spss实验报告模板
spss实验报告,心得体会
spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。
掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。
掌握相关分析的操作,对显著性水平的基本简单判断。
二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。
3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。
4、应用SPSS做一些探索性分析(如方差分析,相关分析)。
三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。
具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。
2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。
3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。
结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。
SPSS实验报告模板
3、单选题的录入与开放题类似,不同的是,单选题可以定义变量值标签
(三)多选题的录入
1、多重二分法:第7题
定义5个变量,每个变量都是二分类,1代表选择,0代表未选,用Tables模块设定多选题的变量集。
2、多重分类法:第8题
定义3个变量,每个变量都为数值型变量,用Tables模块设定多选题的变量集。
湖南涉外经济学院
实验报告
课程名称:应用统计软件分析(SPSS)
专业班级:会计201001班
******
学号:***************
*******
职 称:讲师
实验日期:2013-3-18
学生实验报告
实验序号
一、实验目的及要求
实验
目
的
通过本次实验,使学生熟练掌握在SPSS中录入数据信息的基本操作,包括变量的设计、变量属性的设定及数据的录入。
3、姓名:
4、家庭月收入:a 3000以下b 3000-4999 c5000-6999 d 7000-9999 e 10000以上
5、出生年月日(mm/dd/yyyy)
6、婚姻状况:a未婚b已婚c丧偶d离异
7、你在选择购物商场的时候,关注以下哪些因素:
a交通条件b促销活动c购物环境d服务质量e其他
8、请问你购物的打折信息主要来自以下哪些渠道(限选3项)
通过本次实验,我们学习了如何将数据录入进SPSS中,根据问题类型的不同介绍了解了开放题、单选题和多选题的录入方式运用面向问题的教学方法,通过一个调查问卷的具体分析过程使学生们对SPSS有一个感性认识,并能够再没有完全掌握SPSS的前提下利用SPSS完成一些分析任务。
指导教师评阅
成绩评定
SPSS统计实验-课程实验报告
课程实验报告专业年级09教育管理课程名称教育统计与测量指导教师黄照旭学生姓名石畅学号200915441006 实验日期2011年10月12日实验地点二教2-9 实验成绩教务处制2011 年10 月12日实验项目名称SPSS教育统计实验实验目的及要求熟悉SPSS界面及一般操作,能够熟练运用SPSS软件进行相关分析、t检验、方差分析、一元线性回归分析实验内容对老师提供的数据按要求使用SPSS软件进行分析,并解释输出结果。
实验步骤一、分析题目,输入数据;二、对数据进行分析;三、得出结果,填写实验报告实验环境SPSS18.0中文版软件实验结果与分析实验一:相关系数课程A 课程B Spearman 的rho 课程A 相关系数相关系数 1.000 .657*Sig.(双侧)(双侧) . .020 N 12 12 课程B 相关系数相关系数 .657* 1.000 Sig.(双侧)(双侧) .020 . N 12 12 *. 在置信度(双测)为在置信度(双测)为 0.05 时,相关性是显著的。
时,相关性是显著的。
说明P值=0.02<0.05,说明在置信度为0.05时,课程A与课程B相关;P值=0.02>0.01,说明在置信度为0.01时,不相关。
不相关。
实验二:单个样本统计量N 均值均值 标准差标准差 均值的标准误均值的标准误VER 20 75.2500 2.95359 .66044 单个样本检验检验值检验值 = 72 t df Sig.(双侧) 均值差值均值差值差分的差分的 95% 置信区间置信区间下限下限 上限上限VER 4.921 19 .000 3.25000 1.8677 4.6323 说明:由于P的值=0.00<0.05,所以山区成年男子的脉搏均数与该地成年男子有显著性差异。
实验三:T 检验检验组统计量学生学生 N 均值均值 标准差标准差 均值的标准误均值的标准误自尊总分自尊总分干部干部 10 34.1000 6.93542 2.19317 非干部非干部10 33.4000 6.81828 2.15613 说明:通过T 检验可知,方差齐性检验可知,方差齐性独立样本检验方差方程的方差方程的 Levene 检验检验均值方程的均值方程的 t 检验检验F Sig. t df Sig.(双侧) 均值差值均值差值 标准误差值 差分的95%置信区间置信区间下限下限自尊总分假设方差相等假设方差相等 .009 .927 .228 18 .823 .70000 3.07553 假设方差不相等.228 17.995 .823 .70000 3.07553 说明:由于P 的值=0.823>0.05,接受原假设,所以学生干部与非学生干部自尊水平没有显著性差异。
SPSS实验报告完整版
SPSS实验实验课程专业统计软件应用上课时间学年学期周(年月日—日)学生姓名学号所在学院指导教师第五章第一题通过样本分析,结果如下图One-Sample StatisticsN Mean Std. Deviation Std. Error Mean 成绩27 77.9312.111 2.331One-Sample TestTest Value = 70t df Sig. (2-tailed)Mean Difference 95% Confidence Interval of theDifferenceLower Upper成绩 3.400 26.0027.926 3.13 12.72从图看出,sig=0.002,小于0.05,因此本班平均成绩与全国平均成绩70分有显著性差异。
第五章第二题通过独立样本分析,结果如下图Group Statistics成绩N Mean Std. Deviation Std. Error Mean成绩1=男10 84.0011.528 3.6450=女10 62.9018.454 5.836Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Equalvariancesnotassumed3.06715.096.008 21.100 6.881 6.44235.758在显著性水平为0.05的情况下,t统计量的概率p为0.007,故拒绝零假设,既两样本的均值不相等,既男女生成绩有显著性差异。
SPSS实验报告册
《SPSS统计软件应用》实验报告册20 13 ——20 14 学年第一学期班级:学号:姓名:实验教师:实验学时:实验组号:目录实验一SPSS的数据管理 (1)实验二描述性统计分析 (13)实验三均值检验 (21)实验四相关分析 (27)实验五方差分析 (34)实验六绘制统计图 (40)实验七因子分析 (44)实验八聚类分析 (48)实验九判别分析 (58)实验十回归分析 (67)实验十一非参数检验 (75)实验一 SPSS的数据管理一、实验目的1.熟悉SPSS的菜单和窗口界面,熟悉SPSS各种参数的设置;2.掌握SPSS的数据管理功能。
二、实验内容及步骤:1、定义spss数据结构。
下表是某大学的一个问卷调查,要求将问卷调查结果表示成spss可识别的数据文件,利用spss软件进行分析和处理。
练习:创建数据文件的结构,即数据文件的变量和定义变量的属性。
表1 大学教师基本情况调查表实验步骤:(1)打开定义变量的界面启动SPSS,进入主界面,单击图6-2所示的屏幕左下角的“Variable View”选项卡,打开定义变量的表格。
(2)输入变量名,符合变量的命名规则在“Name”列的第一个单元格输入第一个变量名,如“xm”。
(3)确定变量类型,单击“Type”列的第一个单元格,如图6-3所示,SPSS的默认变量类型为数值型。
单击数值型变量后的“”,弹出如图6-4所示的对话框,用户可以从该对话框中选择其他的变量类型。
(4)设置字段值(5)依次按要求输入完毕即可。
结果如下:2 、高校提前录取名单的确定某高校今年对部分考生采取单独出题、提前录取的招生模式。
现有20名来自国内不同省市的考生报考该校,7个录取名额。
见数据文件compute.sav. 该校制定了如下录取原则:(1)文化课成绩由数学、语文、英语和综合四门成绩组成。
文化课成绩制定最低录取分数线:400分。
(2)个人档案中若有“不良记录”,不予录取。
(3)对西部考生和少数民族考生,给予加分优惠。
spss实验报告模板
实验报告实验三连续变量的统计描述与参数估计实验目的:1.了解连续变量的统计描述指标体系和参数估计指标体系。
2.掌握具体案例的统计描述和分析。
3.学会bootstrap等方法。
实验原理:1、spss的许多模块均可完成统计描述的任务。
2、spss有专门用于连续变量统计描述的过程。
3、spss可以进行频率等数据分析。
实验内容:1根据CCSS数据,分析受访者的年龄分布情况,分城市/合并描述,并给出简要结果分析。
2 对CCSS中的总指数、现状指数和预期指数进行标准正态变换,对变换后的变量进行统计描述,并给出简要说明。
3根据CCSS 数据,分城市对现状指数的均数和标准差进行Bootstrap方法的参数点估计和区间估计,并同时与传统方法计算出的均值95%置信区间进行比较,给出简要结果分析。
4 根据CCSS项目数据,对职业和婚姻状况进行统计描述,并进行简要说明。
5 根据CCSS项目数据,对职业和家庭月收入情况的关系进行统计描述,并进行行列百分比的汇总,对结果进行简要说明。
6根据CCSS项目数据,给出变量A3a各选项的频数分布情况,并分析每个选项的应答人次和应答人数百分比。
7根据CCSS项目数据,分城市考察A3a各选项的频数分布情况,并给出简要分析。
实验步骤:(1)在分析菜单中点击描述统计,打开对话框“探索”。
把“S3年龄”添加到“因变量列表”,把“S0城市”添加到“因子列表”,把“ID”添加到“标注个案”,点击“确定”。
(2)在分析菜单中点击描述统计,打开对话框“描述性”。
把总指数[index1]、现状指数[index1a]和预期指数[index1b]添加到“变量”框中,选中下方的“将标准化得分另存为变量(Z)”,点击“确定”。
(3)同(2),打开对话框“描述性”,把“现状指数[index1a]”添加到“变量”框中,打开对话框“Bootstrap”,选择“执行”“水平”框中填95,选择“分层”,把“S0城市”添加到“分层变量”中,点击“继续”,点击“确定”。
spss实验报告格式
spss实验报告格式篇一:spss实验报告模板实验报告实验三连续变量的统计描述与参数估计实验目的:1.了解连续变量的统计描述指标体系和参数估计指标体系。
2.掌握具体案例的统计描述和分析。
3.学会bootstrap等方法。
实验原理:1、spss的许多模块均可完成统计描述的任务。
2、spss有专门用于连续变量统计描述的过程。
3、spss可以进行频率等数据分析。
实验内容:1根据ccSS数据,分析受访者的年龄分布情况,分城市/合并描述,并给出简要结果分析。
2对ccSS中的总指数、现状指数和预期指数进行标准正态变换,对变换后的变量进行统计描述,并给出简要说明。
3根据ccSS数据,分城市对现状指数的均数和标准差进行Bootstrap 方法的参数点估计和区间估计,并同时与传统方法计算出的均值95%置信区间进行比较,给出简要结果分析。
4根据ccSS项目数据,对职业和婚姻状况进行统计描述,并进行简要说明。
5根据ccSS项目数据,对职业和家庭月收入情况的关系进行统计描述,并进行行列百分比的汇总,对结果进行简要说明。
6根据ccSS项目数据,给出变量a3a各选项的频数分布情况,并分析每个选项的应答人次和应答人数百分比。
7根据ccSS项目数据,分城市考察a3a各选项的频数分布情况,并给出简要分析。
实验步骤:(1)在分析菜单中点击描述统计,打开对话框“探索”。
把“S3年龄”添加到“因变量列表”,把“S0城市”添加到“因子列表”,把“id”添加到“标注个案”,点击“确定”。
(2)在分析菜单中点击描述统计,打开对话框“描述性”。
把总指数[index1]、现状指数[index1a]和预期指数[index1b]添加到“变量”框中,选中下方的“将标准化得分另存为变量(z)”,点击“确定”。
(3)同(2),打开对话框“描述性”,把“现状指数[index1a]”添加到“变量”框中,打开对话框“Bootstrap”,选择“执行”“水平”框中填95,选择“分层”,把“S0城市”添加到“分层变量”中,点击“继续”,点击“确定”。
spss实验报告模板
实验报告实验三连续变量的统计描述与参数估计实验目的:1.了解连续变量的统计描述指标体系和参数估计指标体系。
2.掌握具体案例的统计描述和分析。
3.学会bootstrap等方法。
实验原理:1、spss的许多模块均可完成统计描述的任务。
2、spss有专门用于连续变量统计描述的过程。
3、spss可以进行频率等数据分析。
实验内容:1根据CCSS数据,分析受访者的年龄分布情况,分城市/合并描述,并给出简要结果分析。
2 对CCSS中的总指数、现状指数和预期指数进行标准正态变换,对变换后的变量进行统计描述,并给出简要说明。
3根据CCSS 数据,分城市对现状指数的均数和标准差进行Bootstrap方法的参数点估计和区间估计,并同时与传统方法计算出的均值95%置信区间进行比较,给出简要结果分析。
4 根据CCSS项目数据,对职业和婚姻状况进行统计描述,并进行简要说明。
5 根据CCSS项目数据,对职业和家庭月收入情况的关系进行统计描述,并进行行列百分比的汇总,对结果进行简要说明。
6根据CCSS项目数据,给出变量A3a各选项的频数分布情况,并分析每个选项的应答人次和应答人数百分比。
7根据CCSS项目数据,分城市考察A3a各选项的频数分布情况,并给出简要分析。
实验步骤:(1)在分析菜单中点击描述统计,打开对话框“探索”。
把“S3年龄”添加到“因变量列表”,把“S0城市”添加到“因子列表”,把“ID”添加到“标注个案”,点击“确定”。
(2)在分析菜单中点击描述统计,打开对话框“描述性”。
把总指数[index1]、现状指数[index1a]和预期指数[index1b]添加到“变量”框中,选中下方的“将标准化得分另存为变量(Z)”,点击“确定”。
(3)同(2),打开对话框“描述性”,把“现状指数[index1a]”添加到“变量”框中,打开对话框“Bootstrap”,选择“执行”“水平”框中填95,选择“分层”,把“S0城市”添加到“分层变量”中,点击“继续”,点击“确定”。
spss实验报告模板
实验报告实验三连续变量的统计描述与参数估计实验目的:1.了解连续变量的统计描述指标体系和参数估计指标体系。
2.掌握具体案例的统计描述和分析。
3.学会bootstrap等方法。
实验原理:1、spss的许多模块均可完成统计描述的任务。
2、spss有专门用于连续变量统计描述的过程。
3、spss可以进行频率等数据分析。
实验内容:1 根据CCSS数据,分析受访者的年龄分布情况,分城市/合并描述,并给出简要结果分析。
2 对CCSS中的总指数、现状指数和预期指数进行标准正态变换,对变换后的变量进行统计描述,并给出简要说明。
3根据CCSS 数据,分城市对现状指数的均数和标准差进行Bootstrap方法的参数点估计和区间估计,并同时与传统方法计算出的均值95%置信区间进行比较,给出简要结果分析。
4 根据CCSS项目数据,对职业和婚姻状况进行统计描述,并进行简要说明。
5 根据CCSS项目数据,对职业和家庭月收入情况的关系进行统计描述,并进行行列百分比的汇总,对结果进行简要说明。
6根据CCSS项目数据,给出变量A3a各选项的频数分布情况,并分析每个选项的应答人次和应答人数百分比。
7根据CCSS项目数据,分城市考察A3a各选项的频数分布情况,并给出简要分析。
实验步骤:(1)在分析菜单中点击描述统计,打开对话框“探索”。
把“S3年龄”添加到“因变量列表”,把“S0城市”添加到“因子列表”,把“ID”添加到“标注个案”,点击“确定”。
(2)在分析菜单中点击描述统计,打开对话框“描述性”。
把总指数[index1]、现状指数[index1a]和预期指数[index1b]添加到“变量”框中,选中下方的“将标准化得分另存为变量(Z)”,点击“确定”。
(3)同(2),打开对话框“描述性”,把“现状指数[index1a]”添加到“变量”框中,打开对话框“Bootstrap”,选择“执行”“水平”框中填95,选择“分层”,把“S0城市”添加到“分层变量”中,点击“继续”,点击“确定”。
spss实验报告一,二
实验报告
实验目的: 通过上机操作, 熟练掌握spss相关知识。
实验内容:
(一)1、首先将表格导入到spss中, 出现如下图结果:
2.选择: 分析——描述统计—频率, 出现如下图的表格,
, /
3、将V1导入到变量中, 然后点击统计量, 出现如下图的表格, 在表格中, 点击, 均值、中位数、四分位数, 标准差。
点击继续, 就完成第一题, 出现下图的结果。
以上就是第一题的结果。
(二)
1.首先将表格导入到spss中, 如下图:
2.从上表中, 可知, 方法A要比B.C的只都要高, 可见平均值要高于B.C, 就应该对这三组进行平均值, 方差的计算进行比较。
选择: 分析——描述统计——描述, 出现如下图的表格:
将方法A.B.C分别导入到变量中, 然后点击选项这个按钮, 出现如下图的表格进行选择:
可以选择标准差, 最大值, 最小值, 均值, 然后点击继续, 则会出现结果, 通过对结果进行对比, 选择方案。
由图可知, 方法A的平均值高于B、C, 而且最小值也都大于B、C的最大值, 可知A的组装优越于B、C, 即使标准差大于B, 稳定性稍微差于B, 但总体上组装的结果要比B好, 所以要选择方案A。
SPSS相关分析实验报告
SPSS相关分析实验报告实验目的:通过SPSS软件进行相关分析,探究两个变量之间的相关性。
实验材料与方法:1. 实验对象:100名高中学生。
2. 实验变量:X变量表示学生课外阅读时间(单位:小时),Y变量表示学生考试成绩(百分制)。
3. 实验工具:SPSS软件。
实验步骤:1. 数据收集:调查100名高中学生的课外阅读时间和考试成绩,并记录在调查表中。
2. 数据录入:将调查表中的数据录入SPSS软件的数据编辑器中。
3. 数据分析:a. 相关性分析:打开SPSS软件,选择"分析"菜单下的"相关"子菜单,然后选择"双变量"选项。
b. 设置变量:将X变量(课外阅读时间)和Y变量(考试成绩)设置为分析变量。
c. 选择统计指标:选择所需统计指标,如相关系数、p值等。
d. 进行分析:点击"确定"按钮,SPSS将自动计算相关系数和p值,并生成相应的结果报告。
4. 数据报告:根据SPSS生成的结果报告,编写实验报告。
实验结果与分析:经过对SPSS软件的分析,得出以下结果:1. 相关系数:X变量(课外阅读时间)和Y变量(考试成绩)的相关系数为0.75,说明两个变量之间存在较强的正相关关系。
2. P值:相关系数的p值为0.001,小于显著性水平(α=0.05),说明相关系数具有统计学意义。
3. 散点图:绘制X变量和Y变量的散点图可以直观地观察到两个变量之间的正相关关系,即随着课外阅读时间的增加,考试成绩也随之提高。
结论:通过SPSS软件的相关分析,我们发现学生的课外阅读时间和考试成绩之间存在较强的正相关关系。
这意味着增加课外阅读时间可以提高学生的考试成绩。
对于教育者来说,可以通过鼓励学生增加课外阅读时间来促进其学术成绩的提升。
实验总结与改进:通过本次实验,我们成功地使用SPSS软件进行了相关分析,研究了课外阅读时间与考试成绩之间的关系。
然而,本实验仅限于高中学生,样本量有限,可能存在一定的局限性。
spss实验报告模板.doc
spss实验报告模板.doc
SPSS实验报告模板
1.实验设计
实验背景:简要介绍该实验的背景和目的。
实验方法:简要介绍该实验的方法和步骤。
研究对象:介绍实验对象的基本信息、选取原则和样本容量等信息。
实验分组:按照实验设计方式,对样本分组情况进行详细介绍。
实验变量:介绍实验中使用的自变量和因变量。
控制变量:介绍实验中需要控制的变量。
2.实验结果
2.1描述性统计
对每个实验组数据进行描述性统计,包括样本数、均值、标准差、最小值和最大值。
2.2方差分析
采用SPSS进行方差分析,为了得到准确的实验结果,需要进行方差齐性检验、正态性检验和残差检验。
最后根据方差分析结果,进一步分析实验数据和原始数据是否一致。
3.实验讨论
根据方差分析结果,对实验结果进行解释和分析。
对比不同实验组之间的差异,寻找原因并归纳总结。
对比实验结果和预期结果之间的差异,提出可能的原因和改进方法。
分析实验结果对学科发展以及实际应用的贡献和意义。
在实验讨论的基础上,得出本次实验的结论,并为未来的研究提出建议。
备注:
1.实验报告的撰写需要简洁明了,每个部分的内容分别进行说明,一定要注意语言清晰,避免过于复杂的短语和长句子。
2.需要提供完整的实验数据和处理方法,在实验结果部分可以用图表的形式来表示实验数据结果。
3.实验讨论和结论部分需要深入剖析实验数据的意义和统计方法。
4.实验报告的范围和内容可以根据实验特点和要求适当调整,根据实验需求选取相关变量。
SPSS相关分析实验报告_实验报告_
SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。
二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。
更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。
P值是针对原假设H0:假设两变量无线性相关而言的。
一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。
越小,则相关程度越低。
而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。
三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。
(1)检验人均食品支出与粮价和人均收入之间的相关关系。
a.打开spss软件,输入“回归人均食品支出”数据。
b.在spssd的菜单栏中选择点击,弹出一个对话窗口。
C.在对话窗口中点击ok,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。
人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。
(2)研究人均食品支出与人均收入之间的偏相关关系。
读入数据后:A.点击系统弹出一个对话窗口。
B.点击OK,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。
spss统计学实验报告
spss统计学实验报告Title: SPSS Statistical Experiment ReportIntroductionIn this report, we will be presenting the results of a statistical experiment conducted using the SPSS software. SPSS, which stands for Statistical Package for the Social Sciences, is a powerful tool for analyzing and interpreting data. The experiment was designed to test the relationship between two variables and to determine if there is a significant correlation between them.MethodThe experiment involved collecting data on two variables, X and Y, from a sample of 100 participants. The data was then entered into the SPSS software, which was used to perform a correlation analysis. The correlation coefficient, as well as the significance level, was calculated to determine the strength and direction of the relationship between the two variables.ResultsThe results of the experiment revealed a strong positive correlation between variables X and Y, with a correlation coefficient of 0.75. This indicates that as the value of variable X increases, the value of variable Y also tends to increase. Furthermore, the p-value was found to be less than 0.05, indicating that the correlation is statistically significant.DiscussionThe findings of this experiment have important implications for understandingthe relationship between variables X and Y. The strong positive correlation suggests that there is a clear association between the two variables. This information can be valuable for making predictions and identifying patterns in the data. Additionally, the statistical significance of the correlation indicates that the relationship is not due to chance, but rather reflects a true association between the variables.ConclusionIn conclusion, the results of the experiment support the hypothesis that there is a significant positive correlation between variables X and Y. The use of SPSS software allowed for a thorough and accurate analysis of the data, providing valuable insights into the relationship between the two variables. This experiment demonstrates the power of statistical analysis in uncovering meaningful patterns and relationships within data.。
spss报告模板
信息与管理科学学院信息与计算科学系
实验报告
课程名称:应用多元统计分析
实验名称:练习spss软件数据录入
姓名:班级:指导教师:学号:实验室:日期:
小组负责人:
一、实验目的
练习spss软件数据录入,对该软件有个初步的了解和认识。
二、实验环境
紫竹241机房
三、实验内容
了解spss软件
录入第十章第二节表10.1 表10.11
四、实验操作过程
1.打开spss,熟悉spss软件环境
2.录入变量
表10.1
表10.11
表10.1
表10.11
五、实验结果及结论
六、心得体会
通过这次实验,我们小组掌握了spss软件的打开,新建,数据的录入以及软件的关闭及其它一些相关知识,使我们对spss软件有了初步的了解和认识。
七、指导教师评议
成绩:(百分制)
指导教师签名:。
spss实验报告模板
实验报告实验三连续变量的统计描述与参数估计实验目的:1.了解连续变量的统计描述指标体系和参数估计指标体系。
2.掌握具体案例的统计描述和分析。
3.学会bootstrap等方法。
实验原理:1、spss的许多模块均可完成统计描述的任务。
2、spss有专门用于连续变量统计描述的过程。
3、spss可以进行频率等数据分析。
实验内容:1 根据CCSS数据,分析受访者的年龄分布情况,分城市/合并描述,并给出简要结果分析。
2 对CCSS中的总指数、现状指数和预期指数进行标准正态变换,对变换后的变量进行统计描述,并给出简要说明。
3根据CCSS 数据,分城市对现状指数的均数和标准差进行Bootstrap方法的参数点估计和区间估计,并同时与传统方法计算出的均值95%置信区间进行比较,给出简要结果分析。
4 根据CCSS项目数据,对职业和婚姻状况进行统计描述,并进行简要说明。
5 根据CCSS项目数据,对职业和家庭月收入情况的关系进行统计描述,并进行行列百分比的汇总,对结果进行简要说明。
6根据CCSS项目数据,给出变量A3a各选项的频数分布情况,并分析每个选项的应答人次和应答人数百分比。
7根据CCSS项目数据,分城市考察A3a各选项的频数分布情况,并给出简要分析。
实验步骤:(1)在分析菜单中点击描述统计,打开对话框“探索”。
把“S3年龄”添加到“因变量列表”,把“S0城市”添加到“因子列表”,把“ID”添加到“标注个案”,点击“确定”。
(2)在分析菜单中点击描述统计,打开对话框“描述性”。
把总指数[index1]、现状指数[index1a]和预期指数[index1b]添加到“变量”框中,选中下方的“将标准化得分另存为变量(Z)”,点击“确定”。
(3)同(2),打开对话框“描述性”,把“现状指数[index1a]”添加到“变量”框中,打开对话框“Bootstrap”,选择“执行”“水平”框中填95,选择“分层”,把“S0城市”添加到“分层变量”中,点击“继续”,点击“确定”。
spss研究报告模版
spss研究报告模版
SPSS研究报告模板(1000字)
标题:XXX研究报告
一、引言(100字)
- 简要介绍研究的背景和目的;
- 说明为什么选择使用SPSS进行数据分析。
二、研究方法(200字)
- 概述研究的设计和样本;
- 说明数据的收集方式和过程;
- 描述使用的统计方法和SPSS软件的版本。
三、数据描述(200字)
- 对样本数据进行概述和描述性统计;
- 描述数据的分布情况和特征。
四、数据分析结果(300字)
- 对研究中的变量进行SPSS分析;
- 陈述并解释数据分析结果;
- 提供图表、表格等可视化工具,以增强结果的说明性。
五、讨论(200字)
- 对研究结果进行解释和分析;
- 探讨结果的可靠性和局限性;
- 将研究结果与现有文献和理论进行比较和讨论。
六、结论(100字)
- 简要总结研究的主要发现和贡献;
- 提出未来研究的建议。
七、参考文献(未计入总字数)
- 列出在报告中引用过的所有文献。
八、附录(未计入总字数)
- 包括数据收集工具、问卷等。
以上是一个简要的SPSS研究报告模板,根据实际研究情况,可以根据需要对各节的长度进行适当调整。
在撰写报告时,请注意保持逻辑的完整性和清晰度,并使用简明扼要的语言进行描述和解释。
同时,添加合适的图表和表格可以更好地展示研究结果,提高报告的可读性。
spss相关分析实验报告
SPSS相关分析实验报告1. 引言本文档旨在通过使用SPSS进行相关分析,对某一实验数据进行统计分析和解释。
相关分析是一种用来研究两个或多个变量之间关系的统计方法。
本实验中,我们研究了某个因变量与多个自变量之间的相关性。
2. 实验设计与方法2.1 数据收集我们从某个实验中收集了一组数据,包括一个因变量和多个自变量。
数据采集的过程符合实验设计的要求。
2.2 数据预处理在进行相关分析之前,我们对数据进行了一些预处理。
包括查漏补缺、去除异常值和处理缺失数据等。
确保数据的质量和可靠性。
2.3 相关分析为了研究因变量与自变量之间的相关性,我们使用了SPSS软件进行相关分析。
相关分析包括计算相关系数和进行假设检验等。
3. 相关分析结果经过SPSS软件的计算和分析,我们得到了以下结果:相关系数p值结论0.85 0.01 高度相关0.45 0.05 中度相关0.12 0.25 低度相关根据以上结果,我们可以得出结论:在本实验中,因变量与自变量A之间存在高度正相关关系(相关系数为0.85,p值为0.01),与自变量B之间存在中度正相关关系(相关系数为0.45,p值为0.05),与自变量C之间存在低度正相关关系(相关系数为0.12,p值为0.25)。
4. 结果解释与讨论通过相关分析的结果,我们可以得出一些结论和讨论:•自变量A对因变量的影响最为显著,相关系数最高,说明他们之间存在较强的关联性。
•自变量B对因变量的影响次之,相关系数较低,但仍然具有一定的相关性。
•自变量C对因变量的影响相对较弱,相关系数最低,说明它们之间的关系不太明显。
需要注意的是,相关性并不代表因果关系。
因此,在解释结果时,我们不能简单地认为自变量的变化导致了因变量的变化。
5. 结论本实验通过SPSS软件进行了相关分析,研究了因变量与多个自变量之间的相关性。
从结果中我们可以得出结论:自变量A与因变量之间存在高度正相关关系,自变量B与因变量之间存在中度正相关关系,自变量C与因变量之间存在低度正相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计实习》SPSS实验报告姓名:**学号:**********班级:会计二班实验报告二实验项目:描述性统计分析实验目的:1、掌握数据集中趋势和离中趋势的分析方法;2、熟练掌握各个分析过程的基本步骤以及彼此之间的联系和区别。
实验内容及步骤一、数据输入案例:对6名男生和6名女生的肺活量的统计,数据如下:1.打开SPSS软件,进行数据输入:通过打开数据的方式对XLS的数据进行输入其变量视图为:二、探索分析进行探索分析得出如下输出结果:浏览由上表可以看出,6例均为有效值,没有记录缺失值得情况。
由上表可以看出,男女之间肺活量的差异,男生明显优于女生,范围更广,偏度大。
男男 Stem-and-Leaf PlotFrequency Stem & Leaf2.00 1 . 342.00 1 . 892.00 2 . 02Stem width: 1000Each leaf: 1 case(s)女女 Stem-and-Leaf PlotFrequency Stem & Leaf2.00 1 . 233.00 1 . 568 1.00 2 . 0Stem width: 1000Each leaf: 1 case(s)三、频率分析进行频率分析得出如下输出结果:由上图可知,分析变量名:肺活量。
可见样本量N为6例,缺失值0例, 1500以下的33%,1500-2000男生33%女生50%,2000以上女生16.7%,男生33%。
四、描述分析进行描述分析得出如下输出结果:由上图可知,分析变量名:工资,可见样本量N为6例,极小值为男1342女1213,极大值为男2200女2077,说明12人中肺活量最少的为女生是1213,最多的为男生有2200,均值为1810.50/1621.33,.标准差为327.735/325.408,离散程度不算大。
五、交叉分析实验报告三实验项目:均值比较实验目的:.学习利用SPSS进行单样本、两独立样本以及成对样本的均值检验。
实验内容及步骤(一)描述统计案例:某医疗机构为研究某种减肥药的疗效,对15位肥胖者进行为期半年的观察测试,测试指标为使用该药之前和之后的体重。
编号 1 2 3 4 5服药前198 237 233 179 219服药后192 225 226 172 214编号 6 7 8 9 10服药前169 222 167 199 233服药后161 210 161 193 226编号11 12 13 14 15服药前179 158 157 216 257服药后173 154 143 206 249输入SPSS建立数据。
由上图可知,结果输出均值、样本量和标准差。
因为选择了分组变量,所以三项指标均给出分组及合计值,可见以这种方式列出统计量可以非常直观的进行各组间的比较。
由上表可知,在显著性水平为0.05时,服药前后的概率p值为小于0.05,拒绝零假设,说明服药前后的体重有显著性变化(二)单样本T检验进行单样本T检验分析得出如下输出结果:由上表可以知,单个样本统计量分析表,的基本情况描述,有样本量、均值、标准差和标准误,单样本t检验表,第一行注明了用于比较的已知总体均值为14,从左到右依次为t值(t)、自由度(df)、P值(Sig.2-tailed)、两均值的差值(Mean Difference)、差值的95%可信区间。
由上表可知:t=34.215,P=0.000<0.05。
因此可以认为肺气肿的总体均值不等于0.(三)双样本T检验案例:研究某安慰剂对肥胖病人治疗作用,用20名患者分组配对,测得体重如下表,要求测定该安慰剂对人的体重作用是否比药物好。
进行双样本T检验得出如下输出结果:T检验成对样本统计量均值N 标准差均值的标准误对 1 安慰剂121.80 10 11.419 3.611 组药物组111.80 10 10.185 3.221由上图可知,对变量各自的统计描述,此处只有1对,故只有对1。
成对样本相关系数此处进行配对变量间的相关性分析配对t检验表,给出最终的检验结果,由上表可见P=0.001,故可认为安慰剂组和药物组对肥胖病人的体重有差别影响实验报告四实验项目:相关分析实验目的:1.学习利用SPSS进行相关分析、偏相关分析、距离分析、线性回归分析和曲线回归。
实验内容及步骤(一)两变量的相关分析案例:某医疗机构为研究某种减肥药的疗效,对15位肥胖者进行为期半年的观察测试,测试指标为使用该药之前和之后的体重。
编号 1 2 3 4 5服药前198 237 233 179 219服药后192 225 226 172 214编号 6 7 8 9 10服药前169 222 167 199 233服药后161 210 161 193 226编号11 12 13 14 15服药前179 158 157 216 257服药后173 154 143 206 249进行相关双变量分析得出如下输出结果:相关性相关系数系数表。
变量间两两的相关系数是用方阵的形式给出的。
每一行和每一列的两个变量对应的格子中就是这两个变量相关分析结果结果,共分为三列,分别是相关系数、P值和样本数。
由于这里只分析了两个变量,因此给出的是2*2的方阵。
由上表可见,服药前和服药后自身的相关系数均为1(of course),而治疗前和治疗后的相关系数为0.911,P<0.01(二)偏相关分析偏相关已知有某河流的一年月平均流量观测数据和该河流所在地区当年的月平均雨量和月平均温度观测数据,如表所示。
试分析温度与河水流量之间的相关关系。
观测数据表月份月平均流量月平均雨量月平均气温1 0.50 0.10 -8.802 0.30 0.10 -11.003 0.40 0.40 -2.404 1.40 0.40 6.905 3.30 2.70 10.606 4.70 2.40 13.907 5.90 2.50 15.408 4.70 3.00 13.509 0.90 1.30 10.0010 0.60 1.80 2.7011 0.50 0.60 -4.8012 0.30 0.20 -6.00由上表可见控制月平均雨量之后,“月平均流量”与“月平均气温”的相关系数为0.365,P=0.27,P>0.05,因此“月平均流量”与“月平均气温”不存在显著相关性。
(三)距离分析案例:植物在不同的温度下的生长状况不同,下列是三个温度下的植物生长编号10度20度30度1 12.36 12.4 12.182 12.14 12.2 12.223 12.31 12.28 12.354 12.32 12.25 12.215 12.12 12.22 12.16 12.28 12.34 12.257 12.24 12.31 12.28 12.41 12.3 12.46近似值(四)线性回归分析已知有某河流的一年月平均流量观测数据和该河流所在地区当年的月平均雨量和月平均温度观测数据,如表所示。
试分析关系。
观测数据表进行线性回归分析得出如下输出结果:回归由表可知,是第一个问题的分析结果。
这里的表格是拟合过程中变量进入/退出模型的情况记录,由于只引入了一个自变量,所以只出现了一个模型1(在多元回归中就会依次出现多个回归模型),该模型中身高为进入的变量,没有移出的变量,这里的表格是拟合过程中变量进入/退出模型的情况记录,由于只引入了一个自变量,所以只出现了一个模型(在多元回归中就会依次出现多个回归模型),该模型中身高为进入的变量,没有移出的变量。
拟合模型的情况简报,显示在模型中相关系数R 为0.855,而决定系数R2为0. 732,校正的决定系数为0.705,说明模型的拟合度较高。
Anovab模型 平方和 df 均方 F Sig. 1 回归 10.208 1 10.208 27.283 .000a残差 3.741 10 .374 总计 13.949 11a. 预测变量: (常量), 月平均流量。
b. 因变量: 月平均雨量这是所用模型的检验结果,可以看到这就是一个标准的方差分析表!从上表可见所用的回归模型F 值为27.283,P 值为.00a ,因此用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结果。
由于这里所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验,在多元回归中这两者是不同的。
包括常数项在内的所有系数的检验结果。
用的是t 检验,同时还会给出标化/未标化系数。
可见常数项和身高都是有统计学意义的图表(五)曲线回归分析某地1963年调查得儿童年龄(岁)与体重的资料试拟合对数曲线。
年龄(岁)体重1 2 3 4 5 6 7 68 65 67 50 707677进行曲线回归分析得出如下输出结果:实验报告五实验项目:聚类分析和判别分析实验目的:1.学习利用SPSS进行聚类分析和判别分析。
实验内容及步骤(一)系统聚类法为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤,一名研究者用光子吸收法测量了骨骼中无机物含量,对三根骨头主侧和非主侧记录了测量值,结果见教材表。
:主侧桡骨桡骨主侧肱骨肱骨主侧尺骨尺骨受试者编号1 1.103 1.052 2.139 2.238 0.873 0.8722 0.842 0.859 1.873 1.741 0.590 0.7443 0.925 0.873 1.887 1.809 0.767 0.7134 0.857 0.744 1.739 1.547 0.706 0.6745 0.795 0.809 1.734 1.715 0.549 0.6546 0.787 0.779 1.509 1.474 0.782 0.5717 0.933 0.880 1.695 1.656 0.737 0.8038 0.799 0.851 1.740 1.777 0.618 0.6829 0.945 0.876 1.811 1.759 0.853 0.77710 0.921 0.906 1.954 2.009 0.823 0.765输入SPSS建立数据。
进行系统聚类分析得出如下输出结果:聚类快捷聚类研究儿童生长发育的分期,调查名1月至7岁儿童的身高(cm)、体重(kg)、胸围(cm)和资料。
求出月平均增长率(%),判别分析对某企业,搜集整理了10名员工2009年第1季度的数据资料。
构建1个10×6维的矩阵职工代号工作产量工作质量工作出勤工砟损耗工作态度工作能力1 9.68 9.62 8.37 8.63 9.86 9.742 8.09 8.83 9.38 9.79 9.98 9.733 7.46 8.73 6.74 5.59 8.83 8.464 6.08 8.25 5.04 5.92 8.33 8.295 6.61 8.36 6.67 7.46 8.38 8.146 7.69 8.85 6.44 7.45 8.19 8.17 7.46 8.93 5.7 7.06 8.58 8.368 7.6 9.28 6.75 8.03 8.68 8.229 7.6 8.26 7.5 7.63 8.79 7.6310 7.16 8.62 5.72 7.11 8.19 8.181、“分析——分类——判别分析”,把“分类”选入“分组变量”,定义范围:最小值(1),最大值(4),把X1、X2、X3、X4、X5和X6输入“自变量框”,选择“使用逐步式方法”;2、“统计量”中选择“均值”、“单变量ANOVA”、“Fisher”、“未标准化”、“组内相关”;3、“方法”默认设置;4、“分类”中选择“根据组大小计算”、“摘要表”、“不考虑该个案时的分类”、“在组内”、“合并图、分组、区域图”;5、“保存”中选择“预测组成员”、“判别得分”;6、点击确定。