黄昆固体物理课后习题答案5
黄昆固体物理解答
( ) r
R
=
l
(
2ir
)
+
m
(
2
rj )
+
n
r 2k
+
(ir
+
rj
+
r k)
。由
r R
所定义的也是一个点阵常数为
2
的
SC
点阵,但相对于上面一个
SC
点阵位移了一个矢量
(ir
+
rj
+
r k)
,
这个点正好位于体心位置。上面两个 SC 点阵穿套起来正好是一个 bcc
点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。
vc*
=
(2π vc
)3
,其中Vc为正格子原胞的体积。
vc*
=
(2π )3 vc2
(ar2
×
ar3 )
•
ar 1
=
(2π )3 vc
1.5证明:倒格子矢量
r G
=
r h1b1
+
r h2b2
+
r h3b3
垂直于密勒指数为
(h1,
h2
,
h3
)
的
晶面系.
解:因为
uuur CA
=
av1
− av3 ,
uuur CB =
又令 n = N − l − m, n 仍为整数,则有
r R
=
(n
+
r m)i
+
(n
+
l
)
r j
+
(l
+
黄昆固体物理部分习题解答
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯v v v v v v 3121232a a b a a a π⨯=⋅⨯v v v v v v 1231232a a b a a a π⨯=⋅⨯v v v v v v体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+v v vv v v v v v v v v倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯v v v v vv v v v v v v 202()()4a i j k i j k v π=⋅-+⨯+-v v v v v v 2()j k a π=+vv 同理31212322()a a b i k a a a a ππ⨯==+⋅⨯v v v vv r r r 32()b i j a π=+v v v 可见由123,,b b b v v v为基矢构成的格子为面心立方格子面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+v v vv v vv v v倒格子基矢2311232a a b a a a π⨯=⋅⨯v v v v v v 12()b i j k aπ=-++v v v v同理22()b i j k a π=-+v v v v 32()b i j k a π=-+v vv v可见由123,,b b b v v v为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯v v v v v v3121232a a b a a a π⨯=⋅⨯v v v v v v1231232a a b a a a π⨯=⋅⨯v v v v v v倒格子体积*0123()v b b b =⋅⨯v v v3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯v v v v v v 3*00(2)v v π=1.5 证明:倒格子矢量112233G h b h b h b =++v v v v垂直于密勒指数为123()h h h 的晶面系。
黄昆固体物理部分习题解答
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
固体物理学_答案(黄昆 原著 韩汝琦改编)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理+黄昆答案 第五章
w.
案
网
磁感应强度
kh da w. co m
v dk v v v h = qv ( k ) × B dt
课后答案网
v v hk1 hk2 hk3 v (k ) = k1 + k2 + k3 m1 m2 m3 v B = B(k1α + k2 β + k3γ )
令
k1 = k e , k 2 = k e , k 3 = k e
0 iωt 1
ww
qBγ 0 qBβ 0 dk1 0 k3 k2 dt + qB( m γ m β ) = 0 iωk1 + m k 2 m k 3 = 0 2 3 2 3 qBα 0 qBγ 0 dk 2 k3 k1 0 k1 = 0 k3 + qB( α γ ) = 0 iωk 2 + m3 m1 dt m3 m1 dk 3 qBβ 0 qBα 0 k1 k2 0 k1 k2 = 0 + qB( β α ) = 0 iωk 3 + m1 m2 m1 m2 dt
课
1 dE ( k ) v(k ) = h dk
电子的有效质量
能带底部 k = 0 能带顶部 k =
w.
π
a
ww
习题问题讨论 —— 固体物理 黄昆
kh da w. co m
后
2E m* = h 2 / 2 k
有效质量 有效质量
课后答案网
h 1 v(k ) = (sin ka sin 2ka ) ma 4
课
后
式中a为晶格常数.计算1)能带的宽度;2)电子在波矢k的状 态时的速度;3)能带底部和能带顶部电子的有效质量
答
案
固体物理习题解答
黄昆《固体物理》习题解答目录第一章习题 (1)第二章习题 (6)第三章习题 (10)第五章习题 (31)第六章习题 (36)第七章习题 (42)第一章 习 题1.1 如果将等体积球分别排列下列结构,设x 表示刚球所占体积与总体积之比,证明结构x简单立方(书P2, 图1-2) /60.52π≈ 体心立方(书P3, 图1-3) 3/80.68π≈面心立方(书P3, 图1-7) 2/60.74π≈六方密排(书P4, 图1-6) 2/60.74π≈金刚石(书P5, 图1-8)3/160.34π≈解 设n 为一个晶胞中的刚性原子数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度为:343nr V πρ=(设立方晶格的边长为a ) r 取原子球相切是的半径于是结构 r n V ρ简单立方 a/2 1 a 3 /60.52π≈ 体心立方 a/21 a 3 3/80.68π≈面心立方 3/4a2 a3 2/60.74π≈ 六方密排 2/4a4 a 32/60.74π≈金刚石a/2232a3/160.34π≈1.2 证明理想的六角密堆积结构(hcp )的轴比633.18322/1≈⎪⎭⎫⎝⎛=c解 由1.1题,六角密排中232232c r a h -==,故633.18322/1≈⎪⎭⎫⎝⎛=c1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π= 1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
《固体物理学(黄昆)》课后习题解答
v0
证
� 倒格子基矢 b1
=
2π
�� � a2�× a3� a1 ⋅ a2 × a3
� b2
=
2π
�� � a3�× a1� a1 ⋅ a2 × a3
� b3
=
2π
�� � a1�× a2� a1 ⋅ a2 × a3
��� 倒格子体积 v0* = b1 ⋅ (b2 × b3 )
v0*
=
(2π )3 v03
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
2π / 6 ≈ 0.74
2π / 6 ≈ 0.74 3π /16 ≈ 0.34
解 设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致
4π nr3
密度为: ρ =
(设立方晶格的边长为a) r取原子球相切是的半径于是
3V
结构
r
n
V
简单立方
a/2
1
a3
体心立方
a/2
1
a3
ρ π / 6 ≈ 0.52
� b3
=
2π
�� � a1�× a2� a1 ⋅ a2 × a3
� a � � � � a� � � � a� � �
体心立方格子原胞基矢 a1 =
(−i 2
+
j + k ),
(完整版)黄昆版固体物理学课后答案解析答案
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆固体物理习题解答
对 (111) 面与 (100) 面的交线作同样考虑
晶向为[0 11]。
也可以这样求解,因为 (111) 面与 (100) 面的法线方向分别为[111]和[100] ,所以与这两个
方向都垂直的方向是:
i jk 1 1 1 = j−k 100
所以晶向为[0 11]或[01 1]
∂ ( ∂r ∂r ∂V
∂U ) = ∂r ∂r ∂V
∂ ∂r
(
1 ∂V
∂U ) ∂r
∂r
∂ 2V
=
∂r ∂V
[−
∂r 2 (∂V )2
∂U ∂r
+
1 ∂V
∂ 2U ∂r 2
]
∂r
∂r
而在 r = r0 时,上式中的第一项为零,所以
K
=
[V
(
d 2U dV 2
)]V
=V0
=
V0
[(
∂V ∂r
)−2
(
2π υc
)3
(a2
×
a3
)
⋅
[(a3
×
a1
)
×
(a1
×
a2
)]
{ } =
(
2π υc
)3
(a2
×
a3
)
⋅
[(a3 × a1) ⋅ a2 )]a1 − [(a3 × a1) ⋅ a1 ]a2
=
(
2π υc
)3
(a2
×
a3
)
⋅
[
(a3
×
a1
)
⋅
a2
)]
a1
= (2π )3 υc
黄昆固体物理习题解答-完整版
0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
1.12 比较面心立方晶格、金刚石晶格、闪锌矿晶格、Nacl 晶格的晶系、布拉伐格子、平 移群、点群、空间群。 晶格 面心立方晶格 金刚石晶格 闪锌矿晶格 Nacl 晶格的晶系 晶系 立方 立方 立方 立方 布拉伐格子 面心立方 面心立方 面心立方 面心立方 点群 Oh Oh Td Oh 空间群 Fm3m Fd3m
F43m
Fm3m
感谢大家对木虫和物理版的支持!
5
《固体物理》习题解答
第二章
习 题
2.1.证明两种一价离子组成的一维晶格的马德隆常数为 α = 2 ln 2 . 证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子 (这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号) ,用 r 表 示相邻离子间的距离,于是有
3π / 8 ≈ 0.68
2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
解 设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致
密度为: ρ = 结构 简单立方 体心立方 面心立方 六方密排 金刚石
4π nr 3 (设立方晶格的边长为a) r取原子球相切是的半径于是 3V
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤
黄昆固体物理习题解答-完整版
感谢大家对木虫和物理版的支持!
《固体物理》习题解答
成群C4:C4=(C1 C2 C3 C4) ,群中任意两元素乘积仍是群中元素。
⎛ ε1 0 ⎜ 1.11 证明六角晶体的介电常数张量为 ⎜ 0 ε 2 ⎜0 0 ⎝
0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
T
证明 若 A 是一旋转对称操作,则晶体的介电常数 ε 满足 ε = A
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
可见由 b1 , b2 , b3 为基矢构成的格子为体心立方格子 1.4 证明倒格子原胞的体积为
(2π )3 ,其中 v 0 为正格子原胞体积 v0
证
倒格子基矢 b1 = 2π
a2 × a3 a1 ⋅ a2 × a3 a3 × a1 a1 ⋅ a2 × a3 a1 × a2 a1 ⋅ a2 × a3
《固体物理》习题解答
第一章
1.1
习 题
如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明 结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3) 面心立方(书P3, 图1-7) 六方密排(书P4, 图1-6) 金刚石(书P5, 图1-8) x
π / 6 ≈ 0.52
b2 = 2π
b3 = 2π
*
倒格子体积 v0 = b1 ⋅ (b2 × b3 )
(2π )3 v = 3 (a2 × a3 ) ⋅ (a3 × a1 ) × (a1 × a2 ) v0
黄昆固体物理习题解答-完整版
⎜⎝ε31 ε32 ε33 ⎟⎠ ⎜⎝ − ε31 ε32 ε33 ⎟⎠
⎜⎝ 0 ε32 ε33 ⎟⎠
⎜⎛ ε11 + 3ε 22
− 3ε11 + 3ε 22 − 3ε 23 ⎟⎞
得
⎜⎛ ε11 ⎜0 ⎜⎝ 0
0 ε 22 ε 32
0 ⎟⎞
⎜ ⎜
ε 23 ⎟ = ⎜ −
ε33 ⎟⎠
⎜ ⎜
⎜⎝
44
3ε11 + 3ε 22
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
最后,感谢各位虫友一直以来对小木虫物理版的支持!同时也希望,今后能 后更多的虫友来加入物理版,把这里建成大家交流的乐园!
zt978031 2010 年 4 月 7 日
目录
第一章 习 题··························· 1 第二章 习 题··························· 6 第三章 习 题···························10 第五章 习 题···························31 第六章 习 题···························36 第七章 习 题···························42
倒格子基矢 b1
=
2π
a2 × a3 a1 ⋅ a2 × a3
黄昆固体物理习题解答
因此只要先求出倒格点 Ghkl ,求出其大小即可。
由正格子基矢 a = ai , b = bj , c = ck ,可以马上求出:
a∗ = 2π i , b ∗ = 2π j , c∗ = 2π k
a
b
c
因为倒格子基矢互相正交,因此其大小为
Ghkl =
(ha∗ )2 + (kb∗ )2 + (lc∗ )2 = 2π
(h)2 + (k )2 + ( l )2 abc
则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为
a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为 8,最近邻原子间距等于 3 a ,次近邻原 2
=V0
∂2U ( ∂r2
)r0
=
N 2
[−
m(m +1)α r m+2
0
+
n(n +1)β r n+2
0
=
N 2
{−
1 r02
m2α [( r0m
−
n2β r0n
)
+
(
mα r0m
−
nβ r0n
)]}
=
N 2
[−
1 r02
m2α ( r0m
−
n2β r0n
)]
=
N 2
[−
1 r m+2
0
(m2α
−
n2β nβ
AB = a (i − j − k ) 2
c
B
b
C
O
a
OB ⋅ AB =| OB || AB | cosθ = a2 (−1) 4
黄昆固体物理习题-第五章 晶体中电子在磁场中的运动
第五章习题5.1设一维晶体的电子能带可以写成式中a为晶格常数,计算1)能带的宽度2)电子在波矢k的状态时的速度3)能带底部和能带顶部电子的有效质量解:(1)能带的宽度能带底部能带顶部能带宽度(2)电子在波矢k的状态时的速度电子的速度电子的有效质量有效质量有效质量(3)能带底部和能带顶部电子的有效质量能带底部能带顶部5.2 晶格常数为2.5埃的一维晶格,当外加102V/m 和107V/m 电场时,试分别估算电子自能带底运动到能带顶所需要的时间。
11222/qEa a k qE πωππ--⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭布里渊区宽度电子在空间运动的速度3481219103.14 1.055108.271010 1.60210 2.510t ----⨯⨯==⨯⨯⨯⨯⨯34132719103.14 1.055108.271010 1.60210 2.510t ----⨯⨯==⨯⨯⨯⨯⨯代入数据得:解1:根据P249的振动圆频率公式来思考,2; qEa t T t qEaπππω==== 又所以由于自由电子的接触面是球面,在k空间中轨道面积Sn是圆所以:5.3 解:电子在磁场中运动,可以看作是在面作圆周运动,回转频率在实空间中5.4 解:(1)其中为二维自由电子气费米圆的面积三维k空间形成一系列圆柱面,每当有一个圆柱面恰好与费米球相切时,系统能量增量最大,使得电子系统能量增量随呈周期变化,周期取决与最大截面钾的为体心立方晶胞的边长(2)即在真空空间中电子运动轨迹的面积5.5设电子等能面为椭球外加磁场B相对于椭球主轴方向余弦为1)写出电子的准经典运动方程2)证明电子绕磁场回转频率为其中恒定磁场中电子运动的基本方程为:电子的速度电子能量解:(1)电子运动方程:有非零解,系数行列式为零电子的速度磁感应强度电子运动方程应用关系电子运动方程:(2)回转频率:令无意义旋转频率其中5.6解:点上的有效质量张量⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*2A C C 2A C C 2222222222 C C Am C C -2A 0 00 C - 2A 000 22222222 +⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=C A 现有的质量为不变的张量主轴方向沿k x 、k y 、k z 轴。
习题5固体物理习题黄昆版共25页
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。—一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 第五章晶体中电子能带理论思考题1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数)()(r r k.r k i k u e =ψ,对比本教科书(5.1)和(5.39)式可得)(r k u =rKK .)(1m i mm e a N ∑Ω.对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略.当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足)(n R r +ψ=)(r n k.R ψi e ,何以见得上式中k 具有波矢的意义? [解答]人们总可以把布洛赫函数)(r ψ展成付里叶级数rK k'h K k r ).()'()(h i he a +∑+=ψ,其中k ’是电子的波矢. 将)(r ψ代入)(n R r +ψ=)(r n k.R ψi e ,得到n k'.R i e =n k.R i e .其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答]波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N . 由于N 是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的.4. 4. 与布里渊区边界平行的晶面族对什么状态的电子具有强烈的散射作用? [解答]当电子的波矢k 满足关系式)2(=+⋅n n Kk K时, 与布里渊区边界平行且垂直于n K 的晶面族对波矢为k 的电子具有强烈的散射作用. 此时, 电子的波矢很大, 波矢的末端落在了布里渊区边界上, k 垂直于布里渊区边界的分量的模等于2/n K .5. 5. 一维周期势函数的付里叶级数nx ainn eV x V π2)(∑=中, 指数函数的形式是由什么条件决定的?[解答]周期势函数V (x ) 付里叶级数的通式为xi nn n e V x V λ∑=)(上式必须满足势场的周期性, 即xi nn a i x i nn a x i nn n n n n e V x V e e V e V a x V λλλλ∑∑∑====++)()()()(.显然1=a i n e λ.要满足上式, n λ必为倒格矢n a n πλ2=.可见周期势函数V (x )的付里叶级数中指数函数的形式是由其周期性决定的.6. 6. 对近自由电子, 当波矢k 落在三个布里渊区交界上时, 问波函数可近似由几个平面波来构成? 能量久期方程中的行列式是几阶的? [解答]设与三个布里渊区边界正交的倒格矢分别为321K ,K ,K , 则321K ,K ,K 都满足321 ,0)2(K ,K ,K K K k K ==+⋅n nn , 且波函数展式rKk K r ).()(1)(m i mm k e a N +∑=Ωψ中, 除了含有)( ,)( ,)( ,)0(321K K K a a a a 的项外, 其它项都可忽略, 波函数可近似为])( ,)( ,)( ,)0([1)().(3).(2).(1.321r K k r K k r K k r k k K K K r +++=i i i i e a e a e a e a N Ωψ.由本教科书的(5.40)式, 可得0)()()()()()()0()(233221122=-+-+-+⎥⎦⎤⎢⎣⎡-K K K K K K k a V a V a V a E m k , 0)()()()()()(2)0()(3312211221=-+-+⎥⎦⎤⎢⎣⎡-+K K K K K K K k K a V a V a E m k a V , 0)()()()(2)()()0()(3322221122=-+⎥⎦⎤⎢⎣⎡-+-+K K K K k K K K K a V a E m k a V a V , 0)()(2)()()()()0()(3222231133=⎥⎦⎤⎢⎣⎡-+-+-+K k K K K K K K K a E m k a V a V a V .由)( ,)( ,)( ,)0(321K K K a a a a 的系数行列式的值)(2)()()()()(2)()()()()(2)()()()()(222231333222122312122132122=⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡-k K K K K K K K k K K K K K K K k K K K K k E m k V V V V E m k V V V V E m k V V V V E m k .可解出电子的能量. 可见能量久期方程中的行列式是四阶的.7. 7. 在布里渊区边界上电子的能带有何特点? [解答]电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度)(2n K V E g =,)(n K V 是周期势场的付里叶级数的系数.不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交.8. 8. 当电子的波矢落在布里渊区边界上时, 其有效质量何以与真实质量有显著差别? [解答]晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F , 晶格对电子的作用力为F l , 电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , 又要保持上式左右恒等, 则只有Fa *1m =.显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m 的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m *与真实质量m 的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别.9. 9. 带顶和带底的电子与晶格的作用各有什么特点? [解答]由本教科书的(5.88)和(5.89)两式得m m m lF F F +=*.将上式分子变成能量的增量形式m tm t m t l d d d *ννν⋅+⋅=⋅F F F , 从能量的转换角度看, 上式可表述为mE mE m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=.由于能带顶是能带的极大值,22k E∂∂<0,所以有效质量222*k E m ∂∂= <0.说明此时晶格对电子作负功, 即电子要供给晶格能量, 而且电子供给晶格的能量大于外场力对电子作的功. 而能带底是该能带的极小值,22k E∂∂>0,所以电子的有效质量222*k E m ∂∂= >0.但比m 小. 这说明晶格对电子作正功. m*<m 的例证, 不难由(5.36)式求得n nV T mm 211*+=<1.10. 电子的有效质量*m 变为∞的物理意义是什么? [解答]仍然从能量的角度讨论之. 电子能量的变化m E m E m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=[]电子对晶格作的功外场力对电子作的功)d ()(d 1E E m -=.从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量*m 变为∞. 此时电子的加速度1*==F a m ,即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么? [解答]由本教科书的(5.53)式可知, 万尼尔函数可表示为∑-=k R r k r ,R ),(1)(n n N W ααψ.紧束缚模型适用于原子间距较大的晶体. 在这类晶体中的电子有两大特点: (1) 电子被束缚在原子附近的几率大, 在原子附近它的行为同在孤立原子的行为相近, 即当r →R n 时, 电子波函数) ,(n R r k -αψ与孤立原子波函数)(n atR r -αϕ相近. (2) 它远离原子的几率很小, 即r偏离R n 较大时, 2) ,(n R r k -αψ很小. 考虑到r 偏离R n 较大时,2)(n atR r -αϕ也很小, 所以用)(n atR r -αϕ来描述) ,(n R r k -αψ是很合适的. 取) ,(n R r k -αψ=)(k μ)(n atR r -αϕ.将上式代入万尼尔函数求和中, 再利用万尼尔函数的正交性, 可得=)(r ,R n W α)(n atR r -αϕ.也就是说, 万尼尔函数可用孤立原子波函数来近似是由紧束缚电子的性质来决定的.12. 紧束缚模型电子的能量是正值还是负值? [解答]紧束缚模型电子在原子附近的几率大, 远离原子的几率很小, 在原子附近它的行为同在孤立原子的行为相近. 因此,紧束缚模型电子的能量与在孤立原子中的能量相近. 孤立原子中电子的能量是一负值, 所以紧束缚模型电子的能量是负值. s 态电子能量(5.60)表达式∑⋅--=ni s s at s s ne J C E E R k k )(即是例证. 其中孤立原子中电子的能量ats E 是主项, 是一负值, s s J C --和是小量, 也是负值.13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么? [解答]以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=⎰ϕϕΩ的大小又取决于)(r ats ϕ与相邻格点的)(n at s R r -ϕ的交迭程度. 紧束缚模型下, 内层电子的)(r at s ϕ与)(n at s R r -ϕ交叠程度小, 外层电子的)(r at s ϕ与)(n at s R r -ϕ交迭程度大. 因此, 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽. 14. 等能面在布里渊区边界上与界面垂直截交的物理意义是什么? [解答]将电子的波矢k 分成平行于布里渊区边界的分量//k 和垂直于布里渊区边界的分量k ┴. 则由电子的平均速度)(1k E k ∇=ν得到////k ∂ , ⊥⊥∂∂=k E 1ν.等能面在布里渊区边界上与界面垂直截交, 则在布里渊区边界上恒有⊥∂∂k E /=0, 即垂直于界面的速度分量⊥ν为零. 垂直于界面的速度分量为零, 是晶格对电子产生布拉格反射的结果. 在垂直于界面的方向上, 电子的入射分波与晶格的反射分波干涉形成了驻波. 15. 在磁场作用下, 电子的能态密度出现峰值, 电子系统的总能量会出现峰值吗? [解答]由(5.111)式可求出电子系统的总能量⎰∑⎰=-==FFE ln E n b E EaE E E EN U 0002/1][d d )(∑=⎭⎬⎫⎩⎨⎧-=ln n F b a b E a 0n 2/32/3)(32-][32 {}∑=-=ln n F n b a b E ab 0n 2/3)(2-2其中m eB n b m V a c c n cc =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=ωωπω,21 ,282/322 . 对系统的总能量求微商B U ∂∂/, 其中有一项∑=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-ln F n m eB n E m e n ab 02121 . 可见, 每当F E m eB n =⎪⎭⎫ ⎝⎛+ 21时, 总能量的斜率B U ∂∂/将趋于∞, 也即出现峰值.16. 在磁场作用下, 电子能态密度的峰值的周期是什么? 简并度Q 变小, 峰值的周期变大还是变小? [解答]由(5.111)式可知, 在磁场作用下, 电子的能态密度cln c c n E m V E N ωπω ⎪⎭⎫ ⎝⎛+-=∑=211)2(8)(02/322.从上式不难看出, 能量E 分别等于c c c c l ωωωω 212... ,25 ,23 ,21+时, 能态密度都出现峰值. 相邻峰值间的能量差, 即峰值的周期为c ω .由(5.109)式可知, 简并度yx π2.其中y xLL 和分别是晶体在x 方向和y 方向的尺寸. 因为峰值的周期正比于c ω, 所以简并度Q 变小, 峰值的周期也变小.17. 当有电场后, 满带中的电子能永远漂移下去吗? [解答]当有电场后, 满带中的电子在波矢空间内将永远循环漂移下去, 即当电子漂移到布里渊区边界时, 它会立即跳到相对的布里渊区边界, 始终保持整体能态分布不变. 具体理由可参见图5.18及其上边的说明.18. 一维简单晶格中一个能级包含几个电子? [解答]设晶格是由N 个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N 个电子. 由于电子的能带是波矢的偶函数, 所以能级有(N /2)个. 可见一个能级上包含4个电子. 19. 本征半导体的能带与绝缘体的能带有何异同? [解答]在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献. 20. 加电场后空穴向什么方向漂移? [解答]加电场ε后空穴的加速度h m e t εν=d d ,其中h m 是空穴的质量, 是正值. 也就是说, 空穴的加速度与电场ε同方向. 因此, 加电场ε后空穴将沿电场方向漂移下去.。