2017年庆阳市中考数学试题含答案解析(Word版)

合集下载

【真题】2017年甘肃省庆阳市中考数学试题含答案解析(Word版)

【真题】2017年甘肃省庆阳市中考数学试题含答案解析(Word版)

甘肃省庆阳市2017年中考数学试卷(解析版)一、选择题(每小题3分,共10小题,合计30分) 1.下面四个手机应用图标中,属于中心对称图形的是( ).A BC D答案:B.解析:根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.故 选B .考点:中心对称图形2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃庆阳发射升空,与天宫 二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度, 393000用科学记数法可以表示为( ). A.439.310⨯B.83.9310⨯C.63.9310⨯D.60.39310⨯答案:B.解析:根据科学计数法的定义:把一个数字记为的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法.故选B . 考点:科学计数法. 3.4的平方根是( ) A.16B.2C.2±D.2±答案:C.解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根. ∵(±2)2=4,∴4的平方根是±2.故选C . 考点:平方根.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( ).A B CD第4题图答案:D.解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆 环,中间的圆要画成实线.故选D . 考点:三视图.5.下列计算正确的是( ). A.224x x x += B.824x x x ÷= C.236x x x ⋅=D.()220x x --=答案:D.解析:根据合并同类项、同底数幂的乘法、除法等知识点进行判断, A 项错误,合并同类项应为22x ;B 项错误,根据同底数幂相除,底数不变,指数相减可知826x x x =¸;C 项错误,根据同底数幂相乘,底数不变,指数相加可知235x x x ?;D 项正确,()22220x x x x --=-=.故选D.考点:幂的运算法则.6.把一把直尺与一块三角板如图放置,若145=∠°,则2∠为( ). A.115°B.120°C.135°D.145°答案:C.解析:根据三角形外角性质得到∠3=∠C+∠1=135°,然后根据平行线的性质即可得到∠2=∠3=135°.故选C.考点:平行线的性质与三角形外角性质.7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( ). A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<12第6题图答案:A.解析:根据一次函数y kx b =+的图象经过二、三、四象限,由一次函数图象与系数的关系,即可得出0,0k b >>.故选A . 考点:一次函数的性质.8.已知,,a b c 是ABC △的三条边长,化简a b c c a b +----的结果为( ). A.222a b c +- B.22a b +C.2cD.0答案:D.解析:根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a b c +-> 0,c a b --<0,所以a b c c a b +----=a b c +-+c a b --=0,故选D . 考点:三角形三边的关系.9.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地 上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ). A.()()32220570x x --=B.32203220570x x +⨯=⨯-C.()()3220=3220570x x --⨯-D.2322202570x x x +⨯-=答案:A.解析:将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为()322x -米,宽为()20x -米,所以草坪面积为长与宽的乘积,即可列出方程()()32220570x x --=.故选A .x yO 第7题图第9题图x20m30mx20m30m考点:一元二次方程的应用.10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径 运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ).A.22cmB.32cmC.42cmD.52cm答案:B.解析:当点P 运动2.5秒时,如图所示:AB CDPQ则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B.考点:函数的图象.二、填空题:(每小题4分,共8小题,合计32分) 11.分解因式:221x x -+= . 答案:2(1)x .解析:根据完全平方公式,分解因式即可. 考点:因式分解. 12.估计512-与0.5的大小关系:512- 0.5.(填“>”或“=”或“<”) 答案:>.ABCD Q Px (秒)y (cm )O 2图②图① 第10题图解析:∵0.5=12,又5>2,∴5﹣1>1,即512->12.故答案为>.考点:无理数的估算.13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式 201520172016m n c ++的值为 .答案:0.解析:∵m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴1m =-,0n ==0,c 1=,∴201520172016m n c ++=(﹣1)2015+2016×0+12017=0,故答案为0.考点:有理数的有关概念.14.如图,ABC △内接于O ⊙,若32OAB =∠°,则C =∠ .答案:58°.解析:连接OB .在△OAB 中,OA =OB (⊙O 的半径),∴∠OAB =∠OBA ;又∵∠OAB =28°,∴∠OBA =28°;∴∠AOB =180°﹣2×28°=124°; 而∠C =∠AOB (同弧所对的圆周角是所对的圆心角的一半),∴∠C =62°; 故答案是:62°.考点:圆周角定理.15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .答案:k ≤5且k ≠1.解析:∵关于x 的一元二次方程()21410k x x -++=有实数根,∴1k -≠0且24b ac ≥0,即42﹣ 4×(1k -)×1≥0,解得k ≤5且k ≠1.故答案为:k ≤5且k ≠1. 考点:一元二次方程根的判别式.16.如图,一张三角形纸片ABC ,90C =∠°,8cm AC =,6cm BC =,现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm.第14题图答案:154.解析:在Rt △ABC 中,因为AC =6cm ,BC =8cm ,根据勾股定理,所以AB =10cm.设CE =x cm ,由 折叠的性质得:BD =AD =5x cm , BE =AE =(8﹣x )cm ,在Rt △BCE 中,根据勾股定理可知: AC 2+CD 2=AD 2,即62+(8﹣x )2=x 2,解方程得x =154.故答案为154. 6cm8cmABC D E考点:图形折叠与勾股定理.17.如图,在ABC △中,90ACB =∠°,1AC =,2AB =,以点A 为圆心,AC 的长为半径画弧,交 AB 边于点D ,则 CD的长等于 .(结果保留p )答案:3π.解析:在Rt △ABC 中,AC =1,AB =2,∴cos ∠A =12AC AB =,∴∠A=60°,∴ CD 的长为6011803ππ⨯=. 考点:弧长公式.18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图 形的周长为,第2017个图形的周长为.A B C8cm6cm第16题图第17题图………1211第1个图形第2个图形第3个图形第18题图答案:8,6053.解析:根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053. 考点:规律探索.三、解答题(一):本大题共5个小题,共38分. 19.计算:o11123tan 30(4)()2π--+--思路分析:会正确化简二次根式、零指数、负指数幂. 解:原式=3233123-⨯+- =23312-+-=31-. 20.解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩,并写出该不等式组的最大整数解.思路分析:先求出不等式组的解集,再找出解集中的最大整数解。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

2017年中考庆阳市数学试卷-解析

2017年中考庆阳市数学试卷-解析

2017年甘肃省庆阳市中考数学试卷满分:150分 版本:北师大版一、选择题(每小题3分,共10小题,合计30分)1.(2017甘肃庆阳,1,3分)下面四个手机应用图标中,属于中心对称图形的是( )ABC D答案:B ,解析:根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

故选B .2.(2017甘肃庆阳,2,3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃庆阳发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度,393000用科学记数法可以表示为( ) A.439.310´B.83.9310´C.63.9310´D.60.39310´答案:B ,解析:根据科学计数法的定义:把一个数字记为a ×10n 的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法。

故选B . 3.(2017甘肃庆阳,3,3分)4的平方根是( )A.16B.2C.2±D.2±答案:C ,解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根.此题中,∵(±2)2=4,∴4的平方根是±2.故选C .4.(2017甘肃庆阳,4,3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )答案:D ,解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选D .5.(2017甘肃庆阳,5,3分)下列计算正确的是( )A.224x x x +=B.824x x x ?C.236x x x ?D.()220x x --=A B CD第4题图答案:D ,解析:根据合并同类项、同底数幂的乘法、除法等知识点进行判断, A 项错误,合并同类项应为22x ;B 项错误,根据同底数幂相除,底数不变,指数相减可知826x x x =¸;C 项错误,根据同底数幂相乘,底数不变,指数相加可知235x x x ?;D 项正确,()22220x x x x --=-=.故选D.6.(2017甘肃庆阳,6,3分)把一把直尺与一块三角板如图放置,若145=∠°,则2∠为( )A.115°B.120°C.135°D.145°答案:C ,解析:根据三角形外角性质得到∠3=∠C+∠1=135°,然后根据平行线的性质即可得到∠2=∠3=135°.故选C.7.(2017甘肃庆阳,7,3分).在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( ) A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<答案:A ,解析:根据一次函数y kx b =+的图象经过二、三、四象限,由一次函数图象与系数的关系,即可得出0,0k b >>.故选A .8.(2017甘肃庆阳,8,3分)已知,,a b c 是ABC △的三条边长,化简a b c c a b +----的结果为( ) A.222a b c +-B.22a b +C.2cD.0答案:D ,解析:根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a b c +->0,c a b --<0,所以a b c c a b +----=a b c +-+c a b --=0,故选D .12第6题图x yO 第7题图9.(2017甘肃庆阳,9,3分)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ) A.()()32220570x x --=B.32203220570x x +??C.()()32203220570x x --?D.2322202570x x x +?=答案:A ,解析:将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为()322x -米,宽为()20x -米,所以草坪面积为长与宽的乘积,即可列出方程()()32220570x x --=.故选A .10.(2017甘肃庆阳,10,3分)如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ) A.22cmB.32cmC.42cmD.52cm答案:B ,解析:当点P 运动2.5秒时,如图所示:x20m30m第9题图x20m30mABCD Q Px (秒)y (cm )O 2图②图① 第10题图4ξ2则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B .二、填空题:(每小题4分,共8小题,合计32分)11.(2017甘肃庆阳,11,4分)分解因式:221x x -+= .答案:2(1)x ,解析:根据完全平方公式a 2+2ab +b 2=(a +b )2 ,分解因式即可.12.(2017甘肃庆阳,12,4分)估计51-与0.5的大小关系:512- 0.5.(填“>”或“=”或“<”)答案:>,解析:∵0.5=12,又5>2,∴5﹣1>1,即51->12.故答案为>.13.(2017甘肃庆阳,13,4分)如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .答案:0,解析:∵m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴1m =-,0n ==0,c 1=,∴201520172016m n c ++=(﹣1)2015+2016×0+12017=0,故答案为0.14.(2017甘肃庆阳,14,4分)如图,ABC △内接于O ⊙,若32OAB =∠°,则C =∠ .答案:58°,解析:连接OB .在△OAB 中,OA =OB (⊙O 的半径),∴∠OAB =∠OBA ;又∵∠OAB =28°,∴∠OBA =28°;∴∠AOB =180°﹣2×28°=124°; 而∠C =12∠AOB (同弧所对的圆周角是所对的圆心角的一半),∴∠C =62°;故答案是:62°.15.(2017甘肃庆阳,15,4分)若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值CDPQ第14题图范围是 .答案:k ≤5且k ≠1,解析:∵关于x 的一元二次方程()21410k x x -++=有实数根,∴1k -≠0且24b ac -≥0,即42﹣4×(1k -)×1≥0,解得k ≤5且k ≠1.故答案为:k ≤5且k ≠1.16.(2017甘肃庆阳,16,4分)如图,一张三角形纸片ABC ,90C =∠°,8cm AC =,6cm BC =,现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm.答案:154,解析:在Rt △ABC 中,因为AC =6cm ,BC =8cm ,根据勾股定理,所以AB =10cm.设CE =x cm ,由折叠的性质得:BD =AD =5x cm , BE =AE =(8﹣x )cm ,在Rt △BCE 中,根据勾股定理可知:AC 2+CD 2=AD 2,即62+(8﹣x )2=x 2,解方程得x =154.故答案为154.17.(2017甘肃庆阳,17,4分)如图,在ABC △中,90ACB =∠°,1AC =,2AB =,以点A 为圆心,AC 的长为半径画弧,交AB 边于点D ,则»CD的长等于.(结果保留p )答案:3π,解析:在R t △ABC 中,AC =1,AB =2,∴cos ∠A =12AC AB =,∴∠A=60°,∴»CD 的长为6011803ππ⨯=. 18.(2017甘肃庆阳,18,4分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.8cmABD E A B 8cm第16题图第17题图答案:8,6053,解析:根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053.三、解答题(一):本大题共5个小题,共38分.19.(2017甘肃庆阳,19,6分)计算:o11123tan 30(4)()2π--+--思路分析:会正确化简二次根式、零指数、负指数幂. 解:原式=3233123-⨯+- =23312-+-=31-. 20.(2017甘肃庆阳,20,6分)解不等式组()111212x x ì-?ïíï-<î,并写出该不等式组的最大整数解.思路分析:先求出不等式组的解集,再找出解集中的最大整数解。

甘肃省庆阳市2017年中考数学真题试题-中考真题

甘肃省庆阳市2017年中考数学真题试题-中考真题

庆阳市2017年初中毕业学业监测暨高中阶段学校招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A B C D2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度,393000用科学记数法可以表示为( )A.439.310´B.83.9310´C.63.9310´D.60.39310´3.4的平方根是( )A.16B.2C.2±D.2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )A B C D 5.下列计算正确的是( )A.224x x x +=B.426x x x +=C.224x x x ?D.()220x x --= 6.把一把直尺与一块三角板如图放置,若145=∠°,则2∠为( )A.115°B.120°C.135°D.145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简a b c c a b +----的结果为( )A.222a b c +-B.22a b +C.2cD.09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( )A.()()32220570x x --=B.32203220570x x +??C.()()32203220570x x --?D.2322202570x x x +?= 10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( )A.22cmB.32cmC.42cmD.52cm二、填空题(每题4分,满分32分,将答案填在答题纸上)11.分解因式:221x x -+= .12.估计512-与0.5的大小关系:512- 0.5.(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC △内接于O ⊙,若32OAB =∠°,则C =∠ .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,90C =∠°,8cm AC =,6cm BC =,现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm.17.如图,在ABC △中,90ACB =∠°,1AC =,2AB =,以点A 为圆心,AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于 .(结果保留p )18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .三、解答题(一)(本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.)19.()101123tan3042p -骣琪+--琪桫°.20.解不等式组()111212x x ì-?ïíï-<î,并写出该不等式组的最大整数解. 21.如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A 、B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量,如图,测得45DAC =∠°,65DBC =∠°.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin650.91°≈,cos650.42°≈,tan65 2.14°≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字)。

2017年甘肃省庆阳市中考数学试卷及解析答案

2017年甘肃省庆阳市中考数学试卷及解析答案

2017年甘肃省庆阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ 与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1= .12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N 作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省庆阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P 作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0 .【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1 .【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8 ,第2017个图形的周长为6053 .【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m= 70 ,n= 0.2 ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD 中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N 作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN•OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年甘肃省中考数学试卷含答案

2017年甘肃省中考数学试卷含答案

绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A.439.310⨯B.53.9310⨯ C.63.9310⨯ D.60.39310⨯ 3.4的平方根是( ) A.16B.2C.2±D.2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A.224x x x +=B.824x x x ÷=C.236x x x =gD.22()0x x --=6.将一把直尺与一块三角板如图放置,若145=o ∠,则2∠为( ) A.115o B.120o C.135o D.145o7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A.0,0k b >> B.0,0k b >< C.0,0k b <> D.0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A.222a b c +-B.22a b +C.2cD.09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A.(322)(20)570x x --=B.322203220570x x +⨯=⨯-C.(32)(20)3220570x x --=⨯-D.2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是 ( )A.22cmB.32cmC.42cmD.52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共18页)11.分解因式:221x x-+=.12.估计51-与0.5的大小关系:51-0.5(填“>”或“=”或“<”).13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式201520172016m n c++的值为.14.如图,ABC△内接于Oe,若32OAB=o∠,则C=∠o.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=o∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===o∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则»CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭o.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC△,请用圆规和直尺作出ABC△的一条中位线EF(不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得4565DAC DBC==o o∠,∠.若132AB=米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14o o o≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷第3页(共18页). . .(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表 成绩x (分)频数(人) 频率5060x ≤<10 0.056070x ≤< 30 0.15 7080x ≤< 40n 8090x ≤< m0.35 90100x ≤≤500.25根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M e 的直径,NB x ∥轴,AB 交M e 于点C . (1)若点(0,6),(0,2),30A N ABN =o ∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M e 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。

2017年甘肃省中考数学试卷-答案

2017年甘肃省中考数学试卷-答案

【考点】函数的图象和性质 二、填空题
11.【答案】 x 12
【解析】因式分解: x2 2x 1 (x 1)2 。
【考点】因式分解
12.【答案】>
【 解 析 】 实数 大 小 的比较 ; 5 1 0.5 5 1 1 5 2 , 因 为 5 2 , 所 以 5 2 0 , 所 以
| a b c | | c a b | a b c c a b 0 ,故选 D。
【提示】去绝对值符号的法则为
|
a
|
a,a a,
0 a
0

【考点】三角形的三边关系,去绝对值法则 9.【答案】A
【解析】将图中的道路平移,则易得剩余的空地可以看作是一个长为 32 2xm ,宽为 20 xm 的矩形,
则由函数图象经过点(2, 4
2
),( 4 , 0) 得
4 2 2k b 0 4k b
解得
k 2
2, ,所以函数解析式为
b 8 2 ,
y 2 2x 8 2 ,所以当 x 2.5 时, y 2 2 2.5 8 2 3 2 ,故选 B。
为 60 Байду номын сангаас1 = 。 180 3
【考点】直角三角形,弧长公式
18.【答案】8
6053 【解析】观察题中的图形易得第 n 个图形中有 n 个梯形,则其周长为 5n 2(n 1) 3n 2 ,所以第 2 个图形
的周长为 3 2 2 8 ,第 2017 个图形的周长为 3 2017 2 6053 。
1 / 10
【考点】平行线的性质
7.【答案】A
【解析】因为一次函数的图象经过第一、三象限,所以 k 0 ,又因为其图象过第一、二象限,所以 b 0 ,

2017年陕西省中考数学试卷含答案解析(Word版)

2017年陕西省中考数学试卷含答案解析(Word版)

2017 年陕西省中考数学试卷、选择题(本大题共 10小题,每小题 3分,共 30 分)1.计算:( 12)21 =()513A .B .C .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣ 1= 3 ,故选 C .44考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(D .答案】 B . 解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选 考点:简单组合体的三视图.答案】 A . 【解析】考点:一次函数图象上点的坐标特征.3.若一个正比例函数的图象经过 A (3,﹣ 6), B (m ,﹣4)两点,m 的值为( )A .2B .8C .﹣ 2D .﹣ 8A .B .C .B .4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠ 1=25°,则∠ 2的大小为A.55°B.75°C.65°D.85°答案】C.解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣25 °=65°.∵a∥b,∴∠ 2=∠3=65°.故考点:平行线的性质.5.化简:xyx,xy 结果正确的是(A.12xB . 2xy2yC.xyxyD.x2y2答案】B.解析】试题分析:原式22x xy xy y22xyx22xy .故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C.若∠ ACB=∠AC′B=90°,AC=BC=3,则B′C 的长为(A.3 3 B.6 C.3 2 D.21【答案】A .【解析】试题分析:∵∠ ACB=∠AC′B′=90°,AC=BC=3,∴AB= AB2 BC2=3 2 ,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠ C′AB′=∠CAB=45°,AB ∴∠CAB′=90°,∴ B′C= CA2 B'A2=3 3,故选A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4 与直线l2:y=kx+b(k≠0)在第一象限交于点l2与x轴的交点为A(﹣2,0),则k 的取值范围是()A.﹣2<k<2 B.﹣2< k< 0 C.0<k< 4<2答案】D.解析】∠CAB=45°,′=AB=3 2 ,M.若直线D.0<k考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形 ABCD 中, AB=2,BC=3.若点 E 是边 CD 的中点,连接 AE ,过点 B 作答案】 B . 【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ ABC 是⊙O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一 点,在△ ABP 中, PB=AB ,则 PA 的长为()A . 3 10 23 10 5C .10D .35 5【答案】 D . 【解析】试题分析:连接 OA 、OB 、 OP ,∵∠ C=30°,∴∠ APB =∠ C=30°,∵ PB=AB ,∴∠ PAB=∠APB=30°∴∠ ABP=120°,∵ PB=AB ,∴ OB ⊥AP ,AD=PD ,∴∠ OBP=∠OBA=60°,∵ OB=OA ,∴△AOB 是等边三角形,∴ AB=OA=5,则 Rt △PBD 中,PD =cos30°?PB= ×5=AP=2PD=5 3 ,故选 D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线 y x 2 2mx 4 ( m > 0)的顶点 M 关于坐标原点 O 的对称点为 M ′,若 点 M ′在这条抛物线上,则点 M 的坐标为( ) ﹣20) 【答案】 C . 【解析】试题分析: y x 2 2mx 4=(x m )2 m 2 4 ,∴点 M ( m ,﹣ m 2﹣ 4),∴点 M ′(﹣ m ,m 2+4),∴ m 2+2m 2﹣ 4=m 2+4.解得 m=±2.∵m >0,∴ m=2,∴ M ( 2,﹣ 8).故选 C . 考点:二次函数的性质.A .5B . 53 2C . 5 2A .(1,﹣ 5)B .( 3,﹣13)C .(2,﹣8)D .(4,、填空题(本大题共 4 小题,每小题3分,共12 分)11.在实数﹣5,﹣3 ,0,π ,6 中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC中,BD和CE是△ABC 的两条角平分线.若∠ A=52°,则∠ 1+∠2的度数为.B.317 tan38° 15′≈.(结果精确到0.01)【答案】A.64°;B.2. 03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.3m 2m 5 513.已知A,B 两点分别在反比例函数y (m≠ 0)和y (m≠ )的图象上,x x 2 若点A 与点B 关于x 轴对称,则m 的值为.【答案】1.解析】b 3mb试题分析:设 A (a ,b ),则 B (a ,﹣ b ),依题意得:a,所以 3m 2m 52m 5 a ba=0,即 5m ﹣ 5=0,解得 m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、 y 轴对称的点的坐标.14.如图,在四边形 ABCD 中, AB=AD ,∠ BAD =∠ BCD =90°,连接 AC .若 AC=6,则四 边形 ABCD 的面积为 .【解析】∴四边形 ABCD 的面积 =正方形 AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而 AC=6∴2λ 2=36, λ 2=18,故答案为: 18. 考点:全等三角形的判定与性质.、解答题(本大题共 11小题,共 78 分)15.计算: ( 2) 6 | 3 2 | (1) 1.答案】 3 3 . 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式 = 12 2 3 2 = 2 3 3 = 3 3 . 考点:二次根式的混合运算;负整数指数幂.x3 216.解方程:1答案】 18.x3【答案】 x=﹣ 6. x3【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得, ( x+3)2﹣2(x ﹣3)=(x ﹣3)(x+3),去括号得, x 2+6x+9﹣2x+6=x 2 ﹣9,移项,系数化为 1,得 x=﹣6,经检验, x=﹣6 是原方程的解.考点:解分式方程.17.如图,在钝角△ ABC 中,过钝角顶点 B 作 BD ⊥BC 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P ,使得点 P 到 AC 的距离等于 BP 的长.(保留作图痕迹,不写作法)【解析】18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益, 某中学为了了解七年级学生 的早锻炼情况, 校政教处在七年级随机抽取了部分学生, 并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7:00~7:40 之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:2)由于共有200 个数据,其中位数是第100、101个数据的平均数,则其中位数位于区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20 分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD 中,E、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF、CE 交于点G.求证:AG =CG .【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF =CDE =90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳” 之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1. 7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1 米).(参考数据:sin23°≈0. 3907,cos23°≈0. 9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0. 9135,tan24°≈0. 4452.)【答案】34 米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,在Rt△MBD 中,MD=x?tan23°,在Rt△MCE 中,ME=x?tan24°,∵ME﹣MD=DE=BC,∴x?tan24°﹣x?tan23°=1. 7﹣1,∴ x= 0.7,解得x≈34(米).tan 24 tan23 答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34 米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10 万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000 建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;4(2)由题意得,7500x+6800≥100000,∴x≥4 ,∵x 为整数,∴李师傅种植的8个大棚15 中,香瓜至少种植5 个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.13【答案】(1)1;(2)3.2 16【解析】A,A)、(A,B)、(A,C)、(A,C)、A,A)、(A,B)、(A,C)、(A,C)、B,A)、(B,B)、(B,C)、(B,C)、C,A)、(C,B)、(C ,C )、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.16考点:列表法与树状图法;概率公式.23.如图,已知⊙ O的半径为5,PA是⊙ O的一条切线,切点为A,连接PO 并延长,交⊙ O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC 的长;答案】(1)5 3;(2)证明见解析.解析】在Rt△ODA 中,AD=OA?sin60°=5 3,∴AC=2AD=5 3 ;2(2)∵ AC⊥ PB,∠ P=30°,∴∠ PAC=60°,∵∠ AOP =60°,∴∠ BOA=120°,∴∠ BCA=60°,∴∠ PAC =∠BCA ,∴ BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B 两点,其中点A 在点B 的左侧.(1)求抛物线C1,C2 的函数表达式;(2)求A、B 两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入C2 的函数表达式可求得P、Q 的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴ P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴ t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC 是等边三角形,AB=12,若点O是△ ABC 的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD 中,AB=12,AD=18,如果点P是AD 边上一点,且AP=3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△ AMB 的面积为96m2;过弦AB的中点D作DE⊥AB 交AB 于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0. 01 米)【答案】(1)4 3;(2)PQ=12 2 ;(3)喷灌龙头的射程至少为19.71 米.【解析】AD试题分析:(1)构建Rt △ AOD 中,利用cos∠ OAD=cos30°=,可得OA 的长;OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD 中,由勾股定理解得:r=13根据三角形面积计算高MN 的长,证明△ ADC∽△ANM ,列比例式求DC 的长,确定点O在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.11试题解析:(1)如图1,过O 作OD⊥AC于D,则AD= AC= ×12=6,∵ O是内心,△2211ABC 是等边三角形,∴∠ OAD= ∠ BAC= × 60°=30°,在Rt△AOD 中,cos∠22OAD =cos30°=AD,∴ OA =6÷ 3 = 4 3 ,故答案为:4 3 ;OA 2(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,11∴ 1 AB?MN=96,1×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ ADC∽△ 22 DC AD DC 12 16ANM,∴ ,∴ ,∴DC= ,∴ OD < CD,∴点O在△ AMB 内部,∴连MN AN 8 18 3接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF > MG ,过O 作OH ⊥ MN ,垂足为H,则OH =DN =6,MH =3,∴ OM = MH2 OH2= 32 62=3 5,∴MF =OM+r= 35 +13≈19. 71(米).答:喷灌龙头的射程至少为19.71 米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。

2017年甘肃省庆阳市中考数学试卷

2017年甘肃省庆阳市中考数学试卷

中考数学复习资料(真题)2017年甘肃省庆阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省庆阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2017个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,=BN•OA=(n+2)×4=2(n+2),∴S△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

(完整版)2017年甘肃省中考数学试卷含答案

(完整版)2017年甘肃省中考数学试卷含答案

数学试卷 第1页(共18页)数学试卷 第2页(共18页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .2C .2±D .2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是 ( )A .22cmB .32cmC .42cmD .52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共18页)11.分解因式:221x x-+=.12.估计512-与0.5的大小关系:512-0.5(填“>”或“=”或“<”).13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式201520172016m n c++的值为.14.如图,ABC△内接于O,若32OAB=∠,则C=∠.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC△,请用圆规和直尺作出ABC△的一条中位线EF(不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得4565DAC DBC==∠,∠.若132AB=米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷第3页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表 成绩x (分)频数(人) 频率5060x ≤<10 0.056070x ≤< 30 0.15 7080x ≤< 40n 8090x ≤< m0.35 90100x ≤≤500.25根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B。

2017年甘肃省中考数学试卷(含答案解析)

2017年甘肃省中考数学试卷(含答案解析)

绝密★启用前甘肃省2017年初中毕业、高中招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )A B C D2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为( )A.439.310⨯B.53.9310⨯C.63.9310⨯D.60.39310⨯3.4的平方根是 ( )A.16B.2C.2±D.2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )A B C D5.下列计算正确的是( )A.224x x x+=B.824x x x÷=C.236x x x=D.22()0x x--=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( )A.115B.120C.135_____________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为 ( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是( )A .22cmB .32cmC .42cmD .52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)11.分解因式:221x x -+= . 12.估计51-与0.5的大小关系:51- 0.5(填“>”或“=”或“<”). 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC△内接于O,若32OAB=∠,则C=∠.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得4565DAC DBC ==∠,∠.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin 650.91cos650.42tan 65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________根据所给信息,解答下列问题: (1)m = ,n = ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段; (4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。

2017年甘肃省中考数学试卷(含详细答案)

2017年甘肃省中考数学试卷(含详细答案)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .C .2±D .4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是()A .B .C .D .cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)11.分解因式:221x x -+= . 12.0.50.5(填“>”或“=”或“<”). 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC △内接于O ,若32OAB =∠,则C =∠.15.若关于x 的一元二次方程2(1)410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,90C =∠,8cm AC =,6cm BC =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC △中,90,1,2ACB AC AB ===∠,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于 (结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分4分)113tan30(π4)2-⎛⎫+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212x x ⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得4565DAC DBC ==∠,∠.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。

2017年贵州省中考数学试卷含答案(Word版)

2017年贵州省中考数学试卷含答案(Word版)

2017年贵州省中考数学试卷含答案(Word版)2017年初中毕业生学业(升学)统一考试试卷数学注意事项:1.答题前,请在答题卡规定的位置填写自己的姓名和准考证号。

2.卷Ⅰ需要使用2B铅笔,卷Ⅱ需要使用0.5毫米黑色签字笔作答。

请将答案书写在答题卡规定的位置,字体工整,笔迹清楚。

3.所有题目必须在答题卡上作答。

在试卷上答题无效。

4.本试题共6页,满分150分,考试用时120分钟。

5.考试结束后,请将试卷和答题卡一并交回。

卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。

在每小题的四个选项中,只有一个选项正确,请将你认为正确的选项填涂在相应的答题卡上)1.下列各数中,无理数为()A。

0.2.B。

√3.C。

1.5.D。

22.2017年毕节市参加中考的学生约为人,将用科学记数法表示为()A。

1.15×10^4.B。

1.15×10^5.C。

11.5×10^4.D。

1.15×10^63.下列计算正确的是()A。

a×a=a。

B。

(a+b)=a+b。

C。

a÷a=1.D。

(a)=a^2+3a+64.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A。

3个。

B。

4个。

C。

5个。

D。

6个5.对一组数据:-2,1,2,1,下列说法不正确的是()A。

平均数是1.B。

众数是1.C。

中位数是1.D。

极差是46.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A。

55°。

B。

125°。

C。

135°。

D。

140°7.关于x的一元一次不等式的解集为{x|3<x<7},则m的值为()A。

14.B。

7.C。

-2.D。

28.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放回鱼塘。

2017年甘肃省庆阳市中考数学试卷(解析版)

2017年甘肃省庆阳市中考数学试卷(解析版)
2
A.
B.
C.
第 2 页(共 17 页)
D.
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分. 11. (3 分)分解因式:x ﹣2x+1= 12. (3 分)估计
2
. 0.5. (填“>” 、 “=” 、 “<” )
与 0.5 的大小关系是:
13. (3 分)如果 m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然 数,那么代数式 m
2
A. (32﹣2x) (20﹣x)=570 B.32x+2×20x=32×20﹣570 C. (32﹣x) (20﹣x)=32×20﹣570 D.32x+2×20x﹣2x =570 10. (3 分)如图①,在边长为 4cm 的正方形 ABCD 中,点 P 以每秒 2cm 的速度从点 A 出 发,沿 AB→BC 的路径运动,到点 C 停止.过点 P 作 PQ∥BD,PQ 与边 AD(或边 CD) 交于点 Q,PQ 的长度 y(cm)与点 P 的运动时间 x(秒)的函数图象如图②所示.当点 P 运动 2.5 秒时,PQ 的长是( )
22. (6 分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景 观之一.数学课外实践活动中,小林在南滨河路上的 A,B 两点处,利用测角仪分别对北 岸的一观景亭 D 进行了测量. 如图, 测得∠DAC=45°, ∠DBC=65°. 若 AB=132 米, 求观景亭 D 到南滨河路 AC 的距离约为多少米?(结果精确到 1 米,参考数据:sin65° ≈0.91,cos65°≈0.42,tan65°≈2.14)
2015
+2016n+c
2017
的值为

甘肃省庆阳市2017届九年级上期末数学试卷含答案解析

甘肃省庆阳市2017届九年级上期末数学试卷含答案解析

B.从一个装有 2 个白球和 1 个红球的袋子中任取一球,取到红球的概率
ห้องสมุดไป่ตู้
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被 2 整除的概率
7.某种品牌运动服经过两次降价,每件零售价由 560 元降为 315 元,已知两次
降价的百分率相同,求每次降价的百分率.设每次降价的百分率为 x,下面所
列的方程中正确的是( ) A.560(1+x)2=315 B.560(1﹣x)2=315
C.560(1﹣2x)2=315
D.560(1﹣2)x =315
8.二次函数 y=x2+4x+3 的图象可以由二次函数 y=2 的x 图象平移而得到,下列平 移正确的是( )
A.先向左平移 2 个单位,再向上平移 1 个单位
B.先向左平移 2 个单位,再向下平移 1 个单位
C.先向右平移 2 个单位,再向上平移 1 个单位
甘肃省庆阳市 2017 届九年级(上)期末数学试卷(解析版)
一、选择题 1.下列事件中是必然发生的事件是( ) A.抛两枚均匀的硬币,硬币落地后,都是正面朝上 B.射击运动员射击一次,命中十环 C.在地球上,抛出的篮球会下落 D.明天会下雨 2.已知 m,n 是关于 x 的一元二次方程 x2﹣3x+a=0 的两个解,若(m﹣1) (n﹣1)=﹣6,则 a 的值为( ) A.﹣10 B.4 C.﹣4 D.10 3.已知 P(x,y)在第三象限,且|x|=1,|y|=7,则点 P 关于 x 轴对称的点的 坐标是( ) A.(﹣1.7 ) B.(1,﹣7 ) C.(﹣1,﹣7 ) D.(1,7) 4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑, 与图中阴影部分构成轴对称图形的概率是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省庆阳市2017年中考数学试卷(解析版)一、选择题(每小题3分,共10小题,合计30分) 1.下面四个手机应用图标中,属于中心对称图形的是( ).A BC D答案:B.解析:根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.故 选B .考点:中心对称图形2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃庆阳发射升空,与天宫 二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度, 393000用科学记数法可以表示为( ). A.439.310⨯B.83.9310⨯C.63.9310⨯D.60.39310⨯答案:B.解析:根据科学计数法的定义:把一个数字记为的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法.故选B . 考点:科学计数法. 3.4的平方根是( ) A.16B.2C.2±D.2±答案:C.解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根. ∵(±2)2=4,∴4的平方根是±2.故选C . 考点:平方根.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( ).A B CD第4题图答案:D.解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆 环,中间的圆要画成实线.故选D . 考点:三视图.5.下列计算正确的是( ). A.224x x x += B.824x x x ÷= C.236x x x ⋅=D.()220x x --=答案:D.解析:根据合并同类项、同底数幂的乘法、除法等知识点进行判断, A 项错误,合并同类项应为22x ;B 项错误,根据同底数幂相除,底数不变,指数相减可知826x x x =¸;C 项错误,根据同底数幂相乘,底数不变,指数相加可知235x x x ?;D 项正确,()22220x x x x --=-=.故选D.考点:幂的运算法则.6.把一把直尺与一块三角板如图放置,若145=∠°,则2∠为( ). A.115°B.120°C.135°D.145°答案:C.解析:根据三角形外角性质得到∠3=∠C+∠1=135°,然后根据平行线的性质即可得到∠2=∠3=135°.故选C.考点:平行线的性质与三角形外角性质.7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( ). A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<12第6题图答案:A.解析:根据一次函数y kx b =+的图象经过二、三、四象限,由一次函数图象与系数的关系,即可得出0,0k b >>.故选A . 考点:一次函数的性质.8.已知,,a b c 是ABC △的三条边长,化简a b c c a b +----的结果为( ). A.222a b c +- B.22a b +C.2cD.0答案:D.解析:根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a b c +-> 0,c a b --<0,所以a b c c a b +----=a b c +-+c a b --=0,故选D . 考点:三角形三边的关系.9.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地 上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ). A.()()32220570x x --=B.32203220570x x +⨯=⨯-C.()()3220=3220570x x --⨯-D.2322202570x x x +⨯-=答案:A.解析:将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为()322x -米,宽为()20x -米,所以草坪面积为长与宽的乘积,即可列出方程()()32220570x x --=.故选A .x yO 第7题图第9题图x20m30mx20m30m考点:一元二次方程的应用.10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径 运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ).A.22cmB.32cmC.42cmD.52cm答案:B.解析:当点P 运动2.5秒时,如图所示:AB CDPQ则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B.考点:函数的图象.二、填空题:(每小题4分,共8小题,合计32分) 11.分解因式:221x x -+= . 答案:2(1)x .解析:根据完全平方公式,分解因式即可. 考点:因式分解. 12.估计512-与0.5的大小关系:512- 0.5.(填“>”或“=”或“<”) 答案:>.ABCD Q Px (秒)y (cm )O 2图②图① 第10题图解析:∵0.5=12,又5>2,∴5﹣1>1,即512->12.故答案为>.考点:无理数的估算.13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式 201520172016m n c ++的值为 .答案:0.解析:∵m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴1m =-,0n ==0,c 1=,∴201520172016m n c ++=(﹣1)2015+2016×0+12017=0,故答案为0. 考点:有理数的有关概念.14.如图,ABC △内接于O ⊙,若32OAB =∠°,则C =∠ .答案:58°.解析:连接OB .在△OAB 中,OA =OB (⊙O 的半径),∴∠OAB =∠OBA ;又∵∠OAB =28°,∴∠OBA =28°;∴∠AOB =180°﹣2×28°=124°; 而∠C =∠AOB (同弧所对的圆周角是所对的圆心角的一半),∴∠C =62°; 故答案是:62°.考点:圆周角定理.15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .答案:k ≤5且k ≠1.解析:∵关于x 的一元二次方程()21410k x x -++=有实数根,∴1k -≠0且24b ac ≥0,即42﹣4×(1k -)×1≥0,解得k ≤5且k ≠1.故答案为:k ≤5且k ≠1. 考点:一元二次方程根的判别式.16.如图,一张三角形纸片ABC ,90C =∠°,8cm AC =,6cm BC =,现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm.第14题图答案:154.解析:在Rt △ABC 中,因为AC =6cm ,BC =8cm ,根据勾股定理,所以AB =10cm.设CE =x cm ,由 折叠的性质得:BD =AD =5x cm , BE =AE =(8﹣x )cm ,在Rt △BCE 中,根据勾股定理可知: AC 2+CD 2=AD 2,即62+(8﹣x )2=x 2,解方程得x =154.故答案为154. 6cm8cmABC D E考点:图形折叠与勾股定理.17.如图,在ABC △中,90ACB =∠°,1AC =,2AB =,以点A 为圆心,AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于 .(结果保留p )答案:3π.解析:在Rt △ABC 中,AC =1,AB =2,∴cos ∠A =12AC AB =,∴∠A=60°,∴CD 的长为6011803ππ⨯=. 考点:弧长公式.18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图 形的周长为,第2017个图形的周长为.A B C8cm6cm第16题图第17题图………1211第1个图形第2个图形第3个图形第18题图答案:8,6053.解析:根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053. 考点:规律探索.三、解答题(一):本大题共5个小题,共38分. 19.计算:o11123tan 30(4)()2π--+--思路分析:会正确化简二次根式、零指数、负指数幂. 解:原式=3233123-⨯+- =23312-+-=31-. 20.解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩,并写出该不等式组的最大整数解.思路分析:先求出不等式组的解集,再找出解集中的最大整数解。

解:解1(1)2x - ≤1得:x ≤3, 解1-x <2得:x >-1.则不等式组的解集是:-1<x ≤3. ∴该不等式组的最大整数解为3x =.21.如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).思路分析:分别是作出AB 、AC 两边的垂直平分线,即确定AB 、AC 两边的中点,连接两个中点, 即可得到一条中位线。

解:如图,∴线段EF 即为所求作.第21题图ABC22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A 、B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量,如图,测得45DAC =∠°,65DBC =∠°.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin650.91°≈,cos650.42°≈,tan65 2.14°≈)思路分析:过D 作 DE ⊥AC ,构造Rt △DEA 、Rt △DEB. 在Rt △DEB 中,已知∠DBC =65°,∴tan65DE BE =o ;在Rt △DEA 中,已知∠DAC =45°,∴AE =DE ,即可列出方程,求出BE ,进而求得DE .解:过点D 作DE ⊥AC ,垂足为E ,设BE =x ,在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°,∴tan65DE x =o . 又∵∠DAC =45°,∴AE =DE .∴132tan65x x +=o , ∴ 解得115.8x ≈, ∴248DE ≈(米). ∴观景亭D 到南滨河路AC 的距离约为248米.23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被 分成面积相等的几个扇形,并在每个扇形区域内标上数字)。

相关文档
最新文档