复变函数论第三版课后习题答案解析
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案解析
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
[VIP专享]复变函数论第三版课后习题答案[1]46
第一章习题解答(一)1.设,求及。
z z Arcz 解:由于3z e π-==所以,。
1z =2,0,1,3Arcz k kππ=-+=± 2.设,试用指数形式表示及。
121z z ==12z z 12z z 解:由于6412,2i i z e z i e ππ-====所以()64641212222i i iiz z e eeeπππππ--===。
54()146122611222ii i i z e ee z e πππππ+-===3.解二项方程。
440,(0)z a a +=>解:。
12444(),0,1,2,3k i za e aek πππ+====4.证明,并说明其几何意义。
2221212122()z z z z z z ++-=+证明:由于2221212122Re()z z z z z z +=++ 2221212122Re()z z z z z z -=+- 所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z 故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论钟玉泉第三版高教答案清晰版
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g)()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o s x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h yv x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-=== 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x c o s s i n c o s )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h y u y x y x s i n ,c o s ,c o s ,s i n -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i ur θθθθθ=--+ ()()c o s s i n s i n c o s r r i u ivθθθθ=-++ ()()c o s s i n r r i u iv θθ=-+()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e ei ---+-=()112i i i e e-+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim 00==-=→z zz z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ibbn i ia ib b n i ia e e e e e e 111121)1()1( =)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121s h z s h z c h z c h z += 18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i ei w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i i eeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()a r g c i f zi f i e e π∆=()2a r g 1a rg 3c c i z z e ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i e π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z +-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂ 所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+=即 c h R t ≤s i n又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.第三章复变函数的积分(一)1.解:)10(≤≤=x x y 为从点0到1+i 的直线方程,于是∫∫+++−=+−iC yi x d ix y x dz ix y x 1022)()()(∫∫+=++−=102102)1()()(dx x i i ix x d ix x x 31013)1(3i x i −−=⋅−=2.解:(1)11,:≤≤−=x x z C ,因此111==∫∫−C dx x dz z (2)θi e z C =:,θ从π变到0,因此200===∫∫∫πθπθθd e i de dz z i C i (3)下半圆周方程为πθπθ2,≤≤=i e z ,则202===∫∫∫πθππθθd ie i de dz z i C i 3.证明:(1)11,0:≤≤−=y x C 因为1)(222≤=+=iy i y x z f ,而积分路径长为2)(=−−i i 故2)()(2222≤+=+∫∫−i i C dz iy x dz iy x .(2)0,1:22≥=+x y x C 而1)(4422≤+=+=y x iy x z f ,右半圆周长为π,所以π≤+∫−ii dz iy x )(22.4.解:(1)因为距离原点最近的奇点2π±=z ,在单位圆1≤z 的外部,所以zcos 1在1≤z 上处处解析,由柯西积分定理得0cos =∫C zdz .(2)1)1(122122++=++z z z ,因奇点i z +−=1在单位圆1≤z 的外部,所以2212++z z 在1≤z 上处处解析,由柯西积分定理得0222=++∫C z z dz .(3))3)(2(652++=++z z e z z e zz ,因奇点3,2−−=z 在单位圆1≤z 的外部,所以652++z z e z 在1≤z 上处处解析,由柯西积分定理得0652=++∫C z z z dz e .(4)因为2cos z z 在1≤z 上处处解析,由柯西积分定理得0cos 2=∫C dz z z .5.解:(1)因2)2()(+=z z f 在z 平面上解析,且3)2(3+z 为其一原函数,所以3223)2()2(3222i i z dz z i −=−+−+=+∫+−−(2)设t i z )2(+=π,可得dt e e e e i dt i t i dz z t i t t i t i)(22)2)(22cos(2cos 1010220∫∫∫−−+++=++=ππππππ1−+=e e 6.解:220(281)az z dz π++∫=2320243|a z z z π⎡⎤++⎢⎥⎣⎦=3322281623a a a πππ++7.证明:由于)(),(z g z f 在单连通区域D 内解析,所以])()([),()(′z g z f z g z f 在D 内解析,且)()()()(])()([z g z f z g z f z g z f ′+′=′仍解析,所以)()(z g z f 是)()()()(z g z f z g z f ′+′的一个原函数.从而∫=′+′βααβ)]()([)]()()()([z g z f dz z g z f z g z f 因此得∫∫′−=′βαβααβdz z g z f z g z f dz z g z f )()()]()([)()(.8.证明:||1||1,02z dz z z ==∴=+∫Q 设,i i z e dz ie d θθθ==⇒222200(cos sin )[(cos 2)sin ]0(cos 2)sin 2i i i d i i d e e θππθθθθθθθθθ−+−==+++∫∫=202sin (12cos )54cos i d πθθθθ−+++∫于是2012cos 0,54cos d πθθθ+=+∫故012cos 054cos d πθθθ+=+∫.9.解:(1)因为12)(2+−=z z z f 在2≤z 上是解析的,且21≤∈=z z ,根据柯西公式得iz z i dz z z z z z ππ4)12(21121222=+−=−+−=≤∫(2)可令12)(2+−=z z z f ,则由导数的积分表达式得i z f i dz z z z z z ππ6)(2)1(121222=′=−+−==∫10.解:(1)若C 不含±z=1,则201zdz z π=−∫c sin4(2)若C 含z=1但不含有z=-1,则22212zdz i i z ππ=⋅=−∫c sin4(3)若C 含有z=-1,但不含z=1,则:221zdz i zπ=−∫c sin4(4)若C 含有1z =±,则2111sin (12411c zdz z dz z z z ππ=−−−+∫∫c sin42(222i iπ==11.证明:θθθθθπθθπθθ∫∫∫−=++=+20sin cos 20sin cos )()sin (cos sin cos id e e i d i e dz ze i i C z ∫⋅+−=πθθθθθ20cos cos )cos(sin )sin(sin d ie e 再利用柯西积分公式i d e dz z e C C z πξξξ20=−=∫∫则∫=πθπθθ20cos 2)cos(sin d e ,由于)cos(sin cos θθe 关于πθ=对称,因此∫=πθπθθ0cos )cos(sin d e 12.解:令173)(2++=ξξξϕ,则)173(2)(2)()(2++⋅==−=∫z z i z i d zz f C πϕπξξξϕ则)76(2)(+=′z i z f π因此)166(2)766(2)1(i i i i f +−=++=+′ππ13.证明:利用结论:)(z f 在D 内单叶解析,则有0)(≠′z f 由题知,))((:b t a t z z C ≤≤=为D 内光滑曲线,由光滑曲线的定义有1)C 为若尔当曲线,即21t t ≠时,)()(21t z t z ≠;2)0)(≠′t z ,且连续于[a,b]要证Γ为光滑曲线,只须验证以上两条即可.而在)(z f w =的变换下,C 的象曲线下的参数方程为))](([)(:b t a t z f t w w ≤≤==Γ1)因21t t ≠时,)()(21t z t z ≠,又因)(z f 在D 内单叶解析,所以当21t t ≠时,)()(21z f z f ≠.因此当21t t ≠时,有)()(21t w t w ≠.2)因为0)(≠′t z 且连续于[a,b],又因0)(≠′z f ,则由解析函数的无穷可微性知)(z f ′′在D 内也存在,所以)(z f ′在D 内也连续,则由复合函数求导法则0)()()(≠′′=′t z z f t w ,且连续于[a,b].14.证明:由上题知C 和Γ均为光滑曲线,因)(w Φ沿Γ连续以及)(),(z f z f ′′在包含C 的区域D 内解析,因此)()]([z f z f ′Φ也连续,故公式中的两端积分存在.则dtt z t z f t z f dz z f z f C b a)())(())](([)()]([′′Φ=′Φ∫∫∫∫ΓΦ=′Φ=b adw w dt t w t w )()()]([15.证明:应用刘维尔定理,因)(z f 恒大于一正的常数,则)(1z f 必恒小于一正的常数,则)(1z f 为常数,故)(z f 为常数.16.解:(1)因为22u x xy y =+−,所以有22x y u x y v x y=+⇒=+22()2y v xy c x ⇒=++2()2x y v y c x u y x′⇒=+=−=−2()()2x x x c x D ′⇒=−⇒=−+c 2222()()(2)22y x f z x xy y xy D i ⇒=+−++−+由已知12Di D ⇒+⇒=i f(i)=-1+i -1+i=-1+222221()()(2)222y x f z x xy y i xy ⇒=+−++−+(2)由C R −条件,coy e y y y x e u v x x x y +−==)sin cos (,则∫+−=dycoy e y y e y xe v x x x )sin cos (∫−+=ydyy e y e y xe x x x sin sin sin )(cos sin x y y e y xe x x ϕ++=又因x y v u −=,故))(cos sin sin (cos sin sin x y e y xe y e y y e y e y e x x x x x x Φ′+++−=−−−即C x x =Φ=Φ′)(,0)(,故)cos sin ()sin cos ()(C y y e y xe i y y y x e z f x x x +++−=又因,0)0(=f 故00)0(=⇒==C iC f ,所以)cos sin ()sin cos ()(y y e y xe i y y y x e z f x x x ++−=(3)由C R −条件,222)(2y x xy v u x y +=−=,所以∫++−=+=)()(222222x y x x dy y x xy u ϕ又因x y u v =,故y x y x y x y x x )()()(2222′+=′+′+−ϕ,即0)(=′x ϕ.所以C x =)(ϕ,故2222)(y x y i C y x x z f ++++−=又因为0)2(=f ,所以21=C ,故222221)(y x y i y x x z f ++++−=17.证明:设222()4()4()x y f z u iv f z u v ′=+⇒=+2()f z =22u v +,2()22y x f z uu vv x ∂=+∂2222222()2222x x x x f z u uu v vv x∂=+++∂同理可得:2222222()2222y y y y f z u uu v vv y∂=+++∂于是结合C R −条件及,u v 为调和函数可得:22222222222()()4()2()2()x x x y x y f z u v u u u v v v x y∂∂+=+++++∂∂=4(22x x u v +)=42()f z ′18.证明:)(z f 在D 内解析,则)(z f ′在D 内也解析.已知0)(≠′z f ,则)(ln z f ′在D 内解析,于是其实部)(ln z f ′为D 内的调和函数.19.解:∫−==z z i z k dz z v z f 022)()(势函数和流函数分别为kxy y x =),(ϕ)(2),(22y x k y x −−=ϕ故势线和流线为双曲线.20.解:根据流量和环量的定义来计算i y x y x xy y x y x y x z z f 22222222222224)1(24)1(111)(+−−−+−−−−=−=环量04)1(24)1(111222222222222=+−−−+−−−−=Γ∫dy y x y x xy dx y x y x y x C C 流量为04)1(24)1(11222222222222=+−−++−−−−∫dx y x y x xy dy y x y x y x C 同理,在32,C C 处也为0.(二)1.答:)(z f 不必需要在0=z 解析,如zz f 1)(=在0=z 处不解析.2.解:若沿负实轴]0,(−∞隔开z 平面,z 就能分成两个单值解析分支,即)1,0,arg ()(22arg =<<−=+k z e z z k z i k πππ(1)在πθθ≤≤=0,:1i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=k θ,则2θi e z =,故i zdz C 221+−=∫.(2)在πθθ≤≤=−0,:2i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=−k θ,则i zdz C 222−−=∫.3.证明:利用积分估值定理及三角不等式212112111≤−+≤−+=−+z z z z 且由积分估值定理有π811≤−+∫C dz z z 4.证明:因为sz e z f =)(在单连通区域z 平面上解析,则ττ∫=−ba s as bs d se e e 由积分估值定理有ab M d se ba s −≤∫ττ其中M 可由ττστσττ⋅+⋅≤⋅⋅=⋅=⋅=),max()(b a it t it s s e s e e s e s e s se 得出.5.解:设i z e α=,1c 为0到1的直线段,2c 为1到z 的圆弧,则由柯西积分定理12222111C dz dz dz c c z z z =++++∫∫∫=1220011i i dx ie d x e θαθθ+++∫∫=214C dz RE z π=+∫6.解:z e z f z sin )(=在圆周a z =内解析,故其积分值与路径无关,只与起点终点有关,而积分路径为封闭的圆周,故∫=Cz zdz e 0sin 因此,原式=∫∫∫==−C C Cz a adz zdz e dz z 22sin π7.证明:因为()f z 在||1z ≤上连续,所以()f z 在||1z ≤一致连续,因此0ε∀>,0δ∃>,使当11r δ−<<时均有|()()|,2i i f e f re θθεπ−<(02)θπ<<于是:||1||1||1|()||()()|z z z rf z dz f z dz f z dz r ====−∫∫22001|()()|i i i i f e ie d f re rie d r ππθθθθθθ=−∫∫20|()()|i i f e f re d πθθθε≤−<∫所以||1()0z f z dz ==∫.8.证明:首先由题设积分∫r K dz z f )(存在,应用积分估值定理.rr M dz z f r K π2)()(⋅≤∫而由题设(3)0)(lim =⋅+∞→r r M r ,故得证.9.证明:(1)参见教材(3.16)式的证明.因为)(z f 在点0=z 的邻域内连续,则对0ε∀>,0δ∃>,0=∈∀z z 的邻域,有ε<−)0()(f z f 所以∫∫−=−πθπθθθπθ2020))0()(()0(2)(d f d re f f d re f i i∫∫=<−≤ππθπεθεθθ20202)0()(d d f d re f i 故)0(2)(lim 0f d re f i r πθθ=→(2)取(1)中的0=a ,再利用圆周的参数方程化简(1)中等式左端即证.10.证明:||111[2()]()2z dz z f z i z zπ=±+∫=2||112()()()]2z f z f z f z dz i z zπ=±±∫=2(0)(0)2(0)f f f ′′±=±11.证明:由题设,)(z f ′在D 内含C 之单连通区域内解析,∫∫′≤′=−ba ba dz z f dz z f a fb f )()()()(考虑到)(z f ′在有界闭集C 上的连续性,必存在点C ∈ξ,使得)(ξf ′是)(z f ′在C 上的最大值.∫∫−′≤′b a b a a b f dz z f )()(ξ由上得ab f a f b f −′≤−)()()(ξ如果C ∈∀η,都有0)(=′ηf ,则沿C ,0)(≡′z f ,于是沿C ,)(z f 为常数,故)()(a f b f =,题中等式成立.如果存在C ∈ξ使0)(≠′ξf ,且是)(z f ′在C 上的最大值,则可令))(()()(a b f a f b f −′−=ξλ,则题中等式成立.12.证明:取圆周1<=ρz 由于)(z f 在1<z 内解析,故知)(z f 在ρ≤z 上解析,且有ρ−=−≤1111)(z z f 由柯西不等式,知)1(!)(!)0()(ρρρρ−=≤n n n n M n f 对于ρ在(0,1)上,当1+=n n ρ时,)1(ρρ−n 取最大值)11()1(n n n n n +−+于是得)1(!ρρ−n n 的最小值为n n n n )1()!1(++,当∞→n 时e n n n 1)1(→+所以有)0()(n f 的估值为e n f n )!1()0()(+≤.13.证明:由柯西不等式nn R R M n a f )(!)()(≤,其中L ,2,1,)(max )(===−n z f R M R a z 可知∫∫==⋅≤=′1212)(21)(21)0(z z dzz z f dz z z f i f ππ1112112=≤∫=z dz π14.证明:应用反证法假设满足R z >且M z f >)(的z 不存在,则必存在某正数M R ,,使得对于任意的z ,R z >时,M z f ≤)(,又由)(z f 的连续性.则当R z ≤时,)(z f 必有最大值,设其为1M ,令{}10,max M M M =,则在∞<z 时有0)(M z f ≤,于是得到)(z f 在全平面上是有界的,则由刘维尔定理,)(z f 必为常数,与题矛盾,假设错误.15.解:由22()(4)2(),v x y x xy y x y µ+=−++−+得22(4)()(24)2x x v x xy y x y x y µ+=+++−+−=223362x y xy −+−两式相加并结合C R −条件得:22332x x y µ=−−从而323232,32x y x x v y x y y µ=−−=−+−故322332(32)f x y x x i x y y y =−−+−−16.解:在D 内,由条件(1),(2)已知满足柯西积分公式的条件,故得在D 内)()(21z f z f =在C 上,由条件(3)知)()(21z f z f =故综合得在C D D +=上有)()(21z f z f =.第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n 由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n n n nn n n b n n i ,可知原级数绝对收敛. (3)由于1226251251lim lim >=+=+=∞→∞→i ia nnn nn n ,故原级数发散. 2.解:(1)11lim lim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01limlim 1==∞→∞→n c R n n nn 3.证明:(1)如果∞≠=+∞→λn n n c c 1lim,则∞≠=+∞→λnn n c c1lim ,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c c R 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R . (3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==0n nn n nn R c z c 收敛,而当R z ≤时,∑∑∞=∞=≤0n n n n nnR c z c,因此级。
《复变函数与积分变换》第三版答案--_华中科技大学数学
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享28
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
29 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享29
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
24 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享24
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
34 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享34
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
35 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享35
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
45 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享45
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
43 / 82
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享43
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 《复变函数与积分变换》第三版答案 华中科技大学数学
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数课后习题答案(全)
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值: (1)5)i -(2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(56解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)z i +=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设 z1 3i ,求 z及 Arcz 。
解:由于z 1,Arcz2k , k 0, 1,。
3(z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1)2 z 1z 2 z 1 z 2 3第一章习题解答(一)2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1。
z 24i 6i1 i i 解:由于 z 1e 3 4 , z 23 i 2e12 2ii ( )i i所以 z1z2 e 4i2e6i2e ( 46)i2e 12ii z 1 e 4 1 e (4 6)i i z 2 2e 6 25i 1 1 e 12 。
2 3.解二项方程 z 4 a 4 0,(a 0) 。
2ki解: z 4 a 4 (a 4e i )4 ae 4,k 0,1,2,3。
4.证明 z 1 2 2z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z1 2 2 z 22 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。
2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 )平行四边形对角线长平方和等于于两边长的和的平方。
5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0z 1 z 2 z3 1 。
证明 z 1,z 2, z 3是内接于单位圆 z 1的一个正三角形的顶点。
证 由于 z1z2z3 1,知 z 1z 2z 3 的三个顶点均在单位圆上。
因为 所以,z 1z2 z 1z 2 1,所以 z 1 z 2故z 1 z 2 3 ,同理 z1 z3 z2 z33,知 z 1 z 2 z 3 是内接于单位圆 z 1的一个正三角形。
6.下列关系表示点 z 的轨迹的图形是什么?它是不是区域。
1)z z 1 z z 2 ,(z 1 z 2);解:点z 的轨迹是 z 1与z 2两点连线的中垂线,不是区域。
( 2) z z 4 ; 解:令 z x yi由x yi (x 4) yi ,即x y ( x 4) y ,得 x 2故点z 的轨迹是以直线 x 2 为边界的左半平面(包括直线 x 2 );不是区域。
解:令 z x yi , 由 z 1 z 1 ,得 (x 1)2 (x 1)2,即 x 0 ; 故点 z 的轨迹是以虚轴为边界的右半平面(不包括虚轴) ;是区域。
4) 0 arg( z 1), 且 2 Re z 3; 4解:令 z x yi故点z 的轨迹是以直线 x 2,x 3,y 0,y x 1为边界的梯形 (包括直线 x 2,x 3 ; 不包括直线 y 0,y x 1);不是区域。
(5) z 2, 且 z- 3 1; 解:点 z 的轨迹是以原点为心, 2为半径,及以 z 3 为心,以 1为半径的两闭圆外部, 是区域。
6) Im z 1,且 z 2 ; 解:点z 的轨迹是位于直线 Im z 1 的上方(不包括直线 Im z1 ),且在以原点 为心,2 为半径的圆内部分(不包括直线圆弧) ;是区域。
3) z1z1由0 arg(z 1) 42 Re z 30 arg,得yx12x30 y x 1 4 ,即2x37) z 2,且0 arg z 4 ;解:点z 的轨迹是以正实轴、射线 arg z 及圆弧 z 1为边界的扇形(不包括边界) , 4是区域。
i 13 1 8)z,且 zi22 22解:令 z x yi11 a (A iB) a ( A iB)令 2 ,则 2 ,上式即为 az a z C 。
反之:将 z x yi,z x yi ,代入 az a z C得(a a)x (ia ia ) y c则有Ax By C ;即为一般直线方程。
8.证明:z 平面上的圆周可以写成Azz z z c 0.其中 A 、 C 为实数, A 0, 为复数,且 2 AC 。
证明:设圆方程为由3 zi212,得1 221 1 x(y )2 4 23 1 x 2(y )24故点z的轨迹是两个闭圆 21 123 1x 2(y 12) 14,x 2 (y 23) 41 的外部,是区域。
7.证明: z 平面上的直线方程可以写成 az az C (a 是非零复常数, C 是实常数)证 设直角坐标系的平面方程为Ax By C 将x Re z ( z z), y211(A i B)z (A i B)z CIm z 21i (z z) 代入,得22 A(x 2 y 2) Bx Dy C 0其中 A 0,当 B 2 D 2 4AC 时表实圆;2 21 1将 x 2 y 2zz,x (z z), y (z z) 代入,得2 2i11Azz (B Di )z (B Di )z c 0 22即 Azz z z c 0.11其中 (B Di ), (B Di )22 21 2 2 1 且(B 2 D 2) 4AC AC ;442反之:令 z x yi , a bi 代入 Azz z z c 0 ( AC)得 A(x 2 y 2 ) Bx Dy C 0,其中 B 2a, B 2b 即为圆方程。
10.求下列方程( t 是实参数)给出的曲线。
x t 21yt 2t,即为双曲线11.函数 z 将 z 平面上的下列曲线变成 w 平面上的什么曲线 z x iy ,w u iv1)z (1 i)t ;z a cos t i b sin t;z3)tt i ;4)t i 2,z x iy (1 i )t解( 1)x iy a cost ibsin t2)3)t ,ttx a cos t y b sin t即直线,即为椭圆2x2 a2 b y 22 1;xt 1yt , 即为双曲线 xyt 2 i2xy 1中位于第一象限中的一支。
完美 WORD 格式222) x 1 y21x , vy 2 2 , v2 2x y x y,可得13.试证 arg z(arg z )在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。
证 设 f (z) arg z ,因为 f (0) 无定义,所以 f ( z )在原点 z =0 处不连续。
当 z 0为负实轴上的点时,即 z 0 x 0 (x 0 0),有显然。
14. 设xy 3 ,f z x 2 y 6 ,z 00,z 0求证 f z 在原点处不连接。
6 y66yy 可知极限 l z im 0 f z不存在,故 f z 在原点处不连接。
16. 试问函数 f(z) = 1/(1 –z )在单位圆 | z | < 1 内是否连续?是否一致连续?【解】 (1) f(z)在单位圆 | z | < 1 内连续.1) y xz x iy1)xy2 2 2 2 x y x yy22xyv是 w 平面上一直线;x12)2 2 2y 1 x y 2x是 w 平面平行与 v 轴的直线。
lim z z 0argzy lim arctanx x x 0 y0y lim arctan xx x 0y0lim arg z 所以 z z 0不存在, 即 arg z 在负实轴上不连续。
而argz 在 z 平面上的其它点处的连续性x 61xf z lim y0证 由于2xx y 3因为z在内连续,故f(z) = 1/(1 –z )在\{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1 内连续.(2) f(z)在单位圆| z | < 1 内不一致连续.令z n= 1 –1/n,w n= 1 –1/(n + 1),n +.则z n, w n都在单位圆| z | < 1 内,| z n w n | 0,但| f(z n) f(w n)| = | n (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z) 在E = { z | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.] 17. 试证:复数列z n = x n + i y n以z0 = x0 + i y 0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0 为极限.【解】( ) 若复数列z n = x n + i y n 以z0 = x0 + i y0 为极限,则> 0 ,N +,使得n > N,有| z n z0 | < .此时有| x n x0| | z n z0| < ;| y n y0| | z n z0| < .故实数列{x n}及{y n}分别以x0及y0为极限.( ) 若实数列{x n}及{y n}分别以x0及y0为极限,则> 0,N1 +,使得n > N1,有| x n x0| < /2;N2 +,使得n > N2,有| y n y0| < /2.令N = max{ N1, N2},则n > N,有n > N1且n > N2,故有| z n z0| = | (x n x0) + i (y n y0)| | x n x0| + | y n y0| < /2 + /2 = .所以,复数列z n = x n + i y n以z0 = x0 + i y0 为极限.20. 如果复数列{ z n}合于lim n z n = z0 ,证明lim n (z1 + z2 + ... + z n)/n = z0.当z0 时,结论是否正确?【解】(1) > 0,K +,使得n > K,有| z n z0| < /2.记M = | z1 z0 | + ... + | z K z0 |,则当n > K 时,有| (z1 + z2 + ... + z n)/n z0 | = | (z1 z0) + (z2 z0) + ... + ( z n z0) |/n( | z1 z0 | + | z2 z0 | + ... + | z n z0 |)/n= ( | z1 z0 | + ... + | z K z0 |)/n + ( | z K +1 z0 | + ... + | z n z0 |)/nM/n + (n K)/n · ( /2) M/n + /2.因lim n (M/n) = 0,故L +,使得n > L,有M/n < /2.令N = max{ K , L},则当n > K 时,有| (z1 + z2 + ... + z n)/n z0 | M/n + /2 < /2 + /2 = .所以,lim n (z1 + z2 + ... + z n)/n = z0.(2) 当z0 时,结论不成立.这可由下面的反例看出.例:z n = ( 1)n·n,n +.显然lim n z n = .但k +,有(z1 + z2 + ... + z2k)/(2k) = 1/2,因此数列{(z1 + z2 + ... + z n)/n}不趋向于.[ 这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.] 2.如果z e it,试证明xy 2 6 7 8 xy6 设| z | = 1,试证: | (a z + b)/(b * z + a * ) | = 1.(z *表示复数 z 的共轭) 【解】 此题应该要求 b * z + a * 0.| a z + b | = | (a z + b)* | =| a * z * + b * | = | a * z * + b * | | ·z | = | (a * z * + b *) ·z | * * * * 2 * * *= | a z ·z + b ·z | = | a | z | + b ·z | = | b z + a |. 故| (a z + b)/( b * z + a * ) | = 1.8 试证:以 z 1, z 2, z 3 为顶点的三角形和以 w 1, w 2, w 3 为顶点的三角形同向相似的充要条件为z1w11 z2w21= 0nz 1) 1n2cosntzz n 1n 2isinnt2)z n4. 1)2)int int ie e e int e int 2sin nt1i e z nint inte设 z x iy ,试证 xy2 由于int inte e 2i sin ntzxy。