计算机组成原理实验指导书
计算机组成原理实验指导书
计算机组成原理实验指导书适用TD-CMA实验设备实验一基本运算器实验一、实验原理运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
ALU中所有模块集成在一片CPLD中。
逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。
移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。
图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。
每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:(1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。
(2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。
例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。
(3) 对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。
使用另外的逻辑进行移位总量译码和符号判别。
原理如图1-1-1所示图1-1-1 运算器原理图运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是算术运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
《计算机组成原理》实验指导书
《计算机组成原理》实验指导书实验一、3~8译码器的设计1.实验目的和要求熟悉ispEXPERT SYSTEM 软件的原理图绘制和编程方法。
了解计算机硬件电路的设计和调试方法。
熟悉、掌握组合逻辑电路的设计方法。
2.实验内容由组合逻辑电路知识可知,采用与门实现的3线~8线译码器的逻辑方程如下: 利用组合逻辑门电路,设计一个3~8译码器,原理图如下:并验证逻辑是否正确。
3.实验提示先根据附录一熟悉ispEXPERT SYSTEM用原理图方式输入组合逻辑门电路连接计算机组成原理实验装置,编程下载ispLSI1032E 拨动开关观察记录LED 显示结果完成实验后,每位同学提交一份实验报告(手写),格式参照附件一。
注:引脚1.开关(输入):K0~K7: 53~60K8~K15 : 26~33 开关向上为1,向下为0 灯(输出):LED0~LED7 :76~83 LED8~LED15:3~10 L0~L7: 45~52 L8~L15: 34~412.输入输出都要添加缓冲器:在器件库中选择C :\…\GENERIC\IOPADS.LIB1270126012501240123012201210120a a a y a a a y a a a y a a a y a a a y a a a y a a a y a a a y ========3.引脚锁定:菜单项ADD ,选命令,出现Symbol Attribute Editor 对话框,单击需要定义属性的输入输出PAD ,在对话框中选SynarioPin 属性,输入引脚号。
(2)选择器件 (3)输入源文件(4)编译、仿真源文件 (5)适配在项目管理器窗口,点击左边窗口中的ispLSI1032E-70LJ84,右边窗口双击FitDesign,出现绿色对号,则设计正确,红色错号,存在严重错误。
(6)下载(烧录)将实验系统电源连好使用专用下载电缆将实验系统和微机连好。
计算机组成原理实验指导书
计算机组成原理实验指导书计算机组成原理实验指导书目录实验一8位算术逻辑运算实验1实验二带进位控制8位算术逻辑运算实验5实验三16位算术逻辑运算实验8实验四移位运算器实验12实验五存储器实验14实验六微控制器实验17实验七基本模型机的设计与实现25实验前说明本章将详细介绍每个实验的实验目的、实验原理、软硬件的设计方法等,在实验前实验者必须重温计算机组成原理前序课程《数字逻辑》,它是完成本章实验的基础。
通过本章实验让实验者加深对所学课程的理论知识的理解,力图使实验者的实验动手能力与综合能力进一步提高,同时可以完成对学生阅读计算机硬件逻辑图的综合培训。
在DVCC系列实验计算机上进行实验时,部分实验线路需要实验者自己连接,连接时,单个信号线相连时,选用单股实验导线,根据实验中的连线要求,将对应信号线相连;多个信号线相连时,选用排线(4芯、5芯、6芯、8芯),根据实验中的连线要求,将对应的信号插座连接起来,凡是多芯信号插座,都用一个白色小圆点作为第一脚的标志,只要一对一就行。
做实验前跳线设置:(1)、J20,J21,J22,ZI2,CN4CN0接上短路片,(2)、JJ23,J24,J25,J26接左边;(3)、J27,J28右边;(4)、J29不接;(5)、JA1,JA2,JA3,JA4置“高阻”;(6)、JA5置“接通”;(7)、JA6置“手动”;(8)、JA8置“微程序”实验一8位算术逻辑运算实验一、实验目的1、掌握简单运算器的数据传送通路组成原理。
2、验证算术逻辑运算功能发生器74LS181的组合功能。
二、实验内容1、实验原理实验中所用的运算器数据通路如图3-1所示。
其中运算器由两片74LS181以并/串形成8位字长的ALU构成。
运算器的输出经过一个三态门74LS245(U33)到内部数据总线BUSD0~D7插座BUS1~2中的任一个(跳线器JA3为高阻时为不接通),内部数据总线通过LZD0~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273(U29、U30)锁存,两个锁存器的输入并联后连至内部总线BUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。
计算机组成原理实验指导书CP226
目录第一章系统概述 (2)1.1DICE-CP226简介 (2)1.2DICE-CP226特点 (2)1.3实验系统组成 (3)第二章模型机模块实验 (4)2.1寄存器实验 (4)实验1:A,W 寄存器实验 (5)实验2:R0,R1,R2,R3 寄存器实验 (8)实验3:MAR 地址寄存器,ST 堆栈寄存器,OUT输出寄存器 (13)2.2运算器实验 (16)2.3数据输出实验/移位门实验 (18)实验1:数据输出实验 (20)实验2:移位实验 (21)2.4微程序计数器U PC实验 (23)实验1:uPC 加一实验 (25)实验2:uPC 打入实验 (26)2.5PC实验 (26)实验1:PC 加一实验 (29)实验2:PC 打入验 (29)2.6存储器EM实验 (30)实验1:PC/MAR 输出地址选择 (31)实验2:存储器EM 写实验 (31)实验3:存储器EM 读实验 (33)实验4:存储器打入IR指令寄存器/uPC实验 (34)实验5:使用实验仪小键盘输入EM (36)2.7微程序存储器U M实验 (36)实验1:微程序存储器uM 读出 (38)实验2:使用实验仪小键盘输入uM (38)2.8中断实验 (39)第三章CP226 模型机 (40)3.1模型机总体结构 (40)3.2模型机寻址方式 (41)3.3模型机指令集 (42)3.4模型机微指令集 (44)第四章模型机综合实验(微程序控制器) (55)实验1:数据传送实验/输入输出实验 (55)实验2:数据运算实验(加/减/与/或) (58)实验3:移位/取反实验 (60)实验4:转移实验 (62)实验5:调用实验 (60)实验6:中断实验 (61)实验7:指令流水实验 (64)实验8 RISC 模型机 (66)第五章组合逻辑控制 (68)5.1组合逻辑控制器 (68)5.2用CPLD实现运算器功能 (76)第六章设计指令/微指令系统 (79)第七章扩展实验 (83)扩展实验一:用8255 扩展I/O 端口实验 (83)扩展实验二:用8253扩展定时器试验 (84)第八章实验仪键盘使用 (87)1、观察内部寄存器: (88)2、观察、修改程序存储器内容: (88)3.观察、修改微程序存储器内容: (89)4.用小键盘调试实验一 (91)第九章CP226 集成开发环境使用 (93)1)主菜单 (94)2)快捷键图标 (95)3)调试窗口区 (95)4)结构图区 (96)5)指令/微程序/跟踪窗口 (96)6)寄存器状态 (97)附录一实验用芯片介绍 (98)第一章系统概述1.1 DICE-CP226简介DICE-CP226型计算机组成原理实验系统<以下简称系统>,是由江苏启东计算机总厂有限公司继C2000/CH2000成功开发之后,结合国内同类产品的优点,最新研制开发的超强型实验计算机装置<以下简称模型机>。
计算机组成原理实验指导书
计算机组成原理实验指导书一、实验目的。
本实验旨在通过实际操作,加深学生对计算机组成原理的理解,掌握计算机硬件的基本组成和工作原理,提高学生的动手能力和实际操作能力。
二、实验器材。
1. 计算机主机。
2. 显示器。
3. 键盘。
4. 鼠标。
5. 逻辑分析仪。
6. 示波器。
7. 电源。
8. 万用表。
9. 逻辑门集成电路。
10. 接线板。
11. 连接线。
三、实验内容。
1. 计算机硬件基本组成的实验。
通过拆卸计算机主机,了解各个硬件组件的作用和连接方式,包括主板、CPU、内存、硬盘、显卡、电源等。
并通过重新组装,加深对计算机硬件组成的理解。
2. 逻辑门电路实验。
使用逻辑门集成电路和连接线搭建基本的逻辑门电路,包括与门、或门、非门等,并通过逻辑分析仪观察输入输出的关系,加深对逻辑门原理的理解。
3. 示波器使用实验。
学习示波器的基本使用方法,观察不同信号的波形,了解数字信号和模拟信号的特点,加深对计算机输入输出原理的理解。
4. 电源电压测量实验。
使用万用表测量计算机主板各个电源接口的电压值,了解各个电源接口的作用和电压标准,加深对计算机电源原理的理解。
四、实验步骤。
1. 计算机硬件基本组成的实验步骤。
(1)拆卸计算机主机,观察各个硬件组件的位置和连接方式。
(2)了解各个硬件组件的作用和特点。
(3)重新组装计算机主机,检查各个硬件组件的连接是否正确。
2. 逻辑门电路实验步骤。
(1)根据实验指导书搭建与门、或门、非门电路。
(2)使用逻辑分析仪观察输入输出的关系,记录实验数据。
3. 示波器使用实验步骤。
(1)学习示波器的基本使用方法。
(2)使用示波器观察不同信号的波形,记录实验数据。
4. 电源电压测量实验步骤。
(1)使用万用表测量各个电源接口的电压值。
(2)比较测量结果与电压标准的差异,记录实验数据。
五、实验注意事项。
1. 在拆卸和重新组装计算机主机时,注意防止静电干扰,避免损坏硬件组件。
2. 在搭建逻辑门电路时,注意连接线的接触是否良好,避免信号传输不畅。
(完整版)《计算机组成原理》实验指导书
《计算机组成原理》实验指导书目录第一部分EL-JY-II计算机组成原理实验系统简介 (1)第二部分使用说明及要求 (5)实验一运算器实验 (12)实验二移位运算实验 (24)实验三存储器实验和数据通路实验 (29)实验四微程序控制器的组成与实现实验 (36)实验五微程序设计实验 (45)实验六、简单实验计算机组成与程序运行实验 (53)实验七、带移位运算实验计算机组成与程序运行实验 (65)实验八、复杂实验计算机组成与程序运行实验 (77)实验九、实验计算机的I/O实验 (93)实验十、总线控制实验(选做) (103)实验十一、可重构原理计算机组成实验(选做) (105)实验十二、简单中断处理实验(选做) (110)实验十三、基于重叠和流水线技术的CPU结构实验(选做) (116)实验十四、RISC模型机实验(选做) (122)第一部分EL-JY-Ⅱ计算机组成原理实验系统简介EL-JY-Ⅱ型计算机组成原理实验系统是为计算机组成原理课的教学实验而研制的,涵盖了目前流行教材的主要内容,能完成主要的基本部件实验和整机实验,可供大学本科、专科、成人高校以及各类中等专业学校学习《计算机组成原理》、《微机原理》和《计算机组成和结构》等课程提供基本的实验条件,同时也可供计算机其它课程的教学和培训使用。
一、基本特点:1、本系统采用了新颖开放的电路结构:(1)、在系统的总体构造形式上,采用“基板+ CPU板”的形式,将系统的公共部分,如数据的输入、输出、显示单片机控制及与PC机通讯等电路放置在基板上,它兼容8位机和16位机,将微程序控制器、运算器、各种寄存器、译码器等电路放在CPU板上,而CPU板分为两种:8位和16位,它们都与基板兼容,同一套系统通过更换不同的CPU板即可完成8位机或16位机的实验,用户可根据需要分别选用8位的CPU 板来构成8位计算机实验系统或选用16位的CPU板来构成16位计算机实验系统;也可同时选用8位和16位的CPU板,这样就可用比一套略多的费用而拥有两套计算机实验系统,且使用时仅需更换CPU板,而不需做任何其它的变动或连接,使用十分方便。
计算机组成原理实验指导书
实验一运算器实验实验目的:了解模型机中算术、逻辑运算单元的控制方法。
实验内容:利用CPTH 实验仪的K16..K23 开关做为DBUS 数据,其它开关做为控制信号,将数据写累加器A和工作寄存器W,并用开关控制ALU的运算方式,实现运算器的功能。
实验原理:CPTH 中的运算器由一片CPLD实现,有8 种运算,通过S2,S1,S0 来选择,运算数据由寄存器A及寄存器W 给出,运算结果输出到直通门D。
实验步骤:连接线表1. 将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
2. 将33H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据33H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W 寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据33H 被写入W 寄存器。
3. 控制运算器运算置下表的控制信号,检验运算器的运算结果注意:运算器在加上控制信号及数据(A,W)后,立刻给出结果,不须时钟。
实验二存储器实验实验目的:了解模型机中程序存储器EM 的工作原理及控制方法。
实验内容:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,实现程序存储器EM 的读写操作。
实验原理:存储器EM 由一片6116RAM 构成,是用户存放程序和数据的地方。
存储器EM 通过一片74HC245与数据总线相连(74HC245:8位三态缓冲门电路,常做为总线收发器使用)。
存储器EM 的地址可选择由PC或MAR 提供。
另外:存储器EM 的数据输出还直接接到指令总线IBUS上,指令总线IBUS 的数据还可以来自一片74HC245。
实验指导书_计算机组成原理
●李英王强编●杨勇审《计算机组成原理》实验指导书东华理工学院自编教材 20080XX计算机组成原理实验指导书编写:李英王强审校:杨勇东华理工大学信工学院二○○八年十月目录实验一运算器数据通路实验 (1)实验二总线存储器实验 (11)实验三运算器仿真实验 (20)实验四存储器仿真实验 (25)实验五输入输出接口仿真实验 (29)实验六数据通路仿真实验 (34)实验七微程序实验 (38)实验一 运算器数据通路实验一、实验预习1、复习本次实验所用的各种数字集成电路的性能及工作原理。
2、复习74LS181的工作原理,熟悉各管脚的逻辑功能。
3、按实验原理要求设计运算器,画出逻辑电路图及实验连线图。
4、预先拟订好实验步骤,考虑好可能产生的故障,并想好采取哪些实验技术手段进行排除。
5、74LS181是一个带有输入函数发生器的四位并行加法器,如果要进行8位或更多位的运算,应如何处理?6、实验中挂在总线上的器件(如运算器、寄存器、开关等)向总线发信息时应注意些什么问题?二、实验目的1、熟悉74LS181函数功能发生器的功能,提高器件在系统中应用的能力。
2、熟悉运算器的数据传送通路。
3、完成几种算术/逻辑运算器操作,加深对运算器工作原理的理解。
三、实验仪器实验仪器:1、综合硬件公共箱NS-GG12、逻辑电路搭试板NS-DS13、接线工具和连接导线 实验器件:1、四位函数功能发生器74LS181 2片2、八D 锁存器74LS373 1片3、八D 触发器74LS273 2片4、八缓冲器74LS244 1片器件介绍:1、八D 锁存器74LS3732、八D 触发器74LS2733、八缓冲器74LS244图1-1 八D 锁存器74LS373四、实验原理1.运算器基本结构运算器是计算机中对数据进行加工处理的部件,是中央处理单元(CPU )的主要组成部分之一。
运算器基本结构一般由算术逻辑运算单元(ALU )、输入数据选择电路、通用寄存器组、输出数据控制电路等组成。
计算机组成原理实验指导书
计算机组成原理实验指导书目录第一章TEC-9计算机组成和数字逻辑实验系统介绍 (3)一、TEC-9实验系统的特点 (3)二、TEC-9实验系统的组成 (5)三、实验台监控使用说明 (13)四、HQFC-B1软件使用说明 (16)第二章计算机组成原理实验 (18)第一节、寄存器实验 (18)第二节、运算器组成实验 (21)第三节、双端口存储器原理实验 (25)第四节数据通路组成实验 (30)一、寄存器读写 (32)二、写寄存器内容到存储器 (34)三、写存储器到寄存器 (36)四、寄存器堆RF并行输入输出 (39)第五节常规型微过程控制器组成实验 (40)第六节CPU组成与机器指令执行实验 (54)第七节中断原理实验 (58)第三章可编程逻辑简介 (62)第一节可编程逻辑器件简介 (62)第二节VHDL语言简介 (65)第三节Q UARTUS II软件使用说明 (75)第四章硬布线控制器 (89)第一节硬布线控制器简介 (89)第二节硬布线控制设计 (94)第五章课程设计 (109)第一节流水微程序控制器的设计与调试 (109)第二节流水硬布线控制器的设计与调试 (117)第六章数字逻辑门和数字系统实验 (121)第一节基本逻辑门逻辑实验 (121)第二节TTL、HC和HCT器件的电压传输特性 (123)第三节三态门实验 (126)第四节数据选择器和译码器 (128)第五节全加器构成及测试 (129)第六节组合逻辑中的冒险现象 (131)第七节触发器 (132)第八节简单时序电路 (135)第九节计数器 (140)第十节四相时钟分配器 (143)第十一节可编程逻辑控制器CPLD (145)实验一、3-8译码器实验 (145)实验二、D触发器实验 (147)实验三、简易分频器实验 (149)实验四、简易交通灯控制实验 (150)实验五、七段LED数码管显示实验 (153)实验四、简易计数器实验 (156)附录 (160)附录一常用实验器件引脚图 (160)附录二CPLD管脚分配图 (163)附录三控制器与数据通路信号 (165)第一章TEC-9计算机组成和数字逻辑实验系统介绍TEC-9它适用于《计算机组成原理》、《计算机组织和结构》和《数字逻辑和数字系统》三门课程的实验教学,是一种多用仪器。
《计算机组成原理》实验指导书
第二章分部实验为掌握计算机的基本组成和工作原理,并为课程设计做准备,本章安排了四个分部实验,这些实验均在COP2000计算机组成原理实验仪上进行。
§2.1 分部实验1本实验包括寄存器的验证实验及运算器的验证、设计实验。
2.1.1 寄存器实验寄存器是一种重要的数字电路部件, 常用来暂时存放数据、指令等。
一个触发器可以存储一位二进制代码,存放N位二进制代码,用N个触发器即可。
因为我们的模型机是8位的,因此在本模型机中大部分寄存器是8位的,标志位寄存器(Cy, Z)是二位的。
在COP2000实验仪中,寄存器由74HC574构成,它可以存放8位二进制代码,其中的一位二进制代码是由一个D触发器来存储的。
首先,我们先介绍一下74HC574的工作原理。
图2-1是74HC574的原理图。
图2-1 74HC574原理图我们可以看到,在CLK的上升沿,输入端的数据被打入到8个触发器中。
当OC = 1 时,触发器的输出被关闭,当OC=0时,触发器输出数据。
表2-1列出了74HC574的使用方法。
表2-1 74HC574使用方法图2-2为74HC574的工作波形图。
图2-2 74HC574工作波形图一、实验一:A,W寄存器实验1、实验器材COP2000计算机组成原理实验仪、万用表。
2、实验目的(1)了解并掌握74HC574的工作原理及使用方法。
(2)掌握寄存器A,W的工作原理。
3、实验要求分别验证A,W寄存器的功能。
4、实验原理A,W寄存器是作用于ALU输入端的两个寄存器,两个参与运算的数分别来自A或W。
图2-3、图2-4分别为寄存器A,W的原理图。
图2-3 寄存器A原理图图2-4 寄存器W原理图A,W寄存器的写工作波形如图2-5所示。
图2-5 寄存器A,W写工作波形图其中,AEN、WEN分别为A选通和B选通。
5、实验步骤与内容(1)按照表2-2连线表2-2 A,W寄存器实验连线表(2)将数据55H写入A寄存器首先将二进制开关K23-K16用于数据总线DBUS[7:0]的数据输入,置数据55H。
计算机组成原理实验指导书_TDN-CM_教学版
计算机组成原理 实验指导书(西安唐都科教仪器公司TDN-CM系统)梁海英 整编2013年8月TDN-CM系统概述1.控制信号发生单元(JT UNIT(TDN-CM)即W/R UNIT(TDN-CM+))用来转换产生各单元电路所需的时序信号T1~T4,以及外总线所需的读/写控制信号W/R。
2.时序电路单元(STATE UNIT)其电路由四部分构成:消抖电路(KK2)、时序控制(TS1、TS2、TS3、TS4)、时钟信号源(φ)、拨动二进制开关组(STOP、STEP)。
用户只需将φ信号与信号源的输出插孔相连,然后按动START(KK1)微动开关,根据STOP及STEP的状态,T1~T4将输出有规则的方波信号。
(1)单拍脉冲及消抖电路在实验中KK2一般用来作为单拍脉冲信号发生器;START已将其输出接入时序电路中的START处,作为时序电路的启动开关。
(2)时序控制电路、拨动开关组STEP(单步)、STOP(停机)分别是来自实验台上部的两个二进制开关STEP、STOP的模拟信号。
启动是来自实验台“STATE UNIT”单元的一个微动开关START的按键信号。
当STOP开关置为RUN状态,STEP开关置为EXEC时,按下START,时序信号TS1~TS4将周而复始的发送出去。
若STEP开关置为STEP状态时,按下START,机器处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。
利用单步方式,每次只产生一条微指令,因而可以观察微指令的代码与当前微指令的执行结果。
另外,当机器连续运行时,如果使STOP开关置STOP,也会使机器停机,或将CLR开关置为零,也可使时序清零。
3.信号源单元“SIGNAL UNIT”可先调节W1,使H23端输出用户期望的某一频率的波形信号,信号的频率在30Hz-300Hz;然后,再调节W2使H23端输出特定占空比的信号,供实验时选择使用。
4.运算器单元(ALU UNIT)运算器单元由以下部分构成:两片74LS181构成了并-串型8位ALU;两个8位寄存器DR1和DR2作为暂存工作寄存器,保存参数或中间运算结果;ALU的输出三态门74LS245通过排针连到数据总线上;一片8位的移位寄存器74LS299可通过排针连到数据总线上;由GAL(general array logic,通用阵列逻辑)和74LS74锁存器组成进位标志控制电路和为零标志控制电路;进位标志和为零标志指示灯。
计算机组成原理实验指导书
计算机组成原理实验指导书一、实验目的。
本实验旨在帮助学生深入理解计算机组成原理的相关知识,通过实际操作加深对计算机内部结构和工作原理的理解,提高学生的实际动手能力和解决问题的能力。
二、实验器材。
1. 计算机主板。
2. CPU。
3. 内存条。
4. 硬盘。
5. 显卡。
6. 电源。
7. 鼠标、键盘、显示器。
8. 实验用电路板。
9. 逻辑分析仪。
10. 示波器。
三、实验内容。
1. 计算机主板组装实验。
在本实验中,学生将学会如何正确组装计算机主板,包括CPU、内存条、硬盘、显卡、电源等组件的安装和连接。
通过这一步骤,学生可以深入了解计算机各个组成部分的功能和作用。
2. 逻辑分析仪应用实验。
逻辑分析仪是一种用于测量和分析数字信号的仪器,本实验将教会学生如何正确使用逻辑分析仪来观察和分析计算机内部的数字信号,从而更好地理解计算机的工作原理。
3. 示波器应用实验。
示波器是一种用于观察和分析电子信号的仪器,本实验将教会学生如何正确使用示波器来观察和分析计算机内部的电子信号,从而更好地理解计算机的工作原理。
四、实验步骤。
1. 将计算机主板放置在工作台上,依次安装CPU、内存条、硬盘、显卡和电源,并连接鼠标、键盘、显示器等外部设备。
2. 使用逻辑分析仪对计算机内部的数据总线、地址总线、控制总线等进行观察和分析,了解各个总线的作用和相互关系。
3. 使用示波器对计算机内部的时钟信号、控制信号等进行观察和分析,了解各个信号的波形特点和工作原理。
五、实验注意事项。
1. 在组装计算机主板时,注意防静电,避免对电子元件造成损坏。
2. 在使用逻辑分析仪和示波器时,注意正确连接和操作,避免对仪器造成损坏。
3. 在实验过程中,学生应严格遵守实验室规章制度,确保实验安全。
六、实验总结。
通过本实验,学生可以更直观地了解计算机内部各个组件的工作原理和相互关系,提高对计算机组成原理的理解和掌握。
同时,通过实际操作,学生还可以提高实际动手能力和解决问题的能力,为今后的学习和工作打下良好的基础。
计算机组成原理实验指导书
计算机组成原理实验指导书一、实验目的。
本实验旨在通过对计算机组成原理的实际操作,加深对计算机硬件组成和工作原理的理解,提高学生的实际动手能力和解决问题的能力。
二、实验内容。
1. 计算机硬件组成的实际操作。
2. 计算机工作原理的实验验证。
3. 解决计算机硬件故障的实际操作。
三、实验器材。
1. 主板、CPU、内存、硬盘、显卡等计算机硬件组件。
2. 万用表、示波器等实验仪器。
3. 计算机硬件故障排除工具。
四、实验步骤。
1. 计算机硬件组成的实际操作。
a. 拆卸和安装主板、CPU、内存、硬盘、显卡等计算机硬件组件。
b. 连接各硬件组件之间的数据线和电源线。
c. 启动计算机,观察各硬件组件的工作状态。
2. 计算机工作原理的实验验证。
a. 使用示波器观察CPU的工作波形。
b. 使用万用表测量各硬件组件的电压和电流。
c. 运行不同的软件程序,观察计算机的工作状态。
3. 解决计算机硬件故障的实际操作。
a. 分析计算机硬件故障的可能原因。
b. 使用故障排除工具对计算机硬件进行检测和排除。
c. 测试排除故障后的计算机工作状态。
五、实验注意事项。
1. 在操作计算机硬件时,要小心谨慎,避免对硬件组件造成损坏。
2. 在使用示波器和万用表时,要按照操作规范进行操作,避免对实验仪器造成损坏。
3. 在解决计算机硬件故障时,要仔细分析故障原因,避免对硬件进行不必要的更换和修理。
六、实验结果与分析。
通过本次实验,我们对计算机硬件组成和工作原理有了更深入的了解,掌握了一定的实际操作技能。
同时,我们也发现了一些常见的计算机硬件故障,并学会了一些解决故障的方法。
七、实验总结。
本次实验不仅加深了我们对计算机组成原理的理解,还提高了我们的实际动手能力和解决问题的能力。
希望通过这样的实验,能够使我们更好地掌握计算机组成原理的知识,为今后的学习和工作打下良好的基础。
以上就是本次计算机组成原理实验的全部内容,希望能够对大家有所帮助,谢谢!。
计算机组成原理实验指导书
目录目录 (1)实验一寄存器实验 (2)实验内容1:A,W寄存器实验 (2)实验内容2:R0,R1,R2,R3寄存器实验 (4)实验内容3:MAR地址寄存器,ST堆栈寄存器,OUT输出寄存器实验 (7)实验二运算器实验 (9)实验三数据输出和移位实验 (11)实验四存储器EM实验 (15)实验内容1: PC/MAR输出地址选择 (15)实验内容2:存储器EM写实验 (16)实验内容3:存储器EM读实验 (17)实验五微程序存储器uM实验 (18)实验内容1:使用试验仪小键盘输入uM (18)实验内容2:微程序存储器uM读出 (19)实验一寄存器实验实验要求:利用CPTH实验仪上的K16‥K23开关作为DBUS的数据,其他开关作为控制信号,讲数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0‥R3,地址寄存器MAR,地址寄存器ST,输出寄存器OUT。
实验目的:了解模型机各种寄存器结构,工作原理及其控制方法。
实验电路:实验内容1:A,W寄存器实验实验步骤:(1)照下表连接线路(2)系统清零和手动状态设定:K23~K16开关置零,按RST钮,按TV/ME键三次,进入手动状态(液晶屏幕上有“Hand……”显示)。
注意:后面的实验中实验模式为手动的操作方法不再详述,如此相同。
(3)将55H写入A寄存器置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
(4)将66H写入W寄存器二进制开关K23~K16用于DBUS【7…0】的数据输入,设置数据66H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W的黄色选择指示灯亮,表明选择W寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据66H被写入W寄存器。
请仔细观察实验结果,并回答以下问题:1.数据是何时打入的?是按下STEP键还是放开STEP键后?2.WEN,AEN为高时,CK有上升沿,寄存器数据会不会改变?实验内容2:R0,R1,R2,R3寄存器实验实验步骤:(2)系统清零和手动状态设定:K23~K16开关置零,按RST钮,按TV/ME键三次,进入手动状态(液晶屏幕上有“Hand……”显示)。
计算机组成原理实验指导书
计算机组成原理实验指导书计算机组成原理实验指导书一、引言本实验指导书旨在为学习计算机组成原理的学生提供实践操作指南。
通过完成一系列实验,学生将深入理解计算机的基本组成和工作原理,为今后的学习和职业生涯打下坚实的基础。
二、实验目标本实验的目标是通过实际操作,使学生掌握计算机的基本组成、工作原理和部件之间的相互关系。
具体目标包括:1、理解计算机的五大组成部分(运算器、控制器、存储器、输入设备和输出设备)及其功能。
2、掌握二进制数的表示、运算和转换方法。
3、了解指令的执行过程,包括取指令、解码、执行和写回结果等阶段。
4、掌握CPU与内存、I/O设备之间的数据传输方法。
5、理解中断的基本概念和操作过程。
6、能够运用所学知识分析、设计和优化计算机系统。
三、实验原理计算机组成原理实验涉及的主要概念和原理包括:1、存储器:包括ROM、RAM等类型,用于存储指令和数据。
2、输入输出系统:包括I/O设备、I/O控制器等,实现计算机与外部设备的通信。
3、中断:用于处理突发事件,使CPU能够及时响应并执行相应的处理程序。
4、程序设计:通过编写程序,实现对计算机的控制和操作。
四、实验材料和方法本实验需要以下设备和软件:1、计算机:配置有实验所需的相关软件和硬件。
2、示波器:用于观察信号的波形和参数。
3、编程软件:用于编写和调试程序。
实验方法包括:1、阅读实验指导书,了解实验目的和要求。
2、编写程序,实现对计算机的基本操作和控制。
3、使用示波器观察信号波形,理解信号传输的过程和特点。
4、记录实验数据,分析实验结果,完成实验报告。
五、实验过程实验过程包括以下几个步骤:1、准备阶段:根据实验指导书的要求,准备实验设备、材料和软件。
2、编写程序:根据实验任务,编写程序并进行调试。
3、连接设备:将实验设备与计算机连接,确保电源和信号传输线路正确。
4、启动实验:运行程序,观察实验现象和数据,记录相关信息。
5、分析结果:根据实验结果,分析计算机的基本组成和工作原理。
计算机组成原理实验指导
计算机组成原理实验指导一、实验介绍计算机组成原理实验是计算机科学与技术专业学生必须进行的一项重要实践活动。
通过实验,学生可以巩固所学的理论知识,了解计算机内部各个组成部分的工作原理,培养解决问题的能力和团队合作精神。
二、实验目的本次实验的主要目的是通过搭建计算机的基本组成部分,深入理解计算机的结构以及各组件的功能和相互之间的关系。
具体目标如下:1. 理解计算机的五大基本组成部分(运算器、控制器、存储器、输入设备、输出设备)的作用和原理。
2. 掌握如何进行计算机系统平台的搭建,包括选择合适的硬件和软件,进行组装和配置。
3. 学习使用相关工具和软件,进行计算机各组件的调试和测试。
三、实验准备1. 实验所需材料和设备列表:- 计算机主机- 显示器- 键盘和鼠标- 适配器和线缆- 操作系统安装光盘- 实验指导书和实验报告模板2. 实验环境准备:- 确保实验室或实验场地的安全和舒适性。
- 确保计算机硬件设备的正常工作以及软件环境的稳定。
- 检查实验所需软件是否已安装并进行初始化设置。
四、实验步骤1. 硬件组装根据提供的硬件组装指南,将计算机主机的各个组件安装到合适的位置,确保连接牢固。
2. 系统安装将操作系统安装光盘插入主机光驱,按照操作指南进行系统安装。
确保系统安装过程中的参数设置正确。
3. 硬件配置和调试启动计算机,按照引导界面进行硬件配置和调试,确保各个硬件设备能够正常工作。
如有异常情况,根据实验指导书的相关内容进行故障排查。
4. 软件配置和测试根据实验指导书的具体要求,安装和配置相关软件。
完成配置后,进行系统测试,确保软件和系统的兼容性和稳定性。
5. 实验报告撰写根据实验过程中的观察和实验结果,撰写实验报告。
报告可以包括实验目的、实验所用材料和设备、实验过程、实验结果、实验心得等内容。
五、实验注意事项1. 注意个人和他人的安全。
在实验过程中,要注意电器设备的正确使用和安全操作。
2. 硬件设备的连接要牢固可靠。
计算机组成原理实验指导-2012-1
计算机组成原理实验指导河南大学计算机与信息工程学院2011年TEC-XP实验设备概述TEC-XP实验设备是由清华大学科教仪器厂和清华大学计算机系联合研制,并通过教育部鉴定的实验系统。
TEC-XP是在原有TEC系列教学计算机系统的基础上,重新设计的新一代产品,进一步增加了用单片FPGA门阵列器件实现的CPU系统。
该实验系统重点用于计算机组成原理、计算机系统结构等课程的硬件教学实验,还支持监控程序、汇编语言程序设计、BASIC高级语言程序设计等软件方面的教学实验。
TEC-XP教学机的外观如图1所示。
图1 TEC-XP教学机的外观TEC-XP教学机的系统结构如图2所示。
图2 TEC-XP教学机的系统结构图TEC-XP教学机的主要技术指标TEC-XP教学机的机器字长16位,即运算器、主存、数据总线、地址总线都是16位。
(1)TEC-XP的内存地址分配如图3所示。
其中0000H~1FFFH的8K空间是由ROM构成的,存放洗的监控程序,2000H~27FFH的2K空间是由RAM构成的工作区。
该教学机还可以进一步完成存储器扩展的教学实验,扩展地址从4000H开始。
图3 TEX-XP教学机的内存分配(2)运算器由4片位片结构器件级联而成,片间用串行进位方式传递进位信号。
ALU 实现8种算术与逻辑运算功能,内部包括16个双端口读出、单端口写入的通用寄存器,和一个能自行移位的乘商寄存器。
设置C(进位标志位)、Z(零标志位)、V(溢出标志位)、S(符号标志位)四个状态标志位。
(3)控制器采用微程序和硬布线两种控制方案实现,可由实验者自由选择。
TEC-XP教学机的面板结构TEC-XP教学机的面板结构如图4所示,控制部件主要由运算部件ALU、控制部件——组合逻辑控制器和微程序处理器、存储部件——ROM和RAM、控制存储器等芯片构成。
用户输入部分在面板的最下方,自左向右分别是工作模式选择开关、运算器控制信号输入开关、数据输入开关三个部分。
计算机组成原理实验指导书(JSY)
计算机组成原理实验指导书(JSY)计算机组成原理实验指导书青岛科技⼤学数字技术实验中⼼⽬录实验⼀运算器实验 (1)实验⼆进位运算和移位运算实验 (7)实验三静态存储器原理实验 (11)实验四数据通路实验 (13)实验五微程序控制器实验 (15)实验六微程序控制器实验 (25)实验⼀运算器实验⼀、实验⽬的1)熟悉实验装置;2)学习算术逻辑单元电路的构成及其⼯作原理,掌握运算器实验的数据传送通路的结构及不同实验状态下的各运算数据的流程;3)验证运算功能发⽣器(74LS181)的组合功能;⼆、实验设备JYS-4计算机组成原理实验箱及导线若⼲。
三、实验内容1、实验装置简介JYS-4计算机组成原理实验装置是⼀种能够通过多种“原理计算机”的设计和构造,来灵活地实现“计算机组成原理”课程的实验教学,以满⾜不同层次和不同教学环节实验要求的开放式教学实验设备。
使⽤JYS-4计算机组成原理实验装置可完成运算器实验、进位和移位控制实验、静态存储器原理实验、计算机的数据通路实验、微程序控制器实验、基本模型机的设计与实现实验、带移位运算的模型机的设计与实现等实验。
JYS-4计算机组成原理实验装置采⽤内、外总线结构,并按开放式结构要求设计了各关联的单元实验电路,除进⼀步规范了可组成的原理计算机结构外,也为实验教学提供了充⾜的硬件可设计空间和软件可设计空间,在实验电路构造⽅⾯,系统也提供了多种⼿段,可按部件层次组合⽅式逐次构造不同结构和复杂程度的部件实验电路及模型计算机。
整个实验仪器是由分散元器件构成,包括计算机中的各组成部件:运算器、存储器、控制器等,这些器件的内部连线已经连好,需要连接的是⼀些控制信号线。
实验板上对各个器件的划分⽐较清楚,都⽤⽩⾊框线表⽰,每个器件的名称也⽤⽩⾊注明。
JYS-4计算机组成原理实验装置具有以下特点:1)系统装置⽀持三种实验电路构造⽅式,即实验元件零连线⽅式(在⾯包板上⾃⼰搭建实验电路)、单元电路跨接⽅式(使⽤装置提供的排线通过跨接构造出实验电路)和实验“软连线”⽅式(使⽤可编程逻辑器件通过编程设计实验电路)。
《计算机组成原理》实验指导书
《计算机组成原理》实验指导书课程名称:计算机组成原理(Principle of Computer Organization)课程类别:必修编号:091204 学时:8H编者姓名:薛纪文单位:计算机科学学院职称:副教授授课对象:本科生专业:计算机科学与技术年级:三年级先修课程:《数字逻辑与数字系统》、《程序设计》课程目的《计算机组成原理》是计算机科学与技术专业本科教学中的一门技术基础课。
通过本课程的学习,使学生掌握计算机硬件各子系统的组成原理及实现技术,建立计算机系统的整体概念,对设计开发计算机系统有重要作用。
为今后学习计算机网络、计算机体系结构、分布与并行处理等课程打下基础。
实验一运算器组成的实验一、实验目的1、掌握算术逻辑运算加、减、乘、与的工作原理。
2、熟悉简单运算的数据传送通路。
3、验证实验台运算的8位加、减、与、直通功能。
4、验证实验台的4位乘4位功能。
5、按给定数据,完成几种指定的算术和逻辑运算。
二、实验电路图6示出了本实验所用的运算器数据通路图。
ALU由1片ispLSI1024构成。
四片4位的二选一输入寄存器74HC298构成两个操作数寄存器DR1和DR2,保存参与运算的数据。
DR1接ALU的B数据输入端口,DR2接ALU的A数据输入端口,ALU的输出在ispLSI1024内通过三态门发送到数据总线DBUS7-DBUS0上,进位信号C保存在ispLSI1024内的一个D寄存器中。
当实验台下部的IR/DBUS开关拔到DBUS位置时,8个红色发光二极管指示灯接在数据总线DBUS上,可显示运算结果或输入数据。
另有一个指示灯C显示运算进位信号状态。
由ispLSI1024构成的8位运算器的运算类型由选择端S2,S1,S0选择,功能如表3所示。
表3 运算器运算类型选择表进位C只在加法运算和减法运算时产生,与、乘、直通操作不影响进位C 的状态,即进位C保持不变。
减法运算采用加减数的反码再加以1实现。
[工学]《计算机组成原理》实验指导书
计算机组成原理实验指导书(计算机科学与技术专业适用)电子与信息工程学院二○一○年目录第1章运算器 (1)1.1 基本运算器实验 (1)1.2 超前进位加法器设计实验 (6)1.3 阵列乘法器设计实验 (12)第2章存储系统 (14)2.1 静态随机存储器实验 (14)2.2 Cache控制器设计实验 (18)第3章控制器 (23)3.1 时序发生器设计实验 (23)3.2 微程序控制器实验 (26)第4章模型计算机 (35)4.1 CPU与简单模型机设计实验 (35)4.2 硬布线控制器模型机设计实验 (42)4.3 复杂模型机设计实验 (46)第5章精简指令系统计算机 (59)5.1计算机的指令系统 (59)5.2 基于RISC技术的模型计算机设计实验 (62)附录1 软件使用说明 (67)附录2 时序单元介绍 (77)附录3 实验用芯片介绍 (79)第1章运算器计算机的一个最主要的功能就是处理各种算术和逻辑运算,这个功能要由CPU中的运算器来完成,运算器也称作算术逻辑部件ALU。
本章首先安排一个基本的运算器实验,了解运算器的基本结构,然后再设计一个加法器和一个乘法器。
1.1 基本运算器实验1.1.1 实验目的(1) 了解运算器的组成结构。
(2) 掌握运算器的工作原理。
1.1.2 实验设备PC机一台,TD-CMA实验系统一套。
1.1.3 实验原理本实验的原理如图1-1-1所示。
运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3…S0和CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
ALU中所有模块集成在一片CPLD中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章Dais-CMH+系统概述1.1系统简介Dais-CMH+计算机组成原理教学实验系统是启东达爱思计算机有限公司沿用国际流行的EPLD(CPLD)大规模可编程逻辑器件精心设计、研制的新一代适合于计算机组成原理教学的智能型实验装置,系统采用内、外总线结构,按开放式的要求设计了各关联的单元实验电路,除进一步规范了可组成的原理计算机结构外,也为开放式实验教学提供了充足的软硬件可设计空间,在实验电路构造方面,系统提供了多种手段,可按部件层次组合方式逐次构造不同结构和复杂程度的部件实验电路及模型计算机,可以通过多种“原理计算机”的设计和实现方法灵活全面地支持“计算机组成原理”课程的实验教学,满足不同层次和不同教学环节的要求,是完全符合教学规律及开放式实验教学方法的高档次实验设备。
Dais-CMH+创造了按键式操作环境,实验方式灵活多样。
在系统监控程序的管理下向用户提供“L”(单元手动)、“H”(单元自动)、“M”(模型机)三种工作方式;并配有Windows & DOS双操作平台的动态跟踪调试软件包,具有极佳的示教效果。
1.2系统特点⒈开放式的实验电路结构系统支持三种实验电路构造方式,即实验元件零连线方式、单元电路跨接方式和实验电路“软连线”方式。
对于实验元件零连线方式,可采用双头实验导线及4芯、8芯排线和8芯扁平线从零开始在扩展区上逐一搭起一个实验电路;对于各单元电路,只需使用双头实验导线及8芯扁平线作简单的跨接,就可构造出(即使是较复杂的)实验电路;同时,也可使用可编程逻辑器件在线设计下载实验电路,实现实验电路“软接线”。
用户可以根据实验教学的需要,自由选择、灵活组态,单独使用一种方式或几种方式结合使用,从而做到“搭接过的实验线路不再重搭”,彻底改变传统的实验教学模式,使教学双方可把实验教学的重点放在实验设计、调试和分析上。
由于采用箭头示意式跨接方式,缩短了硬件接线时间,而不减少接线内容,因而获得极佳的实验效果。
⒉按键式操作环境,实验方式灵活多样系统提供4×8键盘,8位LED显示,向用户提供三种工作方式。
(一)单元手动实验——“L”通过拨动开关及发光二极管以二进制数码形式进行手动单元实验。
(二)单元键盘实验——“H”1以键盘、LED显示作为操作平台,用十六进制数码形式进行按键式单元实验。
(三)模型机实验——“M”通过键盘及LED显示可直接输入或装载用户模型机程序(机器程序和微控制程序),系统具备单步一条微指令、单步一条机器指令、连续运行程序等常规调试命令,能动态跟踪数据流向、捕捉各种控制信息、100%展现模型机现场,有无限止暂停等智能化调试途径,设置灵活、操作方便、进一步优化了模型机的实验环境,使其组成原理一目了然。
⒊配备Windows & DOS双操作平台的集成调试软件包系统通过RS-232-C串行通讯接口与PC机联接,借助PC资源形成了强大的在线文挡与图形的动态管理系统,支持机器代码和与其对应微控制程序的混合编辑,一次点击即可完成程序和与其对应微程序的链接装载并自动弹出调试窗口,在视图栏中开辟了程序和与其对应微程序的调试、模型机示意图、寄存器代码空间、微代码空间、逻辑示波器等跟踪显示窗口,供用户选择,可动态显示数据流向、实时捕捉数据、地址、控制总线的各种信息,使调试过程极为生动形象。
⒋选用RAM器件营造一个灵活可变的微程序控制空间RAM是一种具刷新功能的静态存贮器,因此可根据实验需要随机装载不同类型的模型机控制程序。
⒌可重定义的运算器结构及微指令格式系统中运算器结构、微控制器的指令格式均可由用户根据自身教学需要灵活设计、自行定义。
⒍具2路逻辑测试通道适用于实验中逻辑信号的观测,能够动态的跟踪实验现场,记录外部事件。
⒎信号测试功能适用于各种高、低电平信号及脉冲信号的测试。
⒏可调式脉冲源系统提供窄、宽脉冲两种时钟信号,配脉宽调节器,可根据实验需要调整当前脉冲宽度。
⒐单脉冲系统配有T1、T2、T3、T4四个单脉冲按钮,在单元实验时可结合时序手动加载单脉冲信号,产生实验所需的时序信号。
⒑时序启停系统配有时序启停按钮,通过时序电路的启停了解运行时的时序电路过程。
⒒锁紧式通用型扩展区(仅Dais-CMH+提供此单元)2在做扩展实验时可扩展40芯以内所有I/O接口芯片。
⒓下载式PLD扩展区(仅Dais-CMH+提供此单元)系统以扩展方式提供了PLD实验单元,在ispEXPERT/Synario设计软件的支持下,可对PLD器件进行在线编程和下载,完成芯片的功能设计,实现实验线路“软连线”方式。
设计者可以灵活定义芯片的内部逻辑与管脚,增强了实验设计的灵活性,提高了实验效率。
⒔部件跟踪显示器系统提供14组部件单元显示器,在实验中以十六进制方式静态跟踪显示每个部件的状态。
⒕实验连线诊断软件可检测实验连线的正确性,提示错误连接的区域和位置,为实验连接的排错提供了方便。
⒖选用高性能开关电源系统选用高性能开关电源,具过流、过压、短路保护、静电隔离等功能。
1.3系统构成Dais-CMH+硬件内容如表1-1所示,系统硬件结构如图1-1所示:表1-1Dais-CMH+硬件内容电路名称主要电路内容运算器单元(ALU UNIT) 运算器、进位控制器、移位寄存器、寄存器堆、内部总线计数器与地址寄存器单元(ADDRESS UNIT)地址寄存器、程序地址计数器微控器单元(MICRO CONTROLLER UNIT) 指令寄存器、指令择码器、微代码控制寄存器及其26位二进制控制模拟开关、逻辑译码单元、时序电路、启停电路、单脉冲电路、脉冲源、中断控制主存单元(MAIN MEM) SRAM6116输入设备、输出设备(INPUT DEVICE & OUTPT 开关、显示灯、8位LED显示、16个数字键、16个命令键,每个部件都有双位显示器逻辑信号测量单元2路逻辑信号PC示波器、信号测试单片机控制单元(PC UNIT) 控制单片机、MACH、RS-232-C串口等电源高性能开关电源、输出为+5V/3A通用实验单元(扩展实验)* 2个IC-40/28芯通用型锁紧式扩展插座PLD单元(扩展实验)* 2个PLCC扩展方插座3注:带“*”的项目为Dais-CMH+的扩展实验单元,而Dais-CMH则不提供此单元。
图1-1Dais-CMH+系统硬件结构1.4系统主要实验项目⒈运算器实验⒉通用寄存器实验⒊寄存器判零实验⒋缓冲输入/锁存输出实验⒌存储器和总线实验⒍微程序控制单元实验4⒎指令部件模块实验⒏时序与启停实验⒐基本模型机设计与实现⒑可重构原理计算机组成实验⑴运算器部件实验;⑵指令译码实验11. 扩展8255并行口实验12. 外部存储器扩展1.5与众不同的独特之处⒈操作剔除了烦琐的状态选择开关,用软件设定法创造了一个按键式操作系统,为实验者提供了一个智能型的实验环境。
⒉连线采用箭头式提示连接法,引导学生正确连接构成计算机组成原理所必需的关联性电路,加快了连线速度,提高了实验效率,避免了实验连线过程中的盲目与误连。
⒊指令构造支持计算机组成必不可少的中断、调用、返回等操作,涉及的指令如下:===============================================================助记符注释---------------------------------------------------------------CALL XXH ;调用RET ;返回EI ;开中断DI ;关中断DJNZ R0,addr ;R0减1,不为零转向addrCJNE R0,#data,addr ;比较指令,R0与立即数data比较,不相等转addr===============================================================⒋带部件跟踪显示系统对计算机组成的每一个部件单元都配有静态显示器,以十六进制方式跟踪显示实验过程中的部件状态,进一步优化了模型机的实验环境,使其组成原理一目了然,获得极性的实验效果。
⒌锁紧式扩展单元系统以锁紧式通用插座扩展实验区,适用于双列直插式40脚以内的接口芯片的实验扩展,并且选用镀金孔和排针两种跨接方式供学生有选择地进行外部扩展连接,大大提高了5实验连接的可靠性,为扩展实验的稳定运行奠定了基础。
6第二章Dais-CMH+系统的配置与安装2.1系统配置Dais-CMH+出厂配置如表2-1所示:表2-1Dais-CMH+系统主要硬件配置项目内容数量项目内容数量运算器74LS181 2键盘显示TP801键盘32移位器74LS299 1 LT547显示8 指令存贮器6116 1输入设备74LS245 1 累加器74LS273 1 数据开关8辅助寄存器74LS273 1输出设备74LS273 1通用寄存器74LS374 4 发光二极管8 指令寄存器74LS273 1 逻辑控制开关二进制开关26 程序计数器74LS163 2 状态显示灯发光二极管26 微程序控制存储器6116 4 逻辑控制器件GAL16V8/20V8 32 微指令寄存器74LS273 2 并行接口8255 174LS175 1 单片机89C52 1 微地址寄存器74LS74 3 系统控制器MACH128 1时序发生器74LS175 1串行通信接口RS232C 1 74LS74 1 9芯插座 1 74LS20 1 通信电缆9芯RS-232-C 1时序启停单元74LS00 2 配套光盘集成实验环境 1 启/停按钮 2 电源+5V输出 1单次脉冲74LS00 2 部件显示器LC4021(双位)1474LS32 1信号测试74LS123 1脉冲信号源74LS393 1 LM319 1 74LS123 1扩展单元*IC锁紧式插座 2 NE555 1 PLCC方插座 2注:带“*”的项目为Dais-CMH+的扩展实验单元,而Dais-CMH+则不提供此单元。
72.2系统联机⑴用随机提供的RS-232-C通信电缆将PC微机的串行口与Dais-CMH+实验系统的串行口连接起来,如图2-1所示。
图2-1Dais-CMH+系统与PC微机联机示意图⑵ Dais-CMH+系统联机操作软件的安装及使用请参阅本手册第五章。
8第三章Dais-CMH+系统硬件环境3.1系统实验单元电路⒈运算器单元(ALU UNIT)“运算单元”由以下部分构成:两片74LS181构成了并/串型8位ALU:两个8位寄存器DR1和DR2作为暂存工作寄存器,保存参数或中间运算结果;ALU的输出由三态74LS245通过8芯扁平线连接到数据总线上,一片8位的移位寄存器74LS299通过8芯扁平线连接到数据总线上,由GAL和74LS74锁存器组成进位标志控制电路和判零标志控制电路、进位标志和判零标志指示灯。