2014-2015年江苏省南京市联合体八年级(上)期末数学练习试卷及答案
江苏省南京市八年级(上)期末数学试卷(含答案)
是( )
A.1
B. 4 3
7.下列各数中,无理数的是( )
C. 5 3
D.2
A.0
B.1.01001
C.π
D. 4
8.已知一次函数 y=kx+b,函数值 y 随自变置 x 的增大而减小,且 kb<0,则函数 y=kx+b
的图象大致是( )
A.
B.
C.
D.
9.下列各数中,无理数是( )
A.π
B.
C.
已知 ABC 的周长为 24, ABE 的周长为14 ,则 AC 的长(Βιβλιοθήκη )A.10B.14
C. 24
D.15
6.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点 D 在线段 OA
上,将△ABD 沿着直线 BD 折叠,点 A 的对应点为 E,当点 E 在线段 OC 上时,则 AD 的长
小季、小何同学经过探究,有以下发现:
小季发现: d 的最大值为 60 . 13
小何发现:当 d 2 时,连接 AI ,则 AI 平分 BAC .
请分别判断小季、小何的发现是否正确?并说明理由.
24.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中, 30 角所对 的直角边等于斜边的一半。小明同学对以上结论作了进一步探究.如图 1,在 RtABC 中, ACB 90 , AC 1 AB ,则: ABC 30 .
江苏省南京市八年级(上)期末数学试卷(含答案)
一、选择题 1.如图,已知 O 为 ABC 三边垂直平分线的交点,且 A 50 ,则 BOC 的度数为
()
A. 80
B.100
C.105
D.120
2.由四舍五入得到的近似数 8.01104 ,精确到( )
2014-2015学年八年级(上)期末数学综合检测(一)及答案
2014-2015学年八年级(上)期末数学综合检测(一)(120分钟120分)一、选择题(每小题3分,共30分)1. (2014•泰州中考)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B. 1,1,C. 1,1,D. 1,2,2. (2014•荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm3.(2014•湘潭中考)下列各数中是无理数的是()1A.B.﹣2 C.0 D.74.(2014•德州中考)下列计算正确的是()A.﹣(﹣3)2=9 B.=3 C.﹣(﹣2)0=1 D.|﹣3|=﹣35. (2014•资阳中考)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限6. (2014•天津中考)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁7.(2014•汕尾中考)如图,能判定EB∥AC的条件是()A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE8.(2014•新疆中考)“六•一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是 ( ) A . B .C .D .9.(2014•孝感中考)下列二次根式中,不能与合并的是 ( ) A .B .C .D .10.(2014·昆明中考)如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是 ( )A. 85°B. 80°C. 75°D. 70° 二、填空题(每小题3分,共24分)11.(2014•梅州中考)4的平方根是 .12.(2013•常州中考)已知点P (3,2),则点P 关于y 轴的对称 点P 1的坐标是 ,点P 关于原点O 的对称点P 2的坐标是 .13.(2014•汕尾中考)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为 ,平均数为 .14.( 2014•泉州中考)如图,直线a ∥b ,直线c 与直线a ,b 都相交,∠1=65°,则∠2= °.15. (2013•宁夏中考)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种. 16.(2014•泰州中考)点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 17.(2014•自贡中考)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则的值是 .DCBA18.(2014•汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.三、解答题(共66分)19. (8分) 计算:(1)(2014•新疆中考)(﹣1)3++(﹣1)0﹣.(2)(2014•孝感中考)(﹣)﹣2+﹣|1﹣|20.(6分) (2014•湖州中考)解方程组.21. (8分) (2014•益阳中考)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.22. (9分) (2014•珠海中考)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23. (8分) (2014•湘潭中考)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.24. (7分) (2014•广东中考)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.(10分) (2013•鄂州中考)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).26. (10分) (2014•天津中考)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?答案及解析4【解析】选B.A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选B.7【解析】选D.A和B中的角不是三线八角中的角;C中的角是同一三角形中的角,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.8【解析】选B.设购买A型童装x套,B型童装y套,由题意得,.故选B.13【解析】6出现的次数最多,故众数为6,平均数为:=6.答案:6,6.14【解析】∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,答案:65.15【解析】选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.答案:3.16【解析】∵点A(﹣2,3)关于x轴的对称点A′,∴点A′的横坐标不变,为﹣2;纵坐标为﹣3,∴点A关于x轴的对称点A′的坐标为(﹣2,﹣3).答案:(﹣2,﹣3).(2)原式=+2﹣|﹣2|=4+2﹣2 =4.20【解析】①+②得:5x=10,即x=2,21【解析】∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.24【解析】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.25【解析】(1)根据图象信息:货车的速度V货==60(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);(3)设轿车从甲地出发x小时后再与货车相遇.∵V货车=60千米/时,V轿车==110(千米/时),∴110(x﹣4.5)+60x=300,解得x≈4.68(小时).答:轿车从甲地出发约4.68小时后再与货车相遇.26【解析】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.。
江苏省南京市联合体八年级(上)期末数学试卷
.
第 1 页,共 15 页
12. 在平面直角坐标系中,已知一次函数 y=-2x+1 的图象经过 P1(x1,y1)、P2(x2,
y2)两点,若 x1<x2,则 y1
y2.(填“>”“<”“=”)
13. 函数 y=kx 与 y=6-x 的图象如图所示,则 k=
.
14. 如图,五边形 ABCDE 中有一等边三角形 ACD.若
D. ∠A:∠B:∠C=3:4:5
二、填空题(本大题共 10 小题,共 20.0 分)
9. 若 x2-9=0,则 x=
.
10. 代数式 x−1 在实数范围内有意义,则 x 的取值范围是
.
11. 地球上七大洲的总面积约为 149 480 000km2(精确到 10 000 000km2).用科学记数
法表示这个近似数为
A. PQ≤5
B. PQ<5
C. PQ≥5
D. PQ>5
6. 在平面直角坐标系中,点 A 的坐标是(-1,2),作点 A 关于 y 轴的对称点,得到
点 A',再将点 A'向下平移 4 个单位,得到点 A″,则点 A″的坐标是( )
A. (−1,−2)
B. (1,2)
C. (1,−2)
D. (−2,1)
第 4 页,共 15 页
25. 某景区在同一线路上顺次有三个景点 A,B,C,甲、乙两名游客从景点 A 出发, 甲步行到景点 C;乙花 20 分钟时间排队后乘观光车先到景点 B,在 B 处停留一段
时间后,再步行到景点 C.甲、乙两人离景点 A 的路程 s(米)关于时间 t(分钟)
的函数图象如图所示.
第 8 页,共 15 页
9.【答案】±3
南京市八年级(上)期末数学试卷(含答案)
南京市八年级(上)期末数学试卷(含答案)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k > C .0k >D .k 0< 3.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c =4.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定 5.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .7 6.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数7.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠8.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .129.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.比较大小:10_____3.(填“>”、“=”或“<”)14.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.15.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.16.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.17.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.18.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于_____.19.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.20.函数y1=x+1与y2=ax+b的图象如图所示,那么,使y1、y2的值都大于0的x的取值范围是______.三、解答题21.A,B两地相距200千米,甲车从A地出发匀速行驶到B地,乙车从B地出发匀速行驶到A地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x小时(0≤x≤5),甲、乙两车离A地的距离分别为y1,y2千米,y1,y2与x之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y1,y2与x的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.①图中点P的坐标为(1,m),则m=;②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.22.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.23.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.24.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动;(2)当t 为何值时,BPQ ∆是等腰三角形?25.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.四、压轴题26.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?AB=,27.如图,已知四边形ABCO是矩形,点A,C分别在y轴,x轴上,4 3BC=.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.B解析:B【解析】【分析】根据如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形进行分析即可.【详解】A .12+22≠32,不能组成直角三角形,故此选项错误;B .2221+,能组成直角三角形,故此选项正确;C .32+22≠42,不能组成直角三角形,故此选项错误;D .42+52≠62,不能组成直角三角形,故此选项错误.故选:B .【点睛】本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.4.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.5.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.6.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A2,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.7.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.9.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.D解析:D【解析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.y=-x【解析】【分析】根据题意可得y=kx ,再把x=8时,y=-12代入函数,可求k ,进而可得y 与x 的关系式.【详解】设y=kx ,∵当x=8时,y=-12,∴-12=8k ,解得k=解析:y=-32x 【解析】【分析】根据题意可得y=kx ,再把x=8时,y=-12代入函数,可求k ,进而可得y 与x 的关系式.【详解】设y=kx ,∵当x=8时,y=-12,∴-12=8k ,解得k=-32, ∴所求函数解析式是y=-32x ; 故答案为:y=-32x . 【点睛】 本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.12.【解析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.14.200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x50=-,解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.15.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.16.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.17.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1 2 52kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式. 18.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.19.(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′解析:(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为(﹣4,3).考点:坐标与图形变化-旋转20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)y1=50x﹣50,y2=﹣40x+200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米;(3)①160;②当1≤x≤259时,s=250﹣90x;当259<x≤5时,s=90x﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴2005k bk b =+⎧⎨=+⎩解得:5050 kb=⎧⎨=-⎩∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.22.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.23.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.24.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP ,BPQ ∆不可能是等腰三角形,综上所述,当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【点睛】 本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.25.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC对应的函数表达式为(0)y kx b k=+≠,把(6,0),(0,3)A C代入,得603k bb+=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线AC对应的函数关系是为132y x=-+,(2)AC垂直平分BB',DB DB='∴,BDB∆'∴是等腰直角三角形,90BDB∠'=∴°过点D作DE x⊥轴于点E,DF y⊥轴于点F.90DFO DFB DEB'︒∴∠=∠=∠=,360EDF DFB DEO EOF︒∠=-∠-∠-∠,90EOF︒∠=,90EDF︒∴∠=,EDF BDB'∴∠=∠,BDF EDB'∴∠=∠,FDB EDB∴∆∆'≌,DF DE∴=,∴设点D坐标为(,)a a,把点(,)D a a代入132y x=-+,得0.53a a=-+2a∴=,∴点D坐标为(2,2),(3)同(2)可得PDF QDE∠=∠又2,90DF DE PDF QDE︒==∠=∠=PDF QDE∴∆∆≌PF QE ∴= ①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为10202-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解. 四、压轴题26.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ; ②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,。
南京市名校联考八年级(上)期末数学试卷含答案
值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
10.【答案】3
【解析】解:在 Rt△BAC 和 Rt△BDC 中,∵∠BAC=∠BDC=90°,O 是 BC 的中点,
∴AO= BC,DO= BC,
∴DO=AO, ∵AO=3, ∴DO=3, 故答案为 3. 利用直角三角形斜边中线的性质即可解决问题. 本题考查直角三角形斜边中线的性质,解题的关键是熟练掌握基本知识,属于中考常考 题型.
故答案为:± . 直接根据正数的平方根的意义解答即可. 本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0 的平方根 是 0;负数没有平方根.
8.【答案】
【解析】解:原式=x2÷
=x2×
=
故答案为:
先乘方,再算除法. 本题考查了分式的混合运算,掌握运算顺序是解决本题的关键.先乘方,再乘除,最后 算加减.有括号的先0,b>0, 故选:A. 设直线 AB 的解析式为:y=kx+b,把 A(1,-1),B(-1,3)代入代入,得到 k 和 b 值 ,即可得到结论. 本题考查了一次函数图象与系数的关系,正确的求出 k,b 的值是解题的关键.
7.【答案】±
【解析】解: 的平方根是± .
11.【答案】8
【解析】解:∵折叠 ∴CD=DE,BC=BE=5 ∵AE=AB-BE ∴AE=6-5=1 ∴△AED 的周长=AD+DE+AE=AD+DC+1=AC+1=7+1=8 故答案为:8 由题意可得:CD=DE,BC=BE=5,即可求 AE=1,则可求△AED 的周长. 本题考查折叠问题,熟练掌握折叠前后图形的形状和大小不变,位置变化,对应边和对 应角相等.
2014-2015学年南京联合体八上期末数学试卷
2014-2015学年南京联合体八上期末数学试卷一、选择题(共8小题;共40分)1. 下列图形中,既是中心对称图形又是轴对称图形的是A. B.C. D.2. 下列各点中,位于第四象限的点是A. B. C. D.3. 下列四组线段中,可以构成直角三角形的是A. ,,B. ,,C. ,,D. ,,4. 已知一次函数的图象经过第一、二、三象限,则的值可以是A. B. C. D.5. 下面几组条件中,能判断一个四边形是平行四边形的是A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直6. 将一次函数图象向右平移个单位,所得图象对应的函数关系式为A. B. C. D.7. 如图,矩形的边长为,长为,点在数轴上对应的数是,以点为圆心,对角线长为半径画弧,交数轴于点,则这个点表示的实数是A. B. C. D.8. 张师傅驾车从甲地到乙地,两地相距千米,汽车出发前油箱有油升,途中加油若干升(加油时间忽略不计),加油前、后汽车都以千米/小时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.以下说法错误的是A. 加油前油箱中剩余油量(升)与行驶时间(小时)的函数关系是B. 途中加油升C. 汽车加油后还可以行驶小时D. 汽车到达乙地时油箱中还余油升二、填空题(共10小题;共50分)9. 实数的平方根是.10. 菱形的两条对角线长分别为和,则这个菱形的周长为.11. 若正比例函数的图象过点,则该正比例函数的表达式为.12. 如图,在中,,分别是边,的中点,若,则.13. 如果点,在一次函数的图象上,则(填“”“”或“”).14. 已知一次函数和图象交点坐标为,则二元一次方程组的解是.15. 在矩形中,对角线,相交于点,若,,则.16. 在中,,的垂直平分线交于点,若,,则.17. 在平面直角坐标系中,平行四边形的三个顶点坐标分别为,,,则第四个顶点坐标为.18. 如表所示给出了直线上部分点的坐标,直线对应的函数关系式为.三、解答题(共8小题;共104分)19. (1)解方程:.(2)计算:.20. 如图,三个顶点的坐标分别为,,.(1)画出关于轴的对称图形,并写出点的坐标;(2)画出绕原点旋转后得到的图形,并写出点的坐标;(3)在轴上求作一点,使的周长最小,并直接写出点的坐标.21. 如图,在正方形中,点,在上,且.求证:四边形是菱形.22. 如图,是的边上一点,,交于点,.(1)求证:四边形是平行四边形;(2)若,求证:四边形是矩形.23. 学习“一次函数”时,我们从“数”和“形”两方面研究一次函数的性质,并积累了一些经验和方法,尝试用你积累的经验和方法解决下面问题.(1)在平面直角坐标系中,画出函数的图象;①列表:完成表格.②画出的图象;(2)结合所画函数图象,写出两条不同类型的性质;(3)写出函数与图象的平移关系.24. 学习全等三角形的判定方法以后,我们知道“已知两边和一角分别相等的两个三角形不一定全等”,但下列两种情形还是成立的.(1)第一情形(如图)在和中,,,,则根据,得出;(2)第二情形(如图)在和中,(和均为钝角),,,求证:.25. 小明骑自行车从甲地到乙地,到达乙地后,休息了一段时间,然后原路返回,停在甲地.整个过程保持匀速前进,设小明出发后,到达距离甲地的地方,图中的折线表示的是与之间的函数关系.(1)求小明从乙地返回甲地过程中,与之间的函数关系式;(2)在小明从甲地出发的同时,小红从乙地步行至甲地,保持的速度不变,到甲地停止.请在同一坐标系中画出小红离甲地的距离与之间的函数图象(标注图象与坐标轴交点的坐标);(3)小明和小红出发分钟以后,他们何时相距米?26. 如图,已知是等腰直角三角形,,点是的中点.作正方形,使点,分别在和上,连接,.(1)试猜想线段和的数量关系是;(2)将正方形绕点逆时针方向旋转,①判断()中的结论是否仍然成立?请利用图证明你的结论;②若,当取最大值时,求的值.答案第一部分1. A2. C3. B4. D5. B6. A7. C8. C第二部分9.10.11.12.13.14.15.16.17. 或或18.第三部分19. (1)解得:(2)原式.20. (1)如图所示,.(2)如图所示,.(3)如图所示,.21. 四边形是正方形,,.在和中,,同理:.在和中,,,,四边形是菱形.22. (1)如图,,,在和中,,,,四边形是平行四边形.(2),,,四边形是平行四边形,,,,四边形是矩形.23. (1)①填表如图:②如图所示:(2)①的图象位于第一、二象限,在第一象限随的增大而增大,在第二象限随的增大而减小,②函数有最小值,最小值为(答案不唯一).(3)函数图象向右平移个单位得到函数图象.24. (1)(2)如图,过点作,交的延长线于点,过点作,交的延长线于点,,,在和中,,,在和中,,,在和中,.25. (1)设,把与代入得:解得:,,则.(2)根据题意得:小红从乙到甲所用的时间为,画出图形,如图所示:(3)①设小红离甲地的距离与时间的关系式为,把与代入得:解得:,,所以,根据题意得:,即或,解得:或,经检验与都大于且都小于,符合题意,②当小明到达甲地,小红未到时,则有,即,则小明和小红出发分钟以后,他们分钟,分钟与分钟相距米.26. (1)【解析】如图,是等腰直角三角形,,点是的中点,,,,四边形是正方形,,在和中,,.(2)①成立.理由:如图,连接,在中,为斜边中点,,,,四边形为正方形,,且,,,在和中,,;②,当取得最大值时,取得最大值,如图,当旋转角为时,,,,,在中,由勾股定理,得,.。
江苏省南京市联合体学校八年级上学期期末模拟数学试题
江苏省南京市联合体学校八年级上学期期末模拟数学试题一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .53.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .24.3329a b a b a b a(a >0,b >0)的结果是( )A .53abB .23abC .179abD .89ab 5.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对7.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)12.3-的绝对值是 .13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.计算112242⨯+=__________. 15.等腰三角形中有一个角的度数为40°,则底角为_____________.16.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x、y的二元一次方程组2x y ax y b-=⎧⎨+=⎩的解是________.19.若直角三角形斜边上的中线是6cm,则它的斜边是 ___ cm.20.如图,在△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于点E,EC=1,则三角形ACE的面积为__.三、解答题21.已知一次函数5y kx=+的图象经过点(2,1)A-.(1)求k的值;(2)在图中画出这个函数的图象;(3)若该图象与x轴交于点B,与y轴交于点C,试确定OBC∆的面积..22.用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=1,1,10,1,1,1,x xx xx x-<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x 增大,y 怎样变化?②当x 取何值时,y 取最小值,y 的最小值是多少?③当x <1时,证明y 随着x 增大而变化的规律.23.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.24.某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10),请你结合表格和图象:付款金额ya 7.5 10 12b 购买量x (千克) 1 1.5 2 2.5 3(1)a = ,b = ;(2)求出当2x >时,y 关于x 的函数解析式;25.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =.求证:AE BD =.四、压轴题26.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?27.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.28.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为:(不写证明过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 3.A解析:A【解析】【分析】根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长.【详解】解:∵∠ABC 和∠ACB 的平分线相交于点F,∴∠DBF=∠FBC ,∠ECF=∠BCF,∵DF//BC,交AB 于点D,交AC 于点E.∴∠DFB=∠DBF ,∠CFE=∠BCF ,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.4.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.5.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像6.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.7.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D 、(﹣1,﹣2)在第三象限,故本选项错误.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.B解析:B【解析】【分析】根据平面直角坐标系中关于x 轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P (-2,3)关于x 轴的对称点坐标为(-2,-3).故选:B .【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD,再根据对顶角相等得到∠E=∠APE,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .12..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.15.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.16.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.18.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),所以解析:21 xy=⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.19.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:cm ;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:2612⨯=cm ;故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.20..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解解析:12. 【解析】【分析】 由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题21.(1)3k =-;(2)画图见解析;(3)256OBC S =△ 【解析】【分析】(1)把点(2,1)A -代入解析式5y kx =+即可求出k 的值;(2)用两点法画出函数图像即可;(3)利用三角形面积公式进行计算.【详解】解:(1)将2,1x y ==-代入5y kx =+得:251k +=-,解得3k =-;(2)∵3k =-,∴35y x =-+,当x=0时,y=5;当y=0时,-3x+5=0,53x =, 如图:(3)由(2)知,53OB =,OC=5, 则55•253226OBC OC OB S ⨯===. 【点睛】 本题主要考查了满足函数解析式的点一定在函数的图象上,一次函数与坐标轴的交点,以及图形与坐标的性质,求出一次函数解析式是解答本题的关键.22.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.23.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.24.(1)5,14a b ==;(2)42y x =+【解析】【分析】(1)根据函数图象可得:购买量是函数的自变量x ,也可看出2千克的金额为10元,从而可求1千克的价格,即a 的值,由表格可得出:当购买量大于等于2千克时,购买量每增加0.5千克,价格增加2元,进而可求b 的值;(2)先设关系式为y=px+q ,然后将(2,10),且x=3时,y=14,代入关系式即可求出p ,q 的值,从而确定关系式;【详解】解:(1)购买量是函数中的自变量x ,设射线OA 解析式为:y=mx ,把A (2,10)代入得:10=2m ,即m=5,∴射线OA 解析式为y=5x ,把x=1代入得:y=5,即a=5;根据题意得:b=2×5+(3-2)×5×80%=10+4=14;故答案为:5;14.(2)当x >2时,设y 与x 的函数关系式为:y=px+q ,∵y=px+q 经过点(2,10),又x=3时,y=14,∴210314p q p q +=⎧⎨+=⎩, 解得:42p q =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y=4x+2;【点睛】此题主要考查了一次函数的应用和待定系数法求一次函数解析式等知识,根据已知得出图表中点的坐标是解题关键.25.见解析【解析】【分析】利用SAS 证出△AOE ≌△BOD ,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO ⊥,DO EO ⊥,∴∠DOE =∠AOB =90°∴∠DOE +∠AOD =∠AOB +∠AOD∴∠AOE=∠BOD在△AOE 和△BOD 中AO BO AOE BOD EO DO =⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△BOD (SAS )∴AE BD =【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等是解决此题的关键.四、压轴题26.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.27.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.28.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ; (3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.29.90︒,45︒;20︒,30︒;2aγβ+=,2aγβ-=.【解析】【分析】(1)①如图①知1112EMC BMC∠=∠,1112C MF C MC∠=∠得()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【解析】【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH =32AD ,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD 3AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD 2AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.。
南京市八年级上学期期末数学试卷(解析版)
14南京市八年级上学期期末数学试卷(解析版)—、选择题 I-如图,直线y = x+b (h>O )分别交犬轴、y 轴于点人、B,直线y =也伙VO )与直线 y = x + h (b>O )交于点C,点C 在第二象限,过4、〃两点分别作AD 丄OC 于 BE 丄 OC 于 E ,且 BE+BO = 8, AΓ> = 4,则ED 的长为( A ・ 2 B - 2 2・4的平方根是() A. √2 B ・ ±J∑2 C. 2 D. 1 D. ±2 3.如图,ΔABC 中, ZACB = 90o , AC = 4, BC = 3,点E 是43中点,将ACAE 沿 着直线CE 翻折,得到△ CDE,连接AD,则线段GD 的长等于() 5 5 4. 若分式丄在实数范围内有意义,则实数X 的取值范困是()x-5 A. x≠5 B. x = 5 C. x>5 5. 下列有关一次函数y=-3x+2的说法中,错误的是( )A. 当X 值增大时,y 的值随着X 增大而减小B. 函数图象与y 轴的交点坐标为(0,2)C. 当χ>o 时,y>2D. 函数图象经过第一、二、四象限 6.计算(龙-3.14)。
+ (£尸=()5C.—4A. 5B. -3D. D.x<57.如图,以RtAABC 的三边为边,分别向外作正方形,它们的面积分别为5、S- S3,若 S l +S 2+S 3 = ∖β 9 则 S ]的值为()B.等于ICm D.等于 2.5 Cm9 r — a10∙若关和的分式方程石r "的解为负数,则字砾的取值范围…>二填空题11・已知点Pg 在一次函数y = 2x + ∖的图象上,贝∣J2Λ-Z?-I= _________________________________ ・12. 公元前3世纪,我国数学家赵爽曾用"弦图”证明了勾股左理.如图,"弦图”是由四个全 等的直角三角形(两直角边长分别为a 、b 且α<b)拼成的边长为C 的大正方形,如果每个 宜角三角形的而积都是3,大正方形的边长是JTI,那么by 二—・13. 如图,长方形OABe 中,OA = 8, AB = 6,点D 在边BC 上,且CD = 3DB ,点 E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点/V 恰好落C.点M (3, -4)关于y 轴的对称点的坐标是( (3, 4)B ・(・3, 4) C. )(3 -4)如图,在△ ABC 中,ZC = 90°, AC = 4 cm, BC = 3Cm. 上,现将△£>(?£沿DE 翻折,使点C 落在点C 处,连接AC ,, ()9. D ・10D. (-4, 3)点D 、E 分别在AC 、BC则AU 长度的最小值A. α≥ - 1B. σ≤ - 1 K α≠ - 2C. a> - 1D. a< - 1.且 CrH ・28.A. A.不存在 C.等于2 cm在边OC上,则OE的长为14.如图,在厶ABC中,AB = AC,的垂直平分线交AB于点D,交AC于点E,且ZA = 50。
江苏省南京市八年级(上)期末数学试卷(含答案)
江苏省南京市八年级(上)期末数学试卷(含答案)江苏省南京市八年级(上)期末数学试卷(含答案)一、选择题1.如图,已知O 为ABC ?三边垂直平分线的交点,且50A ∠=?,则BOC ∠的度数为()A .80?B .100?C .105?D .120? 2.由四舍五入得到的近似数48.0110?,精确到()A .万位B .百位C .百分位D .个位3.一次函数112y x =-+的图像不经过的象限是:() A .第一象限 B .第二象限C .第三象限D .第四象限4.如图,已知O 为ABC ?三边垂直平分线的交点,且50A ∠=?,则BOC ∠的度数为()A .80?B .100?C .105?D .120?5.如图, Rt ABC 中,90,B ED ∠=?垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长()A .10B .14C .24D .156.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是()A .1B .43C .53D .27.下列各数中,无理数的是() A .0B .1.01001C .πD .48.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是()A .B .C .D .9.下列各数中,无理数是() A .πB .C .D .10.下列各数:4,﹣3.14,227,2π,3无理数有() A .1个B .2个C .3个D .4个二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.13.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .14.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.15.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ?沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.16.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.17.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a18.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.19.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.20.3的平方根是_________.三、解答题21.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()ym 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.(标注..相关数据....)22.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.23.(1)如图①,小明同学作出ABC ?两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分ACB ∠,你觉得有道理吗?为什么?(2)如图②,Rt ABC ?中,5AC =,12BC =,13AB =,ABC ?的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数)小季、小何同学经过探究,有以下发现:小季发现:d 的最大值为6013. 小何发现:当2d =时,连接AI ,则AI 平分BAC ∠. 请分别判断小季、小何的发现是否正确?并说明理由.24.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
苏科版江苏省南京市八年级(上)期末数学试卷(含答案)
苏科版江苏省南京市八年级(上)期末数学试卷(含答案)一、选择题1.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( ) A .10B .8或10C .8D .以上都不对2.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形3.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°4.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,25B .3,4,5C .3,6,9D .37615.3329a b a b a b a(a >0,b >0)的结果是( ) A 53ab B 23ab C 179ab D 89ab 6.下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++7.1(1)1a a-- ) A .1-B 1a -C .1a --D .1a --8.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)9.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2B .b>-2C .b<2D .b<-210.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m≥-C .3nx m-≤≤ D .以上都不对11.下列计算,正确的是( ) A .a 2﹣a=a B .a 2•a 3=a 6 C .a 9÷a 3=a 3 D .(a 3)2=a 6 12.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BDD .AB =2BC13.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )14.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点15.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm二、填空题16.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.17.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.18.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.19.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .20.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.21.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.22.36的算术平方根是 .23.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.24.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.25.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
(完整)南京市八年级上学期末数学测试(内含答案),推荐文档
八年级上学期数学期末复习一、选择题(每题3分,共24分)1.下列数中不是无理数的是A.πB.4C.0.1010010001……D.82.下列式子中,是最简二次根式的是A.9B.20C.7D.313.等腰三角形的两边长分别为2、4,则它的周长为A.8B.10C.8或10D.以上都不对4.一次函数y=-x+6的图像上有两点A(-1,y1)、B(2,y2),则y1与y2的大小关系是A. y1>y2B. y1=y2C. y1<y2D. y1≥y25.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于点O,则图中全等三角形有A.1对B.2对C.3对D.4对6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k 的图像大致是A B C D7.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径画弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为A. m-2n=1B. m+2n=1C.2n-m=1D.n-2m=18.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④斜边上的高和一直角边分别相等的两个直角三角形全等.其中正确的说法有A.1个B.2个C.3个D.4个二、填空题(每题2分,共20分)9.16的平方根是.10.小华的身高为1.59m,将身高精确到0.1m约为_______m.11.若式子1x-在实数范围内有意义,则x的取值范围是.12.如图,△ABC中,AB=AC,点D、E在边BC上,请你添加一个条件____________________,使△ABD与△ACE全等.13.请你写一个一次函数,使它的图像经过点(1,0),你写的函数为.14.如图,在Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,OE DCBAED CBA∠ABC ,∠ACB 的平分线分别交DE 于点E 、D ,若AC=6, BC=10,则DE 的长为 . 15.如图,直线1232y x b y x =-+=-与直线相交于点P(m ,1),则不等式-21x+b >2x -3的解集为______.16.如图,在Rt △ABC 中,∠C=90°,BC=6,∠ABC 的平分线BD 交AC 于D, 且BD=8,点E 是AB 边上的一动点,则DE 的最小值为 .17.如图,在△ABC 中,AB=AC=7,BC=6,AF ⊥BC 于F ,BE ⊥AC 于E ,D 是AB 的中点,则△DEF 的周长是 .第15题 第16题 第17题 第18题18.如图,△ABC 是第1个等腰直角三角形,∠C=90°,AC=BC=1,D 是斜边AB 的中点,以BD 为一直角边向形外作第2个等腰直角三角形BDE ,……,如此继续作下去,第n 个等腰直角三角形的面积为_ . 三.解答题:19.(每小题4分,共12分) (1)计算:① 3114223②(3+2)(3-2)-(3-25)2 (2)解方程:2(2)9x -=20.(本题6分)已知:如图,△ABC 中,AB=AC ,∠A=100°,BD 是∠ABC 的平分线,点E 是BC 上一点,且BD=BE .求∠DEC 的度数.21.(本题6分)某厂计划生产A 、B 两种产品共50件.已知A 产品每件可获利润1200元,B 产品每件可获利润700元,设生产两种产品的获利总额为y (元),生产A 产品x (件).(1)写出y 与x 之间的函数关系式; (2)若生产A 、B 两种产品的件数均不少于10件,求总利润的最大值.22.(本题6分)如图,有一个长方形花园,对角线AC 是一条小路,现要在AD 边上找一个位置建报亭,使报亭到小路两端点A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭位置(不写作法,但需保留作图痕迹,交代作图结果); (2)如果AD =80m ,CD =40m ,求报亭到小路端点A 的距离.BCAEDCBA23.(本题7分)如图,△ABC 中,AB =AC ,D 、E 、F 分别在BC 、AB 、AC 上,且BE =DC ,BD =FC . (1)求证:DE =DF ;(2)当∠A 的度数为多少时,△DEF 是等边三角形,并说明理由.24.(本题9分)甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB 表示货车离甲地的距离y (千米)与行驶的时间x (小时)之间的函数关系;折线O-C-D 表示轿车离甲地的距离y (千米)与行驶时间x (小时)之间的函数关系,请根据图像解答下列问题: (1)求线段CD 对应的函数关系式;(2)求线段AB 的函数关系式,并求出轿车出发多少小时 与货车相遇?(3)当轿车出发多少小时两车相距80千米?25.(本题10分)如图,在平面直角坐标系中,OA=OB=OC=6,过点A 的直线AD 交BC 于点D ,交y 轴与点G ,△ABD 的面积为△ABC 面积的31. (1)求点D 的坐标;(2)过点C 作CE ⊥AD ,交AB 交于F ,垂足为E . ①求证:OF=OG ; ②求点F 的坐标.(3)在(2)的条件下,在第一象限内是否存在点P ,使△CFP 为等腰直角三角形,若存在,直接写出点P 坐标; 若不存在,请说明理由.(小时)参考答案9.4或-4 10.1.6 11. x≤112. 13.不唯一 14. 14 15.x <216.17.1018.12n三、解答题:19.(1)①23②30-+(2)x=-1或5 20.100° 21.(1)y=500x+35000 (2)55000元 22.(1)略 (2)50m 23.(1)略 (2) ∠A=60°24.(1)y=100x -20 (2) y=-60x+300; 2小时 (3)3522或25.(1)D(4,2) (2) ①略 ②F 6,05⎛⎫⎪⎝⎭(3)3636618186,,,,,55555⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
南京市名校联考八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分)1.将1930四舍五入精确到1000取得的近似数用科学记数法表示为()A. 1.93×103B. 2×103C. 1.9×103D. 2×1042.在线段、角、等腰三角形、直角三角形四个图形中,不一定是轴对称图形的有()个.A. 1B. 2C. 3D. 43.我市去年有4.7万名考生参加了中考,为了解这些考生的数学成绩,从中抽取了4000名考生的数学成绩进行统计分析,以下说法正确的是()A. 这4000名考生是总体的一个样本B. 这4.7万名考生的数学成绩是总体C. 每位考生是个体D. 抽取的4000名考生是样本容量4.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)5.若分式的值为0,则x的值为()A. -2B. 0C. 2D. ±26.已知一次函数y=kx+b的图象经过A(1,-1),B(-1,3)两点,则()A. k<0,b>0B. k<0,b<0C. k>0,b>0D. k>0,b<0二、填空题(本大题共9小题,共18.0分)7.的平方根是______ .8.化简x2÷()2的结果为______.9.下列调查:①了解一批节能灯管的使用寿命;②了解全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④坐飞机前,检查乘客是否携带违禁物品(安检).其中适合用抽样调查的是______(填写序号).10.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为______.11.如图的三角形纸片中,AB=6,AC=7,BC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为______.12.若直线l1:y=2x+4与直线l2:y=3x-2b的交点在x轴上,则b=______.13.如图,在△ABC中,AB=AC,AD=AE.若∠B=55°,∠BAD=50°,则∠EDC=______°.14.如图,在△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于点E,EC=1,则BE=______.15.已知A(1,2)、B(-3,1),点P在y轴上,则当y轴平分∠APB时,点P的坐标为______.三、计算题(本大题共2小题,共13.0分)16.先化简,再求值:÷(1+),其中x=-1.17.一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶0.8h后两车相遇,图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.(1)甲乙两地之间的距离是______km,轿车的速度是______km/h;(2)求线段BC所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图象.四、解答题(本大题共9小题,共57.0分)18.=19.计算:++.20.(1)化简:-;(2)方程-=的解是______.21.为增强学生体质,正确树立健康意识,学校普遍开展了阳光体育活动.某校为了解全校1200名学生平均每天体育活动时间的情况,随机调查了部分学生,对学生每天参加体育活动的时间t(小时)按如下4个选项进行收集整理:(A)t≥1.5小时(B)1≤t<1.5小时(C)0.5≤t<1小时(D)t<0.5小时,并根据调查结果绘制了两幅不完整的频数分布直方图和扇形统计图.请你根据以上信息解答下列问题:(1)求本次调查的学生人数和图(2)中选项“C”的圆心角度数;(2)将图(1)中选项“B”的部分补充完整;(3)请估计该校有多少名学生平均每天参加体育活动的时间在1小时以上(包括1小时).22.已知:如图,在△ABC中,BE⊥AC,CD⊥AB,BE=CD.求证:AB=AC.23.如图,已知直线l1的函数表达式为y=-x+,直线l2的函数表达式为y=kx-1,且l2经过点(,0).(1)求直线l2的函数关系式,并在图中画出该函数的图象;(2)若直线l1与l2相交于点P,求点P的坐标;(3)直接写出不等式-x+>kx-1的解集.24.某中学组织学生去离学校12km的东山农场,学生大队在以原定的速度行走了3km后,加快了行进速度,速度提高到原来的1.2倍,结果学生大队比原定所需时间提前了0.4h到达目的地.求学生大队原定的行进速度.25.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.26.八年级数学课上,老师出示了如下框中的题目.小华与同桌小明讨论后,进行了如下解答:(1)特殊情况入手探索:当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE______DB(填“>”,“<”或“=”).(2)一般情况进行论证:对原题中的一般情形,二人讨论后得出(1)中的结论仍然成立,并且可以通过构造一个三角形与△EBD全等来证明.以下是他们的部分证明过程:证明:如图2,过点E作EF∥BC,交AC于点F.……(请完成余下的证明过程)(3)应用结论解决问题:在边长为3的等边三角形ABC中,点E在直线AB上,且AE=1,点D在直线BC 上,ED=EC.则CD=______(直接写出结果).答案和解析1.【答案】B【解析】解:1930≈2000=2×103(精确到1000).故选:B.先用科学记数法表示,然后把百位上的数进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2.【答案】A【解析】解:线段、角、等腰三角形是轴对称图形,但直角三角形不一定是轴对称图形,故选:A.根据轴对称图形的概念对各图形分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】B【解析】解:A.这4000名考生的数学成绩是总体的一个样本,此选项错误;B.这4.7万名考生的数学成绩是总体,此选项正确;C.每位考生的数学成绩是个体,此选项错误;D.4000是样本容量,此选项错误;故选:B.根据①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量进行分析即可.此题主要考查了总体、个体、样本、样本容量,关键是掌握总体、个体、样本、样本容量的定义.4.【答案】D【解析】解:将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为(3+2,2-2),即(5,0),故选:D.横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(3+2,2-2),再解即可.此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:由题意可知:解得:x=2故选:C.根据分式的值为零的条件即可求出x的值.本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.6.【答案】A【解析】解:设直线AB的解析式为:y=kx+b,把A(1,-1),B(-1,3)代入y=kx+b得,,解得:k=-2,b=1,∴k<0,b>0,故选:A.设直线AB的解析式为:y=kx+b,把A(1,-1),B(-1,3)代入代入,得到k和b值,即可得到结论.本题考查了一次函数图象与系数的关系,正确的求出k,b的值是解题的关键.7.【答案】±【解析】解:的平方根是±.故答案为:±.直接根据正数的平方根的意义解答即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【答案】【解析】解:原式=x2÷=x2×=故答案为:先乘方,再算除法.本题考查了分式的混合运算,掌握运算顺序是解决本题的关键.先乘方,再乘除,最后算加减.有括号的先算括号里面的.9.【答案】①③【解析】解:①了解一批节能灯管的使用寿命,适合抽样调查;②了解全班同学的身高,适合全面调查;③调查市场上某种食品的色素含量是否符合国家标准,适合抽样调查;④坐飞机前,检查乘客是否携带违禁物品(安检),适合全面调查;故答案为:①③.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.10.【答案】3【解析】解:在Rt△BAC和Rt△BDC中,∵∠BAC=∠BDC=90°,O是BC的中点,∴AO=BC,DO=BC,∴DO=AO,∵AO=3,∴DO=3,故答案为3.利用直角三角形斜边中线的性质即可解决问题.本题考查直角三角形斜边中线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】8【解析】解:∵折叠∴CD=DE,BC=BE=5∵AE=AB-BE∴AE=6-5=1∴△AED的周长=AD+DE+AE=AD+DC+1=AC+1=7+1=8故答案为:8由题意可得:CD=DE,BC=BE=5,即可求AE=1,则可求△AED的周长.本题考查折叠问题,熟练掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.【答案】-3【解析】解:直线l1:y=2x+4中,令y=0,则x=-2,∴直线l1经过(-2,0),又∵直线l2:y=3x-2b也经过(-2,0),∴0=3×(-2)-2b,解得b=-3,故答案为:-3.依据直线l1:y=2x+4,求出当y=0时x的值,得到与x轴的交点坐标,代入直线l2即可得到b的值.本题主要考查了一次函数图象上点的坐标特征等知识点的理解和掌握,能熟练地根据性质进行推理和计算是解此题的关键.13.【答案】25【解析】解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,在△ABD中,∠ADC=∠B+∠BAD,∴∠ADE=∠ADC-∠EDC=∠B+∠BAD-∠EDC,在△CDE中,∠AED=∠EDC+∠C,∴∠B+∠BAD-∠EDC=∠EDC+∠C,∴∠EDC=∠BAD,∵∠BAD=50°,根据等边对等角的性质可得∠B=∠C,∠ADE=∠AED,再利用三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADC和∠AED,然后求出∠EDC与∠BAD的关系,再代入数据计算即可得解.本题考查了等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,主要利用了等边对等角的性质,熟记性质并求出∠EDC与∠BAD的关系是解题的关键.14.【答案】【解析】解:∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴AC=CE=1,∴AE=CE=,∴BE=AE=.故答案为:.根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.15.【答案】(0,)【解析】解:如图,当y轴平分∠APB时,点A关于y的对称点A'在BP上,∵A(1,2),∴A'(-1,2),设A'B的表达式为y=kx+b,把A'(-1,2),B(-3,1)代入,可得,解得k=,b=,∴y=x+,令x=0,则y=,∴点P的坐标为(0,),故答案为:(0,).当y轴平分∠APB时,点A关于y的对称点A'在BP上,利用待定系数法求得A'B的表达式,即可得到点P的坐标.本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键.16.【答案】解:原式=÷(+)=÷=•=,当x=-1时,原式=-.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.【答案】解:(1)150,75;(2)点B的纵坐标是:150-50×1=100,∴点B的坐标为(1,100),设线段BC所表示的函数表达式是y=kx+b,,得,∴线段BC所表示的函数表达式是y=-125x+225;(3)货车到达乙地用的时间为:150÷5=3(小时),轿车到达甲地用的时间为:150÷75=2,因为货车提前1小时出发,所以它们同时到达目的地,货车与轿车相遇后的y(km)与x(h)的函数图象如下图所示.【解析】解:(1)由题意可得,甲乙两地之间的距离是150km,轿车的速度是;(150-50×1.8)÷0.8=75km/h,故答案为:150,75;(2)见答案;(3)见答案.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得线段BC所表示的函数表达式;(3)根据题意和函数图象可以中画出货车与轿车相遇后的y(km)与x(h)的函数图象.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【答案】解:由题意,分式的分母分子同时乘以一个不为0的数或式时,分式的值不变,分子乘以-a,则分母也要乘以-a,即=故答案为:-a2.【解析】分式的基本性质是指分式的分子和分母同时乘以或除以一个不为零的数或整式,分式的值不变.据此可知:分子由b变为-ab是分子b乘以-a得来的,故分母也得乘以-a,问题可求.本题考查对分式的基本性质的掌握情况19.【答案】解:原式=7-3+6=10.【解析】直接利用二次根式以及立方根的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】x=-3【解析】解:(1)-=-=-=;(2)原分式方程化为:-=,方程两边同乘最简公分母:2(x+2)(x-2)得,4-x-2=x2-4,解得:x1=2,x2=-3,经检验:x1=-3是原方程的解,x2=2是原方程的增根,故答案为:x=-3.(1)根据分式加减法的法则计算即可;(2)将原分式方程化为:-=,方程两边同乘最简公分母:2(x+2)(x-2),化为整式方程在求解.本题考查了分式方程的解法,容易出错的是去分母这一关节,特别要注意方程两边“同乘”的含义,另外验根是不可缺少的一步.21.【答案】解:(1)学生人数==200(人);选项“C”的圆心角度数=360°×=54°;(2)选项“B”的系数有100人,条形图如图所示:(3)估计该校有多少名学生平均每天参加体育活动的时间在1小时以上人数为1200×=960(人).【解析】(1)根据A组人数60人占30%,即可求出总人数;根据圆心角=360°×百分比,可得选项“C”的圆心角度数;(2)求出B组人数即可画出条形图;(3)用样本估计总体的思想即可解决问题;本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在△AEB和△ADC中,,∴△AEB≌△ADC(AAS),∴AB=AC.【解析】根据AAS证明△AEB≌△ADC即可解决问题.本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.【答案】解:(1)把点(,0)代入y=kx-1得,k-1=0,解得:k=2,∴直线l2的函数关系式为:y=2x-1,该函数的图象如图所示;(2)解方程组得,,∴点P的坐标为(1,1);(3)∵直线l1与l2的交点坐标为:(1,1),∴-x+>kx-1的解集为:x<1.【解析】(1)把点(,0)代入y=kx-1得,即可得到结论;(2)解方程组得,,于是得到结论;(3)根据两直线的解得坐标即可得到结论.本题考查了一次函数与一元一次不等式,一次函数的性质,正确是作出图象是解题的关键.24.【答案】解:设大队的原来速度为xkm/h,则后来的速度是1.2xkm/h,根据题意可得:,解得:x=,经检验:x=是原方程的根且符合题意,答:学生大队原定的行进速度是km/h.【解析】设大队的原来速度为xkm/h,则后来的速度是1.2xkm/h,根据题意列出方程,求解即可.本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:分式方程求解后,应注意检验其结果是否符合题意.25.【答案】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x=,∴AB=+3=.【解析】(1)利用勾股定理的逆定理即可直接证明△BCD是直角三角形;(2)设AD=x,则AC=x+3,在直角△ABD中,利用勾股定理即可列出方程,解方程,即可求解.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.同时考查了勾股定理,等腰三角形的性质.26.【答案】= 2或4【解析】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠BAC=∠ACB=∠ABC=60°,∵EF∥BC∴∠AFE=∠AEF=∠ABC=60°,∠FEC=∠ECB∴△AEF为等边三角形,∴AE=EF=AF∴∠EFC=∠EBD=120°,∵ED=EC,∴∠EDB=∠ECB,且∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠BAC=∠ACB=∠ABC=60°,∵EF∥BC∴∠AFE=∠AEF=∠ABC=60°,∠FEC=∠ECB∴△AEF为等边三角形,∴AE=EF=AF∴∠EFC=∠EBD=120°,∵ED=EC,∴∠EDB=∠ECB,且∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,由(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵ED=EC∴∠EDC=∠ECD∵EF∥BC∴∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,△AEF是等边三角形,∴AE=EF在△BDE和△FEC中,∴△BDE≌△FEC(AAS),∴EF=BD,∴BD=EF=AE=1,∴CD=BC-BD=3-1=2,故答案为:2或4.(1)过E作EF∥BC交AC于点F,由题意可得△AEF是等边三角形,可得AE=EF,通过证明△BDE≌△FEC,可得到AE=EF=DB;(2)过E作EF∥BC交AC于点F,由题意可得△AEF是等边三角形,可得AE=EF,可利用“AAS”证明△BDE≌△FEC,可得BD=EF=AE;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到本题是三角形综合题,考查全等三角形的判定和性质,等边三角形的性质和判定,平行线的性质等知识,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.。
南京市联合体第一学期期末试题 八年级数学(含答案)-精品推荐
2019-2020学年度第一学期期末学情分析样题八年级数学一、选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( ▲ )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ ) A. 0.6 B. 0.7 C. 0.67 D. 0.704. 一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >>7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .4个B .8个C .10个D .12个二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 ▲ . 11. 若032=++-y x ,则()2013y x +的值为 _▲___.12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 ▲ . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,(第7题图)可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 ▲ .14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 ▲ .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 ▲ .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = ▲ °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为cm.18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0. (2)(4分)232)3(8)2(+---20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:(第13题图)(第16题图)(第18题图)(第15题图)(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:已知06.2 1.435,求下列各数的算术平方根:①0.0206;②206;③20600.21. (本题满分6分)已知关于x的一次函数y=mx+2的图像经过点(-(1)求m的值;(2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)∠EDC=∠ECD(2)OC=OD(3)OE是线段CD的垂直平分线第22题图EDBC A O23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上. (1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可); (2) 在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式A(第23题图)(2)试计算:何时两车相距300千米?26.(本题满分10分)小丽的爸爸驾车外出旅行,途经甲地到乙地.设他出发第t min 时的速度为 v m/min ,图中的折线表示他从甲地到乙地的驾车速度v 与时间t 之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min 运动的路程在数值上等于长方形AOLB 的面积.由物理学知识还可知:小丽爸爸前n (5<n ≤10)秒运动的路程在数值上等于矩形AOLB 的面积与梯形BLNM 的面积之和(以后的路程在数值上有着相似的特点).(1) 小丽的爸爸驾车的最高速度是__▲ __m/min ;(2) 当45≤t ≤50时,求v 与t 之间的函数关系式,并求出小丽爸爸出发第47min 时的速度; (3) 如果汽车每行驶100km 耗油10L ,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?27.(本题满分8分) 在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC. 试探索以下问题:(1)当点E 为AB 的中点时,如图1,请判断线段AE 与DB 的大小关系, 请你直接写出结论:AE ▲ DB (填“>”“<”或“=”).(2)当点E 为AB 上任意一点时,如图2,AE 与DB 的大小关系会改变吗?请说明理由.)第27题图图2图1ED CBAEDCBA2013-2014学年度第一学期期末学情分析样题(2)八年级数学答卷纸(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共16分)二、填空题(每题2分,共20分)9._____________________ 13._____________________ 17._____________________ 10._____________________ 14.______________________ 18._____________________ 11.______________________ 15.______________________ 12.______________________ 16.______________________三、解答题(本大题共9小题,共64分)19.(本题满分8分)(1)(4分)求出式子中x 的值:9x 2-16=0.(2)(4分)计算:232)3(8)2(+---20.(本题满分5分) (1)(2)21.(本题满分6分)(1)(3)22.(本题满分8分)(1)(2) (3)23.(本题满分7分)24.(本题满分6分)A(第23题图)(1))(2)26.(本题满分10分)(1)_______________________ m/min;(2)(3)27.(本题满分8分)第27题图图2图1ED CBAED CBA(1) AE__________DB ; (2)参考答案一、选择题(每小题2分,共16分)二.填空题(每小题2分,共20分)9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1)三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43 …………………………………………………………………4分(1)原式=2-(-2)+3………………………………………………………………3分=7…………………………………………………………………………4分20.(本题满分5分)(1)被开方数扩大或缩小n 210倍,非负数的算术平方根就相应的扩大或缩小n10倍;或者说成被开方数的小数点向左或向右移动2n 位,算术平方根的小数点就向左或向右移动n 位.……………………………………………3分(2)0.1435………………………3分14.35………………………4分; 143.5………………………5分21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分 解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC=∠ECD.(只要证法对就得分)……………3分(2)全等或等角对等边…………………………………………………6分 (3)用“三线合一”或“垂直平分线”的判断………………………8分23.(7分) A 1B 1=102+(8+6)2=296 …………………………………………2分 A 2B 2=62+(8+10)2=360 …………………………………………4分 A 3B 3=82+(6+10)2=320 …………………………………………6分 ∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分 24.(7分)25.(7分) (1) y 1=100x ,y 2=800-160x …………………………………………2分 (2) ①两车未相遇: (800-160x )-100x =300解得x =2513………………………………………4分②两车相遇后:100x -(800-160x )=300解得x = 5513 ………………………………………6分答:2513 h 或5513 h 两车相距300km ……………………………………………7分26.(10分) (1) 1200………………………………………2分(2) 设v =kt +b (k ≠0),∵函数图象经过点(45,800),(50,0),∴⎩⎨⎧45k +b =80050k +b =0 ……………………………4分 解得⎩⎨⎧k =-160b =8000……………………………5分所以,v 与t 的关系式为v =-160t +8000……………………………6分 当t =47时,v =-160×47+8000=480(m/min ) ……………………………7分 (2)行驶的总路程为:400×5+(400+1200)×5×12 +1200×10+(1200+800)×10×12 +800×15+800×5×12=42000(m)=42(km ) ……………………………9分 …………10分 (2)AE 与DB 的大小关系不变…………………………………………3分 理由:过E 作EF//BC 交AC 于F,因为△ABC 是等边三角形 所以∠ABC=∠ACB=∠BAC=60°所以∠AEF=∠A BC =60°, ∠AFE=∠ACB=60° 所以△AEF 是等边三角形……………………………4分 所以AE=EF=AF,又因为AB=AC, 所以BE=CF……………………5分 所以∠DBE=∠EFC=180°-60°=120°………………6分 在△DBE 和△EFC 中F图2EDCBA因为⎪⎭⎪⎬⎫==∠=FC BE EFC DBE AEDB 所以△DBE≌△EFC………………………………………7分所以DB=EF=AE……………………………………………………………………8分。
2014-2015年江苏省南京市联合体八年级(上)期末数学练习试卷及参考答案
2014-2015学年江苏省南京市联合体八年级(上)期末数学练习试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一个选项是符合题目要求的)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)在平面直角坐标系中,点(3,﹣5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)下面各式正确的是()A.B.C.D.4.(2分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<05.(2分)台风是一种破坏性极大的自然灾害,气象台为预报台风,首先确定它的位置,下列说法能确定台风位置是()A.北纬26°,东经133°B.西太平洋C.距离台湾300海里D.台湾与冲绳岛之间6.(2分)星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家7.(2分)如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC8.(2分)如图,在菱形ABCD中,DE⊥AB,垂足为E,,BE=1,F是BC 的中点.现有下列四个结论:①DE=3;②四边形DEBC的面积等于9;③(AC+BD)(AC﹣BD)=80;④DF=DE.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程)9.(2分)的值为.10.(2分)一个等腰三角形一边长为7cm,另一边长为3cm,那么这个等腰三角形的周长为cm.11.(2分)小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是.12.(2分)一正三角形至少要绕其中心旋转度,就能与其自身重合.13.(2分)在平面直角坐标系中,已知点A(0,2),B(,0),C(0,﹣2),D(,0),则以这四个点为顶点的四边形ABCD是.14.(2分)如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=5,CF=12,则AB的长为.15.(2分)如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(﹣3,0)点C的坐标为.16.(2分)一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化的图象,若不计转向时间,则从开始起到3分钟止他们相遇的次数为次.三、解答题(本大题共10小题,共68分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)求x的值:49(1﹣x)2=25.18.(5分)计算:++﹣()2+.19.(6分)若一次函数y=﹣2x+b的图象经过(﹣1,4)(1)求b的值;(2)在所给直角坐标系中画出此函数图象;(3)观察图象直接写出x满足什么条件时,y>0.20.(6分)如图,在直角坐标系中,每个小正方形的边长都是单位1.(1)求出△ABC的面积;(2)画出△ABC 关于点O的中心对称图形△DEF,并写出△DEF各顶点的坐标;(3)已知点P(m,n)是△ABC中BC边上的任意一点,则点P关于点O的对称点的坐标为.(含有m,n的代数式表示)21.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.22.(7分)如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD是分别菱形、矩形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:(2)当四边形ABCD是矩形时,平行四边形EFGH是什么特殊图形,证明你的结论;(3)反之,当用上述方法所围成的平行四边形是矩形时,相应的原四边形必须满足怎样的条件?(直接写出结论)23.(8分)学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数关系式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)采用哪一种方案较省钱?说说你的理由.24.(7分)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.25.(8分)“国庆黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系式,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油0.1升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)26.(10分)如图,在直角坐标系中,矩形纸片ABCD的点B坐标为(9,3),若把图形按要求折叠,使B、D两点重合,折痕为EF.(1)△DEF是等腰三角形吗?说明理由;(2)求折痕EF的长及所在直线的解析式;(3)四边形ADFE与四边形CBEF是否是成中心对称的两个图形?如果是,画出对称中心并说明理由;如果不是,也请说明理由.2014-2015学年江苏省南京市联合体八年级(上)期末数学练习试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一个选项是符合题目要求的)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(2分)在平面直角坐标系中,点(3,﹣5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(3,﹣5)关于x轴的对称点为(3,5),在第一象限,故选:A.3.(2分)下面各式正确的是()A.B.C.D.【解答】解:A、=3,故本选项错误;B、±=±4,故本选项正确;C、﹣=﹣4,故本选项错误;D、﹣=﹣4,故本选项错误.故选:B.4.(2分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<0【解答】解:由图象可以看出:y随x的增大而增大,∴a﹣1>0,∴a>1.故选:A.5.(2分)台风是一种破坏性极大的自然灾害,气象台为预报台风,首先确定它的位置,下列说法能确定台风位置是()A.北纬26°,东经133°B.西太平洋C.距离台湾300海里D.台湾与冲绳岛之间【解答】解:用西太平洋或距离台湾300海里或台湾与冲绳岛之间都不能确定台风位置,只有北纬26°,东经133°可确定台风位置.故选:A.6.(2分)星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家【解答】解:由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.7.(2分)如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC【解答】解:A、正确,符合判定AAS;B、正确,符合判定ASA;C、正确,符合判定AAS;D、不正确,三角形全等必须有边的参与.故选:D.8.(2分)如图,在菱形ABCD中,DE⊥AB,垂足为E,,BE=1,F是BC 的中点.现有下列四个结论:①DE=3;②四边形DEBC的面积等于9;③(AC+BD)(AC﹣BD)=80;④DF=DE.其中正确结论的个数为()A.1个B.2个C.3个D.4个【解答】解:设DE=3k,则AE=4k,AD=5K,BE=k=1,∴AB=5,DE=3.故①正确;S梯形DEBC=×(1+5)×3=9,故②正确;∵DE=3,EB=1,∴DB=.又∵S ABCD=AB×DE=5×3=15,S ABCD=×BD×AC,∴15=××AC,AC=3.(AC+BD)(AC﹣BD)=AC2﹣BD2=(3)2﹣2=90﹣10=80.故③正确;作DH⊥BC于H点.∵DE⊥AB,DH⊥BC,∠ABD=∠CBD,∴DE=DH.又DH<DF,∴DE<DF.故④错误.所以①②③正确.故选:C.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程)9.(2分)的值为2.【解答】解:=2.故答案为:2.10.(2分)一个等腰三角形一边长为7cm,另一边长为3cm,那么这个等腰三角形的周长为17cm.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.11.(2分)小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是.【解答】解:观察图象可知两条直线的交点坐标为(1,2),所以这个方程组的解是.故答案为.12.(2分)一正三角形至少要绕其中心旋转120度,就能与其自身重合.【解答】解:∵360°÷3=120°,∴该图形绕中心至少旋转120度后能和原来的图案互相重合.故答案为:120.13.(2分)在平面直角坐标系中,已知点A(0,2),B(,0),C(0,﹣2),D(,0),则以这四个点为顶点的四边形ABCD是菱形.【解答】解:∵A(0,2),B(,0),C(0,﹣2),D(,0),∴OA=OC,OB=OD,AC⊥BD,∴四边形ABCD是平行四边形,∴▱ABCD是菱形.故答案为:菱形.14.(2分)如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=5,CF=12,则AB的长为13.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,∴AB2=AE2+BE2=169,∴AB=13,故答案为13.15.(2分)如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(﹣3,0)点C的坐标为(8,4).【解答】解:∵四边形ABCD是平行四边形,∴AB=DC=8,即C点的横坐标为8;∵AD=5,AO=|﹣3|=3,∴OD==4,即点C的纵坐标为4.故答案为:(8,4).16.(2分)一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化的图象,若不计转向时间,则从开始起到3分钟止他们相遇的次数为5次.【解答】解:甲、乙两人相遇即甲、乙图象有交点,由图象可知共有5个交点,即相遇5次.故答案为:5.三、解答题(本大题共10小题,共68分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)求x的值:49(1﹣x)2=25.【解答】解:(1﹣x)2=1﹣x=±x1=,x2=.18.(5分)计算:++﹣()2+.【解答】解:原式=2+2+﹣﹣5,=0.19.(6分)若一次函数y=﹣2x+b的图象经过(﹣1,4)(1)求b的值;(2)在所给直角坐标系中画出此函数图象;(3)观察图象直接写出x满足什么条件时,y>0.【解答】解:(1)把(﹣1,4)代入y=﹣2x+b得,4=2+b,解得b=2.(2)由(1)得y=﹣2x+2,当x=0时,y=2;当y=0时,x=1;于是与x轴交点为(1,0),与y轴交点为(0,2),如图:(3)由图可知,x<1时y>0.20.(6分)如图,在直角坐标系中,每个小正方形的边长都是单位1.(1)求出△ABC的面积;(2)画出△ABC 关于点O的中心对称图形△DEF,并写出△DEF各顶点的坐标;(3)已知点P(m,n)是△ABC中BC边上的任意一点,则点P关于点O的对称点的坐标为(﹣m,﹣n).(含有m,n的代数式表示)=S矩形ANLM﹣S△ANB﹣S△BLC﹣S△AMC=4.【解答】解:(1)S△ABC(2)所作图形如下所示:结合图形可得:D(5,﹣4)、E(3,0)F(2,﹣2).(3)点P关于点O的对称点的坐标为:(﹣m,﹣n).21.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解答】(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.22.(7分)如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD是分别菱形、矩形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:(2)当四边形ABCD是矩形时,平行四边形EFGH是什么特殊图形,证明你的结论;(3)反之,当用上述方法所围成的平行四边形是矩形时,相应的原四边形必须满足怎样的条件?(直接写出结论)【解答】解:(1)四边形ABCD是菱形时,平行四边形EFGH是矩形,四边形ABCD是矩形时,平行四边形EFGH是菱形,故答案为:矩形,菱形.(2)如图所示:当四边形ABCD是矩形时,平行四边形EFGH是菱形;理由:∵EF∥AC∥HG,EH∥BD∥GF.∴四边形EAOB,EFGH均为平行四边形,∵四边形ABCD为矩形,∴AC=DB,∴EH=EF=FG=HG,∴四边形EFGH为菱形;(3)当平行四边形是矩形时,原四边形ABCD必须满足的条件是对角线互相垂直.23.(8分)学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数关系式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)采用哪一种方案较省钱?说说你的理由.【解答】解:(1)y1=7000x,y2=6000x+3000;(2)当y1=y2时7000x=6000x+3000,解得:x=3,则当学校添置3台计算机时,两种方案的费用相同.(3)7000x>6000x+3000,解得:x<3,则当x<3时,选择到商家直接购买省钱;7000x<6000x+3000,解得:x>3,则当x>3时,选择买零部件组装省钱.24.(7分)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.【解答】解:(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.25.(8分)“国庆黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系式,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油0.1升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【解答】解(1)14﹣10=4(小时).则小明全家在旅游景点游玩4小时;(2)设s与t的函数解析式是:s=kt+b,则,解得:.则函数解析式是:s=﹣60t+1020;令s=0,即﹣60t+1020=0,解得:t=17,则17点到家;(3)15升油行驶的最长距离是:15÷0.1=150(千米),设8点到10点的函数解析式是s=mt+n,根据题意得:,解得:,则函数的解析式是s=90t﹣720,当s=150时,t=,来回所需要的油是:2×180×0.1=36(升),则加油至少是36﹣15=21(升).则建议是:在9点40前必须加油,加油总量不少于21升.26.(10分)如图,在直角坐标系中,矩形纸片ABCD的点B坐标为(9,3),若把图形按要求折叠,使B、D两点重合,折痕为EF.(1)△DEF是等腰三角形吗?说明理由;(2)求折痕EF的长及所在直线的解析式;(3)四边形ADFE与四边形CBEF是否是成中心对称的两个图形?如果是,画出对称中心并说明理由;如果不是,也请说明理由.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥OC,∴∠BEF=∠OFE,由折叠的性质可得:∠BEF=∠OEF,∴∠OEF=∠OFE,∴OE=OF,∴△OEF是等腰三角形;(2)设BE=OE=x,则AE=9﹣x,在Rt△AEO中,AE2+OA2=OE2,∴(9﹣x)2+32=x2,解得:x=5,∴OF=OE=5,AE=4,∴E(4,3),F(5,0),∴EF=,设直线EF的解析式为:y=kx+b,则,解得:,∴直线EF的解析式为y=﹣3x+15;(2)四边形ADFE与四边形CBEF是成中心对称的两个图形.理由:连接BD交EF于M,∵B、D关于EF对称,∴BM=DM,EM⊥BD,∵AB∥OC,∴△BME∽△DMF,∴EM:FM=BM:DM,∴EM=FM∴E、F关于M成中心对称,B、D关于M成中心对称,又∵M为BD的中点,∴A、C关于M成中心对称.∴四边形AEFD与四边形CFEB关于M成中心对称.。
南京市联合体第一学期期末试卷 八年级数学(含答案)
第一学期期末学情分析样题八年级数学一、选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( ▲ )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ ) A. 0.6 B. 0.7 C. 0.67 D. 0.704. 一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <5 6. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >> 7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( ) A .汽车在高速公路上的行驶速度为100km/h B .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .4个B .8个C .10个D .12个二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 ▲ . 11. 若032=++-y x ,则()2013y x +的值为 _▲___.12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 ▲ . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 ▲ .14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 ▲ .(第7题图)15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 ▲ .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = ▲ °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为cm.18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐 标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0. (2)(4分)232)3(8)2(+---20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,(1(2)运用你发现的规律,探究下列问题:已知06.2≈1.435,求下列各数的算术平方根: ①0.0206; ②206; ③20600.21. (本题满分6分)已知关于x 的一次函数y =mx +2的图像经过点(-2,(第16题图)(第18题图)(第15题图)(1)求m 的值; (2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4, 请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D . 求证:(1)∠EDC =∠ECD(2)OC =OD(3)OE 是线段CD 的垂直平分线23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和A(第23题图)第22题图ED B CA O点B 在小正方形的顶点上. (1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可); (2) 在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式 (2)试计算:何时两车相距300千米?26.(本题满分10分)v m/min ,图中的折线表示他从甲地到乙地的驾车速度v 与时间t 之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min 运动的路程在数值上等于长方形AOLB 的面积.由物理学知识还可知:小丽爸爸前n (5<n ≤10)秒运动的路程在数值上等于矩形AOLB 的面积与梯形BLNM 的面积之和(以后的路程在数值上有着相似的特点).(1) 小丽的爸爸驾车的最高速度是__▲ __m/min ;(2) 当45≤t ≤50时,求v 与t 之间的函数关系式,并求出小丽爸爸出发第47min 时的速度; (3) 如果汽车每行驶100km 耗油10L ,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?27.(本题满分8分) 在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC. 试探索以下问题:(1)当点E为AB的中点时,如图1,请判断线段AE与DB的大小关系,请你直接写出结论:AE ▲ DB(填“>”“<”或“=”).(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系会改变吗?请说明理由.第27题图图2图1ED CBAED CBA2013-2014学年度第一学期期末学情分析样题(2)八年级数学答卷纸(考试时间100分钟,试卷总分100分)9._____________________ 13._____________________ 17._____________________ 10._____________________ 14.______________________ 18._____________________ 11.______________________ 15.______________________ 12.______________________ 16.______________________三、解答题(本大题共9小题,共64分)19.(本题满分8分)(1)(4分)求出式子中x 的值:9x 2-16=0.(2)(4分)计算:232)3(8)2(+---20.(本题满分5分) (1) (2)21.(本题满分6分)(1)22.(本题满分8分)(1)(2)(3)23.(本题满分7分)24.(本题满分6分)25.(本题(1)(2)A(第23题图))26.(本题满分10分)(1)_______________________ m/min;(2)(3)27.(本题满分8分)第27题图图2图1ED CBAED CBA(1) AE__________DB ; (2)参考答案9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1)三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43 …………………………………………………………………4分(1)原式=2-(-2)+3………………………………………………………………3分=7…………………………………………………………………………4分20.(本题满分5分)(1)被开方数扩大或缩小n210倍,非负数的算术平方根就相应的扩大或缩小n10倍;或者说成被开方数的小数点向左或向右移动2n 位,算术平方根的小数点就向左或向右移动n 位.……………………………………………3分(2)0.1435………………………3分14.35………………………4分;143.5………………………5分21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC =∠ECD .(只要证法对就得分)……………3分(2)全等或等角对等边…………………………………………………6分(3)用“三线合一”或“垂直平分线”的判断………………………8分23.(7分) A 1B 1=102+(8+6)2 =296 …………………………………………2分A 2B 2=62+(8+10)2 =360 …………………………………………4分 A 3B 3=82+(6+10)2 =320 …………………………………………6分 ∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分24.(7分)分) 25.(7y 1=(1)100x ,y 2=800-160x …………………………………………2分(2) ①两车未相遇: (800-160x )-100x =300解得x =2513 ………………………………………4分②两车相遇后:100x -(800-160x )=300解得x = 5513 ………………………………………6分答:2513 h 或5513 h 两车相距300km ……………………………………………7分26.(10分) (1) 1200………………………………………2分(2) 设v =kt +b (k ≠0),∵函数图象经过点(45,800),(50,0),∴⎩⎨⎧45k +b =80050k +b =0……………………………4分 解得⎩⎨⎧k =-160b =8000……………………………5分 所以,v 与t 的关系式为v =-160t +8000……………………………6分当t =47时,v =-160×47+8000=480(m/min ) ……………………………7分(2) 行驶的总路程为:400×5+(400+1200)×5×12 +1200×10+(1200+800)×10×12 +800×15+800×5×12=42000(m)=42(km ) ……………………………9分…………10分 (2)AE 与DB 的大小关系不变…………………………………………3分理由:过E 作EF//BC 交AC 于F,因为△ABC 是等边三角形 所以∠ABC =∠ACB =∠BAC =60°所以∠AEF =∠ABC =60°, ∠AFE =∠ACB =60°所以△AEF 是等边三角形……………………………4分所以AE=EF=AF,又因为AB=AC, 所以BE=CF……………………5分所以∠DBE =∠EFC =180°-60°=120°………………6分在△DBE 和△EFC 中 因为⎪⎭⎪⎬⎫==∠=FC BE EFC DBE AE DB 所以△DBE ≌△EFC………………………………………7分所以DB=EF=AE……………………………………………………………………8分F 图2E D C B A。
【解析版】南京市鼓楼区2014-2015年八年级上期末数学试卷
2014-2015学年江苏省南京市鼓楼区八年级(上)期末数学试卷一、选择题(共6小题,每小题2分,满分12分)1.4的平方根是()A.±2 B. 2 C.﹣2 D. 162.下列图形中,不是轴对称图形的是()A. B. C. D.3.下列问题中,适合用普查的是()A.了解初中生最喜爱的电视节目B.了解某班学生数学期末考试的成绩C.估计某水库中每条鱼的平均重量D.了解一批灯泡的使用寿命4.在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是() A. AC=A1C1 B.∠C=∠C1 C. BC=B1C1 D.∠B=∠B15.如图,一次函数y1=x+b与y2=kx﹣2的图象相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b >kx﹣2的解集是()A. x<﹣2 B. x>﹣2 C. x<﹣1 D. x>﹣16.如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2014+a2015+a2016的值为(A. 1006 B. 1007 C. 1509 D. 1511二、填空题(共10小题,每小题2分,满分20分)7.= ;= .8.一次函数y=2x的图象沿y轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为.9.已知点A坐标为(﹣2,﹣3),则点A到x轴距离为,到原点距离为.10.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.11.如图是某超市2013年各季度“加多宝”饮料销售情况折线统计图,根据此统计图,用一句话对此超市该饮料销售情况进行简要分析:.12.在△ABC中, AB=c,AC=b,BC=a,当a、b、c满足时,∠B=90°.13.比较大小,2.0 2.020020002…(填“>”、“<”或“=”).14.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为.15.如图,A、C、E在一条直线上,DC⊥AE,垂足为C.已知AB=DE,若根据“HL”,△ABC≌△DEC,则可添加条件为.(只写一种情况)16.已知点A(1,5),B(3,1),点M在x轴上,当AM﹣BM最大时,点M的坐标为.三、解答题(共10小题,满分68分)17.求下列各式中的x:(1)25x2=36;(2)(x﹣1)3+8=0.18.如图,长2.5m的梯子靠在墙上,梯子的底部离墙的底端1.5m,求梯子的顶端与地面的距离h.19.某校准备在校内倡导“光盘行动”,随机调查了部分同学某年餐后饭菜的剩余情况,调查数据的部分统计结果如表:某校部分同学某午餐后饭菜剩余情况调查统计表项目人数百分比没有剩8040%剩少量a20%剩一半50b剩大量3015%合计200100%a= ,b= .(2)把条形统计图补充完整,并画出扇形统计图;(3)校学生会通过数据分析,估计这次被调查的学生该午餐浪费的食物可以供20人食用一餐,据此估算,这个学校1800名学生该午餐浪费的食物可供多少人食用一餐?20.已知:如图,AB=AC,BD=CD,DE⊥AB,垂足为E,DF⊥AC,垂足为F.求证:DE=DF.21.如图,在正方形网格中,每个小正方形的边长为1个单位长度,已知△ABC的顶点A、C的坐标分别为(﹣4,4)、(﹣1,2),点B坐标为(﹣2,1).(1)请在图中正确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ABC沿x轴正方向平移5个单位长度后,再沿x轴翻折得到△DEF,画出△DEF;(3)点P(m,n)是△ABC的边上的一点,经过(2)中的变化后得到对应点Q,直接写出点Q的坐标.22.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.23.世界上大部分国家都使用摄氏温度(℃),但美、英等国的天气预报仍然使用华氏温度(℉)两种计量之间有如下对应:…010********…摄氏温度x华氏…32506886104122…温度y如果华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求出该一次函数表达式;(2)求出华氏0度时摄氏约是多少度(精确到0.1℃);(3)华氏温度的值可能小于其对应的摄氏温度的值吗?如果可能,请求出x的取值范围,如不可能,说明理由.24.已知:△ABC是等边三角形.(1)用直尺和圆规分别作△ABC的角平分线BE、CD,BE,CD交于点O(保留作图痕迹,不写作法);(2)过点C画射线CF⊥BC,垂足为C,CF交射线BE与点F.求证:△OCF是等边三角形;(3)若AB=2,请直接写出△OCF的面积.25.一辆快车和一辆慢车分别从A、B两地同时出发匀速相向而行,快车到达B地后,原路原速返回A地.图1表示两车行驶过程中离A地的路程y(km)与行驶时间x(h)的函数图象.(1)直接写出快慢两车的速度及A、B两地距离;(2)在行驶过程中,慢车出发多长时间,两车相遇;(3)若两车之间的距离为skm,在图2的直角坐标系中画出s(km)与x(h)的函数图象.26.由小学的知识可知:长方形的对边相等,四个角都是直角.如图,长方形ABCD中,AB=4,BC=9,在它的边上取两个点E、F,使得△AEF是一个腰长为5的等腰三角形,画出△AEF,并直接写出△AEF的底边长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,并在图中相应的位置标出底边的长,如果图形不够用,请自己画出).2014-2015学年江苏省南京市鼓楼区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.4的平方根是()A.±2 B. 2 C.﹣2 D. 16考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.解答:解:∵(±2 )2=4,∴4的平方根是±2.故选:A.点评:本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2.下列图形中,不是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故正确;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列问题中,适合用普查的是()A.了解初中生最喜爱的电视节目B.了解某班学生数学期末考试的成绩C.估计某水库中每条鱼的平均重量D.了解一批灯泡的使用寿命考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解初中生最喜爱的电视节目,被调查的对象范围大,适宜于抽样调查,故A错误;B、了解某班学生数学期末考试的成绩适宜于普查,故B正确;C、估计某水库中每条鱼的平均重量,适宜于抽样调查,故C错误;D、了解一批灯泡的使用寿命,具有破坏性,适宜于抽样调查,故D错误;故选:B.点评:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是() A. AC=A1C1 B.∠C=∠C1 C. BC=B1C1 D.∠B=∠B1考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.解答:解:A、符合全等三角形的判定定理SAS,即能推出△ABC≌△A1B1C1,故本选项错误;B、符合全等三角形的判定定理AAS,即能推出△ABC≌△A1B1C1,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△A1B1C1,故本选项正确;D、符合全等三角形的判定定理ASA,即能推出△ABC≌△A1B1C1,故本选项错误;故选C.点评:本题考查了全等三角形的判定定理的应用,主要考查学生对判定定理的理解能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,一次函数y1=x+b与y2=kx﹣2的图象相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b >kx﹣2的解集是()A. x<﹣2 B. x>﹣2 C. x<﹣1 D. x>﹣1考点:一次函数与一元一次不等式.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b >kx﹣1的解集为x>﹣1.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选:D.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2014+a2015+a2016的值为(A. 1006 B. 1007 C. 1509 D. 1511考点:规律型:点的坐标.分析:由题意得即a1=1,a2=1,a3=﹣1,a4=2,a5=2,a6=3,a7=﹣2,a8=4,…,观察得到数列的规律,求出即可.解答:解:由直角坐标系可知A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6),即a1=1,a2=1,a3=﹣1,a4=2,a5=2,a6=3,a7=﹣2,a8=4,…,由此可知,所有数列偶数个都是从1开始逐渐递增的,且都等于所在的个数除以2,则a2014=1007,a2016=1008,每四个数中有一个负数,且为每组的第三个数,每组的第1奇数和第2个奇数是互为相反数,且从﹣1开始逐渐递减的,则2016÷4=504,则a2015=﹣504,则a2014+a2015+a2016=1007﹣504+1008=1511.故选:D.点评:本题主要考查了归纳推理的问题,关键是找到规律,属于基础题.二、填空题(共10小题,每小题2分,满分20分)7.= 3 ;= ﹣3 .考点:立方根;算术平方根.专题:计算题.分析:原式利用平方根,立方根定义计算即可.解答:解:原式=3;原式=﹣3.故答案为:3;﹣3.点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.8.一次函数y=2x的图象沿y轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为y=2x+3 .考点:一次函数图象与几何变换.分析:原常数项为0,沿y轴正方向平移3个单位长度是向上平移,上下平移直线解析式只改变常数项,让常数项加3即可得到平移后的常数项,也就得到平移后的直线解析式.解答:解:∵一次函数y=2x的图象沿y轴正方向平移3,∴新函数的k=2,b=0+3=3,∴得到的直线所对应的函数解析式是y=2x+3.故答案为y=2x+3.点评:本题考查了一次函数图象与几何变换,用到的知识点为:上下平移直线解析式只改变常数项,上加下减.9.已知点A坐标为(﹣2,﹣3),则点A到x轴距离为 3 ,到原点距离为.考点:点的坐标;勾股定理.分析:根据点到x轴的距离是点的纵坐标的绝对值,可得第一个空的答案,根据点到原点的距离是横坐标、纵坐标的平方和的绝对值,可得答案.解答:解:已知点A坐标为(﹣2,﹣3),则点A到x轴距离为 3,到原点距离为,故答案为:3,.点评:本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到原点的距离是横坐标、纵坐标的平方和的绝对值.10.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P .考点:估算无理数的大小;实数与数轴.分析:先估算出的取值范围,再找出符合条件的点即可.解答:解:∵4<7<9,∴2<<3,∴在2与3之间,且更靠近3.故答案为:P.点评:本题考查的是的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.11.如图是某超市2013年各季度“加多宝”饮料销售情况折线统计图,根据此统计图,用一句话对此超市该饮料销售情况进行简要分析:从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.考点:折线统计图.分析:由折线统计图可以看出,从第一季度到第三季度,此超市该饮料销售逐渐上升,第三季度达到最高峰,从第三季度到第四季度,销售快速下降.解答:解:由题意可得,从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.故答案为从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.点评:本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.从统计图中得到必要的信息是解决问题的关键.12.在△ABC中,AB=c,AC=b,BC=a,当a、b、c满足a2+c2=b2时,∠B=90°.考点:勾股定理的逆定理.分析:根据勾股定理的逆定理可得到满足的条件,可得到答案.解答:解:∵a2+c2=b2时,△ABC是以AC为斜边的直角三角形,∴当a、b、c满足a2+c2=b2时,∠B=90°.故答案为:a2+c2=b2.点评:本题主要考查勾股定理的逆定理,掌握当两边平方和等于第三边的平方时第三边所对的角为直角是解题的关键.13.比较大小,2.0> 2.020020002…(填“>”、“<”或“=”).考点:实数大小比较.分析: 2.0=2.0222222…,再比较即可.解答:解:2.0>2.020020002…故答案为:>.点评:本题考查了实数的大小比较的应用,注意:2.0=2.0222222….14.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标.解答:解:∵方程组的解为,∴一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).故答案为:(1,0).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.15.如图,A、C、E在一条直线上,DC⊥AE,垂足为C.已知AB=DE,若根据“HL”,△ABC≌△DEC,则可添加条件为BC=CE .(只写一种情况)考点:全等三角形的判定.专题:开放型.分析:求出∠ACB=∠DCE=90°,根据HL推出即可,此题答案不唯一,也可以是AC=DC.解答:解:BC=CE,理由是:∵DC⊥CE,∴∠ACB=∠DCE=90°,在Rt△ABC和Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),故答案为:BC=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,此题是一道开放型的题目,答案不唯一.16.已知点A(1,5),B(3,1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).考点:轴对称-最短路线问题;坐标与图形性质.分析:连接AB并延长与x轴的交点M,即为所求的点.求出直线AB的解析式,求出直线AB和x轴的交点坐标即可.解答:解:设直线AB的解析式是y=kx+b,把A(1,5),B(3,1)代入得:,解得:k=﹣2,b=7,即直线AB的解析式是y=﹣2x+7,把y=0代入得:﹣2x+7=0,x=,即M的坐标是(,0),故答案为(,0).点评:本题考查了轴对称,用待定系数法求一次函数的解析式等知识点的应用,关键是找出M的位置.三、解答题(共10小题,满分68分)17.求下列各式中的x:(1)25x2=36;(2)(x﹣1)3+8=0.考点:立方根;平方根.分析:(1)先两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先移项,再根据立方根定义开方,即可得出一个一元一次方程,求出方程的解即可.解答:解:(1)25x2=36,5x=±6,x1=,x2=﹣;(2)(x﹣1)3+8=0,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.点评:本题考查了立方根和平方根的应用,解此题的关键是能关键定义得出一个或两个一元一次方程.18.如图,长2.5m的梯子靠在墙上,梯子的底部离墙的底端1.5m,求梯子的顶端与地面的距离h.考点:勾股定理的应用.分析:在Rt△ABC中,利用勾股定理即可求出h的值.解答:解:在Rt△ABC中,AB2=AC2﹣BC2,∵AC=2.5m,BC=1.5m,∴AB==2m,即梯子顶端离地面距离h为2m.点评:本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.19.某校准备在校内倡导“光盘行动”,随机调查了部分同学某年餐后饭菜的剩余情况,调查数据的部分统计结果如表:某校部分同学某午餐后饭菜剩余情况调查统计表项目人数百分比没有剩8040%剩少量a20%剩一半50b剩大量3015%合计200100%(1)根据统计表可得:a= 40 ,b= 25% .(2)把条形统计图补充完整,并画出扇形统计图;(3)校学生会通过数据分析,估计这次被调查的学生该午餐浪费的食物可以供20人食用一餐,据此估算,这个学校1800名学生该午餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;统计表;扇形统计图.分析:(1)根据没剩余的人数是80,所占的百分比是40%,即可求得总人数,然后利用百分比的定义求得a、b的值;(2)求得剩少量的人数,求得对应的百分比,即可作出扇形统计图;(3)利用1800除以调查的总人数,然后乘以20即可.解答:解:(1)统计的总人数是:80÷40%=200(人),则a=200×20%=40,b=×100%=25%;(2)剩少量的人数是:200﹣80﹣50﹣30=40(人),扇形统计图是:;(3)×20=180(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知:如图,AB=AC,BD=CD,DE⊥AB,垂足为E,DF⊥AC,垂足为F.求证:DE=DF.考点:全等三角形的判定与性质.专题:证明题.分析:连接AD,利用“边边边”证明△ABD和△ACD全等,再根据全等三角形对应边上的高相等证明.解答:证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∵DE⊥AB,DF⊥AC,∴DE=DF(全等三角形对应边上的高相等).点评:本题考查了全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键.21.(6分)(2014秋•南京期末)如图,在正方形网格中,每个小正方形的边长为1个单位长度,已知△ABC的顶点A、C的坐标分别为(﹣4,4)、(﹣1,2),点B坐标为(﹣2,1).(1)请在图中正确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ABC沿x轴正方向平移5个单位长度后,再沿x轴翻折得到△DEF,画出△DEF;(3)点P(m,n)是△ABC的边上的一点,经过(2)中的变化后得到对应点Q,直接写出点Q的坐标.考点:作图-轴对称变换.专题:作图题.分析:(1)以点B向下2个单位,向右1个单位为坐标原点建立平面直角坐标系,然后确定出点B,再连接即可;(2)根据网格结构找出点A、B、C平移、对称后的对应点D、E、F的位置,然后顺次连接即可;(3)根据向右平移横坐标加,纵坐标不变,关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.解答:解:(1)如图所示;(2)△DEF如图所示;(3)点Q(﹣m﹣5,﹣n).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构以及平面直角坐标系的定义,准确找出对应点的位置是解题的关键.22.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.考点:直角三角形斜边上的中线;线段垂直平分线的性质.分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=AB,DF=AF=AC,然后求出AE+DE=AB,再求解即可;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.解答:(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB,DF=AF=AC,∴AE+DE=AB=15,AF+DF=AC,∵四边形AEDF的周长为24,AB=15,∴AC=24﹣15=9;(2)证明:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF垂直平分AD.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解题的关键.23.世界上大部分国家都使用摄氏温度(℃),但美、英等国的天气预报仍然使用华氏温度(℉)两种计量之间有如下对应:摄氏温…010********…度x华氏…32506886104122…温度y如果华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求出该一次函数表达式;(2)求出华氏0度时摄氏约是多少度(精确到0.1℃);(3)华氏温度的值可能小于其对应的摄氏温度的值吗?如果可能,请求出x的取值范围,如不可能,说明理由.考点:一次函数的应用.分析:(1)设一次函数的解析式为y=kx+b,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式求出其解即可;(3)由华氏温度的值小于其对应的摄氏温度的值建立不等式求出其解即可.解答:解:(1)设一次函数的解析式为y=kx+b,由题意,得,解得:,∴y=1.8x+32.答:一次函数表达式为y=1.8x+32;(2)当y=0时,1.8x+32=0,解得:x=﹣≈﹣18.9.答:华氏0度时摄氏约是﹣18.9℃;(3)由题意,得1.8x+32<x,解得:x<﹣.答:当x<﹣时,华氏温度的值小于其对应的摄氏温度的值.点评:本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.24.已知:△ABC是等边三角形.(1)用直尺和圆规分别作△ABC的角平分线BE、CD,BE,CD交于点O(保留作图痕迹,不写作法);(2)过点C画射线CF⊥BC,垂足为C,CF交射线BE与点F.求证:△OCF是等边三角形;(3)若AB=2,请直接写出△OCF的面积.考点:作图—复杂作图;等边三角形的判定与性质.分析:(1)利用直尺和圆规即可作出;(2)根据等边三角形的每个角的度数是60°,以及三角形的内角和定理,证明∠F=∠FCO=60°即可证得;(3)作OG⊥BC于点G,△OBC是等腰三角形,利用三角函数求得OC的长,则△OCF的面积即可求得.解答:解:(1)BE、CD就是所求;(2)∵BE是∠ABC的平分线,∴∠FBC=∠ABC=×60°=30°,同理,∠BCD=30°.∵CF⊥BC,即∠BCF=90°,∴∠F=∠FCO=60°,∴△OCF是等边三角形;(3)作OG⊥BC于点G.∵∠FBC=∠DCB=30°,∴OB=OC,∴CG=BC=AB=1,∴OC===.则S等边△OCF==.点评:本题考查了等边三角形的性质以及判定,和尺规作图,正确求得OC的长度是本题的关键.25.一辆快车和一辆慢车分别从A、B两地同时出发匀速相向而行,快车到达B地后,原路原速返回A地.图1表示两车行驶过程中离A地的路程y(km)与行驶时间x(h)的函数图象.(1)直接写出快慢两车的速度及A、B两地距离;(2)在行驶过程中,慢车出发多长时间,两车相遇;(3)若两车之间的距离为skm,在图2的直角坐标系中画出s(km)与x(h)的函数图象.考点:一次函数的应用.分析:(1)由速度=路程÷时间就可以得出结论,由函数图象的数据意义直接可以得出A、B两地之间的距离;(2)设OA的解析式为y=kx,AB的解析式为y1=k1x+b1,CD的解析式为y2=k2x+b2,由一次函数与二元一次方程组的关系就可以求出结论;(3)先求出两车相遇的时间,找到关键点的坐标就可以画出图象.解答:解:(1)由题意,得,A、B两地距离之间的距离为2250km,快车的速度为:2250÷10=225km/h,慢车的速度为:2250÷30=75km/h;(2)设OA的解析式为y=kx,AB的解析式为y1=k1x+b1,CD的解析式为y2=k2x+b2,由题意,得2250=10k,,,解得:k=225,,,∴y=225x,y1=﹣225x+4500,y2=﹣75x+2250当225x=﹣75x+2250时,x=7.5.当﹣225x+4500=﹣75x+2250时,解得:x=15.答:慢车出发7.5小时或15小时时,两车相遇;(3)由题意,得7.5小时时两车相遇,10时时,两车相距2.5(225+75)=750km,15时时两车相遇,20时时两车相距750km,由这些关键点画出图象即可.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,作函数图象的运用,解答时求出函数的解析式是关键.26.由小学的知识可知:长方形的对边相等,四个角都是直角.如图,长方形ABCD中,AB=4,BC=9,在它的边上取两个点E、F,使得△AEF是一个腰长为5的等腰三角形,画出△AEF,并直接写出△AEF的底边长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,并在图中相应的位置标出底边的长,如果图形不够用,请自己画出).考点:矩形的性质;等腰三角形的判定;勾股定理.分析:分点A是顶角顶点和底角顶点两种情况作出图形,然后过点E作EG⊥AD于G,利用勾股定理列式求出AG:①点A是顶角顶点时,求出GF,再利用勾股定理列式计算即可得解;②点A是底角顶点时,根据等腰三角形三线合一的性质可得AF=2AG.解答:解:如图,过点E作EG⊥AD于G,由勾股定理得,AG==3,①点A是顶角顶点时,GF=AF﹣AG=5﹣3=2,由勾股定理得,底边EF==2,②点A是底角顶点时,底边AF=2AG=2×3=6,综上所述,底边长为2或6.点评:本题考查了矩形的性质,等腰三角形的判定,勾股定理,难点在于分情况讨论,作出图形更形象直观.。
南京市联合体第一学期期末试题 八年级数学(含答案)
2019-2020学年度第一学期期末学情分析样题八年级数学一、选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( ▲ )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ ) A. 0.6 B. 0.7 C. 0.67 D. 0.704. 一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >>7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .4个B .8个C .10个D .12个二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 ▲ . 11. 若032=++-y x ,则()2013y x +的值为 _▲___.12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 ▲ . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,⎧2x -y +1=0(第7题图)14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 ▲ .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 ▲ .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = ▲ °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为cm.18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0. (2)(4分)232)3(8)2(+---20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:(第13题图)(第16题图)(第18题图)(第15题图)(2)运用你发现的规律,探究下列问题:已知06.2 1.435,求下列各数的算术平方根:①0.0206;②206;③20600.21. (本题满分6分)已知关于x的一次函数y=mx+2的图像经过点(-2(1)求m的值;(2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)∠EDC=∠ECD(2)OC=OD(3)OE是线段CD的垂直平分线第22题图EDBC A O23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上. (1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可); (2) 在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式 (2)试计算:何时两车相距300千米?A(第23题图)26.(本题满分10分)小丽的爸爸驾车外出旅行,途经甲地到乙地.设他出发第t min 时的速度为 v m/min ,图中的折线表示他从甲地到乙地的驾车速度v 与时间t 之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min 运动的路程在数值上等于长方形AOLB 的面积.由物理学知识还可知:小丽爸爸前n (5<n ≤10)秒运动的路程在数值上等于矩形AOLB 的面积与梯形BLNM 的面积之和(以后的路程在数值上有着相似的特点).(1) 小丽的爸爸驾车的最高速度是__▲ __m/min ;(2) 当45≤t ≤50时,求v 与t 之间的函数关系式,并求出小丽爸爸出发第47min 时的速度; (3) 如果汽车每行驶100km 耗油10L ,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?27.(本题满分8分) 在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC. 试探索以下问题:(1)当点E 为AB 的中点时,如图1,请判断线段AE 与DB 的大小关系, 请你直接写出结论:AE ▲ DB (填“>”“<”或“=”).(2)当点E 为AB 上任意一点时,如图2,AE 与DB 的大小关系会改变吗?请说明理由.图2图1ED CBAEDCBA2013-2014学年度第一学期期末学情分析样题(2)八年级数学答卷纸(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共16分)二、填空题(每题2分,共20分)9._____________________ 13._____________________ 17._____________________ 10._____________________ 14.______________________ 18._____________________ 11.______________________ 15.______________________ 12.______________________ 16.______________________三、解答题(本大题共9小题,共64分)19.(本题满分8分)(1)(4分)求出式子中x 的值:9x 2-16=0.(2)(4分)计算:232)3(8)2(+---20.(本题满分5分) (1)(2)21.(本题满分6分)(1)22.(本题满分8分)(1)(2) (3)23.(本题满分7分)24.(本题满分6分)A(第23题图)(1))(2)26.(本题满分10分)(1)_______________________ m/min;(2)(3)27.(本题满分8分)(1)AE__________DB;(2)第27题图图2图1ED CBAED CBA参考答案一、选择题(每小题2分,共16分)二.填空题(每小题2分,共20分)9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1)三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43 …………………………………………………………………4分(1)原式=2-(-2)+3………………………………………………………………3分=7…………………………………………………………………………4分20.(本题满分5分)(1)被开方数扩大或缩小n 210倍,非负数的算术平方根就相应的扩大或缩小n10倍;或者说成被开方数的小数点向左或向右移动2n 位,算术平方根的小数点就向左或向右移动n 位.……………………………………………3分(2)0.1435………………………3分14.35………………………4分; 143.5………………………5分21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分 解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC=∠ECD.(只要证法对就得分)……………3分(2)全等或等角对等边…………………………………………………6分 (3)用“三线合一”或“垂直平分线”的判断………………………8分23.(7分) A 1B 1=102+(8+6)2=296 …………………………………………2分 A 2B 2=62+(8+10)2=360 …………………………………………4分 A 3B 3=82+(6+10)2=320 …………………………………………6分 ∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分 24.(7分)25.(7分) (1) y 1=100x ,y 2=800-160x …………………………………………2分 (2) ①两车未相遇: (800-160x )-100x =300解得x =2513………………………………………4分②两车相遇后:100x -(800-160x )=300解得x = 5513 ………………………………………6分答:2513 h 或5513 h 两车相距300km ……………………………………………7分26.(10分) (1) 1200………………………………………2分(2) 设v =kt +b (k ≠0),∵函数图象经过点(45,800),(50,0), ∴⎩⎨⎧45k +b =80050k +b =0……………………………4分 解得⎩⎨⎧k =-160b =8000……………………………5分所以,v 与t 的关系式为v =-160t +8000……………………………6分 当t =47时,v =-160×47+8000=480(m/min ) ……………………………7分 (2)行驶的总路程为:400×5+(400+1200)×5×12 +1200×10+(1200+800)×10×12 +800×15+800×5×12=42000(m)=42(km ) ……………………………9分 …………10分 27.(1)“=” …………………………………………2分(2)AE 与DB 的大小关系不变…………………………………………3分 理由:过E 作EF//BC 交AC 于F,因为△ABC 是等边三角形所以∠ABC=∠ACB=∠BAC=60°所以∠AEF=∠A BC =60°, ∠AFE=∠ACB=60°所以△AEF 是等边三角形……………………………4分 所以AE=EF=AF,又因为AB=AC, 所以BE=CF……………………5分所以∠DBE=∠EFC=180°-60°=120°………………6分 在△DBE 和△EFC 中因为⎪⎭⎪⎬⎫==∠=FC BE EFC DBE AEDB 所以△DBE≌△EFC………………………………………7分所以DB=EF=AE……………………………………………………………………8分F图2EDCBA。
南京市联合体第一学期期末试题 八年级数学(含答案)优质版
2019-2020学年度第一学期期末学情分析样题八年级数学一、选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( ▲ )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ ) A. 0.6 B. 0.7 C. 0.67 D. 0.704. 一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( )A .321y y y >>B .321y y y <<C .231y y y <<D .132y y y >> 7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .4个B .8个C .10个D .12个二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 ▲ .(第7题图)11. 若032=++-y x ,则()2013y x +的值为 _▲___.12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 ▲ . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 ▲ .14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 ▲ .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 ▲ .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = ▲ °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为 cm.18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐 标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0. (2)(4分)232)3(8)2(+---(第13题图)(第16题图)(第18题图)(第15题图)20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:.2 1.435,求下列各数的算术平方根:已知06①0.0206;②206;③20600.21. (本题满分6分)已知关于x的一次函数y=mx+2的图像经过点(-2(1)求m的值;(2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C 、D . 求证:(1)∠EDC=∠ECD (2)OC =OD(3)OE 是线段CD 的垂直平分线23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上. (1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可); (2)在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);A(第23题图)第22题图EDB CAO25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式 (2)试计算:何时两车相距300千米?26.(本题满分10分)小丽的爸爸驾车外出旅行,途经甲地到乙地.设他出发第t min 时的速度为 v m/min ,图中的折线表示他从甲地到乙地的驾车速度v 与时间t 之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min 运动的路程在数值上等于长方形AOLB 的面积.由物理学知识还可知:小丽爸爸前n (5<n ≤10)秒运动的路程在数值上等于矩形AOLB 的面积与梯形BLNM 的面积之和(以后的路程在数值上有着相似的特点).(1) 小丽的爸爸驾车的最高速度是__▲ __m/min ;(2) 当45≤t ≤50时,求v 与t 之间的函数关系式,并求出小丽爸爸出发第47min 时的速度; (3) 如果汽车每行驶100km 耗油10L,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?)27.(本题满分8分) 在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC. 试探索以下问题:(1)当点E为AB的中点时,如图1,请判断线段AE与DB的大小关系,请你直接写出结论:AE ▲ DB(填“>”“<”或“=”).(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系会改变吗?请说明理由.第27题图图2图1ED CBAED CBA2013-2014学年度第一学期期末学情分析样题(2)八年级数学答卷纸(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共16分)二、填空题(每题2分,共20分)9._____________________ 13._____________________ 17._____________________ 10._____________________ 14.______________________ 18._____________________ 11.______________________ 15.______________________ 12.______________________ 16.______________________三、解答题(本大题共9小题,共64分)19.(本题满分8分)(1)(4分)求出式子中x 的值:9x 2-16=0.(2)(4分)计算:232)3(8)2(+---20.(本题满分5分)(1)(2)21.(本题满分6分)(1)(3)22.(本题满分8分)(1)(2)(3)23.(本题满分7分)A(第23题图)24.(本题满分6分)25.(本题满分6分) (1)(2))26.(本题满分10分)(1)_______________________ m/min;(2)(3)27.(本题满分8分)(1)AE__________DB;(2)第27题图图2图1ED CBAED CBA参考答案一、选择题(每小题2分,共16分)二.填空题(每小题2分,共20分)9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1)三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43 …………………………………………………………………4分(1)原式=2-(-2)+3………………………………………………………………3分=7…………………………………………………………………………4分20.(本题满分5分)(1)被开方数扩大或缩小n210倍,非负数的算术平方根就相应的扩大或缩小n10倍;或者说成被开方数的小数点向左或向右移动2n 位,算术平方根的小数点就向左或向右移动n位.……………………………………………3分(2)0.1435………………………3分14.35………………………4分; 143.5………………………5分21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分 解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC=∠ECD.(只要证法对就得分)……………3分(2)全等或等角对等边…………………………………………………6分 (3)用“三线合一”或“垂直平分线”的判断………………………8分23.(7分) A 1B 1=102+(8+6)2=296 …………………………………………2分A 2B 2=62+(8+10)2=360 …………………………………………4分 A 3B 3=82+(6+10)2=320 …………………………………………6分 ∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分24.(7分)25.(7分) (1) y 1=100x ,y 2=800-160x …………………………………………2分 (2) ①两车未相遇: (800-160x )-100x =300解得x =2513………………………………………4分②两车相遇后:100x -(800-160x )=300解得x = 5513 ………………………………………6分答:2513 h 或5513 h 两车相距300km ……………………………………………7分26.(10分) (1) 1200………………………………………2分(2) 设v =kt +b (k ≠0),∵函数图象经过点(45,800),(50,0),∴⎩⎨⎧45k +b =80050k +b =0 ……………………………4分 解得⎩⎨⎧k =-160b =8000……………………………5分所以,v 与t 的关系式为v =-160t +8000……………………………6分当t =47时,v =-160×47+8000=480(m/min ) ……………………………7分 (2)行驶的总路程为:400×5+(400+1200)×5×12 +1200×10+(1200+800)×10×12 +800×15+800×5×12=42000(m)=42(km ) ……………………………9分…………10分 27.(1)“=” …………………………………………2分(2)AE 与DB 的大小关系不变…………………………………………3分 理由:过E 作EF//BC 交AC 于F,因为△ABC 是等边三角形 所以∠ABC=∠ACB=∠BAC=60°所以∠AEF=∠A BC =60°, ∠AFE=∠ACB=60° 所以△AEF 是等边三角形……………………………4分 所以AE=EF=AF,又因为AB=AC, 所以BE=CF……………………5分 所以∠DBE=∠EFC=180°-60°=120°………………6分 在△DBE 和△EFC 中因为⎪⎭⎪⎬⎫==∠=FC BE EFC DBE AEDB 所以△DBE≌△EFC………………………………………7分所以DB=EF=AE……………………………………………………………………8分F图2EDCBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省南京市联合体八年级(上)期末数学练习试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一个选项是符合题目要求的)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)在平面直角坐标系中,点(3,﹣5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)下面各式正确的是()A.B.C.D.4.(2分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<05.(2分)台风是一种破坏性极大的自然灾害,气象台为预报台风,首先确定它的位置,下列说法能确定台风位置是()A.北纬26°,东经133°B.西太平洋C.距离台湾300海里D.台湾与冲绳岛之间6.(2分)星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家7.(2分)如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC8.(2分)如图,在菱形ABCD中,DE⊥AB,垂足为E,,BE=1,F是BC 的中点.现有下列四个结论:①DE=3;②四边形DEBC的面积等于9;③(AC+BD)(AC﹣BD)=80;④DF=DE.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程)9.(2分)的值为.10.(2分)一个等腰三角形一边长为7cm,另一边长为3cm,那么这个等腰三角形的周长为cm.11.(2分)小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是.12.(2分)一正三角形至少要绕其中心旋转度,就能与其自身重合.13.(2分)在平面直角坐标系中,已知点A(0,2),B(,0),C(0,﹣2),D(,0),则以这四个点为顶点的四边形ABCD是.14.(2分)如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=5,CF=12,则AB的长为.15.(2分)如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(﹣3,0)点C的坐标为.16.(2分)一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化的图象,若不计转向时间,则从开始起到3分钟止他们相遇的次数为次.三、解答题(本大题共10小题,共68分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)求x的值:49(1﹣x)2=25.18.(5分)计算:++﹣()2+.19.(6分)若一次函数y=﹣2x+b的图象经过(﹣1,4)(1)求b的值;(2)在所给直角坐标系中画出此函数图象;(3)观察图象直接写出x满足什么条件时,y>0.20.(6分)如图,在直角坐标系中,每个小正方形的边长都是单位1.(1)求出△ABC的面积;(2)画出△ABC 关于点O的中心对称图形△DEF,并写出△DEF各顶点的坐标;(3)已知点P(m,n)是△ABC中BC边上的任意一点,则点P关于点O的对称点的坐标为.(含有m,n的代数式表示)21.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.22.(7分)如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD是分别菱形、矩形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:(2)当四边形ABCD是矩形时,平行四边形EFGH是什么特殊图形,证明你的结论;(3)反之,当用上述方法所围成的平行四边形是矩形时,相应的原四边形必须满足怎样的条件?(直接写出结论)23.(8分)学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数关系式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)采用哪一种方案较省钱?说说你的理由.24.(7分)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.25.(8分)“国庆黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系式,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油0.1升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)26.(10分)如图,在直角坐标系中,矩形纸片ABCD的点B坐标为(9,3),若把图形按要求折叠,使B、D两点重合,折痕为EF.(1)△DEF是等腰三角形吗?说明理由;(2)求折痕EF的长及所在直线的解析式;(3)四边形ADFE与四边形CBEF是否是成中心对称的两个图形?如果是,画出对称中心并说明理由;如果不是,也请说明理由.2014-2015学年江苏省南京市联合体八年级(上)期末数学练习试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一个选项是符合题目要求的)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(2分)在平面直角坐标系中,点(3,﹣5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(3,﹣5)关于x轴的对称点为(3,5),在第一象限,故选:A.3.(2分)下面各式正确的是()A.B.C.D.【解答】解:A、=3,故本选项错误;B、±=±4,故本选项正确;C、﹣=﹣4,故本选项错误;D、﹣=﹣4,故本选项错误.故选:B.4.(2分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<0【解答】解:由图象可以看出:y随x的增大而增大,∴a﹣1>0,∴a>1.故选:A.5.(2分)台风是一种破坏性极大的自然灾害,气象台为预报台风,首先确定它的位置,下列说法能确定台风位置是()A.北纬26°,东经133°B.西太平洋C.距离台湾300海里D.台湾与冲绳岛之间【解答】解:用西太平洋或距离台湾300海里或台湾与冲绳岛之间都不能确定台风位置,只有北纬26°,东经133°可确定台风位置.故选:A.6.(2分)星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家【解答】解:由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.7.(2分)如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC【解答】解:A、正确,符合判定AAS;B、正确,符合判定ASA;C、正确,符合判定AAS;D、不正确,三角形全等必须有边的参与.故选:D.8.(2分)如图,在菱形ABCD中,DE⊥AB,垂足为E,,BE=1,F是BC 的中点.现有下列四个结论:①DE=3;②四边形DEBC的面积等于9;③(AC+BD)(AC﹣BD)=80;④DF=DE.其中正确结论的个数为()A.1个B.2个C.3个D.4个【解答】解:设DE=3k,则AE=4k,AD=5K,BE=k=1,∴AB=5,DE=3.故①正确;S梯形DEBC=×(1+5)×3=9,故②正确;∵DE=3,EB=1,∴DB=.又∵S ABCD=AB×DE=5×3=15,S ABCD=×BD×AC,∴15=××AC,AC=3.(AC+BD)(AC﹣BD)=AC2﹣BD2=(3)2﹣2=90﹣10=80.故③正确;作DH⊥BC于H点.∵DE⊥AB,DH⊥BC,∠ABD=∠CBD,∴DE=DH.又DH<DF,∴DE<DF.故④错误.所以①②③正确.故选:C.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程)9.(2分)的值为2.【解答】解:=2.故答案为:2.10.(2分)一个等腰三角形一边长为7cm,另一边长为3cm,那么这个等腰三角形的周长为17cm.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.11.(2分)小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是.【解答】解:观察图象可知两条直线的交点坐标为(1,2),所以这个方程组的解是.故答案为.12.(2分)一正三角形至少要绕其中心旋转120度,就能与其自身重合.【解答】解:∵360°÷3=120°,∴该图形绕中心至少旋转120度后能和原来的图案互相重合.故答案为:120.13.(2分)在平面直角坐标系中,已知点A(0,2),B(,0),C(0,﹣2),D(,0),则以这四个点为顶点的四边形ABCD是菱形.【解答】解:∵A(0,2),B(,0),C(0,﹣2),D(,0),∴OA=OC,OB=OD,AC⊥BD,∴四边形ABCD是平行四边形,∴▱ABCD是菱形.故答案为:菱形.14.(2分)如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=5,CF=12,则AB的长为13.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,∴AB2=AE2+BE2=169,∴AB=13,故答案为13.15.(2分)如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(﹣3,0)点C的坐标为(8,4).【解答】解:∵四边形ABCD是平行四边形,∴AB=DC=8,即C点的横坐标为8;∵AD=5,AO=|﹣3|=3,∴OD==4,即点C的纵坐标为4.故答案为:(8,4).16.(2分)一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化的图象,若不计转向时间,则从开始起到3分钟止他们相遇的次数为5次.【解答】解:甲、乙两人相遇即甲、乙图象有交点,由图象可知共有5个交点,即相遇5次.故答案为:5.三、解答题(本大题共10小题,共68分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)求x的值:49(1﹣x)2=25.【解答】解:(1﹣x)2=1﹣x=±x1=,x2=.18.(5分)计算:++﹣()2+.【解答】解:原式=2+2+﹣﹣5,=0.19.(6分)若一次函数y=﹣2x+b的图象经过(﹣1,4)(1)求b的值;(2)在所给直角坐标系中画出此函数图象;(3)观察图象直接写出x满足什么条件时,y>0.【解答】解:(1)把(﹣1,4)代入y=﹣2x+b得,4=2+b,解得b=2.(2)由(1)得y=﹣2x+2,当x=0时,y=2;当y=0时,x=1;于是与x轴交点为(1,0),与y轴交点为(0,2),如图:(3)由图可知,x<1时y>0.20.(6分)如图,在直角坐标系中,每个小正方形的边长都是单位1.(1)求出△ABC的面积;(2)画出△ABC 关于点O的中心对称图形△DEF,并写出△DEF各顶点的坐标;(3)已知点P(m,n)是△ABC中BC边上的任意一点,则点P关于点O的对称点的坐标为(﹣m,﹣n).(含有m,n的代数式表示)=S矩形ANLM﹣S△ANB﹣S△BLC﹣S△AMC=4.【解答】解:(1)S△ABC(2)所作图形如下所示:结合图形可得:D(5,﹣4)、E(3,0)F(2,﹣2).(3)点P关于点O的对称点的坐标为:(﹣m,﹣n).21.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解答】(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.22.(7分)如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD是分别菱形、矩形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:(2)当四边形ABCD是矩形时,平行四边形EFGH是什么特殊图形,证明你的结论;(3)反之,当用上述方法所围成的平行四边形是矩形时,相应的原四边形必须满足怎样的条件?(直接写出结论)【解答】解:(1)四边形ABCD是菱形时,平行四边形EFGH是矩形,四边形ABCD是矩形时,平行四边形EFGH是菱形,故答案为:矩形,菱形.(2)如图所示:当四边形ABCD是矩形时,平行四边形EFGH是菱形;理由:∵EF∥AC∥HG,EH∥BD∥GF.∴四边形EAOB,EFGH均为平行四边形,∵四边形ABCD为矩形,∴AC=DB,∴EH=EF=FG=HG,∴四边形EFGH为菱形;(3)当平行四边形是矩形时,原四边形ABCD必须满足的条件是对角线互相垂直.23.(8分)学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数关系式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)采用哪一种方案较省钱?说说你的理由.【解答】解:(1)y1=7000x,y2=6000x+3000;(2)当y1=y2时7000x=6000x+3000,解得:x=3,则当学校添置3台计算机时,两种方案的费用相同.(3)7000x>6000x+3000,解得:x<3,则当x<3时,选择到商家直接购买省钱;7000x<6000x+3000,解得:x>3,则当x>3时,选择买零部件组装省钱.24.(7分)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.【解答】解:(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.25.(8分)“国庆黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系式,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油0.1升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【解答】解(1)14﹣10=4(小时).则小明全家在旅游景点游玩4小时;(2)设s与t的函数解析式是:s=kt+b,则,解得:.则函数解析式是:s=﹣60t+1020;令s=0,即﹣60t+1020=0,解得:t=17,则17点到家;(3)15升油行驶的最长距离是:15÷0.1=150(千米),设8点到10点的函数解析式是s=mt+n,根据题意得:,解得:,则函数的解析式是s=90t﹣720,当s=150时,t=,来回所需要的油是:2×180×0.1=36(升),则加油至少是36﹣15=21(升).则建议是:在9点40前必须加油,加油总量不少于21升.26.(10分)如图,在直角坐标系中,矩形纸片ABCD的点B坐标为(9,3),若把图形按要求折叠,使B、D两点重合,折痕为EF.(1)△DEF是等腰三角形吗?说明理由;(2)求折痕EF的长及所在直线的解析式;(3)四边形ADFE与四边形CBEF是否是成中心对称的两个图形?如果是,画出对称中心并说明理由;如果不是,也请说明理由.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥OC,∴∠BEF=∠OFE,由折叠的性质可得:∠BEF=∠OEF,∴∠OEF=∠OFE,∴OE=OF,∴△OEF是等腰三角形;(2)设BE=OE=x,则AE=9﹣x,在Rt△AEO中,AE2+OA2=OE2,∴(9﹣x)2+32=x2,解得:x=5,∴OF=OE=5,AE=4,∴E(4,3),F(5,0),∴EF=,设直线EF的解析式为:y=kx+b,则,解得:,∴直线EF的解析式为y=﹣3x+15;(2)四边形ADFE与四边形CBEF是成中心对称的两个图形.理由:连接BD交EF于M,∵B、D关于EF对称,∴BM=DM,EM⊥BD,∵AB∥OC,∴△BME∽△DMF,∴EM:FM=BM:DM,∴EM=FM∴E、F关于M成中心对称,B、D关于M成中心对称,又∵M为BD的中点,∴A、C关于M成中心对称.∴四边形AEFD与四边形CFEB关于M成中心对称.。