平移和旋转中心对称练习题

合集下载

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题一.选择题(共9小题)1.以下是几所知名大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形也是中心对称图形的有()A.4个B.3个C.2个D.1个3.如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD.将△ABC再次折叠,使BC边落在BA边上,展开后得到折痕BE,BE,AD交于点O.则以下结论一定成立的是()A.AO=2OD B.S△ABO=S四边形ODCEC.点O到△ABC三边的距离相等D.点O到△ABC三个顶点的距离相等4.下列各式中,是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.6.把点P(2,﹣5)向上平移3个单位后再关于原点对称的点的坐标是()A.(5,﹣5)B.(﹣2,2)C.(﹣5,5)D.(2,﹣2)7.如图,△ABC的周长为30cm,将△ABC沿CB向右平移得到△DEF,若平移的距离为4cm,则四边形ACED的周长是()cm.A.34B.36C.38D.408.“会飞的饺子皮”刷爆朋友圈,卡塔尔世界杯吉祥物“拉伊卜”刷爆网络!下面是“拉伊卜”的形象图片,在下面的四个图形中,能由左图经过平移得到的图形是()A.B.C.D.9.通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D二.填空题(共8小题)10.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B'处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB'于点P.若BC=12,则MP+MN=.11.如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则sin∠ADF的值为.12.如图,将△ABC绕点C顺时针旋转30°得到△DEC,边ED,AC相交于点F,若∠A=32°,则∠EFC的度数为°.13.如图,在△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为.14.在平面直角坐标系中,将点(1,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是.15.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE交CD于点H,且DH=EH,则AH的长为.16.等腰直角△ABC中,BAC=90°,AB=5,点D是平面内一点,AD=2,连接BD,将BD绕D点逆时针旋转90°得到DE,连接AE,当DAB=(填度数)度时,AE 可以取最大值,最大值等于.17.如图,矩形ABCD的边AD的长为6,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE,若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为.三.解答题(共3小题)18.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度,再向下平移2个单位长度,画出△ABC平移后的图形△A1B1C1;(2)以点A为旋转中心,将△ABC按逆时针方向旋转90°,得到△AB2C2,请画出△AB2C2.19.已知O是坐标原点,的坐标分别为(3,1),(2,﹣1).(1)画出绕点O顺时针旋转90°后得到的,并写出A1的坐标为;(2)在y轴的左侧以O为位似中心作的位似图形,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,B,C的坐标分别为(﹣5,1),(﹣5,4),(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1,点A,B,C的对应点分别是A1、B1、C1.(2)画出△ABC关于原点O对称的△A2B2C2,点A,B,C的对应点分别是A2、B2、C2.。

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

三年级上册数学单元测试- 6.平移、旋转和轴对称一、单选题1.下列现象中,既有平移现象又有旋转现象的是()A. 正在工作的电扇叶片B. 行驶中的汽车C. 扔出去的铅球D. 放飞的风筝2.如图。

将图1中的三角形甲平移到图2中所示的位置,与三角形乙拼成一个长方形,那么,下面的平移方法中,正确的是( )。

A. 先向下平移3格,再向右平移1格B. 先向下平移3格.再向右平移2格C. 先向下平移2格,再向F平移2格D. 先向有平移3格.再向F平移2格3.电风扇的运动是()A. 平移B. 旋转C. 既平移又旋转4.图①绕点O()变为图②。

A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°5.一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( )A. 平移后,图形的形状和大小都不改变B. 平移后的图形与原图形的对应线段、对应角都相等C. 平移后的图形形状不变,但大小可以改变D. 利用基本图形的平移可以设计美丽的图案6.从12时到12时30分,分针绕中心点()。

A. 逆时针旋转了90°B. 顺时针旋转了90°C. 顺时针旋转了180°7.下列哪种运动可以看成平移()A. 升国旗B. 电风扇叶片转动C. 钟摆的运动8.下列每组中的前后两个图形,()组通过平移就可以重合。

A. B. C. D.9.补全轴对称图形的时候,要先找到()A. 边界B. 对称轴C. 端点10.下列现象中,不属于平移的是()A. 乘直升电梯从一楼上到二楼B. 钟表的指针嘀嗒嘀嗒地走C. 火车在笔直的轨道上行驶D. 汽车在平坦笔直的公路上行驶二、判断题11.平移必须在水平方向上移动。

12.收费站转杆打开,旋转了180度。

13.电风扇转动是平移现象。

14.左图是由连续两次向右平移2个方格组成的图案。

15.小朋友们玩跷跷板是平移现象。

三、填空题16.看图回答图形B可以看作图形A绕点________顺时针方向旋转90°得到的。

小学数学 《图形的平移、旋转与轴对称》习题1

小学数学 《图形的平移、旋转与轴对称》习题1
《图形的平移、旋转与轴对称》习题
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.下列运动中,是平移的是()A.开门时,门的移动B.走路时手臂的摆动C.移动电脑的鼠标时,显示屏上鼠标指针的移动D.移动书的某一页时,这一页上的某个图形的移动【答案】C.【解析】根据平移的定义,对题中给出的选项进行分析,选择正确答案:A.开门时,门的移动,属于旋转现象;B.走路时手臂的摆动,属于旋转现象;C.移动电脑的鼠标时,显示屏上鼠标指针的移动,属于平移现象;D.移动书的某一页时,这一页上的某个图形的移动,属于旋转现象.故选C.【考点】生活中的平移现象.2.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形3.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.4.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.【答案】2,4,有2.【解析】与三角形1成轴对称图形是三角形2与三角形4,对称轴有2条.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.7.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是()【答案】D.【解析】根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.【考点】镜面对称.8.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.9.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1________ C1________.【答案】(1)详见解析;(2)【解析】已知三点坐标,根据在平面直角坐标系中,关于轴对称的点的坐标特点直接确定出的坐标,然后连线即可.试题解析:解:(1)如图,即为所求关于轴对称的图形.考点:画轴对称图形.10.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析11.如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△与△关于点成中心对称.(1)在网格图中标出对称中心点的位置;(2)画出将△沿水平方向向右平移5个单位后的△.【答案】【解析】(1)连CF、BE后,所得交点即为O点(2)将A、B、C点各平移5个单位后,所得到的3个新的点互相连接,所得到的的图形即为所求图形【考点】图形的对称与平移点评:题目难度不大,学生可以通过多做此类题得出12.下列现象属于图形平移的是()A.轮船在大海上航行B.飞速转动的电风扇C.钟摆的摆动D.迎面而来的汽车【答案】D【解析】平移的定义:把一个图形沿一定的方向移动一定的距离叫做图形的平移,简称平移. A、轮船在大海上航行,B、飞速转动的电风扇,C、钟摆的摆动,均不属于平移;D、迎面而来的汽车,符合平移的定义,本选项正确.【考点】平移的定义点评:本题属于基础应用题,只需学生熟练掌握平移的定义,即可完成.13.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A.75°B.60°C.45°D.15°【答案】B【解析】旋转角的定义:旋转对应边的夹角是旋转角。

五年级数学平移旋转和对称试题

五年级数学平移旋转和对称试题

五年级数学平移旋转和对称试题1.下面的现象中是平移的画“△”,是旋转的画“□”.(1)索道上运行的观光缆车.(2)推拉窗的移动.(3)钟面上的分针.(4)飞机的螺旋桨.(5)工作中的电风扇.(6)拉动抽屉..【答案】△,△,□,□,□,△.【解析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动叫做平移运动,简称平移.旋转是指把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.也就是说旋转是物体在以一个点或一个轴为中心的圆周上运动的现象.解:(1)索道上运行的观光缆车.△(2)推拉窗的移动.△(3)钟面上的分针.□(4)飞机的螺旋桨.□(5)工作中的电风扇.□(6)拉动抽屉.△故答案为:△,△,□,□,□,△.【点评】本题是考查图形的旋转与平移.平移和旋转相同点:位置发生变化,大小不变,形状不变,都在一个平面内;不同点:平移,运动方向不变.旋转,围绕一个点或轴,做圆周运动.2.在下面的方格纸中任意设计一个轴对称图形,并画出它的对称轴.【答案】【解析】轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在轴对称图形中,对称轴是一条直线,对称轴两侧的对应点到对称轴两侧的距离相等.解:根据轴对称图形的定义性质设计这样一个如图:【点评】此题主要考查轴对称图形的定义及性质的理解运用能力.3.画出平行四边形ABCD绕D点顺时针旋转90°后的图形.【答案】【解析】先找出点A、B、C绕点D顺时针旋转90°后的对应点的位置,然后顺次连接即可得解;解:如图所示,平行四边形A′B′C′D即为平行四边形ABCD绕点D顺时针旋转90°后的图形;【点评】本题考查了利用旋转变换作图,找出平行四边形的顶点A、B、C旋转后的对应点的位置是解题的关键.4.如果两个图形完全重合,这两个图形就是轴对称图形(判断对错)【答案】×【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.解:由轴对称图形的意义可知:如果两个图形完全重合,这两个图形不一定是轴对称图形;故答案为:×.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.5.如图(1)指针从“1”绕点O顺时针旋转60°后指向(2)指针从“1”绕点O逆时针旋转90°后指向(3)指针从“7”绕点O逆时针旋转90°后指向(4)指针从5绕点O旋转到12点,顺时针要旋转度,逆时针要旋转度.【答案】3;10;4;210;150.【解析】这里是关于中钟表的问题,不难得出钟面被平均分成了12份,那么1份所对的圆心角就是360°÷12=30°;由此即可解决问题.解:(1)指针从“1”绕点O顺时针旋转60°时,是经过了60°÷30°=2个格,那么此时指针指向3;(2)指针从“1”绕点O逆时针旋转90°时,是经过了90°÷30°=3个格,那么此时指针指向10;(3)指针从“7”绕点O逆时针旋转90°时,是经过了90°÷30°=3个格,那么此时指针指向4;(4)指针从5绕点O旋转到12点,顺时针时是经历了7个格,那么要旋转30°×7=210°;逆时针是经历了5个格,那么要旋转30°×5=150°;故答案为:3;10;4;210;150.【点评】抓住钟面上的一个大格所对的圆心角的度数是30°,是解决本题的关键,这里还要注意逆时针旋转和顺时针旋转的意义.6.请画出三角形AOB绕O点顺时针旋转90°后的图形.【答案】【解析】根据题意弄清绕哪个点,按什么方向,旋转多少度从而得到最后的图形,关键是找出A和B的对应点,然后连接在一起即可.解:由题意知,找到A的对应点A′,B的对应点B′,然后连接OA′,OB′,A′B′,三角形OA′B′就是旋转后得到的图形,如下图所示:【点评】此题考查了运用旋转画图形,关键是找对应点.7.画出下面各图形的一条对称轴.【答案】【解析】依据轴对称图形的意义及特征,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而画出其对称轴.解:图形的对称轴如下图所示:.【点评】此题主要考查轴对称图形的意义及其对称轴的画法.8.钟面上的时刻是12时,如果把时针绕着中心顺时针旋转120°,是时.【答案】4.【解析】根据钟表表盘与角度相关的特征,时针在钟面上每小时转30°,进而计算可得把时针绕着中心顺时针旋转120°的时间,依此可得答案.解:120÷30=4(时)答:把时针绕着中心顺时针旋转120°,是4时.故答案为:4.【点评】本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°,也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()度,逆过来同理.9.一个正六边形,如绕点O最少旋转度后与原来的图形重合.【答案】60.【解析】观察图形,周角360°被分成6等分,每旋转一份角度都能与原来的图形重合,然后计算即可得解.解:因为360°÷6=60°,所以每旋转60°角的整数倍都能与原图形重合,故旋转角最小是60°.故答案为:60.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.画出下列图形的轴对称图形.【答案】【解析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可.解:画出下列图形的轴对称图形:【点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各对称点即可.。

平移旋转轴对称经典题目

平移旋转轴对称经典题目

平移旋转轴对称经典题目平移旋转轴对称是几何中的基本概念,它在解决许多问题时都发挥了重要作用。

下面将介绍一些经典的与平移旋转轴对称相关的题目。

平移对称1. 问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。

试证明F是矩形ABCD的一个对称点。

证明:首先,连接BD并延长到交G于G点。

我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

首先,连接BD并延长到交G于G点。

我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

首先,连接BD并延长到交G于G点。

我们注意到BC 是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。

因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。

2. 问题:给定梯形ABCD,其中AD平行于BC。

点M是AB 的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

问题:给定梯形ABCD,其中AD平行于BC。

点M是AB的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

问题:给定梯形ABCD,其中AD平行于BC。

点M是AB的中点,点N是CD的中点。

试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。

证明:因为M是AB的中点,N是CD的中点,所以MN平行于AD。

另外,由于MN是平移MC得来的,所以MN的中点也是平移梯形ABCD的中线AD得来的,即MN的中点是梯形ABCD的一个对称点。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案一、选择题1.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.4.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=AE.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.,若将△ABO绕点O沿顺时针方向旋转90°15.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.。

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题1.电梯的升降是现象,钟面上时针和分针的运动是现象,拉开抽屉时,抽屉做运动.【答案】平移,旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的,根据平移与旋转定义判断即可.解答:解:电梯的升降是平移现象,钟面上时针和分针的运动是旋转现象,拉开抽屉时,抽屉做平移运动;故答案为:平移,旋转,平移.点评:本题是考查图形的平移与旋转的意义,关键是看方向是否改变.2.推拉窗户的运动是;风车的运动是.【答案】平移,旋转.【解析】(1)平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;(2)旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的;依此根据平移与旋转定义判断即可.解:推拉窗户的运动是平移;风车的运动是旋转;故答案为:平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.3.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:下列图形中,不是轴对称图形的是,其它三个选项中的图形都是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.周一升国旗时,国旗的上升是现象;拧水龙头是现象.【答案】平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;然后根据平移与旋转定义判断即可.解:周一升国旗时,国旗的上升是平移现象;拧水龙头是旋转现象;故答案为:平移,旋转.【点评】本题是考查图形的平移与旋转.平移与旋转关键是看图形的方向是否改变,平移不改变方向,旋转改变方向.5.在横线里填上“平移”或“旋转”.(1)自行车车轮的转动是现象,人骑车前行是现象;(2)风扇叶片的运动是现象;(3)钟面上分针不停地走动是现象;(4)升国旗时,国旗的升降运动是现象;(5)拉开抽屉是现象,拧水龙头是现象.【答案】旋转,平移;旋转;旋转;平移;平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;由此根据平移与旋转定义判断即可.解:(1)自行车车轮的转动是旋转现象,人骑车前行是平移现象;(2)风扇叶片的运动是旋转现象;(3)钟面上分针不停地走动是旋转现象;(4)升国旗时,国旗的升降运动是平移现象;(5)拉开抽屉是平移现象,拧水龙头是旋转现象.故答案为:旋转,平移;旋转;旋转;平移;平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.6.下列现象属于平移现象的是()A.风扇转动B.写字C.晃动呼啦圈D.转动风车【答案】B【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.解:A.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;B.图形的形状和大小没有变化,符合平移的性质,属于平移得到,故本选项正确;C.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;D.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.7.“里,一,五”都是轴对称的汉字.(判断对错)【答案】错误【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:“里,一”都是轴对称的汉字,而“五”不是轴对称图形;故答案为:错误.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8.动手画一画、比一比在方格中画出一个轴对称图形。

图形的平移,对称与旋转的难题汇编附答案解析

图形的平移,对称与旋转的难题汇编附答案解析
16.下列所给图形是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
12.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
B、可以通过平移得到,不符合题意;
【详解】
解:连接 ,如图所示:
∵四边形 为菱形,
∴ ,
∵ ,
∴ 为等边三角形, , ,
∵ 为 的中点,
∴ 为 的平分线,即 ,
∴ ,
∴由折叠的性质得到 ,
在 中, .
故选:D
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.

∴AF=AC=2,FC=4
∴BF=
∴BE=EF= BF=
故选:B
【点睛】
本题考查了旋转的性质,平行线的判定和性质.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】

平移旋转轴对称练习题

平移旋转轴对称练习题

平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。

2. 图形的旋转中心称为__________。

3. 轴对称图形的对称轴可以是__________、__________或__________。

4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。

三、判断题1. 平移不改变图形的大小和形状。

()2. 旋转会改变图形的大小和形状。

()3. 轴对称图形的对称轴必须经过图形的中心。

()4. 平移和旋转都是刚体变换。

()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。

2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。

3. 请举例说明生活中平移、旋转和轴对称现象的应用。

六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。

求平移向量,并画出平移后的图形。

2. 一个长方形的长是8厘米,宽是4厘米。

如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。

(完整版)平移与旋转练习题精选(有答案)

(完整版)平移与旋转练习题精选(有答案)

22 、如下图, E 是正方形 ABCD 中 CD 边上任一点,以点 A 为中心,把△ ADE 顺时针旋转 90°,在给出图
形中画出旋转后的图形,并完成下列填空. ( 1)因为点 A 是对称中心,所以它的对应点是 (
);
( 2 )正方形 ABCD 中, AD=AB ,∠ DAB=90° ,所以旋转后点 D 与点 (
)重合.
23 、如图所示, E、 F 分别是△ ABC 的边 AB 、 AC 的两定点,在 BC 上求一点 M ,使△ MEF 的周长最短。
26、如图:若∠ AOD= ∠ BOC=60 °,A 、O、C 三点在同一条线上,△
求:( 1)旋转中心, ( 2)旋转角度数,
( 3)图中经过旋转后能重合的三角形共有几对?若
( 3)∵∠ FDE=45° ,∠ ADC=9°0 ,∴∠ ADF+ ∠ EDC=9°0 -45°=45°,∵∠ GDF= ∠ GDA+ ∠ADF,∠ GDA= ∠EDC, ∴∠ GDF= ∠EDC+ ∠ADF=45° .
26 、( 1) .O 点 (2).60 度 (3).3 对,成立,因为角 AOD为 60 度,角 DOC为 120 度,向加 180 度,所以成立 (4).90 因为角 BOC=角 AOD=45度,所以应旋转 90 度 (5).120 度
二、填空题
11、 O 12 、C
∠ EOB 顺时针
AO=DO 90°
∠ AOD= ∠BOE .
13 、由图可知, OB 、OD 是对应边,∠ BOD 是旋转角,所以,旋转角∠ BOD= ∠AOD- ∠AOB=127° -90 °=37 度
14 、解:∵ AD∥ BC,∠ EFB=65°,∴ DEF=65° ,又∵∠ DEF= ∠ D′ EF,∴∠ D′ EF=65°,∴∠ AED′ =50°

第一单元 平移、旋转和轴对称-2022-2023年四年级数学下册(苏教版)-(含答案)

第一单元 平移、旋转和轴对称-2022-2023年四年级数学下册(苏教版)-(含答案)
6.B
【分析】旋转是指在平面内将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。据此解答。
【详解】 是将 通过旋转后得到的。
故答案为:B。
【点睛】本题考查旋转的特征,旋转是物体或图形的位置发生变化而形状、大小不变,且本身方向发生了变化。
7.C
【分析】首先分析清楚哪个图形是原图形,哪个是平移后得到的图形,再判断出图形平移的方向和距离即可解答。
六、解答题(共36分)
25.画出下面轴对称图形的所有对称轴,填写 向上平移的格数,给 向右平移7格后的图形涂上颜色。
26.如图,根据图中对称轴,补全图形A的另一半,并计算 的周长。(图中每个正方形小格的边长为1厘米)
27.填一填,画一画。
(1)将图中①号图形先向()平移()格,再向()平移()格,就能和②号图形拼成一个正方形。
【详解】A. ,可以通过平移得到;
B. ,可以通过平移得到;
C. ,可以通过旋转得到。
故答案为:C
【点睛】本题主要考查学生对旋转和平移的特征及区别的掌握。
2.C
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
【详解】A. 有2条对称轴;
长方形的特征:四个角都是直角,对边平行且相等的四边形。
【详解】图形A、B无论绕哪个点,旋转多少度,再怎么平移,都不会组成长方形;图形C通过旋转,能形成长方形。
故答案为:C
【点睛】掌握平移、旋转的意义以及长方形的特征是解题的关键。
4.B
【分析】平移是指在平面内将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动。
【详解】平移和旋转都是物体或图形的位置发生变化而形状、大小不变。区别在于,平移时物体沿直线运动,本身方向不发生改变;旋转是物体绕着某一点或轴运动,本身方向发生了变化;所以判断正确。

图形的平移,对称与旋转的真题汇编含答案

图形的平移,对称与旋转的真题汇编含答案
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质2.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为,若∠1=110°,则∠= 度.【答案】20°.【解析】如图所示∵∠1=110°,∴∠2=∠1=110°(两直线相交,对顶角相等),∵四边形ABCD为矩形,∴∠D=∠B’ =∠BAD=90°,∴∠4+∠2=360°-∠D-∠B’="180°" (四边形内角和为360°),∵∠2=110°,∴∠4=70°,∵∠BAD=90°,∴∠3=∠=20°.【考点】1.对顶角;2.余角;3.四边形内角和.3.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】∵△和△都是等腰直角三角形,∴∠∠.又∵△绕着点沿逆时针旋转度后能够与△重合,∴旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A.4.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.5.如图,△绕点旋转一定角度后得到△,若,,则下列说法正确的是()A.B.C.∠是旋转角D.∠是旋转角【答案】D【解析】∵△绕点旋转一定角度后得到△,且,,∴是旋转角,故选D.6.剪纸艺术是我国文化宝库中的优秀遗产.下面四幅剪纸作品中,属于轴对称图形的是()【答案】D.【解析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.考点: 轴对称图形.7.∠AOB=45°,其内部有一点P,OP=8,在∠AOB的两边分别有两点Q,R(不同与点0),则△PQR的最小周长是。

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案一、选择题1.如图在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将OAB沿射线AO平移,平移后点A的横坐标为4百,则点B的坐标为()A. ( 60,2)B. (673, 273)C. (6, 2)D. (643, 2)【答案】D【解析】【分析】先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点A的纵坐标,找出点A平移至点A 的规律,即可求出点B的坐标.【详解】解:.「三角形OAB是等边三角形,且边长为4••• A( 2,3, 2), B(0,4)设直线OA的解析式为y kx,将点A坐标代入,解得:k3即直线OA的解析式为:y X3x3将点A的横坐标为4 J3代入解析式可得:y 4即点A的坐标为(4 73, 4)•・•点A向右平移6而个单位,向下平移6个单位得到点AB 的坐标为(0 6 J3,4 6) (6 J3, 2).故选:D.【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.2.如图,周长为16的菱形ABCD中,点E, F分别在边AB, AD上,AE= 1, AF= 3, P为BD上一动点,则线段EP+ FP的长最短为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,则EG与BD的交点就是P. EG 的长就是EP+FP 的最小值,据此即可求解.解:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,贝U EG与BD的交点就是P.•. AE=DG,且AE// DG,••・四边形ADGE是平行四边形,EG=AD=4.故选B.3.如图,。

是AC的中点,将面积为16cm2的菱形ABCD沿AC方向平移AO长度得到菱形OB C D ,则图中阴影部分的面积是()B B2 2 2 2A. 8cmB. 6cmC. 4cmD. 2cm【答案】C【解析】【分析】根据题意得,?ABCg?OECF且AO=OC」AC ,故四边形OECF勺面积是? ABCD面积的214【详解】解:如图,…一, 一_一 一 1故四边形 OECF 的面积是?ABCD 面积—4 即图中阴影部分的面积为 4cm 2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题. 4.如图,在平面直角坐标系中, AOB 的顶点B 在第一象限,点 A 在y 轴的正半轴上,AO AB 2, OAB 120°,将 AOB 绕点。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

基本几何形的旋转与对称练习题

基本几何形的旋转与对称练习题

基本几何形的旋转与对称练习题在几何学中,旋转和对称是两个重要的概念。

通过学习基本几何形的旋转和对称,我们可以更好地理解几何形状的性质和特征。

本文将为您提供一些旋转与对称的练习题,帮助您巩固相关知识。

1. 旋转练习题题目1:将一个正方形顺时针旋转90度,求旋转后得到的形状。

解析:正方形的每一条边长度相等,且相互垂直。

顺时针旋转90度意味着每条边都向右平移,并保持垂直关系。

所以,旋转后得到的形状仍然是一个正方形。

题目2:将一个矩形逆时针旋转180度,求旋转后得到的形状。

解析:矩形的对角线相等,且相互垂直。

逆时针旋转180度意味着每条边都向相反方向平移,并保持垂直关系。

所以,旋转后得到的形状仍然是一个矩形。

题目3:将一个等边三角形顺时针旋转120度,求旋转后得到的形状。

解析:等边三角形的每个角都是60度,且每个边长度相等。

顺时针旋转120度意味着每个角度数减少120度,并保持边长不变。

所以,旋转后得到的形状仍然是一个等边三角形。

2. 对称练习题题目1:选取一个中心对称的多边形,画出其对称轴。

解析:中心对称的多边形是指以某个点为中心,在该点上任取两个对称的顶点,连接这两个顶点和中心点所得的线段就是对称轴。

例如,正方形以中心为对称中心。

题目2:判断以下图形是否具有对称轴:三角形,矩形。

解析:三角形没有对称轴,而矩形具有两条对称轴。

这是因为矩形的对角线相等且相互垂直,所以以对角线的交点为中心,连接交点与矩形的各个顶点所得的线段就是两条对称轴。

题目3:在平面直角坐标系中,对称图形的特点是什么?解析:对称图形在平面直角坐标系中具有以下特点:- 图形中任意一点关于对称轴对称的点仍然在图形中;- 图形中存在至少一条对称轴,对称轴可以是横轴、纵轴或对角线;- 图形上的点到对称轴的距离等于该点关于对称轴对称点到对称轴的距离。

通过这些旋转与对称的练习题,我们可以更好地理解和掌握几何形状的旋转特性和对称性质。

同时,这也有助于培养我们的几何思维和问题解决能力。

图形的平移,对称与旋转的技巧及练习题附答案

图形的平移,对称与旋转的技巧及练习题附答案
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l.如图12所示,△A′B′O是否AOB绕点O逆时针旋转后得到的,则图中线段AB的对应线段是,∠BOB′=,△A′OB′和△AOB的形状与大小保持.
2.在U,V,W,X,Y,Z这六个大写英文字母中,是轴对称图形的是,是中心对称图形的是.
3.把下列图形中符合要求的图形的编号填入圈内
4.一个平面图形先向左平移1个单位长度,再向右平移2个单位长度,此时该图形在原图形的什么位置?答.若再向左平移3个单位长度又向右平移4个单位长度,我们规定象这样的左右各平移一次作为一次操作,则第2003次操作后,图形在原图形的什么位置?答.
5.如果两个图形可以通过彼此平移而得到,那么它们的周长,面积.
6.下列四幅图案中哪幅图案可以通过平移得到图案(1).
7.如图13,△ABC和△CDE是等边三角形,则△ACD和△BCE可以绕着点旋转得到,旋转中心是 .
二、选择题(每题4分,共计24分)
1.下列现象中不属于平移的是()
A.滑雪运动员在平坦的雪地上滑翔 B.彩票大转盘在旋转
C.大楼电梯上上下下 D.火车在笔直的铁轨上飞驰
2.如图所示,哪一个是旋转对称图形()
3.下图是我国几家银行的标志,其中是中心对称图形的是()
A.1个B.2个C.3个D.4个
4.下列图形是几种名车的标志,在这几个图形中既是中心对称图又是轴对称图形的是()
A.4个B.3个C.2个D.1个
5.下列说法正确的是()
A.旋转对称图形是中心对称图形.
B.中心对称图形是旋转对称数图形
C.中心对称图形是旋转90°后能与自身重合的图形
D.如果两个图形关于某点成中心对称,则每个图形是中心对称图形.
6.下列命题中正确命题的个数为()
①旋转对称图形是中心对称图形.
②关于某一点为中心对称的两个三角形重合
③两个重合的图形一定关于某点为中心对称
④中心对称图形一定是轴对称图形.
A.1个B.2个C.3个D.4个
1.如图14所示,平移方格纸中的图形使点A平移到点A′处,画出平移后的图形.
2.如图15,不用量角器,在方格纸中画五边形ABCDE绕点O逆时针旋转90°后的五边形A′B′C′D′E′
五、解答题(每题8分,共计16分)
已知,如图18,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.
(1)指出面ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形.
(2)若AE与BD交于点0,求∠AOD的度数.
【单元达纲检测】
一、填空题(每小题4分,共24分)
1.如图11-1所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=_____________.
2.如图11-2所示,Rt△A′B′C′是△ABC向右平移3cm所得,已知∠B=60°,B′C=5cm,则∠C′=______,B′C′=_____________cm.
3.如图11-3,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC(填“>”、“<”或“=”).4.如图11-4,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=_____________.
5.如图11-5,O 是等边△ABC 内一点,将△AOB 绕B 点逆时针旋转,使得B 、O 两点的对应点分别为C 、D ,则旋转角为_____________,图中除△ABC 外,还有等边三形是_____________.
6.如图11-6,Rt △ABC 中,P 是斜边BC 上一点,以P 为中心,把这个三角形按逆时针方向旋转90°得到△DEF ,图中通过旋转得到的三角形还有_____________.
二、选择题(本题共6小题,每题5分,共30分,每小题只有一个选项符合题意)
7.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.
②这两个图形大小、形状不变.
③对应线段一定相等且平行.
④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.
A .1个
B .2个
C .3个
D .4个
8.如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心( ).
A .顺时针旋转60°得到
B .顺时针旋转120°得到
C .逆时针旋转60°得到
D .逆时针旋转120°得到
9.如图11-8,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ).
A .1对
B .2对
C .3对
D .4对
10.如图11-9,△ABC 中,AD 是∠BAC 内的一条射线,BE ⊥AD ,且△CHM 可由△BEM 旋转而得,则下列结论中错误的是( ).
A .M 是BC 的中点
B .EH 2
1FM C .CF ⊥AD D .FM ⊥BC
四、解答题(每小题10分,共30分)
1.如图11-14,△ABC 、△ADE 均是顶角为42°的等腰三角形,BC 、DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?
2.等边△ABD和等边△ACE,∠BAC=90°,BE与CD交于O,△ACD绕点A旋转多少度后能与△AEB重合?CD与BE有何关系?
3.△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置。

(1)旋转中心是哪一点
(2)旋转了多少度?
(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
4.△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,△ADE经过旋转后能与△ABC重合,请回答下列问题
(1)哪一点是旋转中心?
(2)旋转了多少度?
(3)线段AD与AC相等吗?为什么?
5.如图,△COD是△AOB绕O点旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数。

相关文档
最新文档