结果为.120151>2y y =2048考点:程序框图.8. 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D .【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题. 9. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积.10.【答案】 D 【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整数,可得m=3、n=2,从而求得含x 2项的系数.【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m 、n 为正整数,可得m=3、n=2,故含x 2项的系数是(﹣2)2+(﹣5)2=37,故选:D .【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和.由n 114n n n na a a a ++-=+得,∴是等差数列,公差为,首项为,∴,由得2214n n a a +-={}2n a 44244(1)4n a n n =+-=0n a >.,∴数列的前项和为na=1112n n a a +==+11n n a a +⎧⎫⎨⎬+⎩⎭n,∴,选C.11111)1)52222+++=-= 120n =12.【答案】A 【解析】试题分析:∵函数向右平移个单位得出的图象,又是偶函数,对称轴方程)1(+=x f y )(x f y =)1(+=x f y 为,的对称轴方程为.故选A .0=x ∴)(x f y =1=x 考点:函数的对称性.二、填空题13.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x )即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1所以①②⑤正确,故答案为:3个 14.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.1,a d 15.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS ∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S 位置是关键.考查空间想象能力、计算能力.16.【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得.()f x x ∈R (0)0f =0063e 032e b a -=2016ab =17.【答案】 .【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y ,设t=2x+y ,则y=﹣2x+t ,平移直线y=﹣2x+t ,由图象可知当直线y=﹣2x+t 经过点B 时,直线y=﹣2x+t 的截距最小,此时t 最小.由,解得,即B (﹣3,3),代入t=2x+y 得t=2×(﹣3)+3=﹣3.∴t 最小为﹣3,z 有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.18.【答案】2 2,3⎛⎫- ⎪⎝⎭【解析】三、解答题19.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a 4===.(2)猜测a n =(n ∈N *).下面用数学归纳法证明:①当n=1时,左边=a 1=a ,右边==a ,猜测成立.②假设当n=k (k ∈N *)时猜测成立,即a k =.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n ∈N *都有a n =成立.20.【答案】(1);(2)万;(3).0.3a 3.6 2.9【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;()0.50.080.160.30.40.520.7385%⨯++++=<月均用水量低于3吨的频率为:;()0.50.080.160.30.40.520.30.8885%⨯+++++=>则吨.10.850.732.50.5 2.90.30.5x -=+⨯=⨯考点:频率分布直方图.21.【答案】【解析】(1)证明:函数f (x )的定义域为{x|x ≠k π,k ∈Z},关于原点对称.又f (x ﹣y )=,所以f (﹣x )=f[(1﹣x )﹣1]= = = ===,故函数f (x )奇函数.(2)令x=1,y=﹣1,则f (2)=f[1﹣(﹣1)]= =,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,设2<x<3,则0<x﹣2<1,则f(x﹣2)=,即f(x)=﹣<0,设2≤x1≤x2≤3,则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,则f(x1)﹣f(x2)=,∴f(x1)>f(x2),即函数f(x)在[2,3]上为减函数,则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.22.【答案】【解析】解:(Ⅰ)点A是单位圆与x轴正半轴的交点,B(﹣,).可得sinα=,cosα=,∴cosα+sinα=.(Ⅱ)因为P(cos2θ,sin2θ),A(1,0)所以==(1+cos2θ,sin2θ),所以===2|cosθ|,因为,所以=2|cosθ|∈,||的最大值.【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力.23.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.24.【答案】【解析】(1)函数的定义域为,因为,当时,,则),0(+∞x x ax x f ln 221)(2-+=0=a x x x f ln 2)(-=.令,得.…………2分x x f 12)('-=012)('=-=x x f 21=x 所以的变化情况如下表:)(),(',x f x f x x )21,0(21),21(+∞)('x f -0+)(x f ↘极小值↗所以当时,的极小值为,函数无极大值.………………5分21=x )(x f 2ln 1)21(+=f。
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.2.P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为()A.a B.b C.c D.a+b﹣c3.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=54.下列函数中,为偶函数的是()A.y=x+1 B.y=C.y=x4D.y=x55.抛物线y=﹣8x2的准线方程是()A.y=B.y=2 C.x=D.y=﹣26.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前10项和为()A.89 B.76 C.77 D.357.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16 B.14 C.28 D.308.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q9. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 10.若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .611.已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β12.(2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .13二、填空题13.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .18.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .三、解答题19.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.20.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.21.已知集合A={x|>1,x∈R},B={x|x2﹣2x﹣m<0}.(Ⅰ)当m=3时,求;A∩(∁R B);(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.22.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.23.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.24.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.2.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.3.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.4.【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(﹣x)=﹣f(x),是奇函数,对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,对于D,满足f(﹣x)=﹣f(x),是奇函数,故选:C.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.5.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.6.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.7.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.8.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.9.【答案】A【解析】10.【答案】C【解析】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1)B(x2,y2)抛物y2=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,∴|AB|=|AF|+|BF|=x1+x2+2=8,故选:C.【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.11.【答案】D【解析】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.12.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.二、填空题213.【答案】3【解析】14.【答案】【解析】解:因为抛物线y 2=48x 的准线方程为x=﹣12,则由题意知,点F (﹣12,0)是双曲线的左焦点, 所以a 2+b 2=c 2=144,又双曲线的一条渐近线方程是y=x ,所以=,解得a 2=36,b 2=108, 所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c 和a 2的值,是解题的关键.15.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 16.【答案】22,3⎛⎫- ⎪⎝⎭【解析】17.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).18.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.20.【答案】【解析】(本小题满分12分)解:(Ⅰ)设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,,,…由于,故n=55.…(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:X~B(3,),…∴P(X=k)=,k=0,1,2,3,∴EX==,DX==.…【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.21.【答案】【解析】解:(1)当m=3时,由x2﹣2x﹣3<0⇒﹣1<x<3,由>1⇒﹣1<x<5,∴A∩B={x|﹣1<x<3};(2)若A∩B={x|﹣1<x<4},∵A=(﹣1,5),∴4是方程x2﹣2x﹣m=0的一个根,∴m=8,此时B=(﹣2,4),满足A∩B=(﹣1,4).∴m=8.22.【答案】【解析】解:(1)设z=x+yi(x,y∈R).由z+2i=x+(y+2)i为实数,得y+2=0,即y=﹣2.由z﹣4=(x﹣4)+yi为纯虚数,得x=4.∴z=4﹣2i.(2)∵(z+mi)2=(﹣m2+4m+12)+8(m﹣2)i,根据条件,可知解得﹣2<m<2,∴实数m的取值范围是(﹣2,2).【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题.23.【答案】(12)6 .【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD C 均为矩形,2(11112)6S =⨯++⨯=+.1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 24.【答案】【解析】(Ⅰ)证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,∵PD ⊥底面ABCD ,∴PD ⊥AC ,∴AC ⊥平面PDB , ∴平面AEC ⊥平面PDB .(Ⅱ)解:设AC ∩BD=O ,连接OE , 由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角, ∴O ,E 分别为DB 、PB 的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省衡阳县2018-2019学年高二学业水平
第一次模拟考试数学试题
本试卷包括选择题、填空题和解答题三部分。
时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={0,1,2},N ={x },若M∪N={0,1,2,3},则x 的值为( ) A .3 B .2
C .1
D .0
2.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台
D.球
3.在区间内任取一个实数,则此数大于3的概率为 A.
51 B.
5
2
C.5
3 D.
5
4 4.某程序框图如图所示,若输入x 的值为1,则输出y 的值是 A.2 B.3 C.4
D.5
5.已知向量a =(1,2),b =(x ,4),若a ∥b ,则实数x 的值为( ) A .8
B .2
C .-2
D .-8
6.某学校高一、高二、高三年级的学生人数分别为600,400,800,为了了解教师的教学情况,该校采用分层抽样的方法,从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为( ) A .15,5,25 B .15,15,15
C .10,5,30
D .15,10,20
7.如图,在正方体ABCD -A 1B 1C 1D 1中,直线
BD 与A 1C 1的位置关系是 A.平行
B.相交
C.异面但不垂直
D. 异面且垂直
8.不等式(x +1)(x -2)≤0的解集为 A.{x|-1≤x ≤2}
B. {x|-1<x <2}
C. {x|x ≥2或x ≤-1}
D. {x|x >2或x <-1}
9.已知两点P(4,0),Q(0,2),则以线段PQ 为直径的圆的方程是( ) A .(x +2)2
+(y +1)2
=5 B .(x -2)2+(y -1)2
=10 C .(x -2)2
+(y -1)2
=5
D .(x +2)2
+(y +1)2
=10
10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A 、B 到点C 的距离AC =BC =1km ,且∠ACB =120 ,则A 、B 两点间的距离为( ) A .3km B .2km C .1.5km
D .2km
二、填空题:本大题共5小题,每小题4分,满分20分. 11.计算:log 21+log 24=____________。
12.已知1,x ,9成等比数列,则实数x =______。
13. 已知点(x ,y )在如图所示的平面区域(阴影部分) 内运动,则z =x +y 的最大值是____.
14.已知a 是函数f(x)=2-log 2x 的零点,则实数a 的值为_____。
15.如图1,在矩形ABCD 中,AB =2BC ,E 、F 分别是AB 、CD 的中点,现在沿EF 把这个矩形折成一个直二面角A -EF -C(如图2),则在图2中直线AF 与平面EBCF 所成的角的大小 为___________。
(第10题图)
三、解答题:本大题共5小题,满分40分。
解答应写出文字说明、证明过程或演算步骤。
16. (本小题满分6分)已知
4
sin,
52
π
θθπ
=<<
(1)求tanθ
(2)
2
22
sin2sin cos
3sin cos
θθθ
θθ
+
+
的值
17.(本小题满分8分)某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如下图所示的频率分布直方图,图中标注a的数字模糊不清。
(1) 试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;
(2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?
a
(第17题图)
18.(本小题满分8分)
已知等比数列{a n }的公比q =2,且a 2,a 3+1,a 4成等差数列。
(1)求a 1及a n ;
(2)设b n =a n +n ,求数列{b n }的前5项和S 5。
19.已知二次函数2()f x x ax b =++满足(0)6,(1)5f f == (1)求函数()f x 解析式
(2)求函数()f x 在[2,2]x ∈-的最大值和最小值
20.(本小题满分10分) 已知圆C :x 2
+y 2
+2x -3=0。
(1)求圆的圆心C 的坐标和半径长;
(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A(x 1,y 1)、B(x 2,y 2)两点,求证:
2
11
1x x +
为定值; (3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大。
湖南省衡阳县2018-2019学年高二学业水平第一次模拟考试
数学试题参考答案
一、选择题
二、填空题 11、2; 12、3;13、5;14、4;15、45︒
(或4
) 三、解答题 16. 解:(1)4sin ,52πθθπ=
<<∴34cos ,tan 53
θθ=-=- (2)22222
sin 2sin cos tan 2tan 8
3sin cos 3tan 157
θθθθθθθθ++==-++ 17、解:(1)高一有20012001202000⨯=(人),高二有20012080-=(人);
(2) 频率为0.015100.03100.025100.005100.75⨯+⨯+⨯+⨯=,
∴人数为0.7520001500⨯=(人)。
18.解:(1)由已知得a 2=2a 1,a 3+1=4a 1+1,a 4=8a 1,又2(a 3+1)=a 2+a 4, 所以2(4a 1+1)=2a 1+8a 1,解得a 1=1(2分),故a n =a 1q n-1
=2n-1
(4分);
(2)因为b n =2n-1
+n ,所以S 5=b 1+b 2+b 3+b 4+b 5=2
5
51121215⋅++
--⋅)()(=46(8分) 19. (1)2(0)62
()26(1)156
f b a f x x x f a b b ===-⎧⎧⇒⇒=-+⎨
⎨=++==⎩⎩ ;
(2)22()26(1)5,[2,2]f x x x x x =-+=-+∈- ,
∴x =1时,f(x)的最小值为5,x =-2时, f(x)的最大值为14。
20. 解:(1)配方得(x +1)2
+y 2
=4,则圆心C 的坐标为(-1,0)(2分), 圆的半径长为2(4分);
(2)设直线l 的方程为y =kx ,联立方程组⎩⎨⎧==-++kx
y x y x 0
3222
消去y 得(1+k 2
)x 2
+2x -3=0(5分),则有:2
2122113
12k
x x k x x +-=+-=+,(6分) 所以
3
21
1212121=+=+x x x x x x 为定值(7分)。
(3)解法一 设直线m 的方程为y =kx +b ,则圆心C 到直线m 的距离2
1||-=
b d ,
所以222422d d R DE -=-=||(8分),
d d d DE S CDE
⋅-=⋅=2
421||∆≤
22
422=+-d d )(, 当且仅当24d d -=,即2=d 时,△CDE 的面积最大(9分) 从而
22
1=-||b ,解之得b =3或b =-1,
故所求直线方程为x -y +3=0或x -y -1=0(10分) 解法二 由(1)知|CD|=|CE|=R =2, 所以DCE DCE CE CD S CDE ∠=∠⋅⋅=
sin sin ||||22
1
∆≤2, 当且仅当CD ⊥CE 时,△CDE 的面积最大,此时22=||DE (8分) 设直线m 的方程为y =x +b ,则圆心C 到直线m 的距离2
1||-=b d (9分)
由22422222=-=-=d d R DE ||,得2=d , 由
22
1=-||b ,得b =3或b =-1,
故所求直线方程为x -y +3=0或x -y -1=0(10分)。