第十七届全国中学生物理竞赛复赛试题及参考解答
【物理竞赛试】2000年第十七届全国中学生物理竞赛复赛试题+答案
【物理竞赛试】2000年第十七届全国中学生物理竞赛复赛试题+答案全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命 240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3S a U r k r=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv n n π⎛⎫== ⎪⎝⎭ 式中02r mv ⎛⎫ ⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗?四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少?五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
第17届全国中学生物理竞赛复赛试卷(含答案)
第十七届全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVA TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭ﻫ式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径2r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量. 2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗?2000年四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为v,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ.当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ.飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.ﻫ1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E.如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E表示,问12EE为多少?五、(25分)在真空中建立一坐标系,以水平向右为x轴正方向,竖直向下为y轴正方向,z轴垂直纸面向里(图复17-5).在方0y L≤≤的区域内有匀强磁场,0.80mL=,磁场的磁感强度的向沿z轴的正方向,其大小0.10TB=.今把一荷质比1/50C kgq m=⋅-的带正电质点在0x=,0.20my=-,0z=处静止释放,将带电质点过原点的时刻定为0t=时刻,求带电质点在磁场中任一时刻t的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m sg=⋅-。
第十七届初中物理竞赛复赛试题及参考答案
第十七届全国初中应用物理知识竞赛复赛试题一.(10分)表1中提供的是明湖中学利用的一台教学投影仪的有关数据,请依照其中的数据,通过计算回答:1.这台投影仪的耗电总功率是多大?2.若是投影仪的光源采纳串联电阻降压的话,所用电阻的阻值应该多大?该电阻消耗的功率为多大?3.这台投影仪的光源采纳上述串联电阻降压的方式可行吗?什么缘故?4.若是上述方式不可行,请你提出一种能够使投影仪正常工作的方案。
(要求定性说明即可)二.(10分)李教师的家离学校大约10km,为了便于上下班,他购买了一部轻便摩托车来代步,利用的燃料为93#汽油。
依照表2提供的数据,请回答:1.若是李教师上班时骑车的平均速度为36km/h,试依照表2中所提供的有关信息,为李教师计算一下,他骑车从家到学校至少需花多少油费?2.小洪同窗学过物理以后,给李教师建议:在上述条件不变的情形下,采纳加速车速缩短时刻的方式,就必然能够省油费。
请你依照自己把握的知识,分析说明这种方式是不是可行。
三.(12分)汽车在行驶途中,为了平安,车与车之间必需维持必然的距离。
因为,驾驶员从发觉某一异样情形到采取制动动作的“反应时刻〞里(设同一人、不同速度下的“反应时刻〞是一样的);汽车要通过一段距离(称为试探距离);而从采取制动动作到汽车完全停顿,汽车又要通过一段距离(称为制动距离)。
表3中给出了某辆汽车在同一段路面上行驶进程中,在不同速度下的试探距离和制动距离等局部数据。
1.依照表3中已给的数据,分析计算并填写尚缺的三个数据,完成表格。
2.依照表四.(12分)有一种电脑电源适配器(即充电器)的铭牌如图1所示。
这款国产充电器,有九个国家或地域的认证标志,其中已经标出了八个。
1.请你在第一个标志前的方框中填入所代表的国家名称及其英文名,并在铭牌下面的另三个图案下填写所表示的含义。
2.依照给出的数据:说明此电源适配器所适用的电源条件是什么。
3.用它与配套的笔记本电脑供电利历时的耗电功率大约在什么范围?4.试估算它为笔记本电脑供电时的效率大约在什么范围?5.有人说:“若是适配器只是输入端插入电源,输出端不接用电器时就不耗电〞,你以为对吗?请简要说明理由。
全国中学生物理竞赛复赛试卷及参考解答
全国中学生物理竞赛复赛试卷(本题共七大题,满分160分)一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。
整个容器置于压强为P 0、温度为T 0的大气中。
初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
第十七届全国中学生物理竞赛复赛试题+答案
第十七届全国中学生物理竞赛复赛试题一、在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度l=76cm,管内封闭有n=1.0×10-3mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1,普适气体常量R=8.31J·(mol·K)-1图1二、如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC与小球球心O的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.三、1995年,美国费米国家实验室CDF实验组和DO实验组在质子反质子对撞机TEVATRON的实验中,观察到了顶夸克,测得它的静止质量m1=1.75×1011eV/c2=3.1×10-25kg,寿命τ=0.4×10-24s,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为U(r)=-k(4as/3r),式中r是正、反顶夸克之间的距离,as=0.12是强相互作用耦合常数,k是与单位制有关的常数,在国际单位制中k=0.319×10-25J·m.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离r0.已知处于束缚态的正、反夸克粒子满足量子化条件,即2mv(r0/2)=n(h/2π),n=1,2,3……式中mv(r0/2)为一个粒子的动量mv与其轨道半径r0/2的乘积,n为量子数,h=6.63×10-34J·s为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T.你认为正、反顶夸克的这种束缚态能存在吗?四、宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为v0,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:(1)当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;(2)飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;(3)小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为E1.如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用E2表示,问E1/E2为多少?图2五、如图2所示,在真空中建立一坐标系,以水平向右为x轴正方向,竖直向下为y轴正方向,z轴垂直纸面向里.在0≤y≤L的区域内有匀强磁场,L=0.80m,磁场的磁感强度的方向沿z轴的正方向,其大小B=0.10T.今把一荷质比q/m=50C·kg-1的带正电质点在x=0,y=-0.20m,z=0处静止释放,将带电质点过原点的时刻定为t=0时刻,求带电质点在磁场中任一时刻t的位置坐标.并求它刚离开磁场时的位置和速度.(取重力加速度g=10m·s-2)六、普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射.现在利用普通光纤测量流体F的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O,经端面折射进入光纤,在光纤中传播.由点O出发的光束为圆锥形,已知其边缘光线和轴的夹角为α0,如图3甲所示.最后光从另一端面出射进入流体F.在距出射端面h1处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为d1,然后移动光屏D至距光纤出射端面h2处,再测出圆形光斑的直径d2,如图3乙所示.图31.若已知A和B的折射率分别为nA与nB,求被测流体F的折射率nF的表达式.2.若nA、nB和α0均为未知量,如何通过进一步的实验以测出nF的值?参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角和折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p和p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,经过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v和r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原来的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原来的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0和u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥可以看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.可以把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或将⑤、⑥式代入得u1=(v0.⑧如果飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨可以看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)所以E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小和方向都将变化,洛伦兹力的大小和方向亦随之变化.我们可以设想,在带电质点到达原点时,给质点附加上沿x轴正方向和负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但此时,位于坐标原点的带电质点还具有竖直向下的速度v1和沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动可以看做是速率为v0,沿x轴的正方向的匀速直线运动和在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点此时速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)所以带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动和一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向和y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)虽然=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向和y方向的分量vx和vy都随时间变化,因此vx′和vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,所以在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动可以用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,于是连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)和(11)两式中的A和φ0可由下面的方法求得:因为已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD和x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)和(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标和速度的x分量和y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)和⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系和折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能损失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,此时出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,此时出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11于是当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。
第17届全国中学生物理竞赛复赛题参考解答
1第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知0()p l h g p ρ+-= (1)根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得V p g S ρ= (4) 即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)1管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9) 代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10)评分标准:本题20分(1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。
二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1)式中α与β分别是相应的入射角和折射角,由几何关系还可知sin l rα= (2)1激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p c ν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4) 若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆= (6) 式中0/cn n 是光在小球内的传播速率。
第十七届全国中学生物理竞赛
第十七届全国中学生物理竞赛复 赛 试 卷全卷共六题,总分为140分。
一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口。
已知槽中水银液面以上的那部分玻璃管的长度l = 76 cm ,管内封闭有n = 1.0×310-mol 的空气。
保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能U = V C T ,其中T 为绝对温度,常量V C = 20.5 J ·1)K mol (-⋅,普适气体恒量R = 8.31 J ·1)K mol (-⋅二、(20分)如图复17-2所示,在真空中有一个折射率为n (n >0n ,0n 为真空的折射率)、半径为r 的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l ( l <r ),光束于小球体表面的C 点经折射进入小球(小球成为光传播的媒质),并于小球表面的D 点又经折射进入真空。
设激光束的频率在上述两次折射后保持不变。
求在两次折射过程中激光束中一个光子对小球作用的平均力的大小。
三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV ATRON 的实验中,观察到了顶夸克,测得它的静止质量τm = 1.75×1110eV/2c = 3.1×2510-kg ,寿命τ= 0.4×2410-s ,这是近十几年来粒子物理研究最重要的实验进展之一。
1、正反顶夸克之间的强相互作用势能可写为V (r )= - K r3a4s ,式中r 是正反顶夸克之间的距离,s a = 0.12是强相互作用耦合常数,K 是与单位制有关的常数,在国际单位制中K = 0.319×2510-J ·m 。
为估算正反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用于下绕它们连线的中点做匀速圆周运动。
第十七届全国中学生物理竞赛预、复赛试题及答案
十七届全国中学生物理竞赛预、复赛试题及答案目录第十七届全国中学生物理竞赛预赛试题 (1)第十七届全国中学生物理竞赛预赛题参考解答 (5)第十七届全国中学生物理竞赛复赛试题 (15)第十七届全国中学生物理竞赛复赛题参考解答 (18)第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚3.0cm,折射率 1.5n =。
07-10年全国初中物理竞赛复赛题及答案
2007年第十七届全国初中应用物理知识竞赛复赛试题一、(10分)表1中提供的是明湖中学使用的一台数学投影仪的有关数据,请根据其中的数据,通过计算回答:1、这台投影仪的耗电总功率是多大?2、如果投影仪的光源采用串联电阻降压的话,所有电阻的阻值应该多大?该电阻消耗的功率为多大?3、这台投影仪的光源采用上述串联电阻降压的方法可行吗?为什么?4、如果上述方法不可行,请你提出一种可以使投影仪正常工作的方案。
(要求定性说明即可)二、(10分)李老师的家离学校大约10km,为了便于上下班,他购买一部轻便摩托车来代步,使用的燃料为93#汽油,根据表2提供的数据,请回答:1、如果李老师上班时骑车的平均速度为36km/h,试根据表2中所提供的有关信息,为李老师计算一下,他骑车从家到学校至少需花多少油费?2、小洪同学学过物理以后,给李老师建议:在上述条件不变的情况下,采用加快车速缩短时间的办法,就一定可以省油费。
请你根据自己掌握的知识,分析说明这种方法是否可行。
距离。
因为,驾驶员从发现某一异常情况到采取制动动作的“反应时间”里(设同一人,不同速度下的“反应时间”是相同的),汽车要通过一段距离(称为思考距离);而从采取制动力作到汽车完全停止,汽车又要通过一段距离(称为制动距离)。
表3中给出了某辆汽车在同一段路面上行驶过程中,在不同速度下的思考距离和制运距离等部分数据。
1、根据表3中已给的数据,分析计算并填写尚缺的三个数据,完成表格。
2、根据表3中的数据,分析或通过计算说明超速和酒后驾车的危害。
表3四、(12分)有一种电脑电源适配器(即充电器)的铭牌如图1所示。
这款国产充电器,有九个国家或地区的认证标志,其中已经标出了八个。
1、请你在第一个标志前的方框中填入所代表的国家名称及其英文名,并在铭牌下面的另三个图案下填写所表示的含意。
2、根据给出的数据:说明此电源适配器所适用的电源条件是什么。
3、用它与配套的笔记本电脑供电使用时的耗电功率大约在什么范围?4、试估算它为笔记本电脑供电时的效率大约在什么范围?5、有人说:“如果适配器只是输入端插入电源,输出端不接用电器时就不耗电”,你认为对吗?请简要说明理由。
第17届物理竞赛预复赛试题
二、 (15 分)一半径为 R 1.00 m 的水平光滑圆桌面,圆心为 O ,有一竖直的立柱固定在桌 面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线 C ,如图预 17-2 所示。一 根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某 一点,另一端系一质量为 m 7.5 10-2 kg 的小物块。将小 物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂 直、大小为 v0 4.0 m/s 的初速度。物块在桌面上运动时, 绳将缠绕在立柱上。已知当绳的张力为 T0 2.0 N 时,绳即 断开,在绳断开前物块始终在桌面上运动. 1.问绳刚要断开时,绳的伸直部分的长度为多少? 2.若绳刚要断开时,桌面圆心 O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸 直部分垂直,问物块的落地点到桌面圆心 O 的水平距离为多少?已知桌面高度 H 0.80 m .物 块在桌面上运动时未与立柱相碰.取重力加速度大小为 10 m/s 2 .
A3 A4 两点间的电压 U 34 、 A4 A1 两点间的电压 U 41 。
2.若一内阻可视为无限大的电压表 V 位于正方形导线回路所在的平面内,其正负端与 连线位置分别如图预 17-5-2、 图预 17-5-3 和图预 17-5-4 所示, 求三种情况下电压表的读数 U1 、
U 2 、 U3 。
三、 (25 分)1995 年,美国费米国家实验室 CDF 实验组和 DO 实验组在质子反质子对撞机 TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量
m1 1.75 1011 eV/c 2 3.1 10-25 kg ,寿命
子物理研究最重要的实验进展之一.
0.4 10-24 s ,这是近十几年来粒
八、 (20 分)如图预 17-8 所示,在水平桌面上 放有长木板 C , 在C 上 C 上右端是固定挡板 P , 左端和中点处各放有小物块 A 和 B , A 、 B 的 尺寸以及 P 的厚度皆可忽略不计, A 、 B 之间 和 B 、 P 之间的距离皆为 L 。设木板 C 与桌面 之间无摩擦, A 、 C 之间和 B 、 C 之间的静摩擦因数及滑动摩擦因数均为 ; A 、 B 、 C (连同挡板 P )的质量相同.开始时, B 和 C 静止, A 以某一初速度向右运动.试问下列 情况是否能发生?要求定量求出能发生这些情况时物块 A 的初速度 v0 应满足的条件,或定 量说明不能发生的理由. (1)物块 A 与 B 发生碰撞; (2)物块 A 与 B 发生碰撞(设为弹性碰撞)后,物块 B 与挡板 P 发生碰撞; (3)物块 B 与挡板 P 发生碰撞(设为弹性碰撞)后,物块 B 与 A 在木板 C 上再发生碰 撞; (4)物块 A 从木板 C 上掉下来; (5)物块 B 从木板 C 上掉下来.
第十七届全国中学生物理竞赛复赛试题参考答案
第十七届全国中学生物理竞赛复赛试题参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角与折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p与p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,通过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v与r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们构成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原先的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原先的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0与u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或者v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥能够看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.能够把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或者将⑤、⑥式代入得u1=(v0.⑧假如飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨能够看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)因此E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小与方向都将变化,洛伦兹力的大小与方向亦随之变化.我们能够设想,在带电质点到达原点时,给质点附加上沿x轴正方向与负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但如今,位于坐标原点的带电质点还具有竖直向下的速度v1与沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动能够看做是速率为v0,沿x轴的正方向的匀速直线运动与在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点如今速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)因此带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动与一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向与y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)尽管=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向与y方向的分量vx与vy都随时间变化,因此vx′与vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,因此在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或者y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动能够用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,因此连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)与(11)两式中的A与φ0可由下面的方法求得:由于已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD与x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)与(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标与速度的x分量与y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)与⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系与折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能缺失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或者等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或者nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,如今出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,如今出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11因此当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。
2000年第17届物理竞赛复赛试题及答案
第17届全国中学生物理竞赛复赛试卷全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (m o l K )C =⋅⋅-,普适气体常量18.31J (m o l K )R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命 240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
第17届全国中学生物理竞赛复赛试卷(含答案)
第十七届全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即2000年021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在的0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
第17届全国中学生物理竞赛预赛试题及参考解答
第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚3.0 cm ,折射率 1.5n =。
第17届全国中学生物理竞赛预复赛试题及答案
十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A、B、C和D、E、F三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00mR=的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kgm=⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为4.0m/sv=的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为2.0NT=时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O的水平距离为多少?已知桌面高度0.80mH=.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s.2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚3.0 cm ,折射率 1.5n =。
在其下表面下2.0 cm 处有一小物S ;在玻璃扳上方有一薄凸透镜L ,其焦距30cm f =,透镜的主轴与玻璃板面垂直;S 位于透镜的主轴上,如图预17-3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七届全国中学生物理竞赛复赛试题及参考解答题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即2000年021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J sh =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量. 1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
六、(25分)普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A 和包层B 组成,B 的折射率小于A 的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A 和包层B 的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O ,经端面折射进入光纤,在光纤中传播.由点O 出发的光束为圆锥形,已知其边缘光线和轴的夹角为0α,如图复17-6-1所示.最后光从另一端面出射进入流体F .在距出射端面1h 处放置一垂直于光纤轴的毛玻璃屏D ,在D 上出现一圆形光斑,测出其直径为1d ,然后移动光屏D 至距光纤出射端面2h 处,再测出圆形光斑的直径2d ,如图复17-6-2所示.1.若已知A 和B 的折射率分别为A n 与B n ,求被测流体F 的折射率F n 的表达式. 2.若A n 、B n 和0α均为未知量,如何通过进一步的实验以测出F n 的值?第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知 0()p l h g p ρ+-= (1) 根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得Vp g Sρ= (4)即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得 2V g nRT Sρ=(5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9)代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10)评分标准:本题20分 (1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。
二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1) 式中α与β分别是相应的入射角和折射角,由几何关系还可知sin lrα=(2) 激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p cν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4) 若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得 2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆=(6)式中0/cn n 是光在小球内的传播速率。
按照牛顿第二定律,光子所受小球的平均作用力的大小为 0sin cos n h p f t nr νθβ∆==∆ (7) 按照牛顿第三定律,光子对小球的平均作用力大小F f =,即 0sin cos n h F nr νθβ=(8)力的方向由点O 指向点G .由(1)、(2)、(4)及(8)式,经过三角函数关系运算,最后可得021n lh F nrν⎡=⎢⎢⎣ (9) 评分标准:本题20分(1)式1分,(5)式8分,(6)式4分,(8)式3分,得到(9)式再给4分。
三、参考解答1.相距为r 的电量为1Q 与2Q 的两点电荷之间的库仑力Q F 与电势能Q U 公式为122Q QQ Q F k r= 12Q Q Q Q U k r =- (1) 现在已知正反顶夸克之间的强相互作用势能为4()3S aU r k r=-根据直接类比可知,正反顶夸克之间的强相互作用力为24()3Sa F r k r=- (2)设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v ,因二者相距0r ,二者所受的向心力均为0()F r ,二者的运动方程均为22004/23t S a m v k r r = (3) 由题给的量子化条件,粒子处于基态时,取量子数1n =,得0222t r hm v π⎛⎫- ⎪⎝⎭(4)由(3)、(4)两式解得20238S t h r m a kπ= (5)代入数值得170 1.410m r =⨯- (6)2. 由(3)与(4)两式得 43S a v kh π⎛⎫=⎪⎝⎭(7)由v 和0r 可算出正反顶夸克做匀速圆周运动的周期T30222(/2)2(4/3)t S r h T v m k a ππ== (8) 代入数值得241.810s T =⨯- (9) 由此可得 /0.2T τ= (10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.评分标准:本题25分1. 15分。
(2)式4分,(5)式9分,求得(6)式再给2分。
2. 10分。
(8)式3分。