固体物理 课后习题解答(黄昆版)第二章
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/975e919c240c844769eaee8e.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/607ec14767ec102de2bd8990.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理 课后习题解答(黄昆版)第二章
![固体物理 课后习题解答(黄昆版)第二章](https://img.taocdn.com/s3/m/1c6ad5630b1c59eef8c7b442.png)
′ ωbcc u (r0 )bcc A62 A6 12.252 / 9.11 = = ( ) /( ) = = 0.957 ′ 14.452 /12.13 ω fcc u (r0 ) fcc A12 A12
2.7 对 于 H2 , 从 气 体 的 测 量 得 到 的 林 纳 德 - 琼 斯 势 参 数 为
σ ⎤ 1 σ ⎤ ⎡σ ⎡ σ 解: u (r ) = 4ε ⎢( )12 − ( ) 6 ⎥ , u (r ) = N (4ε ) ⎢ An ( )12 − Al ( ) 6 ⎥ 2 r ⎦ r r ⎦ ⎣ r ⎣
A62 A12 6 1 ⎛ du (r ) ⎞ 6 r u = 0 ⇒ = 2 σ ⇒ = − N ε 0 0 ⎜ ⎟ A6 2 A12 ⎝ r ⎠r
w
w
. e h c 3 . w
-5-
m o c
解答(初稿)作者
季正华
α e2
1 (1 − ) 当 e 变为 2e 时,有 r0 n
n 4α e 2 1 (1 − ) = u (e) × 4 n −1 r0 (2e) n
2.3 若一晶体两个离子之间的相互作用能可以表示为 计算: 1) 平衡间距 r0
解答(初稿)作者 季正华 -1-
u (r ) = −
α
r
m
+
β
rn
黄昆 固体物理 习题解答
2.5 假设Ⅲ-Ⅴ族化合物中,Ⅲ族、Ⅴ族原子都是电中性的(q*=0) , 求出其电离度 fi 。
解:对于Ⅲ族原子的有效电荷为 q* = (3 − 8
w
. e h c 3 . w
β
r010 + 2W ]
α = 7.5 × 10 −19 eV ⋅ m 2
黄昆版固体物理学课后答案解析答案 (2)
![黄昆版固体物理学课后答案解析答案 (2)](https://img.taocdn.com/s3/m/d7f89ec7be1e650e53ea9987.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理学解答_黄昆原著_韩汝琦改编
![固体物理学解答_黄昆原著_韩汝琦改编](https://img.taocdn.com/s3/m/493a7592f121dd36a32d8249.png)
其中 a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。 解:简单立方晶格: a1 a2 a3 , a1 ai , a2 aj , a3 ak 由倒格子基矢的定义: b1 2 倒格子基矢: b1
2U N r m n 1 [( m 1 n 1 ) ] 2 V 2 V r r r 3NAr 2
2U V 2 N 1 m 2 n 2 m n [ m n m n ] 2 9V02 r0 r0 r0 r0
V V0
由平衡条件
2U V 2 2U V 2
4 3 x 3
(3)对于面心立方:晶胞面对角线BC= 2a 4r, a 2 2 r n=4,Vc=a3
x 4 4 3 4 r 4 r 3 2 3 3 0.74 3 3 6 a (2 2r )
(4)对于六角密排:a=2r晶胞面积:S=6 S ABO 6 晶胞的体积:V= S C
4 3 4 3 r r 3 3 ∴x 3 0.52 3 6 a 8r
nV Vc
4 3
(2)对于体心立方:晶胞的体对角线BG= 3a 4r a n=2, Vc=a3 ∴x
2 4 3 4 r 2 r 3 3 3 3 0.68 3 8 a 4 3 3 ( r) 3
c a
8 3
a a ( j k) 1 2 a 证明: (1)面心立方的正格子基矢(固体物理学原胞基矢) : a2 ( i k ) 2 a a3 2 (i j )
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/e4444147f18583d0496459cf.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/af421cbb9e31433239689385.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/e4444147f18583d0496459cf.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (3)
![黄昆版固体物理学课后答案解析答案 (3)](https://img.taocdn.com/s3/m/a218cbcae518964bce847c87.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
《固体物理学(黄昆)》课后习题答案(2)
![《固体物理学(黄昆)》课后习题答案(2)](https://img.taocdn.com/s3/m/31e620fc81c758f5f61f674c.png)
1.10——答案在王矜奉《固体物理概念题和习题指导》p10 第 17 题
3.10 设晶体中每个振子的零点振动能为
1 ,使用德拜模型求晶体的零点振动能。 2
证明:根据量子力学零点能是谐振子所固有的,与温度无关,故 T=0K 时振动能 E0 就是各振动
1
模零点能之和。 E0
m
0
E0 g d 将E0
将
M
us ueisKa e it , Vs VeisKa e it . 代入上式有
M 2u C 10 e ika V 11Cu , M 2V C eika 10 u 11CV ,
4
是 U,v 的线性齐次方程组,存在非零解的条件为
2 2 2 2 Kx , 2m 2m a 2m a
2 2 2 2 2 2 2 2 B点能量 B K x K y 2 m 2 , 所以 B / A 2 2m a a 2m a
所以 B / A 3
(c)如果二价金属具有简单立方品格结构,布里渊区如图 7—2 所示.根据自由电子理
2 2 论,自由电子的能量为 K x2 K y K z2 ,FerM 面应为球面.由(b)可知,内切于 2m
4 点的内切球的体积
3
4 3
,于是在 K 空间中,内切球内能容纳的电子数为 a
当 K= / a 时
2 20C / M , 2 2C / M ,
当 K=0 时,
2 22C / M , 2 0,
2 与 K 的关系如下图所示.这是一个双原子(例如 H 2 )晶体
固体物理学答案_黄昆原著_韩汝琦改编
![固体物理学答案_黄昆原著_韩汝琦改编](https://img.taocdn.com/s3/m/3e9a9509bb68a98271fefa6f.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (1)
![黄昆版固体物理学课后答案解析答案 (1)](https://img.taocdn.com/s3/m/dfd8c08602020740bf1e9b87.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆固体物理习题解答
![黄昆固体物理习题解答](https://img.taocdn.com/s3/m/059ad6c4e53a580216fcfec8.png)
对 (111) 面与 (100) 面的交线作同样考虑
晶向为[0 11]。
也可以这样求解,因为 (111) 面与 (100) 面的法线方向分别为[111]和[100] ,所以与这两个
方向都垂直的方向是:
i jk 1 1 1 = j−k 100
所以晶向为[0 11]或[01 1]
∂ ( ∂r ∂r ∂V
∂U ) = ∂r ∂r ∂V
∂ ∂r
(
1 ∂V
∂U ) ∂r
∂r
∂ 2V
=
∂r ∂V
[−
∂r 2 (∂V )2
∂U ∂r
+
1 ∂V
∂ 2U ∂r 2
]
∂r
∂r
而在 r = r0 时,上式中的第一项为零,所以
K
=
[V
(
d 2U dV 2
)]V
=V0
=
V0
[(
∂V ∂r
)−2
(
2π υc
)3
(a2
×
a3
)
⋅
[(a3
×
a1
)
×
(a1
×
a2
)]
{ } =
(
2π υc
)3
(a2
×
a3
)
⋅
[(a3 × a1) ⋅ a2 )]a1 − [(a3 × a1) ⋅ a1 ]a2
=
(
2π υc
)3
(a2
×
a3
)
⋅
[
(a3
×
a1
)
⋅
a2
)]
a1
= (2π )3 υc
黄昆版固体物理学课后答案解析答案
![黄昆版固体物理学课后答案解析答案](https://img.taocdn.com/s3/m/fde54e96f61fb7360b4c6580.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1、1、解:实验表明,很多元素得原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成得晶体瞧作就是很多刚性球紧密堆积而成。
这样,一个单原子得晶体原胞就可以瞧作就是相同得小球按点阵排列堆积起来得。
它得空间利用率就就是这个晶体原胞所包含得点得数目n 与小球体积V 所得到得小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞得空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r, V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞得体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞得体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞得体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1、2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 得中心联线形成一个边长a=2r 得正三角形,第二层硬球N 位于球ABO 所围间隙得正上方并与这三个球相切,于就是: NA=NB=NO=a=2R 、即图中NABO 构成一个正四面体。
固体物理学(黄昆_高教版)_答案
![固体物理学(黄昆_高教版)_答案](https://img.taocdn.com/s3/m/c6b29f640b1c59eef8c7b4a2.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=32126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案(1)
![黄昆版固体物理学课后答案解析答案(1)](https://img.taocdn.com/s3/m/92afe204c1c708a1294a4499.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (1)
![黄昆版固体物理学课后答案解析答案 (1)](https://img.taocdn.com/s3/m/dfd8c08602020740bf1e9b87.png)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆固体物理习题解答
![黄昆固体物理习题解答](https://img.taocdn.com/s3/m/b025f22176a20029bc642d9d.png)
因此只要先求出倒格点 Ghkl ,求出其大小即可。
由正格子基矢 a = ai , b = bj , c = ck ,可以马上求出:
a∗ = 2π i , b ∗ = 2π j , c∗ = 2π k
a
b
c
因为倒格子基矢互相正交,因此其大小为
Ghkl =
(ha∗ )2 + (kb∗ )2 + (lc∗ )2 = 2π
(h)2 + (k )2 + ( l )2 abc
则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为
a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为 8,最近邻原子间距等于 3 a ,次近邻原 2
=V0
∂2U ( ∂r2
)r0
=
N 2
[−
m(m +1)α r m+2
0
+
n(n +1)β r n+2
0
=
N 2
{−
1 r02
m2α [( r0m
−
n2β r0n
)
+
(
mα r0m
−
nβ r0n
)]}
=
N 2
[−
1 r02
m2α ( r0m
−
n2β r0n
)]
=
N 2
[−
1 r m+2
0
(m2α
−
n2β nβ
AB = a (i − j − k ) 2
c
B
b
C
O
a
OB ⋅ AB =| OB || AB | cosθ = a2 (−1) 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∂ 2U 体弹性模量 K = ( 2 )V0 ⋅V0 ∂V
K = U0 mn 9V0
mn (−U 0 ) 9V02
4)若取 m = 2, n = 10, r0 = 0.3 nm, W = 4 eV 计算 α , β 的值
r0 = ( nβ n − m ) mα
1
1 m nβ n−−m W = α (1 − )( ) m 2 n mα
—Jones 势相互作用,则晶体的总相互作用能为:
w
∑
j
6 ⎡ ′ −12 ⎛ σ ⎞12 ⎤ 1 −6 ⎛ σ ⎞ ′ U = N • (4ε ) ⎢∑ P ij ij ⎜ ⎜ ⎟ −∑ P ⎟⎥ 4 R R ⎝ ⎠ ⎝ ⎠⎥ j ⎢ ⎣i ⎦ 6 ⎡ ′ −12 ⎛ σ ⎞12 ⎤ σ ⎛ ⎞ −6 ′ = 2Nε ⎢∑ P ij ij ⎜ ⎜ ⎟ −∑ P ⎟ ⎥. R R ⎝ ⎠ ⎝ ⎠⎥ j ⎢ ⎣i ⎦
晶体内能
w
∂U ∂U ∂r N mα nβ 1 = = ( m +1 − n +1 ) ∂V ∂r ∂V 2 r r 3 NAr 2
∂ 2U N ∂r ∂ mα nβ 1 = [( m +1 − n +1 ) ] 2 ∂V 2 ∂V ∂r r r 3 NAr 2
∂ 2U ∂ 2U K = ( 2 )V0 ⋅ V0 ∂V 2 ∂V 体弹性模量
解答(初稿)作者
季正华
-3-
黄昆 固体物理 习题解答
根据卡尔森(Coulson)定义的电离度,Ⅲ-Ⅴ族化合物(q*=0)的电离
fi = p A − pB 1 − λ 2 1 − 3 / 5 = = = 1/ 4 = 0.25 p A + pB 1 + λ 2 1 + 3 / 5
度为
2.6 用林纳ቤተ መጻሕፍቲ ባይዱ-琼斯势计算 Ne 在体心立方和面心立方结构中的结合 能之比值。
′ ωbcc u (r0 )bcc A62 A6 12.252 / 9.11 = = ( ) /( ) = = 0.957 ′ 14.452 /12.13 ω fcc u (r0 ) fcc A12 A12
2.7 对 于 H2 , 从 气 体 的 测 量 得 到 的 林 纳 德 - 琼 斯 势 参 数 为
当 x=1 时,有 1 −
1 1 1 + − + ... = l n 2 ∴α = 2l n 2 2 3 4
2.2 讨论使离子电荷加倍所引起的对 Nacl 晶格常数及结合能的影响 (排斥势看作不变)
解: u ( r ) = −
α e2
r
+
由
du α e2 nC α e2 nC |r0 = 2 − n +1 = 0 解得 2 = n +1 dr r0 r0 r0 r0
2) 结合能 W(单个原子的) 3) 体弹性模量 4) 若取 m = 2, n = 10, r0 = 0.3 nm, W = 4 eV 计算 α , β 的值
解:1) 平衡间距 r0 的计算
U (r ) =
1 nβ n − ) m mα
晶体内能 所以 2)
r0 = (
dU N α β (− m + n ) dr r 2 r 平衡条件
α e2
1 (1 − ) 当 e 变为 2e 时,有 r0 n
n 4α e 2 1 (1 − ) = u (e) × 4 n −1 r0 (2e) n
2.3 若一晶体两个离子之间的相互作用能可以表示为 计算: 1) 平衡间距 r0
解答(初稿)作者 季正华 -1-
u (r ) = −
α
r
m
+
β
rn
黄昆 固体物理 习题解答
β=
W 10 r0 2
α = r02 [
β = 1.2 × 10-95 eV ⋅ m10
3
2.4 经过 sp 杂化后形成的共价键,其方向沿着立方体的四条对角线 的方向,求共价键之间的夹 角。
解: sp 3 轨道杂化过程形成的共
价键如右图所示:
由于形成的是正四面体结构,容 易通过几何知识解出键角为
w
109°28′ (请读者自己推导求解)
w
. e h c 3 . w
i
o
m o c
′ P −6 = 14.45392; ∑ ′Pij −12 = 12.13188, ij
ε = 50 ×10−16 erg , σ = 2.96 A, N = 6.022 × 1023 / mol.
解答(初稿)作者
季正华
-4-
黄昆 固体物理 习题解答
将R 0 代入U 得到平衡时的晶体总能量为
12 6 ⎡ ⎛ 2.96 ⎞ ⎛ 2.96 ⎞ ⎤ − U = 2 × 6。 022 × 1028 / mol × 50 × 10−16 erg × ⎢(12.13) ⎜ 14.45 ( ) ⎟ ⎜ ⎟ ⎥ ≈ −2.55 KJ / mol. ⎝ 3.16 ⎠ ⎝ 3.16 ⎠ ⎦ ⎢ ⎥ ⎣
因此,计算得到的 H 2 晶体的结合能为 2.55KJ/mol,远大于实验观察值 0.75lKJ/mo1.对于 H 2 的晶体,量子修正是很重要的,我们计算中没有考 虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.
w
∂U ∂V
U (r ) =
. e h c 3 . w
α
r
m
+
β
r
n
)
r = r0
r0 = (
1 nβ n − ) m mα
m o c
N α β (− m + n ) r 2 r
V =V0
N 1 m 2α n 2 β mα nβ = [− m + n − m + n ] 2 9V02 r0 r0 r0 r0
ε = 50 × 10 −13 J , σ = 2.96 A 计算H2 结合成面心立方固体分子氢时的结合能
o
(以千焦耳每摩尔为单位) ,每个氢分子可以当作球形来处理,结合 能的实验值为 0.751 kJ / mol ,试与计算值进行比较。
解: 以 H 2 为基团,组成 fcc 结构的晶体,如略去动能,分子间按 Lennard
2.5 假设Ⅲ-Ⅴ族化合物中,Ⅲ族、Ⅴ族原子都是电中性的(q*=0) , 求出其电离度 fi 。
解:对于Ⅲ族原子的有效电荷为 q* = (3 − 8
w
. e h c 3 . w
β
r010 + 2W ]
α = 7.5 × 10 −19 eV ⋅ m 2
m o c
λ2 )=0 2 1+ λ2 解出 λ = 3 / 5
=0
r = r0
−
即
mα nβ + =0 r0m +1 r0n +1
单个原子的结合能
1 W = − u (r0 ) 2
u (r0 ) = (−
1 m nβ n−−m W = α (1 − )( ) m 2 n mα
3) 体弹性模量
K =( ∂ 2U )V ⋅ V0 ∂V 2 0
3 晶体的体积 V = NAr —— A 为常数,N 为原胞数目
由平衡条件
=
V =V0
N mα nβ 1 ( m +1 − n +1 ) =0 2 r0 r0 3 NAr02
解答(初稿)作者
季正华
-2-
黄昆 固体物理 习题解答
mα nβ = n r0m r0
∂ 2U ∂V 2
=
V =V0
N 1 m 2α n 2 β [ − + n ] 2 9V02 r0 r0m ∂ 2U ∂V 2 =
σ ⎤ 1 σ ⎤ ⎡σ ⎡ σ 解: u (r ) = 4ε ⎢( )12 − ( ) 6 ⎥ , u (r ) = N (4ε ) ⎢ An ( )12 − Al ( ) 6 ⎥ 2 r ⎦ r r ⎦ ⎣ r ⎣
A62 A12 6 1 ⎛ du (r ) ⎞ 6 r u = 0 ⇒ = 2 σ ⇒ = − N ε 0 0 ⎜ ⎟ A6 2 A12 ⎝ r ⎠r
黄昆 固体物理 习题解答
第二章 晶体的结合
2.1 证明两种一价离子组成的一维晶格的马德隆常数为 α = 2l n 2
解:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这
样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号) ,用 r 表示相 邻离子间的距离,于是有
α
r
= ∑′
j
(±1) 1 1 1 1 = 2[ − + − + ...] rij r 2r 3r 4r
前边的因子 2 是因为存在着两个相等距离 ri 的离子,一个在参考离子左面,一个在其右面, 故对一边求和后要乘 2,马德隆常数为 α = 2[1 −
x 2 x3 x 4 Ql n (1 + x) = x − + − + ... 2 3 4
w
w
. e h c 3 . w
-5-
m o c
解答(初稿)作者
季正华
于是当 e 变为 2e 时,有 r0 (2e) = (
w
结合能为 u (r0 ) = −
u (2e) = −
w
. e h c 3 . w
1 1 1 + − + ...] 2 3 4
m o c
C rn
r0 (e) = (
nC n1 ) −1 2 αe
1 nC n1 −1 n −1 ) = 4 r0 (e) 4α e 2