【高等数学基础】形成性考核册答案(附题目)
国开电大 高等数学基础 形成性作业1-4答案
高等数学基础形考作业1:第1章 函数 第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B.x 轴C. y 轴D. x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C.0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量. A. x x sin B. x 1C.xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
16最新电大高等数学基础形成性考核手册答案(含题目)
2016最新电大高等数学基础形成性考核手册答案(含题目)高等数学基础形考作业1答案:第1章函数第2章极限与连续单项选择题⒈下列各函数对中,中的两个函数相等. A. f(x)?(x)2,g(x)?x B. f(x)?3x2,g(x)?x x2?1 C. f(x)?lnx,g(x)?3lnx D. f(x)?x?1,g(x)? x?1⒉设函数f(x)的定义域为(??,??),则函数f(x)?f(?x)的图形关于对称. A. 坐标原点B. x轴 C. y轴 D. y?x ⒊下列函数中为奇函数是. A. y?ln(1?x2) B. y?xcosx ax?a?x C. y? D. y?ln(1?x) 2 ⒋下列函数中为基本初等函数是. A. y?x?1 B. y??x C. y?x2??1,x?0 D. y?? 1,x?0?⒌下列极限存计算不正确的是.x2?1 B. limln(1?x)?0 A. lim2x?0x??x?2sinx1?0 D.limxsin?0 x??x??xx⒍当x?0时,变量是无穷小量.sinx1 A.B. xx1C. xsinD. ln(x?2) x C. lim⒎若函数f(x)在点x0满足,则f(x)在点x0连续。
A. limf(x)?f(x0) B. f(x)在点x0的某个邻域内有定义x?x0f(x)?f(x0) D. limf(x)?limf(x) C. lim???x?x0x?x0x?x0 1 填空题⒈函数f(x)?x2?9?ln(1?x)的定义域是?3,???.x?32⒉已知函数f(x?1)?x2?x,则f(x)? x-x .1x)?e2.⒊lim(1?x??2x1?x?⒋若函数f(x)??(1?x),x?0,在x?0处连续,则k? e .?x?0?x?k,1⒌函数y???x?1,x?0的间断点是x?0.?sinx,x?0⒍若limf(x)?A,则当x?x0时,f(x)?A称为x?x0时的无穷小量。
高等数学基础形成性考核册和答案解析
高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量.A. xx sin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞).⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞) ⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求⒐求hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x x x x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→x x x x x x x xx x x xx x x sin )11()11)(11(limsin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x xx x x x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→4443])341[(lim ---+=+-+=e x x 2)4)(2(lim86lim 2=--=+-x x x x⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim0( B ). A. )0(f B. )0(f ' C. )(x f ' D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x .⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设x x y 2=,则='y 2x 2x(lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =221(2)sin (ln )cos sin x x x x x xx---⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f'(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值. A. 0)(,0)(00=''>'x f x f B. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值. 解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5. (-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。
高等数学基础形成性作业及答案1-4
⾼等数学基础形成性作业及答案1-4⾼等数学基础形考作业1:第1章函数第2章极限与连续(⼀)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是⽆穷⼩量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满⾜(A ),则)(x f 在点0x 连续。
A.)()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(⼆)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数?≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的⽆穷⼩量0x x →。
《高等数学基础》形考网考形成性考核册-国家开放大学电大
高等数学基础形成性考核册专业:学号:姓名:高等数学基础形考作业1:第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(=D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于()对称.A. 坐标原点B. x 轴C. y 轴D. x y =⒊下列函数中为奇函数是( ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是( ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim =∞→x x xD. 01sin lim =∞→x x x⒍当0→x 时,变量( )是无穷小量.A. x xsin B. x 1C. x x 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim x f x f =D. )(lim )(lim x f x f =(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是. ⒉已知函数x x x f +=+2)1(,则=)(x f . ⒊=+∞→x x x )211(lim . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为。
高等数学基础形成性考核册和答案解析
高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量( C )是无穷小量.A. xxsin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞). ⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -. 解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求⒐求hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x x x x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→xx xx x x x xx x x xx x x sin )11()11)(11(limsin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x xx x x x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→4443])341[(lim ---+=+-+=e x x 2)4)(2(lim86lim 22=--=+-x x x x⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0( B ).A. )0(fB. )0(f 'C. )(x f 'D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设xx x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x . ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设xx y 2=,则='y2x 2x(lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =221(2)sin (ln )cos sin x x x x x xx---⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f'(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值. A. 0)(,0)(00=''>'x f x f B. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值.解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5. (-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。
【高等数学基础】形成性考核册答案.
1【高等数学基础】作业1答案:第1章函数极限与连续一、单项选择题1.C2.C3.B4.C5.D6.C7.A二、填空题1.(3+∞,; 2.2x x -; 34.e ; 5.0x =; 6.无穷小量.三、计算题1.解:(22, f =-(00, f =(11. f e e == 2.解:要使21lgx x- 有意义,必须 210, 0x x x -⎧>⎪⎨⎪≠⎩解得:10, 2x x <>或(211lg, . 2x y x -⎛⎫∴=∞⋃+∞ ⎪⎝⎭函数的定义域为-,0 3.解:如图,梯形ABCD 为半圆O 的内接梯形,AB DC AB 2R DE x ,=,高=, OD DEO 连接则为直角三角形,2DC OC ==((((122S , 0DE DC AB x R x R x R ∴+=+=+<<1梯形的面积S=2即其中4.解:原式=000sin 3233sin 323limlim lim . 3sin 2223sin 22x x x x x x x x x x x →→→⋅⋅=⋅=5.解:原式=((11111lim1lim lim 12sin 1sin 1x x x x x x x x x →-→-→-++⋅-=⋅-=-++6.解:原式=000sin 33sin 31lim3lim lim 3. 3cos33cos3x x x x x x x x x→→→⋅=⋅=7.解:原式=2110. x x →→==8.解:原式=4334441lim 1. 33x x x e x x -+---→∞⎡⎤--⎛⎫⎛⎫⎢⎥+= ⎪⎪⎢⎥++⎝⎭⎝⎭⎣⎦AE BOC29.解:原式=((444222lim lim . 4113x x x x x x x x →→---==---高等数学基础】作业2答案:导数与微分一、单项选择题1.B2.D3.A4.D5.C二、填空题1.0; 2.2ln 5x x +; 3.12; 4.10y -=; 5.(22ln 1x x x +; 6.1 x.三、计算题1. 求下列函数的导数y ':(3132223(13, 3212.2x xxx y x e y x e x e y e ⎛⎫⎛⎫'=+∴=++ ⎪⎪⎝⎭⎝⎭'=解:即 (22211122ln 2ln . sin sin y x x x x x x x x x'=-++⋅=-++解: ((2221132ln 2ln 1. ln ln x y x x x x x x x⎛⎫'=-⋅=- ⎪⎝⎭解: (((((3264414sin 2ln 23cos 221ln 23sin 3cos . x xxy x x x x xx x x x x x⎡⎤'=-+-+⎣⎦=--+解: ((222221152sin ln cos sin 12ln cos . sin sin y x x x x x x x x x xx x x x⎡⎤⎛⎫'=---- ⎪⎢⎥⎝⎭⎣⎦--=+⋅解:(3sin 64cos ln . xy x x x x'=--解: (((((222173cos 23ln 3sin 31cos 2sin ln 3ln 3. 3x x x x y x x x x x x x x ⎡⎤'= +-+⎣⎦=+--解:3(22118tan cos 11tan . cos x x x y e x e x xe x x x'=+⋅+⎛⎫=++ ⎪⎝⎭解:2. 求下列函数的导数y ': (1y ''=⋅=解:((1sin 2cos tan . cos cos x y x x x x''=⋅=-=-解: (112711288273, . 8y x x x x y x -⎡⎤⎛⎫⎢⎥'=⋅=∴= ⎪⎢⎥⎝⎭⎢⎥⎣⎦解: ((42sin sin 2sin cos sin 2. y x x x x x ''=⋅=⋅=解: ((225cos 2cos . y x x x x ''=⋅=解: ((6sin . x xxx y e e ee ''⋅=-⋅解:=-sin((((1117sin cos cos sin sin sin cos cos sin sin sin cos 1.n n n n y n x x nx x nx nn x x nx x nx n x n x ---'=⋅⋅+⋅-⋅=⋅-=⋅+解: ((sin sin 85ln 5sin 5cos ln 5. x x y x x ''=⋅⋅=解: ((cos cos 9cos sin . xx y ex xe ''=⋅=-解:3. 在下列方程中,(y y x =是由方程确定的函数,求y ':(((2221cos sin 2,cos sin , sin . cos y y yy x y x e y y x e y x y xy x e''+-=⋅'-='∴=-解:((cos 2sin ln , cos 1sin ln , cos .1sin ln yy y y x xyy x y xyy x y x ''=-⋅+'+='∴=+解:4(3sin , 21sin cos , 21.2sin cos xy y y y y y y y y y y =''+⋅='∴=+解:两边求导,得(41. y y y y y'''⋅=+1解:=1+ ((152,12, 1. 2y yye y y y xy e y x y x y e ''+⋅=⋅'-='∴=- ((62sin cos , 2cos sin ,sin . 2cos x x xx x xy y e y e y y y ey y e y e y y y e y''⋅=+⋅⋅'-='∴=-解:((22273,3,. 3y x yx xy e y e y y ey y e e y e y''⋅=-⋅'+='∴=+解:((85ln 52ln 2,12ln 25ln 5,5ln 5.12ln 2x y yx x y y y y y ''=+⋅'-='∴=-解:4. 求下列函数的微分dy :(((221csc cot csc csc cot csc , csc cot csc .y x x x x x x dy y dx x x x dx '=--=-+'∴==-+ 解:(2221sin cos ln sin cos ln 2, sin sin sin cos ln .sin x x xx x x xy x x xx x x xdy dx x x--'==-∴= 解:5(32sin cos sin 2, sin 2.y x x x dy xdx '==∴= 解:(2224sec sec ,sec .x x x xy e e e x dy e xdx '=⋅=∴= 解:5.求下列函数的二阶导数:(12332211, 2111. 224y x y x x ---'==⎛⎫''∴=⋅-=- ⎪⎝⎭解:(223ln 3,3ln 3.x xy y '=''∴=解:(213, 1. y xy x'=''∴=-解:((4sin cos , cos cos sin 2cos sin .y x x x y x x x x x x x '=+''∴=+-=-解:四、证明题((((((((((,,1, f x fx f x f x f x f x f x f x f x -=-''∴-=-⎡⎤⎡⎤⎣⎦⎣⎦''-⋅-=-''-='∴证:由题设,有即是偶函数.【高等数学基础】作业3答案第四章导数的应用一、单项选择题1.D2.D3.A4.C5.C6.A二、填空题1.极小值; 2.0; 3.(,0-∞; 4.(0, +∞; 5.(f a ; 6.(0,2.三、计算题(((((212521535101, 5.y x x x x x x x '=-++-=--===1. 解:令,得:列表如下6((( , 5, , 5. 3250. y ∴∞+∞函数的单调增区间为-,1单调减区间为1,当x=1时,函数取得极大值;当x=时,函数取得极小值([(][]((([]222. 22210, 1. 0,10; 1,30. 230,31. 03, 12, 36,0360.y xx x x yx y y x x xy y y y x x'=-=-==''∈<∈>∴=-+====∴= 解:令得当时,当时,函数在区间上的极值点为又函数-2+3在,上的最大值为,最小值为(((223. , , , 2,(0 0,11 212, 1, .P x y PA d y x x d d x x y y P P ==≥=='======⨯==∴解:设所求的点则令得易知,是函数d 的极小值点,也是最小值点. 此时,所求的点为或4. 解:如图所示,圆柱体高h 与底半径r 满足222h r L +=圆柱体的体积公式为 h r V 2π= 将222r L h =-代入得22(V L h h π=- 求导得22222(2( (3 V h L h L h ππ'=-+-=- 令0='V得h =,并由此解出r =. 即当底半径r L =,高h L =时,圆柱体的体积最大.5. 解:设圆柱体半径为R ,高为h ,则72222, 222V Vh S Rh R R R Rππππ==+=+表面积2240V S R R Rπ'=-==令得0,0S S ⎛⎫''∈<+∞> ⎪⎪⎝⎭R 时,时, S R ∴=的极小值点,也是最小值点. 此时答:当2πV R = 4πV h =时表面积最大.6. 解:设长方体的底边长为x 米,高为h 米. 则 2262.562.5x hh x ==由得用料的面积为:(2225040S x xh x x x=+=+>,令32250201255S x x x x '=-===得,易知,5S x =是函数的极小值点,也是最小值点. 答:当该长方体的底边长为5米,高为2.5米时用料最省。
高等数学基础形成性作业及答案1-4
A.
B.
C.
D.
⒌下列极限存计算不正确的是(D).
A.
B.
C.
D.
⒍当时,变量(C)是无穷小量.
A.
B.
C.
D.
⒎若函数在点满足(A),则在点连续。
A.
B. 在点的某个邻域内有定义
C.
D.
(二)填空题
⒈函数的定义域是.
⒉已知函数,则 x2-x .
⒊.
⒋若函数,在处连续,则 e .
⒌函数的间断点是.
⒍若,则当时,称为。
⒋函数满足的点,一定是的(C ).
A. 间断点
B. 极值点
C. 驻点
D. 拐点
⒌设在内有连续的二阶导数,,若满足( C ),则在取到极小值.
A. B.
C. D.
⒍设在内有连续的二阶导数,且,则在此区间内是( A ).
A. 单调减少且是凸的
B. 单调减少且是凹的
C. 单调增加且是凸的
D. 单调增加且是凹的
⒋曲线在处的切线方程是。
⒌设,则
⒍设,则。
(三)计算题
⒈求下列函数的导数:
⑴
解:
⑵
解:
⑶ 解: ⑷ 解: ⑸
解: ⑹ 解: ⑺ 解: ⑻ 解: ⒉求下列函数的导数: ⑴ 解: ⑵ 解: ⑶ 解: ⑷ 解: ⑸ 解: ⑹ 解:? ⑺ 解: ⑻ 解: ⑼ 解: ⒊在下列方程中,是由方程确定的函数,求: ⑴ 解: ⑵ 解: ⑶ 解:
第5章
第6章
(一)单项选择题
⒈若的一个原函数是,则(D).
A.
B.
C.
D.
不定积分 定积分及其应用
⒉下列等式成立的是(D).
A
【高等数学基础】形成性考核册答案(附题目)
【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数 第2章 极限与连续C. 2y = D. )1ln(x y +=分析:A 、()()()()22ln(1)ln 1y x x xy x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y分析:六种基本初等函数D 、sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sinD. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx →=,重要极限B 、01lim x x→=∞,无穷大量)0,1,2然后求满足上述条件的集合的交集,即为定义域3- 1- ⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .分析:法一,令1t x =+得1x t =-则()()22()11f t t t t t =-+-=-则()2f x x x =-法二,()()(1)(1)111f x x x x x +=+=+-+所以()()1f t t t =- ⒊=+∞→xx x)211(lim .分析:重要极限1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭,等价式()10lim 1x x x e →+=推广()lim x a f x →=∞则()()1lim(1)f x x a e f x →+= ()lim 0x af x →=则()()1lim(1)f x x af x e →+=1122211lim(1)lim(1)x x e ⨯+=+= 解:21lg x y x -=有意义,要求0x x >⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: DA RO h EB C(222hR R +⒋求xx23.解:0sin3sin33lim sin 22x x x →=⒌求解:⒍求解:1lim cos3x x x =⒎求解:20(1lim (1x ++ x⒏求x x 3(+∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++⒐求4586lim 224+-+-→x x x x x .解:()()()()2244442682422lim limlim 54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数⎪⎨⎧≤≤->-=11,1,)2()(2x x x x x f)()1,-+∞【高等数学基础】形考作业章 导数与微分 存在,则→xf x (lim 0 B. )0(f ' ⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim0(A ). A. e B. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.⑹x x x y ln sin 4-= x x xx y ln cos 43--='⑺xx x y 3sin 2+= x x x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y xln tan e += xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ':⑺nx x y ncos sin =)sin(sin cos cos sin 1nx x n nx x x n y n n -='-⑻2sin 5x y =2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=xxey 2sin 2sin ='⑶yx y x 2sin 2=222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+' 22cos 2sin 22xy xy y y xy y +-='⑷y x y ln +=1+'='y y y 1-='y y y⑸2e ln y x y =+dx xx x x x dy 2sin cos ln sin -=⑶xxy +-=11arcsindx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=21xy +=' 22)1(2x xy +-=''⑷23x y =3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=-⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 . ⒊函数)1ln(2x y +=的单调减少区间是)0,(-∞.⒋函数2e )(x xf =的单调增加区间是),0(+∞⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是)(a f . ⒍函数3352)(x x x f -+=的拐点是 x=0 .(三)计算题⒈求函数2(1)(5)y x x =+-的单调区间和极值.令)2)(5(2)5(2)1(2--=++='x x x x y⇒⇒⇒2d 令∴h h L h R V )(222-==ππL h h L h L h L h h V :3330]3[])2([2222==⇒=-=-+-='ππ令。
2020年国家开放大学电大《高等数学基础》形成性考核解析
高等数学基础作业1第1章 函数 第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x > 所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = 分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+= 所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=分析:A 、()()()()22ln(1)ln 1y x x xy x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数 D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数 (3) ()0,1x y a a a =>≠———指数函数 (4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数(6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对 对照比较选C⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x分析:A 、已知()1lim 00n x n x→∞=>2222222211lim lim lim 1222101x x x x x x x x x x x →∞→∞→∞====++++B 、0limln(1)ln(10)0x x →+=+=初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞==x →∞时,1x是无穷小量,sin x 是有界函数,无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量.A.xxsin B. x 1C. xx 1sin D. 2)ln(+x分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx →=,重要极限B 、01lim x x→=∞,无穷大量C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x 仍为无穷小量D 、()0limln(2)=ln 0+2ln 2x x →+=故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
高等数学形成性考核册答案
高等数学(B )(1)第一次作业初等数学知识一、名词解释邻域:设a 和δ是两个实数,且0δ>,满足不等式x a δ-<的实数x 的全体称为a 的δ邻域。
绝对值;数轴上的点a 到原点的距离称为a 的绝对值,记为a 。
数轴:规定了原点、正方向和长度的直线称为数轴。
实数:实数由有理数和无理数组成。
有理数包括整数和分数。
二、 填空题1、绝对值的性质有(0a ≥)、(ab a b =)、(aa b b=)、(a a a -≤≤)、(a b a b +≤+)、(a b a b-≤-)。
2、开区间的表示有((),a b )、( a x b <<)(提示:分别用区间和数轴形式表示)3、闭区间的表示有([],a b )、( a x b ≤≤)。
4、无穷大的记号(∞)。
5.(-∞,+∞)表示( 全体实数),或记为( R )。
6、(-∞,b )表示(满足不等式x b <的一切实数x ),或记为(x b -∞<<)。
7、(a ,+∞)表示((满足不等式x a >的一切实数x ),或记为(a x <<+∞)。
8、去心邻域是指(满足不等式x a δ-<且x a ≠)的全体,用数轴表示即为(P7下图)。
9、满足不等式112-<≤-x 的数x 用区间可表示为(11,2⎛⎤-- ⎥⎝⎦)。
三、回答题1、初等数学为高等数学做了哪些准备? 答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算转变。
符号是一种更为简洁的语言,没有国界,全世界共享,并且这种语言具有运算能力。
(2)培养严密的逻辑思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维的能力,实现从具体数学到概念化数学的转变。
(4)发展变化意识,实现从常量数学到变量数学的转变。
2、有理数包括哪些数?答:有理数包括整数和分数。
3、 数轴上二个有理数之间都是有理数吗? 答:二个有理数之间有有理数,也有无理数。
2020电大高等数学基础形成性考核手册答案必考重点【精编打印版
高等数学基础形考作业1答案第1章 函数 第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
《高等数学基础》形成性考核作业2答案
《高等数学基础》形成性考核作业 2答案第三章导数与微分1. B2.D3.A4.D5.C填空题 113. —;4. y-1=0 ;5. 2x 2x lnx 1 ;6.—.2x三、计算题1.求下列函数的导数y :即 y e vii viii ix x 2x 、x 3 x 6 .2 解: ” 1 2 1 1 y — 2xln x x厂 2xln x x. sin x xsin x 3 解: ” 1 i‘2 1 [xy 2 2x ln x - x2 2ln x -1 . ln 2x .xln 2x4 解:y =乙 £ -sin x 2x In 2 x 3 -3x 2 cosx 2x j 2x 14 x ln 2「3 4xsin x 3cos x .x 1 i 『1 I5 解:y22x sinx - In x-x 2 cosx2cosx.xsinx sin x6 解: y =4x 3 -cosxln xx单项选择题/ 3 3 1 / 3 x 2 +3 x* o 2 x e ,二 y = — x 2e + x° +3 k 2 <(1)解:y 二x e 1. 0;2ln x 5 xsin x Ll x 丿1 -2x2x2-l nx1 _7 解:y 2 3x cosx 2x - 3x In3 sinx x 2 (3x ) L 1 2x cosx 2x-sinxln3-x In 3 . 318 解: y = e xta n x e xcos x =e x tanx[ cos x2. 求下列函数的导数y :1 解:3 解:y = 2s in x sin x = 2sin x cosx = sin 2x.2 t 2 2y'(X )cos x =2xcos x6 解: y =-sin e x - e x 二-e x sine x .7 解: y =nsin n 」x cosx cosnx sin n x -sin nx n=nsin n 4 x cosxcos nx -sin xsin nx = nsin n ' x cos n 1 x. 8 解: y = 5sinx I n 5 si nx = 5sinx cosx I n 5.cosx・ cosx9 解:y =e cosx 二-sin xe3. 在下列方程中,y 二yx 是由方程确定的函数,求y :1 解: y cosx y :;:「sinx 二e 2y 2y, y cosx-e 2y = y sin x, , ysinx-y27.cosx —e2 解:y = —1— cosx =cosx sin xtan x. cosx4 解:(5)解2 解: y 二-sin y y ln x ^°竺 x‘ cosy1 sin y In x y,x ” cos yy.x (1 +sin yIn x )3解:y sin y = £,两边求导,得 y sin y ycosy y , 211 ・4 解:y=1 + — y =1 工.y y1 5 解:—e yy =2y y,x 2y _e y y =-,x・ 1y.x(2y-e y)6 解:2y y =e si ny - e x cosy y , 2y-e x cosy y =e x sin y,x‘ e sin yyx .2y-e cosy7 解:e y y' =e x -3y 2 y', e y 3y 2 / = e x ,e y 3y 2'8 解:y =5x ln 5 2y In2 y, 1 -2y In2 y =5x ln 5, ..5x ln5 y1 _2y l n2.4. 求下列函数的微分dy :1 解:::y = -esc2 x -cot 2 xcscx 二-cscx cot x cscx , dy 二 y dx 二-cscx cot x cscx dx.y =2(sin y + ycosy )1 . . x sin x-cosxlnx sin x-xcosxln x2 2sin x x sin x, sin x — x cos x In x ,dy 2dx.x sin x3 解:;y = 2sin x cos x = sin 2x, dy=sin 2xdx.4 解::y = sec2 e x e x二e x sec2 x, dy = e x sec2 xdx .5. 求下列函数的二阶导数:2「x 22 解: /-3x ln 3,.y'J3x| n23.1y _ 2 .x解:y =sin x xcosx,4y 二cosx cos x-xs in x =2cosx-xsi n x.四、证明题证:由题设,有f :;:「x二- f X , _f - x 厂-IL- f x ,即卩f - x -1 一-f x , 个人工作业务总结f -x 二f X.f x是偶函数.本人于2009年7月进入新疆中正鑫磊地矿技术服务有限公司(前身为“西安中正矿业信息咨询有限公司”),主要从事测量技术工作,至今已有三年。
国开电大《高等数学基础》形考任务参考答案
国开电大《高等数学基础》形考任务参考答案一、选择题1.答案:B 解析:题意为求函数f(f)=f2−4f+3的零点个数。
首先根据一元二次方程的求解公式可得$x=\\frac{-b±\\sqrt{b^2-4ac}}{2a}$,其中f=1,f=−4,f=3。
代入求解得到两个解f=1和f=3,即方程有两个零点,所以选项 B 是正确的。
2.答案:C 解析:题目给出了两个不等式,要求找出满足两个不等式同时成立的f的范围。
首先解不等式2f+ 1>3得到 $x>\\frac{1}{2}$,然后解不等式f2−5f+6> 0可以化简为(f−3)(f−2)>0,根据零点的性质得到f<2或f>3,所以合并两个不等式的解集得到$x>\\frac{1}{2}$ 且f<2或 $x>\\frac{5}{3}$ 且f>3,化简得到 $x>\\frac{5}{3}$ 且f>3,即f>3。
所以选项C 是正确的。
3.答案:A 解析:题目给出了一个反比例函数$y=\\frac{a}{x}+b$,求其中的常数f和f。
根据题意,函数的图像经过点(2,3)和(4,1),代入这两个点的坐标可以得到两个方程:$$ \\begin{cases} 3=\\frac{a}{2}+b \\\\ 1=\\frac{a}{4}+b \\end{cases} $$4.解方程组得到f=−4和f=5,所以选项 A 是正确的。
5.答案:D 解析:根据角度的定义可知,一直线与平面的交角为直角。
所以选项 D 是正确的。
6.答案:B 解析:根据等差数列的通项公式f f=f1+(f−1)f,其中f f为第f项,f1为第一项,f为公差。
根据题意可得f f=3+(f−1)2。
代入f=10可得f10= 3+(10−1)2=21,所以选项 B 是正确的。
二、填空题1.答案:$\\frac{1}{10}$ 解析:根据条件所给出的正方形的性质,可以得到正方形的边长为 10。
关于高等数学形成性考核册答案
高等数学(B )(1)第一次作业初等数学知识一、 名词解释邻域:设a 和δ是两个实数,且0δ>,满足不等式x a δ-<的实数x 的全体称为a 的δ邻域。
绝对值;数轴上的点a 到原点的距离称为a 的绝对值,记为a 。
数轴:规定了原点、正方向和长度的直线称为数轴。
实数:实数由有理数和无理数组成。
有理数包括整数和分数。
二、 填空题1、绝对值的性质有(0a ≥)、(ab a b =)、(a a b b=)、(a a a -≤≤)、(a b a b +≤+)、(a b a b -≤-)。
2、开区间的表示有((),a b )、( a x b <<)(提示:分别用区间和数轴形式表示)3、闭区间的表示有([],a b )、( a x b ≤≤)。
4、无穷大的记号(∞)。
5.(-∞,+∞)表示( 全体实数),或记为( R )。
6、(-∞,b )表示(满足不等式x b <的一切实数x ),或记为(x b -∞<<)。
7、(a ,+∞)表示((满足不等式x a >的一切实数x ),或记为(a x <<+∞)。
8、去心邻域是指(满足不等式x a δ-<且x a ≠)的全体,用数轴表示即为(P7下图)。
9、满足不等式112-<≤-x 的数x 用区间可表示为(11,2⎛⎤-- ⎥⎝⎦)。
三、 回答题1、初等数学为高等数学做了哪些准备? 答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算转变。
符号是一种更为简洁的语言,没有国界,全世界共享,并且这种语言具有运算能力。
(2)培养严密的逻辑思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维的能力,实现从具体数学到概念化数学的转变。
(4)发展变化意识,实现从常量数学到变量数学的转变。
2、有理数包括哪些数?答:有理数包括整数和分数。
3、 数轴上二个有理数之间都是有理数吗? 答:二个有理数之间有有理数,也有无理数。
·《高等数学基础》形考第三次作业参考答案
《高等数学基础》形成性考核册第三次作业参考答案第四章 导数的应用一、单项选择题1、D2、D3、A4、C5、C6、A二、填空题14、(1令'y 令'y 2令'y 因此,0=x 为函数的极小值点。
函数没有极大值点。
计算并比较函数值:可见,最大值是6)3(=f ,最小值是2)1(=f 。
3、求曲线x y 22=上的点,使其到点)0,2(A 的距离最短。
解:设曲线上点坐标为),(y x ,它到点)0,2(A 的距离为 求导数:421)22(422122+--=-⨯+-='x x x x x x d 令04212=+--='x x x d ,得唯一驻点是1=x 。
根据问题的实际背景可知这是所求的点的横坐标。
代入曲线方程,可得2±=y 。
所以,所求的点为)2,1(何)2,1(-。
4令'V 5令'V 所以,底面半径为32πV,高为34πV时圆柱体的表面积最小。
6、欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省? 解:设底面边长为x 米,高为y 米,表面积为S 平方米。
根据条件,体积:5.622=⨯y x 。
表面积等于底面面积加四个侧面面积:令025022=-='x x S ,求得唯一驻点为5=x (米),根据问题的实际意义可知,这就是所求的底面边长。
此时,5.2=y (米)。
所以,底面边长为5米,高2.5米时用料最省。
四、证明题1、当0>x 时,证明不等式)1ln(x x +>证明:令由于2、当x 证明:令由于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数 第2章 极限与连续(一)单项选择题1C 2C 3B 4C 5D 6C 7A (二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是{}|3x x >⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x . 分析:法一,令1t x =+得1x t =-则()()22()11f t t t t t =-+-=-则()2f x x x =-法二,()()(1)(1)111f x x x x x +=+=+-+所以()()1f t t t =-⒊1122211lim(1)lim(1)22x x x x e x x⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0x = .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 0x x →时的无穷小量 .(三)计算题⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e ==⒉求函数21lgx y x-=的定义域. 解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:DA RO h EB C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R 直角三角形AOE 中,利用勾股定理得AE =则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim 0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯=⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111limlim lim 2sin(1)sin(1)sin(1)11x x x x x x x x x x x →-→-→---+---====-++++ ⒍求x xx 3tan lim 0→.解:000tan3sin31sin311lim lim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin 11lim 20-+→.解:20001lim sin x x x x →→→-==()0lim0sin 1111)x xxx→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++⒐求4586lim 224+-+-→x x x x x .解:()()()()2244442682422lim limlim 54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞【高等数学基础】形考作业2答案:第3章 导数与微分(一)单项选择题1C, 2D, 3A, 4D, 5C,(二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是21=k⒋曲线x x f sin )(=在)1,4π(处的切线方程是)41(2222π-==x y ⒌设xx y 2=,则='y )ln 1(22x x x +⒍设x x y ln =,则=''y x1(三)计算题⒈求下列函数的导数y ':⑴xx x y e )3(+= xxe x e x y 212323)3(++='⑵x x x y ln cot 2+= x x x x y ln 2csc 2++-='⑶x x y ln 2= x xx x y 2ln ln 2+=' ⑷32cos x x y x += 4)2(cos 3)2ln 2sin (xx x x y x x +-+-='⑸x x x y sin ln 2-= xx x x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= x x xxx y ln cos sin 43--='⑺xx x y 3sin 2+= x x x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y xln tan e += xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=2112xx ey x -='-⑵3cos ln x y =32233tan 33cos sin x x x xx y -=-='87x y = 8187-='x y⑷3x x y +=)211()(31213221--++='x x x y⑸xy e cos 2=)2sin(x x e e y -='⑹2ecos x y =22sin 2x x exe y -='⑺nx x y ncos sin =)sin(sin cos cos sin 1nx x n nx x x n y n n -='-⑻2sin 5x y =2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=xxey 2sin 2sin ='⑽22ex x x y +=222)ln 2(x x xex x x x y ++='⑾xxxy e e e+=xe x x e e e x e xe xy x x++=')ln (⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴yx y 2ecos =y e x y x y y '=-'22sin cosyex xy y 22cos sin -='⑵x y y ln cos =xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+' 22cos 2sin 22x y xy y y xy y +-='⑷y x y ln +=1+'='y y y 1-='y y y⑸2e ln y x y =+ y y y e xy '='+21)2(1ye y x y -='⑹y y xsin e 12=+x x e y y y e y y .sin .cos 2+'='ye y ye y xx cos 2sin -='⑺3e e y xy-=y y e y e x y '-='23⑻yx y 25+=2ln 25ln 5y x y y '+='2ln 215ln 5yx y -='⒋求下列函数的微分y d : ⑴x x y csc cot +=dx xxx dy )sin cos cos 1(22--=⑵x xy sin ln =dx xx x x x dy 2sin cos ln sin 1-=⑸xy e sin 2=dx e e dx e e e dy x x x x x)2sin(sin 23==⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln =x y ln 1=='xy 1=''⑵x x y sin =x x x y sin cos +=' x x x y cos 2sin +-=''⑶x y arctan =22)1(2x xy +-=''⑷23x y =3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=-两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。