陕西省西安市陕西师范大学附属中学2020-2021学年度第一学期九年级数学第一次月考试题

合集下载

陕西师范大学附属中学2024-2025学年九年级上学期开学考试数学试题[含答案]

陕西师范大学附属中学2024-2025学年九年级上学期开学考试数学试题[含答案]

2024-2025学年陕西师大附中九年级(上)开学数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.a , b ,c ,d 是成比例线段,若 a = 3cm , b = 2cm ,c = 6cm ,则线段d 的长为( )A .3cmB .4cmC .5cmD .6cm2.用配方法解方程2810x x -+=,变形后的结果正确的是( )A .()245x -=B .()2416x -=C .()347x -=D .()2415x -=3.若32x y =,则x y y+的值为( )A .12B .32C .25D .524.用图中两个可自由转动的转盘做“配紫色”游戏(其中一个转出红色,另一个转出蓝色即可配成紫色),其中A 转盘被分成相等的两个扇形,B 转盘被分成相等的三个扇形.如果同时转动两个转盘,那么转盘停止时指针所指的颜色可配成紫色的概率是( )A .12B .13C .14D .165.已知反比例函数()0ky k x=¹与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A .3-B .1-C .1D .36.如图,在Rt ABC △中,4AB =,点D 是斜边BC 的中点,以AD 为边作正方形ADEF .若正方形ADEF 的面积为16,则ABC V 的周长为( )A .B .12+C .12D .247.为执行“两免一补”政策,某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( )A .()2250013600x +=B .225003600x =C .()25001%3600x =+D .()()225001250013600x x +++=8.若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k £C .13k <且0k ¹D .13k £且0k ¹9.密闭容器内有一定质量的气体,当容器的体积y (单位:3m )变化时,气体的密度r (单位:3kg /m )随之变化.已知密度p 与体积y 是反比例函数关系,它的图象如图所示.则下列说法正确的是( )A .函数解析式为7vr =B .容器内气体密度r 随着气体的体积v 的增大而增大C .当38kg /m r £时,31.25m v ³D .当34kg /m r =时,33m v =10.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG PC ,.若60ABC BEF Ð=Ð=°,则PGPC=( )A B C D 二、填空题(共7小题,每小题3分,共21分)11.如图,123l l l ∥∥,342DE EF AB ===,,,则BC 的长为 .12.已知菱形ABCD 的周长为40cm ,它的一条对角线长10cm ,则这个菱形较小的一个内角的度数为 .13.为了估计暗箱里白球的数量(箱内只有白球),将6个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.4,那么可以估计暗箱里白球的数量大约为个.14.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .15.如图,矩形OABC 的顶点B 和正方形ADEF 的顶点E 都在反比例函数()0ky k x=¹的图象上,点B 的坐标为()3,6,则点E 的坐标为 .16.如图,已知等腰三角形ABC 中,20cm,30cm AB AC BC ===,点P 从点B 出发沿BA 以4cm/s 的速度向点A 运动;同时点Q 从点C 出发沿CB 以3cm/s 的速度向点B 运动,在运动过程中,当BPQ V 与AQC V 相似时,BP =cm .17.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90°,点N 旋转到点N ¢,则MBN ¢△周长的最小值为.三、解答题(共8小题,共69分)18.解下列方程:(1)()22118x +=;(2)2611x x -=;(3)23420x x --=;(4)()2155x x --=.19.如图,在ABC V 中,AM BC ∥.请用尺规作图法,在射线AM 上求作一点D ,使得DCA ABC :△△.(保留作图痕迹,不写作法)20.如图,在平行四边形ABCD 中,点E 、F 分别在BC AD 、上,BE DF =, AC EF =.请判断四边形AECF 的形状,并说明理由.21.已知关于x 的方程()24240x k x k -+++=.(1)求证:无论k 为何值,方程总有实数根;(2)若方程的两个实数根为12,x x ,求代数式()()1222--x x 的值.22.如图,在ABC V 中,90ACB Ð=°,D 为边AB 上一点,且CD CA =,过点D 作DE AB ^.交BC 于点E .求证:CDE CBD ∽△△.23.我校为落实国家“双减”政策,丰富课后服务内容.为学生开设五类社团活动(要求每人必须参加且只参加一类活动)音乐社团、体育社团、美术社团、文学社团、电脑编程社团.(1)小明从中任选一类社团活动,选到“体育社团”的概率是 ;(2)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.24.某品牌纪念品每套成本为30元,当售价为40元时,平均每天的销售量为500套,经试销统计发现,如果该品牌纪念品售价每上涨1元,那么平均每天的销售量将减少10套,为了维护消费者利益,物价部门规定:该品牌纪念品售价不能超过进价的200%.设这种纪念品每套上涨x 元.(1)平均每天的销售量为______套(用含x 的代数式表示):(2)商家想要使这种纪念品的销售利润平均每天达到8000元,求每套纪念品应定价多少元?25.数学活动课上,老师让同学们根据下面情境提出问题并解答.问题情境:在ABCD Y 中,点P 是边AD 上一点,将PDC △沿直线PC 折叠,点D 的对应点为E .数学思考:(1)“兴趣小组”提出的问题是:如图1,若点P 与点A 重合,过点E 作EF AD ∥,与PC 交于点F ,连接DF ,则四边形AEFD 的形状为 .拓展探究:(2)“智慧小组”提出的问题是:如图2,当点P 为AD 的中点时,延长CE 交AB 于点F ,连接PF .试判断PF 与PC 的位置关系,并说明理由;问题解决:(3)“创新小组”在前两个小组的启发下,提出的问题是:如图3,当点E 恰好落在AB 边上时,6AP =,8PD =,30DC =,求AE 的长为 .1.B【分析】根据a、b、c、d是成比例线段,得a:b=c:d,再根据比例的基本性质,求出d 的值即可;【详解】解:∵a、b、c、d是成比例线段,∴a:b=c:d,∵a=3cm,b=2cm,c=6cm,∴d=4cm;故选:B.【点睛】本题考查了比例线段,写比例式的时候一定要注意顺序,再根据比例的基本性质进行求解.2.D【分析】本题考查了解一元二次方程-配方法.利用解一元二次方程-配方法,进行计算即可解答.【详解】解:2810x x-+=,281x x-=-,2816116x x-+=-+,()2415x-=,故选:D.3.D【分析】本题考查了比例的性质,能灵活运用比例的性质进行变形是解此题的关键.根据题意求出32x y=,代入所求式子中,即可求出答案.【详解】解:∵32xy=,∴32 x y =∴3522y yx yy y++==,故选:D.4.D【分析】本题考查列表法或树状图法以及概率的计算方法,列举出所有等可能出现的结果是正确解答的关键.用树状图表示同时转动两个转盘指针所指颜色所有等可能出现的结果,再根据概率的定义进行计算即可.【详解】解:用树状图表示同时转动两个转盘指针所指颜色所有等可能出现的结果如下:共有6种等可能出现的结果,其中能配成紫色的有1种,所以同时转动两个转盘,那么转盘停止时指针所指的颜色可配成紫色的概率是16,故选:D .5.A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0ky k x=¹与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k-=,∴3k =-,故选:A 6.B【分析】此题重点考查正方形的性质、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,正确地求出BC 的长是解题的关键.由四边形ADEF 是面积为16的正方形,求得4=AD ,由Rt ABC △中,点D 是斜边BC 的中点,求得28BC AD ==,则AC ==12AB BC AC ++=+【详解】解:∵四边形ADEF 是面积为16的正方形,∴216=AD ,且0AD >,∴4=AD ,∵Rt ABC △中,4AB =,点D 是斜边BC 的中点,∴1,902AD BC BAC =Ð=°,∴28BC AD ==,∴AC ==∴12AB BC AC ++=+∴ABC V 的周长为12+,故选:B .7.A【分析】由平均增长率公式为()1na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量)可列方程.【详解】设这两年投入教育经费的年平均增长率为x ,根据题意有:()2250013600x +=,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b +=.8.D【分析】根据一元二次方程的定义及根的判别式即可解答.【详解】解:∵2230kx x -+=为一元二次方程,∴0k ¹,∵该一元二次方程有两个实数根,∴()22430k D =--´³,解得13k £,∴13k £且0k ¹,故选:D .【点睛】本题考查了一元二次方程的定义及根的判别式,解题的关键是熟知当判别式的值大于0时,方程有两个不相等的实数根,同时要满足二次项的系数不能是0.9.C【分析】本题考查了反比例函数的应用,解题的关键是根据题意确定反比例函数的解析式,难度不大.利用待定系数法确定反比例函数的解析式,再逐一判定即可.【详解】解:设()0kk vr =>,将()2,5代入k vr =得52k =,解得10k =,10vr \=,故A 选项错误,不符合题意;容器内气体密度r 随着气体的体积v 的增大而减小,故B 选项说法错误,不符合题意;将8r =代入108r =得108v=,解得: 1.25v =,\当38kg/m r £时,31.25m v ³,故C 选项正确,符合题意;将34kg/m r =代入10vr =得104v =,解得32.5m v =,故D 选项错误,不符合题意.故选:C .10.B【分析】本题考查了菱形的性质,三角形全等的判定和性质,等腰三角形的性质,正确的添加辅助线是解题的关键.延长PG 交CD 于点H ,证明DHP FGP △≌△,继而证明CH CG =,根据三线合一可知CP PG ^,进一步可得60PCG Ð=°,继而 可得答案.【详解】解:如图,延长PG 交CD 于点H ,∵P 是线段DF 的中点,∴FP DP =,由题意可知DC GF AE ∥∥,∴GFP HDP Ð=Ð,∵GPF HPD Ð=Ð,∴GFP HDP △≌△,∴GP HP GF HD ==,,∵四边形ABCD 是菱形,∴CD CB =,∴CG CH =,∴CHG △是等腰三角形,∴PG PC ^,又∵60ABC BEF Ð=Ð=°,∴18060120BCD Ð=°-°=°,∴60GCP Ð=°,∴PG PC=故选:B .11.83【分析】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.根据平行线分线段成比例定理列出比例式,把已知数据代入计算得到答案.【详解】解:∵123l l l ∥∥,∴DE AB EF BC=,∵342DE EF AB ===,,,∴324BC=,解得:83BC =,故答案为:83.12.60°##60度【分析】此题重点考查菱形的性质,等边三角形的判定与性质,正确地画出图形,并且推导出AB AD BD ==是解题的关键.由菱形的性质得AB CB AD CD ===,则440cm AB CB AD CD AB +++==,所以10cm AB AD ==,而10cm BD =,所以AB AD BD ==,则60A Ð=°,于是得到问题的答案.【详解】解:如图,四边形ABCD 是菱形,10cm BD =,∴AB CB AD CD ===,∵菱形ABCD 的周长为40cm ,∴440cm AB CB AD CD AB +++==,∴10cm AB AD ==,∵AB AD BD ==,∴ABD △是等边三角形,∴60A Ð=°,故答案为:60°.13.9【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设暗箱里白球的数量是n ,则根据题意得:66n +=0.4,解得:n =9,经检验n =9为方程的解且符合题意,故答案为9.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=,2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD =,故答案为:【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.15.()6,3【分析】本题主要考查了反比例函数的图象与性质的应用,求反比例函数的解析式,由题意,首先根据B 的坐标求出k ,然后可设18,E a a æöç÷èø,再由正方形ADEF ,建立关于a 的方程,进而得解.【详解】解:Q 点B 的坐标为()3,6,且在反比例函数()0k y k x=¹的图象上,6318k =´=\,\反比例函数的解析式为18y x=,Q 点E 在反比例函数图像上,\设18,E a a æöç÷èø,183AD a ED a\=-==,16a \=或23a =-,0a >Q ,6a \=,()6,3E \,故答案为:()6,3.16.409或20【分析】本题考查了相似三角形的判定,等腰三角形的性质,利用分类讨论思想解决问题是解题的关键.分两种情况进行讨论.由等腰三角形的性质得出B Ð和C Ð对应相等,那么就要分成BP 和CQ 为对应边以及BP 和AC 为对应边两种情况.【详解】解:设运动时间为s x ,当BPQ CQA ∽V V 时,有BP BQ CQ AC=,即4303320x x x -=,解得:109x =,∴404cm 9BP x ==,当BPQ CAQ ∽V V 时,有BP BQ AC CQ=,即4303203x x x -=,解得:5x =或10x =-(舍去),∴420cm BP x ==,综上所述,当40cm 9BP =或20cm 时,BPQ V 与AQC V 相似,故答案为:409或20.17.4##4+【分析】本题考查了旋转的性质,矩形的性质,勾股定理,确定点N ¢的轨迹是解题的关键.由旋转的性质结合AAS 证明AMN GMN ¢≌△△,推出4MG AM ==,得到点N ¢在平行于AB ,且与AB 的距离为4的直线上运动,作点M 关于直线EF 的对称点M ¢,连接M B ¢交直线EF 于点N ¢,此时MBN ¢△周长取得最小值,由勾股定理可求解.【详解】解:过点N ¢作EF AB ∥,交AD BC 、于E F 、,过点M 作MG EF ^垂足为G ,∵矩形ABCD ,∴AB CD ∥,∴AB EF CD ∥∥,∴四边形AMGE 和BMGF 都是矩形,∴90A MGN ¢Ð=Ð=°,由旋转的性质得90NMN ¢Ð=°,MN MN ¢=,∴90AMN NMG GMN ¢Ð=°-Ð=Ð,∴()AAS AMN GMN ¢V V ≌,∴142MG AM AB ===,∴点N ¢在平行于AB ,且与AB 的距离为4的直线上运动,作点M 关于直线EF 的对称点M ¢,连接M B ¢交直线EF 于点N ¢,此时MBN ¢△周长取得最小值,最小值为BM BM ¢+,∵142BM AB ==,448MM ¢=+=,∴44BM BM ¢+=+=+,故答案为:4+18.(1)122,4x x ==-(2)1233x x =+=-(3)12x x ==(4)121,6x x ==【分析】本题考查了解一元二次方程﹣因式分解法,配方法,公式法,直接开平方法,准确熟练地进行计算是解题的关键.(1)利用解一元二次方程﹣直接开平方法进行计算,即可解答;(2)利用解一元二次方程﹣配方法进行计算,即可解答;(3)利用解一元二次方程﹣公式法进行计算,即可解答;(4)利用解一元二次方程﹣因式分解法进行计算,即可解答.【详解】(1)解:()22118x +=()219x +=13x +=±,13x +=或13x +=-,122,4x x ==-;(2)解:2611x x -=269119x x -+=+()2320x -=3x -=±3x -=3x -=-,1233x x =+=-(3)解:23420x x --=,()()24432400D =--´´-=>∴x =1x x =;(4)解:()2155x x --=()()2151x x -=-()()21510x x ---=()()1150x x ---éùû=ë()()160x x --=10x -=或60x -=,121,6x x ==.19.见详解【分析】作ACD B Ð=Ð,交AM 于点D ,点D 即为所求.【详解】如图所示,作ACD B Ð=Ð,交AM 于点D ,点D 即为所求,∵AM BC ∥,∴DAC ACB Ð=Ð,∵ACD B Ð=Ð,∴DCA ABC :△△.【点睛】本题考查了相似三角形的判定,作一个角等于已知角,掌握以上知识是解题的关键.20.矩形,理由见解析【分析】此题考查了矩形的判定、平行四边形的性质,熟记矩形的判定、平行四边形的性质是解题的关键.根据平行四边形的性质可得AD BC =,AD BC ∥,再根据平行四边形的判定可得四边形AECF 是平行四边形,最后由矩形的判定方法可得结论.【详解】解:四边形AECF 是矩形,理由如下:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∵BE DF =,∴AD DF BC BE -=-,即AF EC =,∵AF EC ∥,∴四边形AECF 是平行四边形,∵AC EF =,∴平行四边形AECF 是矩形.21.(1)见解析(2)0【分析】本题考查了一元二次方程的根的判别式、根与系数的关系等知识点,掌握相关结论即可.(1)根据一元二次方程根的判别式计算即可求解;(2)根据一元二次方程根与系数的关系可得,124x x k +=+,1224x x k ×=+,再整理代入()()()1212122224x x x x x x --=×-++即可求解.【详解】(1)解:∵()()22Δ44240k k k éù=-+-+=³ëû,∴方程总有实数根;(2)解:由根与系数的关系可得,124x x k +=+,1224x x k ×=+,∴()()1222x x --()121224x x x x =×-++()24244k k =+-++0=.22.见解析【分析】此题考查了相似三角形的判定,熟记相似三角形的判定定理是解题的关键.根据直角三角形的性质及垂直定义求出9090A B ADC CDE Ð+Ð=°Ð+Ð=°,,根据等腰三角形的性质求出A ADC Ð=Ð,进而求出CDE B Ð=Ð,再根据“两角对应相等的两个三角形相似”即可得证.【详解】证明:∵90ACB Ð=°,∴A B ÐÐ=°+90,∵DE AB ^,∴90ADE ADC CDE Ð=Ð+Ð=°,∵CD CA =,∴A ADC Ð=Ð,∴CDE B Ð=Ð,又∵DCE BCD Ð=Ð,∴CDE CBD ∽△△.23.(1)15(2)16【分析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求出事件A 或B 的概率.(1)直接利用概率公式计算;(2)先画树状图展示所有12种等可能的结果,再找出恰好选中甲和乙两名同学的结果数,然后根据概率公式计算.【详解】(1)解:根据题意:小明从中任选一类社团活动,选到“体育社团”的概率是15;(2)解:画树状图为:共有12种等可能的结果,其中恰好选中甲和乙两名同学的结果数为2种,所以恰好选中甲和乙两名同学的概率21126=.24.(1)()50010x -(2)每套纪念品应定价50元.【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)由题意即可得出结论;(2)设这种纪念品每套上涨x 元,则每套纪念品应定价为()40x +元,平均每天的销售量为()50010x -套,根据这种纪念品的销售利润平均每天达到8000元,列出一元二次方程,解之取符合题意的值即可.【详解】(1)解:由题意可知,平均每天的销售量为()50010x -套,故答案为:()50010x -;(2)解:设这种纪念品每套上涨x 元,则每套纪念品应定价为(40)x +元,平均每天的销售量为(50010)x -套,由题意得:()()4030500108000x x +--=,整理得:2403000x x -+=,解得:110x =,230x =(不符合题意,舍去),4050x \+=,答:每套纪念品应定价50元.25.(1)菱形;(2)PF PC ^,见解析;(3)152【分析】(1)由折叠的性质可知,AD AE DF EF DAF EAF ==Ð=Ð,,,再根据平行线的性质推出EFA EAF Ð=Ð,则EA EF =,进而推出AD DF EF AE ===,即可证明四边形AEFD 是菱形;(2)连接AE .由折叠的性质可知,PD PE PEC PDC DPC EPC =Ð=ÐÐ=Ð,,,由180ADC DAB Ð+Ð=°,180PEC PEF Ð+Ð=°,得到DAB PEF Ð=Ð;由点P 是AD 的中点,得到PA PD PE ==,则PAE PEA Ð=Ð,进一步证明AEF EAF Ð=Ð,得到AF EF =,证明PAF PEF △≌△,得到APF EPF Ð=Ð,再根据平角的定义得到90FPC Ð=°,则PF PC ^;(3)延长CP 交BA 的延长线于点T .设AE x =.由折叠的性质可知,30PCD PCE CD CE Ð=Ð==,,再证明T PCE Ð=Ð,得到30,30EC ET AT x ===-,证明PDC PAT △∽△,得到630830x -=,即可求出152AE =.【详解】解:(1)由折叠的性质可知,AD AE DF EF DAF EAF ==Ð=Ð,,,∵EF AD ∥,∴DAF EFA Ð=Ð,∴EFA EAF Ð=Ð,∴EA EF =,∴AD DF EF AE ===,∴四边形AEFD 是菱形;故答案为:菱形.(2)解:结论:PF PC ^.理由:连接AE .由折叠的性质可知,PD PE PEC PDC DPC EPC =Ð=ÐÐ=Ð,,,∵四边形ABCD 是平行四边形,∴180ADC DAB Ð+Ð=°,∵180PEC PEF Ð+Ð=°,∴DAB PEF Ð=Ð,∵点P 是AD 的中点,∴PA PD PE ==,∴PAE PEA Ð=Ð,∴DAB PAE PEF PEA Ð-Ð=Ð-Ð,∴AEF EAF Ð=Ð,∴AF EF =,∵PF PF =,∴()SSS PAF PEF V V ≌,∴APF EPF Ð=Ð,∵180DPC CPE EPF APF Ð+Ð+Ð+Ð=°,∴22180CPE FPE Ð+Ð=°,∴90FPC Ð=°,∴PF PC ^;(3)解:延长CP 交BA 的延长线于点T .设AE x =.由折叠的性质可知,30PCD PCE CD CE Ð=Ð==,,∵CD BT ∥,∴T DCP Ð=Ð,∴T PCE Ð=Ð,∴30,30EC ET AT x ===-,∵AT CD ∥,∴PDC PAT △∽△,∴AP AT PD CD =,∴630830x -=,∴152x =,∴152AE =.【点睛】本题主要考查了平行四边形的性质,折叠的性质,等腰三角形的性质与判定,相似三角形的性质与判定,菱形的判定,全等三角形的性质与判定等等,正确作出辅助线是解题的关键.。

2020-2021学年陕西省西安市九年级上期中数学试卷及答案解析

2020-2021学年陕西省西安市九年级上期中数学试卷及答案解析

第 1 页 共 18 页 2020-2021学年陕西省西安市九年级上期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数的个数是( )①0.333;②17;③√5;④π;⑤6.18118111811118…… A .1个 B .2个 C .3个 D .4个2.(3分)下列哪一组数是勾股数( )A .9,12,13B .8,15,17C .√2,3,√12D .12,18,223.(3分)下列运算中正确的是( )A .√2+√3=√5B .(−√5)2=5C .3√2−2√2=1D .√16=±44.(3分)已知点A 在第二象限,到x 轴的距离是5,到y 轴的距离是6,点A 的坐标为( )A .(﹣5,6)B .(﹣6,5)C .(5,﹣6)D .(6,﹣5)5.(3分)在平面直角坐标系中,若一个正比例函数的图象经过A (a ,3),B (4,b )两点,则a ,b 一定满足的关系式为( )A .a ﹣b =1B .a +b =7C .ab =12D .a b =34 6.(3分)如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底BC 的12米处,则大树断裂之前的高度为( )A .9米B .15米C .21米D .24米7.(3分)平面直角坐标系内,将直线y =2x ﹣1沿y 轴向上平移2个单位,所得直线的解析式是( )A .y =2x +3B .y =2x ﹣3C .y =2x ﹣5D .y =2x +18.(3分)若点P (2a ﹣1,3)关于y 轴对称的点为Q (3,b ),则点M (a ,b )关于x 轴对称的点的坐标为( )A .(1,3)B .(﹣1,3)C .(﹣1,﹣3)D .(1,﹣3)9.(3分)若a 、b 为实数,且√1−3a +√3a −1−b =5,则直线y =ax +b 不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限。

2020-2021陕西师范大学附属中学分校初三数学上期中模拟试题带答案

2020-2021陕西师范大学附属中学分校初三数学上期中模拟试题带答案
2.B
解析:B
【解析】
【分析】
根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.
【详解】
解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,
∴α+β=1、α2﹣α=2018,
则原式=α2﹣α﹣2(α+β)+3
=2018﹣2+3
16.若圆锥的底面周长为 ,母线长为6,则圆锥的侧面积等于________.(结果保留π)
17.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
18.一副三角板如图放置,将三角板ADE绕点A逆时针旋转 ,使得三角板ADE的一边所在的直线与BC垂直,则 的度数为______.
∴m=﹣3,n=2.
故选:B.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
8.D
解析:D
【解析】
A. B. C. D.
11.有两个一元二次方程 , ,其中, , ,下列四个结论中错误的是()
A.如果方程 有两个不相等的实数根,那么方程 也有两个不相等的实数
B.如果4是方程 的一个根,那么 是方程 的另一个根
C.如果方程 有两根符号相同,那么方程 的两符号也相同
D.如果方程 和方程 有一个相同的根,那么这个根必是
【详解】

2020-2021学年陕西师大附中九年级上学期期中数学试卷(含解析)

2020-2021学年陕西师大附中九年级上学期期中数学试卷(含解析)

2020-2021学年陕西师大附中九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.计算(−2)2009+3×(−2)2008的值为()A. −22008B. 22008C. (−2)2009D. 5×22082.如图是由7个大小相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.3.下列运算中,正确的是()A. 2a⋅3a=6aB. a8÷a2=a6C. a5+a5=a10D. (a+b)2=a2+b24.如图,在△ABC中,∠C=90°,EF//AB,∠1=50°,则∠B的度数为()A. 50°B. 60°C. 30°D. 40°5.已知点P(m,n)是一次函数y=x−1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2−4m+n(n+2m)=8,则点P的坐标为()A. (12,−12) B. (53,23) C. (2,1) D. (32,12)6.如图,四边形ABCD的两条对角线AC、BD互相垂直,A1B1C1D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为()A. 20B. 40C. 36D. 107.将函数y=−3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A. y=−3x+2B. y=−3x−2C. y=−3(x+2)D. y=−3(x−2)8.如图,在四边形ABCD中,AD//BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. 2√2B. 4C. 3D. √109.若关于x的一元二次方程(2x−1)(x+a)=2x−1其中有一个根为x=−2,则a的值是()A. 3B. −3C. 1D. −110.如图,△ABC是等边三角形,AB=4,D为AB的中点,点E,F分别在线段AD,BC上,且BF=2AE,连结EF交中线AD于点G,连结BG,设AE=x(0<x<2),△BEG的面积为y,则y关于x的函数表达式是()A. y=−√38x2+√32xB. y=−√34x2+√3xC. y=−√3x2+2√3x2D. y=−√3x2+4√3x二、填空题(本大题共6小题,共18.0分)11.在半径为1的⊙O中,两条弦AB、AC的长分别为√2,√3,则由两条弦AB与AC所夹的锐角的度数为______.12.△ABC中,AB=AC=5,BC=8,那么sinB=______.(x>0)的图象交矩形OABC的边AB于点D,交BC 13.如图,在平面直角坐标系中,反比例函数y=kx于点E,且CE=2BE.若四边形ODBE的面积为6,则k=______.14.随着生活水平的不断提高,城市的家用轿车保有量逐年增加,某城市2012年轿车的保有量为240万辆,经过连续两年的增长,到2014年增加到345.6万辆.该城市家用轿车保有量的平均年增长率是______ .15.如图,在△ABC中,BD为△ABC的中线,∠DBA=2∠CAB,BD=25,CB=38,则AB的长为______.16.如图菱形ABCD,∠BAD=80°,AB的垂直平分线交对角线AC于F,E为垂足,则∠CDF=。

陕西省陕西师范大学附属中学2021-2022学年九年级上学期10月月考数学试题

陕西省陕西师范大学附属中学2021-2022学年九年级上学期10月月考数学试题
13.如图,C、D是线段AB的两个黄金分割点,则 的值为____.
【分析】根据黄金分割点的定义:黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值是一个无理数,用分数表示为 .
解:∵C是线段AB的两个黄金分割点,
∴ ,
∴ ,
∵D是线段AB的两个黄金分割点,
∴ ,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF∥AC,HG∥AC, ,
∴EF∥HG,
同理EH∥FG,
∴四边形EFGH为平行四边形,
∵AC=BD,
∴EF=FG,
∴平行四边形EFGH为菱形,
∴EG⊥FH,EG=2OG,FH=2OH,
∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=4EH2= ,故选:B.
本题考查了中点四边形,运用了三角形中位线的性质,将三角形和四边形有机结合,把边的关系由三角形转化为四边形中,可以证明四边形为特殊的四边形;对于线段的平方和可以利用勾股定理来证明.
10.如图,正方形ABCD中,AB=6,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交BC于点G;①△ABG≌△AFG;②FG=CG;③AG∥CF;④ = .其中正确结论的个数是( )
本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
5.如图:在△ABC中,点D在BC边上,连接AD,GE BD且交AB于点E,GF AC且交CD于点F,则下列结论一定正确的是()
A. = B. = C. = D. =
C
【分析】由GE BD、GF AC利用平行线分线段成比例,可得出 , ,进而可得出 ,此题得解.

陕西师范大学附属中学分校九年级数学上册第一单元《一元二次方程》检测(有答案解析)

陕西师范大学附属中学分校九年级数学上册第一单元《一元二次方程》检测(有答案解析)

一、选择题1.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .32.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 3.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .164.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根8.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x 9.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-10.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =- 11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.15.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.16.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.19.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解方程:(1) 2890x x --=(2)(x+1)2=6x+622.解方程:2x²-4x-3=0.23.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.24.解方程:22350x x --= (请用两种方法解方程)25.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.26.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.2.B解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.3.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.6.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.9.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.10.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 11.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 14.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.16.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 19.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)11x =-,29x =;(2)11x =-,25x =.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(2)289x x ,2228494x x -+=+2(4)25x -=,45x =±,∴11x =-,29x =;(2)()2166x x +=+, ()21(66)0x x +-+=, ()216(1)0x x +-+=, ()()1160++-=x x ,(1)(5)0x x +-=,11x =-, 25x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.12x x ==【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴42242b x a -±±===,∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键.23.(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.24.152x =,21x =-【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。

陕西省陕西师范大学附属中学2020-2021学年九年级上学期第二次月考数学试题

陕西省陕西师范大学附属中学2020-2021学年九年级上学期第二次月考数学试题

陕西省陕西师范大学附属中学2020-2021学年九年级上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知3m n n-=14,则m n =( ) A .154 B .415 C .512 D .1252.下列结论中,正确的是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n 个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .54.如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .14 5.下列四组线段中,是成比例线段的是( )A .2cm ,3cm ,4cm ,5cmB .3cm ,6cm ,0.2dm ,5cmC .2cm ,4cm ,6cm ,8cmD .12cm ,8cm ,15cm ,10cm 6.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D.当k0时,方程总有两个不相等的实数解7.如图,已知在△ABC中,DE∥AC,DF∥AB,那么下面各等式中,错误的有()A.BD:DC=BE:EA B.BD:BC=AF:AC C.BE:EA=AF:FC D.DF:BA=DE:CA8.如图,点P在△ABC的边AC上,添加一个条件可判断△ABP∽△ACB,其中添加不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.APAB=ABACD.ABAP=CBBP9.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10 10.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=12BC;(4)S△AOE=16S矩形ABCDA.1个B.2个C.3个D.4个二、填空题11.一个盒子装有除颜色外其它均相同的2个红球和1个白球,现从中任取1个球,不放回,再取出一个球,则取到的是颜色不同的两个球的概率为_____12.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为________粒.13.若关于x 的方程x 2+(k -2)x +k 2=0的两根互为倒数,则k =____.14.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt △BCD 沿射线BD 方向平移,在平移的过程中,当点B 的移动距离为 时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC 1D 1为菱形.15.如图,已知直角△ABC 中,AC =6,BC =8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,……,则1n n n nC A A C =_____(其中n 为正整数).16.如图,菱形ABCD 中,AB =2,∠A =120°,点E 、F 分别在边AB 、AD 上且AE =DF ,则△AEF 面积的最大值为_____.三、解答题17.解一元二次方程:(1)x 2﹣2x ﹣4=0(2)3(x ﹣5)2=2(5﹣x )(3)(x +1)(x +7)=﹣918.尺规作图:如图,现在甲、乙、丙三家公司共建一个污水处理站P ,使得该站到甲、乙、丙三家公司的距离相等.(不写作法,保留作图痕迹)19.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A 在同一直线上,已知DE=1米,EF=0.5米,测点D到地面的距离DG=3米,到旗杆的水平距离DC=40米,求旗杆的高度.21.端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A),兴文石海(记为B),夕佳山民居(记为C),李庄古镇(记为D),的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.23.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O (0,0),C(4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD 分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=BAD=90°过点D是否存在一条直线将四边形ABCD 的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.参考答案1.C【解析】【分析】先去分母,然后移项,即可得出正确答案.【详解】解∵314m nn-=,∴12m﹣4n=n,故12m=5n,则512 mn=.故选:C.【点睛】本题考查的知识点是解分式方程,去分母时要等式的两边同时乘以最小公倍数.2.B【解析】A.可判断为菱形,故本选项错误,B.对角线相等的菱形是正方形,故本选项正确,C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,D.菱形的对角线不一定相等,故本选项错误,故选B.3.B【解析】依题意有:20.42n=+,解得:n=3.故选B.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.4.A【分析】根据菱形的四条边都相等求出AB ,再根据菱形的对角线互相平分可得OB=OD ,然后判断出OE 是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】解:∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD , ∵E 为AD 边中点,∴OE 是△ABD 的中位线,∴OE=12AB=12×7=3.5. 故选:A .【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5.D【分析】根据成比例线段的定义,若a ,b ,c ,d 是成比例线段,则有a cb d=,逐项判断即可. 【详解】解:A 、3×4≠5×2,故选项错误;B 、0.2dm ﹣2cm ,3×5≠6×2,故选项错误;C 、2×8≠4×6,故选项错误;D 、12×10=8×15,故选项正确.故选:D .【点睛】本题考查的知识点是成比例线段的定义,熟记定义是解此题的关键.6.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .7.D【解析】根据平行线分线段成比例的性质及平行四边形的性质对选项依次进行判断即可得出答案. 解:∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 为平行四边形,∴BD :DC=BE :EA ,BD :BC=AF :AC ,BE :EA=AF :FC ,D 选项中DF :BA=CD :DE ,故选D .8.D【分析】根据相似三角形的判定定理逐一判断各选项即可.【详解】解:∵在△ABP 和△ACB 中,∠BAP =∠CAB ,∴当∠ABP =∠C 时,满足两组角对应相等,可判断△ABP ∽△ACB ,故A 正确; 当∠APB =∠ABC 时,满足两组角对应相等,可判断△ABP ∽△ACB ,故B 正确; 当AP AB AB AC=时,满足两边对应成比例且夹角相等,可判断△ABP ∽△ACB ,故C 正确; 当AB CB AP BP = 时,其夹角不相等,则不能判断△ABP ∽△ACB ,故D 不正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记判定定理是解题的关键.9.B【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.10.C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=12AE ,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE 是等边三角形,判断出(1)正确;设AE=2a ,根据等边三角形的性质表示出OE ,利用勾股定理列式求出AO ,从而得到AC ,再求出BC ,然后利用勾股定理列式求出AB=3a ,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF ⊥AC ,点G 是AE 中点,∴OG =AG =GE =12AE , ∵∠AOG =30°,∴∠OAG =∠AOG =30°,∠GOE =90°﹣∠AOG =90°﹣30°=60°,∴△OGE 是等边三角形,故(1)正确;设AE =2a ,则OE =OG =a ,由勾股定理得,AO ,∵O 为AC 中点,∴AC =2AO =,∴BC =12AC =12×a ,在Rt △ABC 中,由勾股定理得,AB 3a ,∵四边形ABCD 是矩形,∴CD =AB =3a ,∴DC =3OG ,故(2)正确;∵OG =a ,12BC =2a , ∴OG ≠12BC ,故(3)错误;∵S △AOE =12a 2,S ABCD =3a a =2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(2)(4),共3个.故选:C .【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.11.23【分析】根据题意画树状图求解即可.【详解】解:依据题意画树状图为:共有6种等可能的结果数,其中取到的是颜色不同的两个球的结果数为4,所以取到的是颜色不同的两个球的概率=4263=, 故答案为:23. 【点睛】 本题考查的知识点是简单的概率问题,弄清题意,画出树状图是解此题的关键. 12.1250【解析】【分析】设瓶子中有豆子x 粒,根据取出100粒刚好有记号的8粒列出算式,计算即可.【详解】设瓶子中有豆子x 粒豆子,根据题意得:1001008x = , 解得:x=1250,答:估计瓶子中豆子的数量约为1250粒.故答案为:1250.【点睛】本题考查了用样本估计总体的知识点,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.13.-1【解析】x 1x 2= k 2=1,k =1±.k=1时,0<, 舍去.所以k =-1.14.3 【解析】试题分析:当点B ∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.试题解析:如图:当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=11tan603B C==︒,当点B的移动距离为3时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=11tan303B C==︒,当点B时,四边形ABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.15.4 5【分析】利用勾股定理可求出AB的长,然后由CA1⊥AB,得出△A1CA∽△CBA,利用相似三角形的性质求出CA1=245,145A CAC=,同理根据相似三角形的性质可求出△∁n A n C n﹣1∽△CBA,继而得出答案.【详解】解:在Rt△ABC中,AC=6,BC=8,由勾股定理得AB10 ==,∵CA1⊥AB,∠ACB=90°,∴△A1CA∽△CBA,∴1CA AC BC AB=, 解得,CA 1=245, ∵A 1C 1∥AC ,∴∠ACA 1=∠CA 1C 1,∴△A 1C 1C ∽△CA 1A , ∴11114 5A C A C AC A C == 由平行线的性质,得∠A 1CA =∠∁n A n C n ﹣1,∴△∁n A n C n ﹣1∽△CBA , ∴145n n n n C A BC A C AB +==. 故答案为:45. 【点睛】本题考查的知识点有相似三角形的性质,三角函数,勾股定理等.读懂题意,找出图形中的规律是解此题的关键.16【分析】过点E 作EM ⊥AD 交DA 的延长线于点M ,设AE =x ,则AE =DF =x ,根据菱形的性质表示AF,在△AME 中通过锐角三角函数表示EM ,根据三角形面积公式表示△AEF 的面积,再利用二次函数的顶点式求出面积的最大值.【详解】解:过点E 作EM ⊥AD 交DA 的延长线于点M ,设AE =x ,则AE =DF =x ,∵四边形ABCD 是菱形,∠A =120°,∴AB =AD =2,∠MAE =60°,∴AF =2﹣x ,∴EM =AE •sin60°=2x ,∴S △AEF =12AF •EM =12(2﹣x )x ﹣1)2∴△AEF 面积的最大值为【点睛】 本题考查菱形的性质,锐角三角函数,二次函数的性质.根据三角形面积等于底×高÷2,能构造△AEF 的高线EM ,并能通过三角函数表示出高线EM 是解决此题的关键.17.(1)x 1=x 2=1(2)x 1=5,x 2=133;(3)x 1=x 2=﹣4 【分析】(1)等式两边同时加1,然后利用公式法解方程即可;(2)用因式分解法解方程即可;(3)整理后可以用公式法求方程的解.【详解】解:(1)∵x 2﹣2x =4,∴x 2﹣2x +1=4+1,即(x ﹣1)2=5,则x ﹣1=即x 1=x 2=1(2)∵3(x ﹣5)2+2(x ﹣5)=0,∴(x ﹣5)(3x ﹣13)=0,则x ﹣5=0或3x ﹣13=0,解得x 1=5,x 2=133; (3)整理成一般式得x 2+8x +16=0,则(x +4)2=0,解得x 1=x 2=﹣4.【点睛】本题考查的知识点是解一元二次方程,熟记解一元二次方程的几种方法是解此题的关键. 18.见解析【分析】根据线段垂直平分线的性质定理以及垂线段最短即可解决问题.【详解】解:污水处理站P 的位置如图所示:作线段AB ,AC 的垂直平分线,两线交于点P ,点P 就是所求作的点.【点睛】本题考查的知识点是应用与设计作图,弄清题意,熟记各性质定理是解此题的关键. 19.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 20.旗杆AB的高度是23米【分析】证明△ACD∽△FED,根据相似三角形对应边成比例得出AC CDEF DE=,从而求出AC的长度,证明四边形BGDC为矩形,根据矩形的性质得出BC=DG,从而求出AB. 【详解】解:∵∠ADC=∠FDE,∠ACD=∠FED=90°,∴△ACD∽△FED,∴AC CD EF DE=,即40 0.51 AC=,解得AC=20,∵AB⊥BG,DG⊥BG,DC⊥AB,∴∠ABG=∠BGD=∠DCB=90°,∴四边形BGDC是矩形,∴BC=DG=3,∴AB=AC+BC=20+3=23米.答:旗杆AB的高度是23米【点睛】本题考查矩形的性质和判定,相似三角形的应用.本题中能证明△ACD∽△FED,并通过相似三角形对应边成比例求出AC是解题关键.21.(1)14.(2)116.【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去兴文石海旅游的情况,再利用概率公式即可求得答案.【详解】解:(1)∵小明准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率=1 4 .(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率=1 16.22.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=12AC=12BD∴四边形OCED是菱形.23.每件衬衫应降价20元.【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可. 【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=20.答:每件衬衫应降价20元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24.(1)(2)y =83x ﹣4;(3)存在,长度为3【分析】(1)如图1中,取AC 的中点F ,连接BF ,BD ,作FE ∥BD 交BC 于E ,连接DE 交BF 于O ,结合三角形面积,再利用相似三角形的性质可求出CE 的长,最后利用勾股定理即可求解;(2)如图2中,连接AO 、AC ,作BE ∥AO 交x 轴于E ,DF ∥AC 交x 轴于F ,EF 的中点为M ,则直线AM 平分五边形ABCOD 的面积,根据点坐标可求出直线AO ,BE ,AC ,DF 的解析式,从而可求出点E ,F,M 的坐标,从而可得出直线AM 的解析式;(3)先求出四边形ABCD 的面积,即可求出四边形ABQD 的面积,从而求出QM ,再利用平行线分线段成比例定理求出BM ,即可得出DM ,最后利用勾股定理即可.【详解】解:(1)如图1中,取AC 的中点F ,连接BF ,BD ,作FE ∥BD 交BC 于E ,连接DE 交BF 于O .∵AF =FC ,∴S △AFB =S △BFC ,∵BD ∥EF ,∴S △BDE =S △BDF ,∴S △DFO =S △BOE ,∴S△ECD=S四边形ABED,∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴CF CE CD CB=,∴466CE =,∴CE=4,∴DE==故答案为:(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=43 x,∴直线BE解析式为y=43x+2,∴点E坐标(﹣32,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(92,0)∴EF的中点M坐标为(32,0),∴直线AM的解析式为:y=83x﹣4.(3)如图3中,连接BD ,AC 交于点O .在BC 上取一点Q ,过Q 作QM ⊥BD ,∵AB =AD =200、BC =CD =∴AC 是BD 的垂直平分线,在Rt △ABD 中,BD AB =,∴DO =BO =OA =在Rt △BCO 中,OC ,∴S 四边形ABCD =S △ABD +S △CBD =12BD ×(AO +CO )=12××()=80000, ∵在一条过点D 的直线将筝形ABCD 的面积二等分,∴S 四边形ABQD =12S 四边形ABCD =40000, ∵S △ABD =12×BD ×OA =20000,∴S △QBD =12BD ×QM =12××QM =QM =S 四边形ABQD ﹣S △ABD =20000,∴QM =∵QM ∥CO . ∴BM QM BO CO==∴BM ,∴DM =BD ﹣BM ,在Rt△MQD中,DQ==.【点睛】本题是一道关于四边形的综合题目,涉及到的知识点有相似三角形的性质,成比例线段的性质,勾股定理,一次函数解析式等,有一定难度,充分考查了学生综合分析问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档