High density Si nanodots-fabrication and properties
高分子化学术语中英文对照
高分子macromolecule, polymer 又称“大分子”。
2 超高分子supra polymer3 天然高分子natural polymer4 无机高分子inorganic polymer5 有机高分子organic polymer6 无机-有机高分子inorganic organic polymer7 金属有机聚合物organometallic polymer8 元素高分子element polymer9 高聚物high polymer10 聚合物polymer11 低聚物oligomer 曾用名“齐聚物”。
12 二聚体dimer13 三聚体trimer14 调聚物telomer15 预聚物prepolymer16 均聚物homopolymer17 无规聚合物random polymer18 无规卷曲聚合物random coiling polymer19 头-头聚合物head-to-head polymer20 头-尾聚合物head-to-tail polymer21 尾-尾聚合物tail-to-tail polymer22 反式有规聚合物transtactic polymer23 顺式有规聚合物cistactic polymer24 规整聚合物regular polymer25 非规整聚合物irregular polymer26 无规立构聚合物atactic polymer27 全同立构聚合物isotactic polymer 又称“等规聚合物”。
28 间同立构聚合物syndiotactic polymer 又称“间规聚合物”。
29 杂同立构聚合物heterotactic polymer 又称“异规聚合物”。
30 有规立构聚合物stereoregular polymer, tactic polymer 又称“有规聚合物”。
31 苏型双全同立构聚合物threo-diisotactic polymer32 苏型双间同立构聚合物threo-disyndiotactic polymer33 赤型双全同立构聚合物erythro-diisotactic polymer34 赤型双间同立构聚合物erythro-disyndiotactic polymer35 全同间同等量聚合物equitactic polymer36 共聚物copolymer37 二元共聚物binary copolymer38 三元共聚物terpolymer39 多元聚合物multipolymer40 序列共聚物sequential copolymer41 多层共聚物multilayer copolymer42 多相聚合物multiphase polymer43 统计[结构]共聚物statistical copolymer44 无规共聚物random copolymer46 周期共聚物periodic copolymer47 梯度共聚物gradient copolymer48 嵌段共聚物block copolymer 又称“嵌段聚合物(block polymer)” 。
超分子及自组装超分子聚合物
1894年荷兰 科学家Emil Fischer提出 了我们熟知 的“锁钥模 型”
1967年杜邦 公司的C.J. Pederson首 次报道了二 苯并18-冠-6
1987 年 J. M. Lehn 教授首 先提出来的,关于这一概 念的解释是“基于共价键 存在着分子化学领域,基 于分子组装体和分子间键 存在着超分子化学
Shen Z, Jiang Y, Wang T, et al. Symmetry Breaking in the Supramolecular Gels of an Achiral Gelator Exclusively Driven by π–π Stacking*J+. Journal of the American Chemical Society, 2015, 137(51): 16109-16115.
超 分 子 配 合 物
Toshimitsu F, Nakashima N. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry[J]. Nature communications, 2014, 5.
π−π stacking
可生物降解 的二硫键 喜树碱
国立清华大学材料科学工程学系
Flash memory
Application : mobile phone, digital camera, MP3, PDA, …etc.
Conventional memory
Floating Gate Memory
Emerging Memory
Shortcoming : (1) high programming voltage (2) lower writing speed (3) poor retention and endurance
(1) Hot-electron injection
(2) F -N tunneling
8-15 nm
10-20 nm 5-7 nm
Drain
For the case of floating gate devices, a single defect can discharge the stored memory charge of the devices due to the conductive properties of the floating polysilicon gate
improved retention and endurance
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction - Nanocrystal Memory
10-16 nm
Source
Gate
Gate oxide
3-4 nm Nanocrystal s
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction
高分子材料纳米二氧化硅外文文献翻译
纳米二氧化硅对成核、结晶和热塑性能的影响外文文献翻译(含:英文原文及中文译文)文献出处:Laoutid F, Estrada E, Michell R M, et al. The influence of nanosilica on the nucleation, crystallization andtensile properties of PP–PC and PP–PA blends[J]. Polymer, 2013, 54(15):3982-3993.英文原文The influence of nanosilica on the nucleation, crystallization andtensileproperties of PP–PC and PP–PA blendsLaoutid F, Estrada E, Michell R M, et alAbstractImmiscible blends of 80 wt% polypropylene (PP) with 20 wt% polyamide (PA) or polycarbonate (PC) were prepared by melt mixing with or without the addition of 5% nanosilica. The nanosilica produced a strong reduction of the disperse phase droplet size, because of its preferential placement at the interface, as demonstrated by TEM. Polarized Light Optical microscopy (PLOM) showed that adding PA, PC or combinations of PA-SiO2 or PC-SiO2 affected the nucleation density of PP. PA droplets can nucleate PP under isothermal conditions producing a higher nucleation density than the addition of PC or PC-SiO2. PLOM was found to be more sensitive to determine differences in nucleation than non-isothermal DSC. PP developed spherulites, whose growth was unaffected by blending, while its overall isothermal crystallizationkinetics was strongly influenced by nucleation effects caused by blending. Addition of nanosilica resulted in an enhancement of the strain at break of PP-PC blends whereas it was observed to weaken PP-PA blends. Keywords:Nanosilica,Nucleation,PP blends1 OverviewImmiscible polymer blends have attracted attention for decades because of their potential application as a simple route to tailor polymer properties. The tension is in two immiscible polymerization stages. This effect usually produces a transfer phase between the pressures that may allow the size of the dispersed phase to be allowed, leading to improved mixing performance.Block copolymers and graft copolymers, as well as some functional polymers. For example, maleic anhydride grafted polyolefins act as compatibilizers in both chemical affinities. They can reduce the droplet volume at the interface by preventing the two polymers from coalescing. In recent years, various studies have emphasized that nanofillers, such as clay carbon nanotubes and silica, can be used as a substitute for organic solubilizers for incompatible polymer morphology-stabilized blends. In addition, in some cases, nanoparticles in combination with other solubilizers promote nanoparticle interface position.The use of solid particle-stabilized emulsions was first discovered in 1907 by Pickering in the case of oil/emulsion containing colloidalparticles. In the production of so-called "Pickling emulsions", solid nanoparticles can be trapped in the interfacial tension between the two immiscible liquids.Some studies have attempted to infer the results of blending with colloidal emulsion polymer blends. Wellman et al. showed that nanosilica particles can be used to inhibit coalescence in poly(dimethylsiloxane)/polyisobutylene polymers. mix. Elias et al. reported that high-temperature silicon nanoparticles can migrate under certain conditions. The polypropylene/polystyrene and PP/polyvinyl acetate blend interfaces form a mechanical barrier to prevent coalescence and reduce the size of the disperse phase.In contrast to the above copolymers and functionalized polymers, the nanoparticles are stable at the interface due to their dual chemical nature. For example, silica can affect nanoparticle-polymer affinities locally, minimizing the total free energy that develops toward the system.The nanofiller is preferentially placed in equilibrium and the wetting parameters can be predicted and calculated. The difference in the interfacial tension between the polymer and the nanoparticles depends on the situation. The free-diffusion of the nanoparticle, which induces the nanoparticles and the dispersed polymer, occurs during the high shear process and shows that the limitation of the viscosity of the polymer hardly affects the Brownian motion.As a result, nanoparticles will exhibit strong affinity at the local interface due to viscosity and diffusion issues. Block copolymers need to chemically target a particular polymer to the nanoparticle may provide a "more generic" way to stabilize the two-phase system.Incorporation of nanosilica may also affect the performance of other blends. To improve the distribution and dispersion of the second stage, mixing can produce rheological and material mechanical properties. Silica particles can also act as nucleating agents to influence the crystallization behavior. One studies the effect of crystalline silica on crystalline polystyrene filled with polybutylene terephthalate (polybutylene terephthalate) fibers. They found a stable fibril crystallization rate by increasing the content of polybutylene terephthalate and silica. On the other hand, no significant change in the melt crystallization temperature of the PA was found in the PA/ABS/SiO2 nanocomposites.The blending of PP with engineering plastics, such as polyesters, polyamides, and polycarbonates, may be a useful way to improve PP properties. That is, improving thermal stability, increasing stiffness, improving processability, surface finish, and dyeability. The surface-integrated nano-silica heat-generating morphologies require hybrid compatibilization for the 80/20 weight ratio of the thermal and tensile properties of the blended polyamide and polypropylene (increasedperformance). Before this work, some studies [22] that is, PA is the main component). This indicates that the interfacially constrained hydrophobic silica nanoparticles obstruct the dispersed phase; from the polymer and allowing a refinement of morphology, reducing the mixing scale can improve the tensile properties of the mixture.The main objective of the present study was to investigate the effect of nanosilica alone on the morphological, crystalline, and tensile properties of mixtures of nanosilica alone (for mixed phases with polypropylene as a matrix and ester as a filler. In particular, PA/PC or PA/nano The effect of SiO 2 and PC/nanosilica on the nucleation and crystallization effects of PP as the main component.We were able to study the determination of the nucleation kinetics of PP and the growth kinetics of the particles by means of polarization optical microscopy. DSC measures the overall crystallization kinetics.Therefore, a more detailed assessment of the nucleation and spherulite growth of PP was performed, however, the effect of nanosilica added in the second stage was not determined. The result was Akemi and Hoffman. And Huffman's crystal theory is reasonable.2 test phase2.1 Raw materialsThe polymer used in this study was a commercial product: isotactic polypropylene came from a homopolymer of polypropylene. The Frenchformula (B10FB melt flow index 2.16Kg = 15.6g / 10min at 240 °C) nylon 6 from DSM engineering plastics, Netherlands (Agulon Fahrenheit temperature 136 °C, melt flow index 240 °C 2.16kg = 5.75g / 10min ) Polycarbonate used the production waste of automotive headlamps, its melt flow index = 5g / 10min at 240 °C and 2.16kg.The silica powder TS530 is from Cabot, Belgium (about 225 m/g average particle (bone grain) about 200-300 nm in length, later called silica is a hydrophobic silica synthesis of hexamethyldisilane by gas phase synthesis. Reacts with silanols on the surface of the particles.2.2 ProcessingPP_PA and PP-PC blends and nanocomposites were hot melt mixed in a rotating twin screw extruder. Extrusion temperatures range from 180 to 240 °C. The surfaces of PP, PA, and PC were vacuumized at 80°C and the polymer powder was mixed into the silica particles. The formed particles were injected into a standard tensile specimen forming machine at 240C (3 mm thickness of D638 in the American Society for Testing Materials). Prior to injection molding, all the spherulites were in a dehumidified vacuum furnace (at a temperature of 80°C overnight). The molding temperature was 30°C. The mold was cooled by water circulation. The mixture of this combination is shown in the table.2.3 Feature Description2.31 Temperature Performance TestA PerkineElmer DSC diamond volume thermal analysis of nanocomposites. The weight of the sample is approximately 5 mg and the scanning speed is 20 °C/min during cooling and heating. The heating history was eliminated, keeping the sample at high temperature (20°C above the melting point) for three minutes. Study the sample's ultra-high purity nitrogen and calibrate the instrument with indium and tin standards.For high temperature crystallization experiments, the sample cooling rate is 60°C/min from the melt directly to the crystal reaching the temperature. The sample is still three times longer than the half-crystallization time of Tc. The procedure was deduced by Lorenzo et al. [24] afterwards.2.3.2 Structural CharacterizationScanning electron microscopy (SEM) was performed at 10 kV using a JEOL JSM 6100 device. Samples were prepared by gold plating after fracture at low temperature. Transmission electron microscopy (TEM) micrographs with a Philips cm100 device using 100 kV accelerating voltage. Ultra-low cut resection of the sample was prepared for cutting (Leica Orma).Wide-Angle X-Ray Diffraction Analysis The single-line, Fourier-type, line-type, refinement analysis data were collected using a BRUKER D8 diffractometer with copper Kα radiation (λ = 1.5405A).Scatter angles range from 10o to 25°. With a rotary step sweep 0.01° 2θ and the step time is 0.07s. Measurements are performed on the injection molded disc.This superstructure morphology and observation of spherulite growth was observed using a Leica DM2500P polarized light optical microscope (PLOM) equipped with a Linkam, TP91 thermal stage sample melted in order to eliminate thermal history after; temperature reduction of TC allowed isothermal crystallization to occur from the melt. The form is recorded with a Leica DFC280 digital camera. A sensitive red plate can also be used to enhance contrast and determine the birefringence of the symbol.2.3.3 Mechanical AnalysisTensile tests were carried out to measure the stretch rate at 10 mm/min through a Lloyd LR 10 K stretch bench press. All specimens were subjected to mechanical tests for 20 ± 2 °C and 50 ± 3% relative humidity for at least 48 hours before use. Measurements are averaged over six times.3 results3.1 Characterization by Electron MicroscopyIt is expected that PP will not be mixed with PC, PA because of their different chemical properties (polar PP and polar PC, PA) blends with 80 wt% of PP, and the droplets and matrix of PA and PC are expectedmorphologies [ 1-4] The mixture actually observed through the SEM (see Figures 1 a and b).In fact, because the two components have different polar mixtures that result in the formation of an unstable morphology, it tends to macroscopic phase separation, which allows the system to reduce its total free energy. During shearing during melting, PA or PP is slightly mixed, deformed and elongated to produce unstable slender structures that decompose into smaller spherical nodules and coalesce to form larger droplets (droplets are neat in total The size of the blend is 1 ~ 4mm.) Scanning electron microscopy pictures and PP-PC hybrid PP-PA neat and clean display left through the particle removal at cryogenic temperatures showing typical lack of interfacial adhesion of the immiscible polymer blend.The addition of 5% by weight of hydrophobic silica to the LED is a powerful blend of reduced size of the disperse phase, as can be observed in Figures 1c and D. It is worth noting that most of the dispersed phase droplets are within the submicron range of internal size. The addition of nano-SiO 2 to PA or PC produces finer dispersion in the PP matrix.From the positional morphology results, we can see this dramatic change and the preferential accumulation at the interface of silica nanoparticles, which can be clearly seen in FIG. 2 . PP, PA part of the silicon is also dispersed in the PP matrix. It can be speculated that thisformation of interphase nanoparticles accumulates around the barrier of the secondary phase of the LED, thus mainly forming smaller particles [13, 14, 19, 22]. According to fenouillot et al. [19] Nanoparticles are mixed in a polymer like an emulsifier; in the end they will stably mix. In addition, the preferential location in the interval is due to two dynamic and thermodynamic factors. Nanoparticles are transferred to the preferential phase, and then they will accumulate in the interphase and the final migration process will be completed. Another option is that there isn't a single phase of optimization and the nanoparticles will be set permanently in phase. In the current situation, according to Figure 2, the page is a preferential phase and is expected to have polar properties in it.3.2 Wide-angle x-ray diffractionThe polymer and silica incorporate a small amount of nanoparticles to modify some of the macroscopic properties of the material and the triggered crystal structure of PP. The WAXD experiment was performed to evaluate the effect of the incorporation of silica on the crystalline structure of the mixed PP.Isotactic polypropylene (PP) has three crystalline forms: monoclinic, hexagonal, and orthorhombic [25], and the nature of the mechanical polymer depends on the presence of these crystalline forms. The metastable B form is attractive because of its unusual performance characteristics, including improved impact strength and elongation atbreak.The figure shows a common form of injection molding of the original PP crystal, reflecting the appearance at 2θ = 14.0, 16.6, 18.3, 21.0 and 21.7 corresponding to (110), (040), (130), (111) and (131) The face is an α-ipp.20% of the PA incorporation into PP affects the recrystallization of the crystal structure appearing at 2θ = 15.9 °. The corresponding (300) surface of the β-iPP crystal appears a certain number of β-phases that can be triggered by the nucleation activity of the PA phase in PP (see evidence The following nucleation) is the first in the crystalline blend of PA6 due to its higher crystallization temperature. In fact, Garbarczyk et al. [26] The proposed surface solidification caused by local shear melts the surface of PA6 and PP and forms during the injection process, promoting the formation of β_iPP. According to quantitative parameters, KX (Equation (1)), which is commonly used to evaluate the amount of B-crystallites in PP including one and B, the crystal structure of β-PP has 20% PP_PA (110), H(040) and Blends of H (130) heights (110), (040) and (130). The height at H (300) (300) for type A peaks.However, the B characteristic of 5 wt% silica nanoparticles incorporated into the same hybrid LED eliminates reflection and reflection a-ipp retention characteristics. As will be seen below, the combination of PA and nanosilica induces the most effective nucleatingeffect of PP, and according to towaxd, this crystal formation corresponds to one PP structure completely.The strong reductive fracture strain observations when incorporated into polypropylene and silica nanoparticles (see below) cannot be correlated to the PP crystal structure. In fact, the two original PP and PP_PA_SiO2 hybrids contain α_PP but the original PP has a very high form of failure when the strain value.On the other hand, PP-PC and PP-PC-Sio 2 blends, through their WAXD model, can be proven to contain only one -PP form, which is a ductile material.3.3 Polarized Optical Microscopy (PLOM)To further investigate the effect of the addition of two PAs, the crystallization behavior of PC and silica nanoparticles on PP, the X-ray diffraction analysis of its crystalline structure of PP supplements the study of quantitative blends by using isothermal kinetic conditions under a polarizing microscope. The effect of the composition on the nucleation activity of PP spherulite growth._Polypropylene nucleation activityThe nucleation activity of a polymer sample depends on the heterogeneity in the number and nature of the samples. The second stage is usually a factor in the increase in nucleation density.Figure 4 shows two isothermal crystallization temperatures for thePP nucleation kinetics data. This assumes that each PP spherulite nucleates in a central heterogeneity. Therefore, the number of nascent spherulites is equal to the number of active isomerous nuclear pages, only the nucleus, PP-generated spherulites can be counted, and PP spherulites are easily detected. To, while the PA or PC phases are easily identifiable because they are secondary phases that are dispersed into droplets.At higher temperatures (Fig. 4a), only the PP blend inside is crystallized, although the crystals are still neat PP amorphous at the observed time. This fact indicates that the second stage of the increase has been able to produce PP 144 °C. It is impossible to repeat the porous experiment in the time of some non-homogeneous nucleation events and neat PP exploration.The mixed PP-PC and PP-PC-SiO 2 exhibited relatively low core densities at 144 °C, (3 105 and 3 106 nuc/cm 3) suggesting that either PC nanosilica can also be considered as good shape Nuclear agent is used here for PP.On the other hand, PA, himself, has produced a sporadic increase in the number of nucleating events in PP compared to pure PP, especially in the longer crystallization time (>1000 seconds). In the case of the PP-PA _Sio 2 blend, the heterogeneous nucleation of PP is by far the largest of all sample inspections. All the two stages of the nucleating agent combined with PA and silica are best employed in this work.In order to observe the nucleation of pure PP, a lower crystallization temperature was used. In this case, observations at higher temperatures found a trend that was roughly similar. The neat PP and PP-PC blends have small nucleation densities in the PP-PC-SiO 2 nanocomposite and the increase also adds further PP-PA blends. The very large number of PP isoforms was rapidly activated at 135°C in the PP-PA nanoparticle nanometer SiO 2 composites to make any quantification of their numbers impossible, so this mixed data does not exist from Figure 4b.The nucleation activity of the PC phase of PP is small. The nucleation of any PC in PP can be attributed to impurities that affect the more complex nature of the PA from the PC phase. It is able to crystallize at higher temperatures than PP, fractional crystallization may occur and the T temperature is shifted to much lower values (see References [29-39]. However, as DSC experiments show that in the current case The phase of the PA is capable of crystallizing (fashion before fractionation) the PP matrix, and the nucleation of PP may have epitaxy origin.The material shown in the figure represents a PLOAM micrograph. Pure PP has typical α-phase negative spherulites (Fig. 5A) in the case of PP-PA blends (Fig. 5B), and the PA phase is dispersed with droplets of size greater than one micron (see SEM micrograph, Fig. 1) . We could not observe the spherulites of the B-phase type in PP-PA blends. Even according to WAXD, 20% of them can be formed in injection moldedspecimens. It must be borne in mind that the samples taken using the PLOAM test were cut off from the injection molded specimens but their thermal history (direction) was removed by melting prior to melting for isothermal crystallization nucleation experiments.The PA droplets are markedly enhanced by the nucleation of polypropylene and the number of spherulites is greatly increased (see Figures 4 and 5). Simultaneously with the PP-PA blend of silica nanoparticles, the sharp increase in nucleation density and Fig. 5C indicate that the size of the spherulites is very small and difficult to identify.The PP-PC blends showed signs of sample formation during the PC phase, which was judged by large, irregularly shaped graphs. Significant effects: (a) No coalesced PC phase, now occurring finely dispersed small droplets and (B) increased nucleation density. As shown in the figure above, nano-SiO 2 tends to accumulate at the interface between the two components and prevent coalescence while promoting small disperse phase sizes.From the nucleation point of view, it is interesting to note that it is combined with nanosilica and as a better nucleating agent for PP. Combining PCs with nanosilica does not produce the same increase in nucleation density.Independent experiments (not shown here) PP _ SiO 2 samplesindicate that the number of active cores at 135 °C is almost the same as that of PP-PC-SiO2 intermixing. Therefore, silica cannot be regarded as a PP nucleating agent. Therefore, the most likely explanation for the results obtained is that PA is the most important reason for all the materials used between polypropylene nucleating agents. The increase in nucleation activity to a large extent may be due to the fact that these nanoparticles reduce the size of the PA droplets and improve its dispersion in the PP matrix, improving the PP and PA in the interfacial blend system. Between the regions. DSC results show that nano-SiO 2 is added here without a nuclear PA phase.4 Conclusion5% weight of polypropylene/hydrophobic nanosilica blended polyamide and polypropylene/polycarbonate (80E20 wt/wt) blends form a powerful LED to reduce the size of dispersed droplets. This small fraction of reduced droplet size is due to the preferential migration of silica nanoparticles between the phases PP and PA and PC, resulting in an anti-aggregation and blocking the formation of droplets of the dispersed phase.The use of optical microscopy shows that the addition of PA, the influence of PC's PA-Sio 2 or PC-Sio 2 combination on nucleation, the nucleation density of PP polypropylene under isothermal conditions is in the following approximate order: PP <PP-PC <PP -PC-SiO 2<<PP-PA<<< PP-PA-SiO 2. PA Drip Nucleation PP Production of nucleation densities at isothermal temperatures is higher than with PC or PC Sio 2D. When nanosilica is also added to the PP-PA blend, the dispersion-enhanced mixing of the enhanced nanocomposites yields an intrinsic factor PP-PA-Sio2 blend that represents a PA that is identified as having a high nucleation rate, due to nanoseconds Silicon oxide did not produce any significant nucleation PP. PLOAM was found to be a more sensitive tool than traditional cooling DSC scans to determine differences in nucleation behavior. The isothermal DSC crystallization kinetics measurements also revealed how the differences in nucleation kinetics were compared to the growth kinetic measurements.Blends (and nanocomposites of immiscible blends) and matrix PP spherulite assemblies can grow and their growth kinetics are independent. The presence of a secondary phase of density causes differences in the (PA or PC) and nanosilica nuclei. On the other hand, the overall isothermal crystallization kinetics, including nucleation and growth, strongly influence the nucleation kinetics by PLOAM. Both the spherulite growth kinetics and the overall crystallization kinetics were successfully modeled by Laurie and Huffman theory.Although various similarities in the morphological structure of these two filled and unfilled blends were observed, their mechanical properties are different, and the reason for this effect is currently being investigated.The addition of 5% by weight of hydrophobic nano-SiO 2 resulted in breaking the strain-enhancement of the PP-PC blend and further weakening the PP-PA blend.中文译文纳米二氧化硅对PP-PC和PP-PA共混物的成核,结晶和热塑性能的影响Laoutid F, Estrada E, Michell R M, et al摘要80(wt%)聚丙烯与20(wt %)聚酰胺和聚碳酸酯有或没有添加5%纳米二氧化硅通过熔融混合制备不混溶的共聚物。
高放射性核废料玻璃固化体结构与化学稳定性
的玻璃固化体的各试样的 RD 均小于普通的窗玻璃 .
%
w ( P2O 5) w ( SiO 2) w ( U 3O 8) w ( ZrO 2)
表 1 IP70W 和 IP75W 的组成
Tab. 1 IP70W and IP75W composition
组成 模拟废料
IP70W IP75W
w (Al 2O 3) w (Bi 2O 3) w (CaF2) w (Cr 2O 3) w ( Fe 2O 3) w (La 2O 3) w (Na 2O)
Abstract : The chemical durability of iron phosphate ( IP) glass containing different content s of high level radioactive nuclear waste ( HL W) loading was measured by dissolution rate ( DR) met hod ,product consistency test ( PCT) and vapor hydration test ( V HT) . The measurement shows t hat t he IP glass wasteforms containing 65~75 mass % HL W waste loading have excellent chemical durability. The to2 tal elemental mass release determined by PCT for all t hese wasteforms was less t hem 2. 0 g・ m - 2 ,and t he corrosion rate determined by V HT was less t han 0. 2 and 3. 5 g・ m - 2・ d - 1 ,for t he glass containing 70 or 75 mass % HL W waste loading respectively. The glass st ruct ure of wasteform was analyzed by Fourier t urn inf rared ( F TIR) and t he st ruct ure unit of crystallized wasteform was revealed by X2radia2 tion diff raction ( XRD ) . The result s indicate t hat t he st ruct ure unit changed f rom ( PO3 ) 1 - groups to isolated ( P2 O7 ) 4 - or ( PO4 ) 3 - groups wit h t he increase of HL W waste loading in IP glass. When t he atomic ratio of O/ ( Si + P) in t he composition of t hese wasteforms containing high waste loading was between 3. 7 and 4. 1 ,t he ions such as Al3 + ,Fe3 + ,Cr3 + and Zr 4 + in t he intermediate metal oxide can connect wit h t he isolated ( P2 O7 ) 4 - or ( PO4 ) 3 - groups by forming t he O — Me — O —P bonds ,which improved t he resistant to be crystallized and enhanced t he chemical durabilit y. Key words : glass st ruct ure ; nuclear waste t reat ment ; Fourier t urn inf rared ; X - radiation diff raction ; chemical durability
聚甲基苯基硅氧烷涂层对高硅氧纤维磷酸盐性能的影响
第29卷 第4期2009年8月航 空 材 料 学 报J OURNAL OF A ERONAUT ICAL MAT ER I A LSV o l 29,N o 4 August 2009聚甲基苯基硅氧烷涂层对高硅氧纤维/磷酸盐性能的影响吴丽娜, 黄玉东, 刘 丽(哈尔滨工业大学化工学院,哈尔滨150001)摘要:采用涂覆有机-无机杂化涂层的方法对高硅氧纤维(HSGF )进行表面改性。
涂覆前后的纤维表面特性采用X PS 和AFM 进行表征;采用浸泡法腐蚀实验研究了涂层对H S GF 耐酸腐蚀能力的影响;通过测试界面剪切强度(IFSS)评价了复合材料的界面粘结性能,并测试了涂层前后H S G F 及其增强磷酸盐基复合材料力学性能。
结果表明,聚甲基苯基硅氧烷(PSI)涂层可有效地保护高硅氧纤维,阻碍磷酸盐基体/高硅氧纤维之间的界面反应,降低磷酸对其的腐蚀速率,调节界面结合程度,使复合材料弯曲强度比未处理试样提高32%。
关键词:磷酸盐;腐蚀性;涂层;聚甲基苯基硅氧烷;复合材料中图分类号:TB332 文献标识码:A 文章编号:1005-5053(2009)04-0085-05收稿日期:2008-07-21;修订日期:2008-10-25基金项目:航天创新科技基金资助项目(24409035)作者简介:吴丽娜(1982 ),女,博士研究生,主要从事功能材料的制备研究通讯作者:黄玉东,(E -m a il)ydhuang .h it1@y ahoo.co 。
高温宽频透波材料是高速精确制导航天器的基础,是发展高超音速地空导弹、反辐射导弹和巡航导弹不可缺少的关键技术之一,它直接制约着先进航天器的发展[1,2]。
磷酸盐基材料具有耐高温、高强度、介电性能优异、抗氧化以及热膨胀系数小等特点,它集中了金属和陶瓷的优点,是耐高温低介电损耗的理想材料[3]。
同时该材料体系还具有成本低、成型工艺简单、生产周期短的优势,因此开展低成本高性能磷酸盐体系透波材料的研究对发展先进航天器具有重要意义[4]。
静电纺丝素纳米纤维敷料对大鼠深Ⅱ度烧伤创面HIF-1α和PCNA表达的影响
文章编号:1007—4287(2020)09— 1544— 05静电纺丝素纳米纤维敷料对大鼠深I I度烧伤创面HIF-l a和PCNA表达的影响沙娜,陈华'刘宁,单爱军,刘海华(深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)急诊科.广东深圳518020)摘要:目的观察静电纺丝素纳米纤维敷料对大鼠深11度烧伤创面组织中缺氧诱导因子-l a(H l F-l a)和增殖细胞核抗原(P C N A)表达的影响,探讨静电纺丝素纳米纤维敷料对大鼠深I I度烧伤创面愈合的作用及吋能机制。
方法选取60只健康雄性SI)大鼠作为受试对象,建立大鼠深I I度烧伤模型,随机分成实验组和空白对照组,分别用静电纺丝素纳米纤维敷料和生理盐水纱布敷料徵盖烧伤创面治疗。
分别于烫伤后第3、7、14、21天观察两组大鼠的创面愈合情况,并切取创面组织•通过苏木精-伊红(H E)染色和M a s s o n染色观察创面组织病理学变化情况,免疫组化法(I H C)检测创面组织内H I F-l a和P C N A的阳性细胞表达变化情况。
结果烫伤后第3、7、14、21天观察到两组大鼠创面逐渐缩小,愈合率逐渐升高,与对照组相比较,实验组创面愈合时间缩短,创面愈合率升高(P<〇. 〇5),创面组织 中H I F-l a阳性表达细胞数量减少,P C N A阳性表达细胞数量增加。
结论静电纺丝素纳米纤维敷料能够下调HI F l a和上调P C N A表达水平,具有促进大鼠深I I度烫伤创面愈合的作用•其机制可能与改善创面局部缺氧状态和促进细胞增殖有关。
关键词:静电纺丝素纳米纤维;烧伤;缺氧诱导因子增殖细胞核抗原;创面愈合中图分类号:R644 文献标识码:AEffect of electrospun silk fibroin nanofibers on the expression of H IF-la and PCNA in deep second degree burn wounds in rats S H A N a9C H E N H ua ^L I U Nijifi ,et a l. (,D epartment o f Emerge?icy ^Shenzhen P eople \s H o s p ita li The Second Clinical M edical College ,J inati U niversity ; The First A f f i l i a t e d H o s p ita l ^Southern U niv ersity o f Science and Techn o lo g y) * S he nzhe n b\S020<,Chi ?ia)A bstract:Objective T o observe the effect of electrospun silk fibroin nanofibers d ressin g on the expression of hypoxia inducible fa c to r-la(H I F-la)and proliferating cell nuclear antigen (P C N A) in deep second degree burn w ound tivssues of rats. T o explore the effect and possible m echanism of electrospun silk fibroin nanofiber dressing on deep second-degree bu rn w ound healing in rats. Methods Sixty healthy m ale SD rats w ere selected as subjects to establish a rat m odel of deep second-degree b urns. T h ey w ere random ly divided into experim ental gro u p and blank control group. T he burn w ounds w ere covered w ith electrospun silk fibroin nanofibers d ressing and saline gauze dressing respectively. T he w ound healing of the tw o gro up s of ra ts w as observed on the 3rd, 7th, 14th, and 21st clays a fte r sc a ld.an d the w ound tissue was cut o u t,a n d the pathological changes of the w ound w ere observed by hem atoxylin-eosin (H K) staining and M asson vStaining. Im m unohistochem istry (IH C) w as used to detect changes in the expressio n of H IF-la and PC N A positive cells in the w ound tissue. Results O n the 3r d,7th. 14th,a n d21st days a fte r sc a ld,th e w ounds of the tw o group.s of ra ts w ere observed to g radually sh rink and the healing rate gradually increased. C om pared w ith the control g ro u p, the w ound healing tim e of the experim ental group w as .shortened, and the w ound healing rate increased (P<C0. 05), the num ber of H IF-la positive cells in the w ound tissu e d ecreased.and the num ber of P C N A-posilive cells increased. Conclusion E lectrosp u n silk fibroin nanofibers d ressing can dow n-regulate H IF-la exprcSvsion. up-regulate the expression of PCN A, and p rom ote the healing of deep second-degree scalds in rats. T h e m echanism m ay be related to im proving the local hypoxia sta te of the w ound and prom oting cell proliferation.Key w ords:electrospjun silk fibroin n a n o fib ers;burn ;H IF-1 a; PC'NA ;w ound healing(C h i n J L a b»2020 *24 : 1544)基金项目:深圳市科技创新委员会科技计划项目(.丨CYJ20170307100 359390)静电纺丝素纳米纤维是将桑蚕丝运用静电纺丝 技术制备的纳米级分子纤维,具有高比表面积、高孔 隙率、良好的生物组织相容性等优点,因而在生物医*通讯作者学等领域中得到广泛研究,尤其是在组织工程皮肤、创面修复等方面具有广阔的应用潜力[1]。
高活性表面增强拉曼光谱基底的构筑
2018•08技术应用与研究当代化工研究Chenmical I ntermediate丄1上高活性表面增强拉曼光谱基底的构筑*文i j忆(杭州市西湖高级中学浙江310000)搞要:表面增强拉曼光谱是一种高灵敏度、高选择性、无需标记的指故光谱检测手段,能实现单分子量级样品的检测,在化学、生物、食品、环境等领域有望实现广泛的应用。
其中,高活性表面增强拉曼光谱基底的构筑对于实现待测分子的高效检测至关重要。
本文主要对不同类型表面增强拉曼光谱基底的构筑进行简要的总结,并对目前表面增强拉曼光谱基底的发展提出了问题与展望。
关键词:表面增强拉曼光谱;基底;纳米阵列;重复性;灵敏度中图分类号:T文献标识码:AConstruction of Highly Active Surface-enhanced Raman Spectroscopy SubstrateLiuYi(West Lake Senior High School of Hangzhou City,Zhejiang,310000)Abstract: Surface-enhanced R aman spectroscopy is a f in g e rp rin t spectrum detection m ethod w ith high sensitivity, high se lectivity and no need o f l abeling. I t can realize the detection o f s amples w ith single m olecular w eight class, and is expected to be w idely used in chem istry, biology, food,environm ent and other f ie ld s. Among them, the construction o f h igh ly active surface-enhanced Raman spectroscopy substrate is v ita l to realize the e fficie n t detection o f m olecules to be detected. In th is p aper, the construction o f d iffe re nt types o f s urface-enhanced R aman spectral substrates is b rie flysummarized, and the p roblem s and p rospects f o r the developm ent o f s urface-enhanced R aman spectral substrates a t p resent are p u t f orw ard.Key words i surface-enhanced R aman spectroscopy \substrate-, nano array-, repeatability-, se n sitivity1. 前言1927年,拉曼光谱由印度物理学家Raman首次发现,可 得到分子振动、转动等结构信息,由于其可实时原位检测、所需样品量少以及可实现指纹检测等优点,在生化检测、物 理、食品安全等领域有着较广泛的应用。
超临界二氧化碳辅助制备二维非晶材料
㊀第56卷第3期郑州大学学报(理学版)Vol.56No.3㊀2024年5月J.Zhengzhou Univ.(Nat.Sci.Ed.)May 2024收稿日期:2023-08-29基金项目:国家自然科学基金青年项目(52301221)㊂第一作者:葛天培(1990 ),男,讲师,主要从事二维非晶材料研究,E-mail:getianpei@㊂通信作者:许群(1971 ),女,教授,主要从事纳米材料的结构㊁设计与性能研究,E-mail:qunxu@㊂超临界二氧化碳辅助制备二维非晶材料葛天培,㊀许㊀群(郑州大学河南先进技术研究院㊀河南郑州450003)摘要:二维非晶材料不仅具有二维材料的高比表面积和高表面原子活性,还具有非晶材料的多缺陷和活性位点等优势,是理想的催化材料㊂近年来,超临界二氧化碳辅助制备工艺在制备二维非晶材料方面取得了一系列成功㊂介绍了利用超临界二氧化碳辅助制备各种二维非晶材料,讨论了其可能的非晶化机理及其对二维材料结构和性能的影响,并进一步展示了它们在不同领域的应用㊂对超临界二氧化碳辅助制备二维非晶材料的研究不仅能从理论层面理解二维非晶材料的形成机制,更为制备具有特定结构和性能的二维非晶材料提供指导㊂相关研究展示了超临界二氧化碳辅助制备工艺在材料设计和工程应用中具有广阔的前景㊂关键词:二维非晶材料;超临界二氧化碳;非晶化机制;光电催化;能量转换中图分类号:O643文献标志码:A文章编号:1671-6841(2024)03-0001-15DOI :10.13705/j.issn.1671-6841.2023197Supercritical Carbon Dioxide Assisted Synthesis of 2DAmorphous MaterialsGE Tianpei,XU Qun(Henan Institute of Advanced Technology ,Zhengzhou University ,Zhengzhou 450003,China )Abstract :Two-dimensional (2D)amorphous materials with the high specific surface area,were idealcatalysts,because of their features,such as the high surface atomic activity like two-dimensional materi-als,and the disordered structure with more defects and active sites.Recently,supercritical carbon diox-ide (SC CO 2)assisted technology achieved great success in preparing two-dimensional amorphous materi-als.Varies kinds of 2D amorphous materials fabricated with SC CO 2were introduced,their underlying amorphization mechanism were discussed,and their applications in different fields were further shown.The investigation of SC CO2assisted fabrication of 2D amorphous materials could not only help us under-stand the forming mechanism of 2D amorphous structure,but also provid insight into the preparation of special 2D amorphous materials.Key words :2D amorphous materials;supercritical carbon dioxide;amorphization mechanism;photo andelectro catalysis;energy conversion0㊀引言与传统的晶体材料相比,非晶材料只具有短程(<1nm)序而没有长程(>1nm)序,表现出宏观均匀性和各向同性[1-3]㊂非晶材料虽然有固定的形状,却具有类似于液体的无序原子排列,通常被称为无定形结构㊂非晶材料的这种无序结构使其具有不同于晶体材料的特殊性能㊂非晶材料表面具有大量的不饱和位点或悬挂键,使其成为理想的催化剂[4-5]㊂与晶体材料相比,处于亚稳态的非晶材料在高温或压力处理下会转变为晶态,即发生晶郑州大学学报(理学版)第56卷化[6-7]㊂同时,由于非晶材料结构中缺乏晶界或位错,因此具有优异的力学性能,如强度高㊁硬度高㊁耐磨性好㊁耐腐蚀等[8-9]㊂因此,对非晶材料的研究受到了持续的关注㊂中国科学院物理所制备了具有多尺度非均匀结构的非晶ZrCuNiAl合金体系,具有高强度(1.7 GPa)和非常大的压缩塑性(应变>150%),在室温下能够实现90ʎ弯曲[10]㊂非晶硫化钼在析氢反应(HER)催化中具有优于结晶二硫化钼的活性㊂Tran 等[11]发现,非晶分子基MoS x中的第三端二硫键(S2-2)配体在析氢过程中可以保持自由,并生成部分氢化钼作为活性位点㊂近年来,大量二维非晶材料在电催化㊁电池㊁超级电容器和光催化等领域得到了广泛发展[12-13]㊂二维非晶材料作为一种新概念材料,不仅具有上述非晶材料的特性,而且具有超高比表面积㊁更多的暴露原子㊁更强的电子约束等特点[14-15]㊂二维非晶材料的制备可分为自上而下和自下向上两种方法㊂在自下而上的合成中,制备二维非晶材料的关键是通过一定的阻断机制来抑制结晶过程,包括低温㊁快速反应㊁竞争配位/吸附㊁晶格畸变等[16]㊂相反,自上而下的方法需要额外的能量来打破晶体的对称性,导致从晶体到非晶的相变,即非晶化㊂非晶化可以发生在许多条件下,如高压㊁辐照㊁热效应㊁掺杂㊁塑性变形㊁电化学㊁纳米压痕㊁插层等[17-19]㊂其中,超临界二氧化碳辅助制备工艺在二维非晶材料的制备中显示出巨大的潜力㊂超临界流体是指在超过其临界温度(T)和压力(P)的条件下,可以同时表现出类气体和类液体行为的物质,具有接近零的表面张力㊁低黏度㊁高扩散系数㊁良好的表面润湿性和强溶剂化能力[20]㊂其中,超临界二氧化碳作为一种绿色环保的溶剂,在材料制备和加工方面具有广阔的应用前景㊂在超临界二氧化碳处理过程中,层状材料可以被剥离并转变为二维非晶结构㊂然而,由于复杂的多组分体系和动态的处理过程,人们对超临界二氧化碳诱导非晶化的机理仍然缺乏了解,这极大限制了其在二维非晶材料制备中的进一步应用㊂本文介绍了超临界二氧化碳辅助制备二维非晶材料的相关研究,并讨论了可能的非晶化机理㊂此外,我们还介绍了超临界二氧化碳辅助制备二维非晶材料的相关应用,以展示其在不同领域的应用前景㊂1㊀二维非晶材料的制备目前,使用超临界二氧化碳辅助制备技术已经制备出了许多二维非晶材料㊂同时,这些工作为促进超临界二氧化碳的非晶化提供了一系列的策略㊂在此,我们回顾了超临界二氧化碳辅助制备二维非晶材料的研究,并讨论了它们如何阐明对超临界二氧化碳中非晶化过程的理解㊂1.1㊀相变法制备二维非晶MoO3-xLiu等通过相变方法来制备非晶三氧化钼纳米片,其中实现非晶结构的关键步骤包括二硫化钼的氧化和随后超临界二氧化碳的处理[21]㊂首先作为前驱体的二硫化钼纳米片从大块二硫化钼结晶中剥离㊂随后,在退火过程中实现表面缺陷和氧的掺入㊂在这个过程中,氧原子取代硫原子,进一步破坏了二硫化钼的原子排列规则㊂通过化学反应可以得到亚稳态的h-MoO3和稳定的α-MoO3组成的三氧化钼混合物㊂由于混合物的亚稳态结构,非晶化的能垒降低,超临界二氧化碳仅在80ħ时发生非晶化㊂此外,小分子对非晶表面较高的吸附强度也促进了扩散原子的无序和非晶纳米结构的稳定㊂1.2㊀二维非晶HxMoO3纳米点超临界二氧化碳也实现了过渡金属氧化物(transition metal oxides,TMO)纳米点的构建,其中超临界二氧化碳可以通过控制氧化途径进一步调节非晶氧化钼的尺寸㊂在Li等的研究中,在可见光和近红外区域用可调谐等离子体共振制备了非晶H x MoO3量子点(QDs)[22]㊂典型的制备策略如图1(a)和(b)所示㊂过程为:1)超声处理过程㊂二硫化钼粉末首先在乙醇和水混合溶剂中超声处理,获得良好的分散度;2)超临界二氧化碳的剥离和氧化过程㊂将过氧化氢加入二硫化钼溶液中,同时加入超临界二氧化碳㊂在这一过程中,过氧化氢可以使二硫化钼氧化形成松散的三氧化钼薄片,二氧化碳分子同时对样品的结构进行破坏,进一步形成三氧化钼量子点㊂二氧化碳分子对材料的作用可分为两个步骤㊂首先,将二氧化碳分子插入层间,破坏层间键,导致其脱落成二维结构;其次,二氧化碳分子进一步攻击内层键,将二维结构分解成纳米点㊂同时,内层键的破坏会导致非晶化,形成非晶的三氧化钼量子点㊂过氧化氢的破坏作用导致三氧化钼结构较松散,在40ħ的超临界二氧化碳中可以形成非晶结构㊂随后,在太阳光照5h后,溶液中的H+可以与三氧化2㊀第3期葛天培,等:超临界二氧化碳辅助制备二维非晶材料钼结合形成H x MoO3纳米点㊂H+与TMO材料之间的耦合进一步增加了电荷密度,产生显著的等离子体共振㊂从图1(c)可以看出[22],未制备的样品H x MoO3纳米点在约4nm处均匀分布,这些纳米点没有晶格衍射条纹,结晶度极低㊂此外,一个典型的无衍射环的光晕电子衍射图也证明了其非晶结构㊂图1㊀非晶量子点的制备过程及其电镜照片Figure1㊀The preparation method and TEM of amorphousnanodots1.3㊀二维非晶Nix MoO3纳米点此外,超临界二氧化碳的高扩散率和低黏度可以帮助金属离子插入三氧化钼中,如Ni和Co离子㊂如图2所示[23],单层或少层的三氧化钼纳米片首先可以通过超声波进行剥离,然后在超临界二氧化碳的帮助下,成功地将Ni离子插入三氧化钼纳米片的中间层中[23]㊂由于超临界二氧化碳在高温(200ħ)下进行处理,增强了二氧化碳与材料的相互作用,使二氧化钼纳米片尺寸显著减小㊂Ni0.125MoO3纳米点的处理过程中没有明显的晶格衍射条纹,表明其结晶度相对较低(图2)㊂更重要的是,根据密度泛函理论,插入的镍原子可以与相邻钼原子形成镍钼金属键,赋予Ni0.125MoO3良好的导电性,导致具有一定带隙的半导体转变为零带隙的准金属相㊂同时,半导体中金属键的形成有利于表面自由载流子的转移,从而促进了局域表面等离子体共振(LSPR)效应㊂1.4㊀自下而上合成MoO3-x与自上而下方法不同,自下而上合成可以制备不同形态和结构的二维非晶MoO3-x[24]㊂通过三氧化钼与草酸的反应可形成草酸钼配合物,并转移到图2㊀Ni x MoO3的制造工艺㊁能带结构和状态密度Figure2㊀The preparation method,energy band structureand state density of Ni x MoO3超临界二氧化碳装置中进一步反应㊂如图3所示[24],通过将压力从0MPa改变到8㊁12㊁16㊁20MPa,结构从晶体纳米片改为非晶纳米片㊁部分非晶纳米片㊁部分晶体纳米片㊁全晶纳米片㊂超临界二氧化碳的作用可分为两部分:1)超临界二氧化碳的表面吸附抑制了材料的各向异性生长,导致了纳米片结构;2)超临界二氧化碳的抗溶剂作用降低了样品的溶解度,促进了其过饱和㊁颗粒缩合和结晶㊂图3㊀不同压力的超临界二氧化碳制备的样品Figure3㊀The sample prepared with different supercriticalcarbon dioxide(SC CO2)pressure1.5㊀MoO3-x中的非晶化动力学为了揭示超临界二氧化碳的非晶化机理,Ge等研究了超临界二氧化碳中商业三氧化钼的非晶化过程[25]㊂依赖于时间的非晶化过程如图4(a)㊁(b)所示㊂可以看到,与反应时间和温度相关的结晶度清楚地显示出一个动力学的非晶化过程㊂较高的温度和反应时间的延长都会降低样品的结晶度㊂此外,较高的超临界二氧化碳压力对促进非晶化速率也起重要作用㊂其非晶化动力学可以通过Johnson-Mehl-Avrami-Kolmogorov(JMAK)理论描述[26]㊂对于等温连续成核和各向同性的情况,经典的JMAK模型可以表示为f=1-exp(-kt n),(1)3郑州大学学报(理学版)第56卷其中:f是转化分数;k是速率常数;n是与结晶机制有关的Avrami指数[27]㊂根据固相变理论,n是晶体生长的维数㊂当n=1时,晶体生长方式限制在表面一维;当n=2时,晶体生长在边缘二维;n=4或3的情况则分别对应于晶体在三维情况下生长的同时是否伴随有形核过程㊂在非晶化过程中,晶体部分在恒定的反应速率下连续转化为非晶,JMAK模型可以将结晶度描述为c=c0exp(-kt n),(2)其中:c0为样品的原始结晶度㊂图4(c)㊁(d)中的数据可以用方程(1)㊁(2)进行拟合㊂而拟合的Avrami指数n非常接近于1㊂这一结果表明,二维MoO3-x纳米片的非晶化发生在纳米片的表面,并在一维空间上生长㊂本工作还表明,非晶化速率常数k是影响非晶化机理的一个重要参数,它符合阿伦尼乌斯关系,k=A0exp(-E/RT),(3)其中:T为反应温度;E为非晶化活化能;R为通用气体常数㊂显然,速率常数取决于温度和活化能㊂此外,值得研究的是,在不同的超临界二氧化碳压力下制备样品的非晶化速率具有不同的温度依赖性,这种变化表明了超临界二氧化碳诱导非晶化过程中的不同机制㊂在较低的压力下,非晶化的活化能约为0.5eV,这主要涉及表面Mo O键的断裂和氧空位的形成[28]㊂在较高的压力下,非晶化需要更高的活化能(1.5eV),这与位错介导的剪切非晶化(1.6eV)相似㊂因此可以得出结论,不同的超临界二氧化碳压力导致的非晶化主要涉及不同的过程:第一个是氧空位的形成(图4(e));第二个是原子重排(图4(f))[25]㊂虽然超临界二氧化碳的非晶化机制相当复杂,但动力学分析的研究可以集中在速率的确定步骤上,避免了其他干扰因素㊂动力学分析表明了活化能差异较大,间接揭示了非晶化机制的变化,并找到了指导超临界二氧化碳非晶化机制的线索㊂1.6㊀二维非晶WO3-x纳米材料控制超临界二氧化碳的压力和温度是创建新的原子结构的有效方法,可构建新的异质结构㊂根据在非晶WO3-x上沉积的AgNPs可以得到二维非晶异质结构Ag/a-WO3-x[29]㊂二氧化碳分子与缺陷之间的强相互作用引入了局部应力,改善了扩散原子的无序㊂如图5(a)所示,经过超临界二氧化碳处理后,二维纳米片中剥离的WS2纳米片的六方晶格结构可以转变为完全二维无序的WO3-x结构㊂稳定的非晶WO3-x可以通过原位还原法捕获银纳米颗粒㊂图4㊀不同压力下样品的非晶化过程及其微观机制Figure4㊀The amorphization process and underlyingmechanism with different pressure随着超临界二氧化碳温度的升高,WS2纳米片的氧化程度逐渐增加,图5(b)㊁(c)显示了有序结构向无序转变的过程及其相应的平均氧空位率㊂当反应温度超过120ħ时,WS2纳米片被完全氧化为三氧化钨,并在200ħ下形成WO3-x的非晶结构[29]㊂图5㊀WO3-x纳米片的高分辨透射电镜图及其氧缺陷含量Figure5㊀The HRTEM and oxygen vacancy content ofWO3-x nanosheets1.7㊀二维非晶VS2和VO2纳米材料考虑到晶体和非晶结构之间的相变,超临界二氧化碳的应变工程在形态演化和非晶化过程中起着关键作用㊂通过改变超临界二氧化碳的压力和温度,在超临界二氧化碳膨胀溶剂体系(如水/超临界4㊀第3期葛天培,等:超临界二氧化碳辅助制备二维非晶材料二氧化碳/NMP )中成功获得了单层二维VS 2纳米片[30]㊂实验结果表明,NMP 和VS 2的表面能相似,VS 2的溶解度和扩散率增强,以及各向异性蚀刻是影响剥离效率的关键因素㊂在对照实验中,非晶化依赖于时间㊁形貌旋转与超临界二氧化碳压力等,包括不同的形态,如长链聚集㊁长棒状结构和非晶层等㊂此外,进一步研究发现,在80ħ条件下,热力学不稳定的层状块体VS 2在动力学和热力学上都会被氧化成长程有序VO 2㊂1.8㊀二维非晶g-C 3N 4类石墨氮化碳(g-C 3N 4)作为石墨烯的类似物,具有良好的化学稳定性和热稳定性㊂然而,由于g-C 3N 4的活性位点很少和高电荷重组,其应用受到了限制㊂对于非晶g-C 3N 4,丰富的反应位点和活性电子态在逻辑上保证了其优越的催化活性㊂但二维非晶纳米片的长程无序可能会导致电荷转移低下㊂可通过氧掺杂g-C 3N 4等方法改变载流子密度和创造新的电子输运途径促进电荷分离和输运㊂超临界二氧化碳有助于将更稳定的g-C 3N 4从晶体结构调整为掺杂氧的非晶结构[31]㊂在化学裁剪过程中,随着温度的升高,引入的过氧化氢分子首先分解为活性㊃OH㊁HO 2㊃自由基和H +㊂然后,由于路易斯碱酸中和导致C 3N 4的质子化,纳米片的电子密度发生了变化,C NC 键有利于羟基自由基与C 接枝导致羟基化的形成㊂高浓度的超临界二氧化碳分子引入剪切应变,打破C N C( NH +2)键,形成N 空位㊂随后,O 原子可以取代N 的位点,由于强电子极化,在共轭结构中可形成C O C 键㊂1.9㊀二维非晶VO 2、TiO 2和CeO 2超临界二氧化碳不仅能够剥离层间作用力软弱的范德瓦尔斯(vdW)材料,也可以制备具有更强层间键的二维非晶结构㊂例如,Guo 等制造了具有增强光致发光能力的二维非定形CeO 2[32]㊂Yan 等发现超临界二氧化碳中非vdW VO 2(B)和TiO 2的非晶化[33-34]㊂更重要的是,他们发现VO 2的非晶化起源于熵缺失引起的剪切应力㊂当温度从40ħ增加到80ħ时,较大的剪切应力导致纳米级孪晶的传播,进一步剪切形成中性带㊂一旦非晶化开始,这些非晶化带就会阻断位错的运动,积累缺陷浓度,并不断削弱和细化三维晶体网络,从而形成二维非晶结构㊂1.10㊀非晶PdCu 合金纳米点在过渡金属氧化物(TMOs)㊁过渡金属双卤代化合物(TMDs)和石墨碳结构的非晶碳氮化合物中,由超临界二氧化碳引起的氧㊁硫或氮空位在非晶化过程中起着重要的作用㊂然而,在金属材料中空位引起的非晶化机制失效㊂Cui 等在超临界二氧化碳的帮助下制备了非定形的PdCu 纳米点[35]㊂结果表明,高压超临界二氧化碳导致PdCu 合金形成非晶结构,而高温超临界二氧化碳导致PdCu 合金结晶㊂这一结果与TMOs 或TMDs 中高温促进超临界二氧化碳的非晶化情况不同㊂我们认为,这种差异源于两种材料的非晶化机制㊂在TMOs 或TMDs 中,空位的形成在非晶化过程中起着重要的作用㊂高温可以促进空位的形成,从而导致高温超临界二氧化碳中的非晶化㊂相反,超临界二氧化碳不能导致金属和合金的空位㊂超临界二氧化碳中合金的非晶化源于剪切应力引起的原子重排,这需要高压超临界二氧化碳而不是高温,高温会导致应力松弛和结晶,抑制非晶化过程㊂2㊀超临界二氧化碳中的非晶化机制由于多组分体系和过程复杂,超临界二氧化碳的非晶化机制存在争议,可能的机制包含源于剥离㊁插层㊁高压㊁剪应力㊁缺陷或表面吸附等㊂在本节中,我们将分别介绍这些非晶化机制,并讨论它们如何影响超临界二氧化碳中的非晶化㊂特别是这些非晶化机制可能存在于其他的非晶化方法中,这为我们理解超临界二氧化碳引入的非晶化机制提供了方向㊂2.1㊀剥离和插层引入的非晶化自Gulari 等首次将超临界二氧化碳插入层状硅酸盐以来,人们已经开展了一系列用超临界二氧化碳插入层状材料并剥离的工作[36]㊂与液相剥离相比,超临界二氧化碳辅助剥离的时间更短,在形态和结构改性方面具有更多的优势[20]㊂对于层状材料,超临界二氧化碳可以插入层状材料的层间,扩展层间距㊂当压力释放时,层间的超临界二氧化碳膨胀,使层间分开形成二维结构㊂显然,高压可以有效地促进插层㊁增加膨胀空间[37]㊂同时,高压可以提高自由能垒,降低层间引力,提高分散过程中剥离片的胶体稳定性[38]㊂此外,对于非晶vdW 材料,超临界二氧化碳被认为可以插入其分子孔道,削弱层间和层内共价键,从而形成二维纳米片[39]㊂剥离可以破坏层状材料中的层间键,也可能影响内层键导致非晶化㊂例如,氧化铬㊁二氧化锆和氧化铝非晶纳米片可以通过将其水氯化物或氯氧化物剥离来制备[40]㊂非晶磷酸铁二水合物(FePO 4㊃2H 2O)纳米板可以从二乙胺修饰的FePO 4㊃2H 2O 颗粒中剥离[41]㊂5郑州大学学报(理学版)第56卷原子和离子的插入也可能是非晶化的一个原因㊂Xie等发现,在钯中插入S会导致非晶化[42]㊂此外,由离子插入导致的非晶化也发生在不同类型的电池中㊂Huang等发现,锂离子电池在循环过程中,非晶化可提高氧化锡的容量和循环稳定性[43]㊂Yang等研究了Na离子插入过程中硫化铜的非晶化,通过模拟发现Na离子的非晶结构比其晶体更稳定[44]㊂Özdogru等研究了钾离子电池充放电过程中晶体磷酸铁的非晶化过程[45]㊂加压和减压过程也会导致超临界二氧化碳的插入和去插入,这被认为是层状材料剥离的原因[20]㊂然而,有研究表明,超临界二氧化碳中的反应时间在非晶化过程中也起着重要的作用[25]㊂尽管进行了加压和减压过程,但非晶化仍需要足够长的反应时间才能发生㊂此外,插入和剥离并不总是会导致非晶化㊂在大多数情况下,由超临界二氧化碳剥离的二维材料仍然是晶体㊂因此,我们认为插层和剥离并不是超临界二氧化碳非晶化的直接原因㊂但剥离对材料的影响,包括插层引起的剪应力具有高原子迁移率的剥离超薄结构,在非晶化过程中起着重要作用㊂2.2㊀高压引入的非晶化高压诱导非晶化是各种材料中常见的现象㊂如在25~30GPa的二氧化硅中发生非晶化[46]㊂非晶冰可以在77K和10kbar下压缩冰I相来形成[47]㊂非晶化是由热力学熔化引起的,由于冰I相融化过程中体积的减小,融化温度随着压力的升高而下降㊂因此,高压可能会在低温下导致 熔化 ㊂同时,如果温度低于玻璃化转变温度,液体将变成非晶固体㊂因此,相图中的临界非晶化曲线与外推的熔融曲线相同,表明熔化诱导了非晶化㊂类似的现象也存在于金属-有机框架㊁硅等系统中[48-49]㊂同时,压力引起的配位和局部原子结构的变化也会导致氧化物和硫族化合物的非晶化[50-51]㊂Yu 等发现了Cr2Ge2Te6中压力诱导的非晶化㊂非晶化被认为是源于Ge Ge键的压缩,这促进了Ge向vdW间隙侧的翻转[51]㊂Shu等发现高压导致二氧化钛的非晶化,随着压力升高,由压力引入的非晶化伴随着TiO x多面体配位结构从7到9的变化[52]㊂然而,非晶化或其他结构转变的等静压力要足够高才能破坏原始晶体结构,通常是几个GPa或更高㊂这种压力远远高于超临界二氧化碳,这意味着不同的潜在机制㊂尽管在超临界二氧化碳中诱导非晶相的压力要低得多,但压力诱导的力学不稳定性被认为是一个可能的非晶化的原因㊂与热力学熔化不同的是,力学不稳定性在动力学低温下引起非晶化阻碍了向热力学稳定相的过渡,导致亚稳态非晶化㊂特别是,在冰等体系中可以共存两种非晶化,在低温下,非晶化机制由热力学熔化变为机械不稳定,在160K时相图中存在交叉[53]㊂2.3㊀剪切引入的非晶化剪切应力不仅导致塑性变形和裂纹,还可以破坏化学键,形成缺陷,驱动原子重排并发生非晶化㊂剪切诱导的非晶化发生在各种材料中,如硅㊁硼化物㊁氧化物㊁合金㊁有机材料,甚至是岩石中[54-56]㊂为了引入剪切应力,可以采用多种方法,包括塑性变形㊁冲击㊁压痕㊁球磨㊁机械不稳等[57-59]㊂例如,Red-dy等发现,剪切引起的变形和位错可以进一步导致碳化硼的非晶化[56],非晶剪切带的形成导致纳米压痕中的爆发事件㊂此外,Li等发现在NiTi微柱中存在剪切诱导的非晶化[60]㊂在剪切应力作用下,原子结构由B2相转变为马氏体孪生体(B19),进一步导致晶界附近形成堆积断层和部分位错㊂在较大的局部剪切应变下,晶体缺陷聚集在马氏体晶界附近,导致原子变换和随后的非晶化㊂在超临界二氧化碳的作用下,剪应力的起源相当复杂㊂虽然等静压力不能直接引起剪切应力,但当压力波动时,剪切应力就会出现㊂在超临界二氧化碳辅助制备过程中,含有溶质㊁溶剂和超临界二氧化碳的混合溶液相当复杂㊂溶解少量二氧化碳的溶剂及溶解少量溶剂的二氧化碳形成彼此不互溶的微溶液,导致了空间上的不均匀性,超临界二氧化碳处理过程中加压和减压提供了时间上的不均匀性㊂这些不均匀性使系统远离等静压系统,产生剧烈的压力波动,导致材料中产生较大的剪切应力㊂此外,超临界二氧化碳的辅助过程通常伴随超声或机械剪切来加速反应,从而导致空化和瞬态微气泡[20,61]㊂这些微气泡坍缩形成微射流和激波,为材料提供机械能和内应力㊂同时,二氧化碳在层状材料中的插入也是产生剪切应力的一个重要原因㊂Yan等发现超临界二氧化碳处理后的二氧化钒中具有无晶带的分层塑性变形,强剪切应力来源于二氧化钒晶体隧道中压缩的二氧化碳分子[34]㊂剪切诱导的非晶化在超临界二氧化碳诱导的非晶化中起着更重要的作用㊂2.4㊀缺陷引入的非晶化缺陷指晶格中的缺失或不完整㊂缺陷的形成指局部晶格的扭曲或断裂㊂大量的缺陷会破坏晶格,促进结构从晶体向非晶体转变㊂缺陷的积累被认为是非晶化的一个起源[62]㊂通过离子注入电子辐照㊁6。
以纳米纱布为题450字作文
以纳米纱布为题450字作文英文回答:Nano gauze is a type of fabric that has been gaining popularity in recent years due to its unique properties and wide range of applications. It is made from ultra-fine fibers that are woven together to create a mesh-like structure. This structure gives the fabric its characteristic strength, flexibility, and breathability.One of the key advantages of nano gauze is its ability to filter out microscopic particles and bacteria. The small size of the fibers allows the fabric to trap particles as small as 0.01 microns, making it highly effective in preventing the spread of germs and contaminants. This makes it an ideal material for use in medical settings, such as surgical masks and wound dressings.Another benefit of nano gauze is its high absorbency. The small fibers create a large surface area, which allowsthe fabric to absorb and retain liquids quickly. This makes it suitable for use in wound care, where it can help tokeep the wound clean and promote healing. Additionally, its breathability allows for better airflow and prevents the buildup of moisture, reducing the risk of infection.Nano gauze is also known for its durability and resistance to wear and tear. The tightly woven structure of the fabric makes it less prone to fraying and stretching, ensuring that it will last longer and maintain its effectiveness over time. This makes it a cost-effective option for various applications, such as filters for airand water purification systems.In addition to its practical uses, nano gauze has also found its way into the fashion industry. Its lightweightand soft texture make it a popular choice for clothing and accessories. It can be used to create delicate andintricate designs, adding a touch of elegance to any outfit.Overall, nano gauze is a versatile material that offers numerous benefits across different industries. Its abilityto filter out particles, high absorbency, durability, and aesthetic appeal make it a valuable fabric for various applications. Whether it's in the medical field, environmental protection, or fashion, nano gauze is revolutionizing the way we think about fabrics.中文回答:纳米纱布是一种近年来因其独特性能和广泛应用而受到关注的织物。
聚多巴胺修饰的纳米
第42 卷第 4 期2023 年4 月Vol.42 No.4480~487分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)聚多巴胺修饰的纳米/亚微米二氧化钛纤维涂层高效固相微萃取邻苯二甲酸酯类化合物王会菊1,2*,沈小燕1,李康1,王守佳1,马玉龙1(1.青海民族大学化学化工学院,青海西宁810007;2.青海民族大学青藏高原资源化学与生态环境保护国家民委重点实验室,青海西宁810007)摘要:采用电泳沉积与自聚合方法在镍钛(NiTi)合金表面组装聚多巴胺(PDA)修饰的纳米/亚微米二氧化钛(PDA@TiO2NPs)固相微萃取(SPME)纤维涂层。
电泳沉积前,先将NiTi合金水热处理原位生成氧化钛和氧化镍复合纳米片(TiO2NiOCNFs@NiTi),使涂层与NiTi合金牢固结合。
将制备的PDA@TiO2NPs@TiO2NiOCNFs@NiTi纤维与高效液相色谱(HPLC)联用,用于富集、萃取和测定环境水样中的5种邻苯二甲酸酯(PAEs)类有机污染物,并考察了影响萃取效率的主要因素。
在优化条件下,采用外标法对方法学参数进行评价。
结果显示,5种PAEs在0.1 ~ 200 µg/L范围内呈良好的线性关系,相关系数(r)不小于0.998 9,检出限(LOD)和定量下限(LOQ)分别为0.013 ~ 0.055 µg/L和0.043 ~ 0.18 µg/L。
单支纤维在日内和日间对50 µg/L PAEs标准溶液萃取测定的相对标准偏差(RSD)分别为5.4% ~ 6.8%和5.7% ~ 7.0%。
该方法成功用于实际水样中痕量PAEs的测定,加标回收率为87.8% ~ 102%,RSD不大于8.2%。
该方法灵敏度高、准确度好,适用于不同环境水样中痕量PAEs的高效分析测定。
关键词:聚多巴胺;电泳沉积;纳米/亚微米二氧化钛;固相微萃取;高效液相色谱;邻苯二甲酸酯中图分类号:O657.72;TQ314.257文献标识码:A 文章编号:1004-4957(2023)04-0480-08Polydopamine Modified Titanium Dioxide Nano/Submicro ParticlesCoating for Solid Phase Microextraction of Phthalic Acid EstersWANG Hui-ju1,2*,SHEN Xiao-yan1,LI Kang1,WANG Shou-jia1,MA Yu-long1(1.College of Chemistry and Chemical Engineering,Qinghai Minzu University,Xining 810007,China;2.Key Lab of Resource Chemistry&Eco-environmental Protection in Qinghai-Tibet Plateau,State Ethnic Affairs Committee,Qinghai Minzu University,Xining 810007,China)Abstract:A new polydopamine modified titanium dioxide nano/submicro particles coating(PDA@TiO2NPs)was fabricated on the NiTi alloy wire by electrophoretic deposition and self-polymerization modification in this paper.Prior to electrophoretic deposition,the titanium and nickel oxide composite nanoflakes (TiO2NiOCNFs) were in situ grown on NiTi alloy wire via hydrothermal treatment in order to boost the binding strength between TiO2NPs coating and NiTi fiber. Coupled with high performance liquid chro⁃matography(HPLC),the fabricated PDA@TiO2NPs@TiO2NiOCNFs@NiTi fiber was applied as a solid phase microextraction(SPME) fiber to the determination of 5 phthalic acid esters(PAEs) in water sam⁃ples.The main parameters affecting extraction efficiency such as extraction temperature,extraction time,stirring rate and ion strength were investigated and optimized.Under the optimized conditions,the analytical parameters including linear ranges,recoveries,limits of detection(LODs) and limits of quantitation(LOQs) were investigated and evaluated by external standard method.The results showed that the proposed method showed good linearity in the range of 0.1-200 µg/L,with correlation coeffi⁃cients(r)not less than 0.998 9.LODs and LOQs were in the range of 0.013-0.055 µg/L and 0.043-0.18 µg/L,respectively.The intra-day and inter-day relative standard deviations(RSDs) for each fiber ranged from 5.4%to 6.8%and 5.7%to 7.0%,respectively.Moreover,the developed method was successfully used to extract and detect trace PAEs in real water samples.The spiked recov⁃eries for target PAEs in real water samples ranged from 87.8%to 102%,with RSDs not more thandoi:10.19969/j.fxcsxb.22121801收稿日期:2022-12-18;修回日期:2023-02-08基金项目:国家自然科学基金项目(22166029);青海民族大学校级规划项目(2021XJGH13)∗通讯作者:王会菊,博士,副教授,研究方向:环境分析化学,E-mail:wanghuiju2019@第 4 期王会菊等:聚多巴胺修饰的纳米/亚微米二氧化钛纤维涂层高效固相微萃取邻苯二甲酸酯类化合物8.2%.In addition ,the established method has high sensitivity ,good accuracy ,which was suitable for the high efficient detection of PAEs in different environmental water samples.Key words :polydopamine ;electrophoretic deposition ;titanium dioxide nano/submicro particles ;solid phase microextraction ;high performance liquid chromatography ;phthalic acid esters邻苯二甲酸酯(PAEs )是一类广泛使用的增塑剂,主要用于涂料、橡胶、塑料、树脂以及纺织印染等领域[1-4]。
ww6感光高分子
第六章 感光性高分子
2.4 分子的光活化过程 从光化学定律可知,光化学反应的本质是分子 吸收光能后的活化。当分子吸收光能后,只要有足 够的能量,分子就能被活化。 分子的活化有两种途径,一是分子中的电子受 光照后能级发生变化而活化,二是分子被另一光活 化的分子传递来的能量而活化,即分子间的能量传 递。下面我们讨论这两种光活化过程。
3
第六章 感光性高分子
按应用技术不同可分为:
成像体系 ① 主要用于光加工工艺、非银盐照相、复制、信息记录 和显示等方面;光致抗蚀剂是很重要的一类,又称光刻 胶,大量用于印刷制版和电子工业的光刻技术中。其工 作原理是受光部分发生交联成难溶的硬化膜,经加工成 负像(负性胶),或原来不溶性胶受光照后变成可溶性, 经加工成正像(正性胶)。常用的光致抗蚀剂有:聚肉 桂酸酯型、丙烯酰基型、叠氮型、重氮盐类和邻偶氮醌 型等。
lgT lg I I o lc
(6—5)
18
第六章 感光性高分子
式(6—5)称为兰布达—比尔(Lambert—Beer)定 律。其中,ε称为摩尔消光系数。它是吸收光的物 质的特征常数,也是光学的重要特征值,仅与化合 物的性质和光的波长有关。 表征光吸收的更实用的参数是光密度D,它由 式(6—6)来定义:
9
第六章 感光性高分子
感光性粘合剂、油墨、涂料是近年来发展较快 的精细化工产品。与普通粘合剂、油墨和涂料等相 比,前者具有固化速度快、涂膜强度高、不易剥 落、印迹清晰等特点,适合于大规模快速生产。尤 其对用其他方法难以操作的场合,感光性粘合剂、 油墨和涂料更有其独特的优点。例如牙齿修补粘合 剂,用光固化方法操作,既安全又卫生,而且快速 便捷,深受患者与医务工作者欢迎。
7
第六章 感光性高分子
超支化高分子桥联聚倍半硅氧烷复合物的NMR研究
超支化高分子桥联聚倍半硅氧烷复合物的NMR研究吴节莉;赵辉鹏;徐敏;陈群【摘要】以三羟甲基丙烷(TMP)为内核,二羟甲基丙酸(DMP)为支化单元用准一步法合成了重均分子量为12 100的第四代端羟基脂肪族超支化聚酯(HBPE-G4),用3-异氰酸酯基丙基三乙氧基硅烷(TPIC) 对它进行了端基改性,并以其为桥联剂,与聚倍半硅氧烷(PMSQ)复合制备出超支化高分子桥联聚倍半硅氧烷复合物.利用固体核磁共振(NMR),傅立叶红外(FTIR),分子纳米粒度分析等方法表征了改性超支化高分子和复合物的结构和反应程度,并通过测量13C T1,1H T2,1H T1ρ研究了体系中各组分的运动性能,以及超支化高分子与聚倍半硅氧烷之间的相容性.【期刊名称】《波谱学杂志》【年(卷),期】2008(025)001【总页数】10页(P1-10)【关键词】核磁共振;超支化高分子;端基改性;聚倍半硅氧烷【作者】吴节莉;赵辉鹏;徐敏;陈群【作者单位】上海市功能磁共振成像重点实验室,华东师范大学,物理系,上海,200062;东华大学,分析测试中心,上海,200051;东华大学,分析测试中心,上海,200051;上海市功能磁共振成像重点实验室,华东师范大学,物理系,上海,200062;上海市功能磁共振成像重点实验室,华东师范大学,物理系,上海,200062【正文语种】中文【中图分类】O482.53引言桥联聚倍半硅氧烷(bridged polysilsesquioxanes)是有机-无机杂化材料中具有特殊性能的一类新型杂化材料[1]. 这类杂化材料中无机相和有机相通过Si-C键以共价键的形式结合后均匀分布在整个材料中,兼具无机物和有机物的特性. 而且由于作为桥联基团的有机组分在尺寸、取代位置、性质和功能性等方面可以根据实际要求进行改变,不同的桥联剂可以赋予桥联聚倍半硅氧烷不同的性质. 超支化高分子具有特殊的高度支化性质,分子不结晶不缠结,内部存有大量空腔. 将超支化高分子作为桥联剂,利用超支化高分子性质的可调节性,络合能力和包埋能力,可以制备出许多结构新颖的桥联聚倍半硅氧烷材料,同时还可能赋予这些材料在光、电、磁、纳米粒子制备以及催化剂载体等诸多方面的功能.本文首先合成了一种端羟基的脂肪族超支化高分子,通过端基改性将表面羟基转变为三乙氧基硅,然后与甲基倍半硅氧烷(MSQ)进行共水解和共缩聚,制备出超支化高分子桥联聚倍半硅氧烷复合膜. 利用多种表征手段对复合物的结构特征、动力学性质以及不同组分之间的相容性进行了研究.1 实验部分1.1 主要原料2, 2-二甲醇基丙酸(bis-MPA)、三甲醇基丙烷(TMP), Geel Belgium New Jersey, USA;对甲基苯磺酸(p-TSA),上海凌峰化学试剂有限公司;甲基三乙氧基硅烷(MSQ),杭州硅宝化工有限公司;3-异氰酸酯基丙基三乙氧基硅烷(TPIC),信越有机硅国际贸易(上海)有限公司; N, N-二甲基甲酰胺(DMF), AR,上海东懿化学试剂公司,经分子筛干燥后,减压蒸馏使用;浓盐酸, AR,上海试剂四厂昆山分厂.1.2 超支化高分子的合成及端基改性1.2.1 超支化高分子的合成将bis-MPA、 TMP按摩尔比9∶1加入三颈瓶中,并加入质量为bis-MPA的0.5% p-TSA,油浴加热至140 ℃,氮气保护,反应3 h,期间间歇性减压将反应生成的水除去;然后直接在反应体系中加入12份的bis-MPA和0.5%的p-TSA重复上述反应,再加入24份的bis-MPA和0.5%的p-TSA重复上述反应,生成第四代超支化高分子G4,合成过程见图1.图1 第四代超支化高分子G4的合成流程图Fig.1 Reaction process of hyperbranched polymer G41.2.2 超支化高分子端基改性将一定量G4溶解在纯化处理过的DMF中,加入少量苯或甲苯共沸蒸馏,以除去超支化高分子中的水分. 再加入稍微过量的TPIC和微量催化剂辛酸亚锡,80 ℃反应10 h,再升温至100 ℃反应2 h,即生成TPIC改性的超支化高分子(G4/TPIC).1.3 超支化高分子桥联聚倍半硅氧烷复合物的制备1.3.1 MSQ预聚合将MSQ,水,乙醇,盐酸按摩尔比5∶6∶1∶0.01混合[3],搅拌均匀后静置至胶水般粘稠状,为聚倍半硅氧烷(PMSQ)预聚物.1.3.2 G4直接与PMSQ复合将一定量的G4溶解在纯化处理过的DMF中,与PMSQ预聚物共混,混合均匀后倒入培养皿中在常温下静置1~2 d,然后升温至60 ℃成膜,其中超支化高分子的质量分数为15%.1.3.3 G4/TPIC与PMSQ复合将一定量的G4/TPIC溶解在纯化处理过的DMF中,与MSQ混合在常温下静置3~4 d,然后升温至60 ℃成膜,其中超支化高分子的质量分数为15%.1.4 测试方法1.4.1 Solid-State NMR所有固体高分辨谱图均在室温进行,测量13C CP/MAS, 29Si CP/MAS, 13C T1, 1H T2所用仪器为Bruker公司AVAVCE-300核磁共振谱仪, 1H, 13C, 29Si的共振频率分别为300.13 MHz, 75.47 MHz,59.595 MHz. 1H T1ρ测量所用仪器是Bruker公司AVAVCE-400核磁共振谱仪, 1H, 13C的共振频率分别为400.13 MHz, 100.63 MHz, 4 mm转子,魔角旋转速度均为5 kHz,弛豫延迟时间为5 s. 非定量高分辨13C谱图的交叉极化时间为1 ms,弛豫延迟时间为5 s;非定量高分辨29Si谱图的交叉极化时间为1.5 ms,弛豫延迟时间为10 s.累加次数NS根据样品信噪比的具体情况在256~1 024次不等. 实验中使用Glycine的羰基峰定标,其相对化学位移值为δ 173.1. 13C T1测量选择基于交叉极化技术下的Torchia序列[2], 1H T2,1H T1ρ的测量则是采用改变接触时间的方法[3, 4].1.4.2 FT-IRNicolet Nexus 670傅立叶变换红外分光光度计,分辨率: 0.09 cm-1,检测波数范围: 4 000~400 cm-1,采用KBr压片法制备样品薄膜.1.4.3 凝胶渗透色谱(GPC)Perkin Elmer Series 200 凝胶渗透色谱仪柱温:50 ℃,系统压力: 43 MPa,注射体积: 200 mL,淋洗体积: 0~2500 μL,精确度:±0.5%.1.4.4 分子纳米粒度分析Malvern Zetasizer Nano ZS 型Zeta 粒度分析仪, He-Ne激光光源, 4.0 mW,633 nm,样品浓度1 mg/L,测量角度:173°,温度:室温,溶剂: N, N-二甲基甲酰胺(DMF).2 结果与讨论2.1 超支化高分子的合成合成中每一步的中间产物不需要提纯,但各步的反应物分批加入,因此称为“准一步法”. 这种方法既节省了中间产物提纯的复杂过程,又保证了体系中产物的结构基本一致. 本文中用这种方法合成得到的超支化高分子G4经GPC测得合成产物的重均分子量大小约为12 100,分子量多分散系数为1.2. 分子量分布很窄,说明体系中超支化高分子的结构基本一致. 超支化高分子G4的固体 13C CP/MAS NMR谱图见图2. 由于同一种基团在超支化高分子内化学环境不同造成的谱峰增宽,使得化学位移差别不大的C2*与C2, C3*与C3峰相互重叠,各峰的归属标注在图中.图2 超支化高分子G4 的结构示意图及13C CP/MAS核磁谱图Fig.2 The structure and solid-state 13C CP/MAS NMR spectrm of hyperbranched polymer G42.2 超支化高分子的改性由于超支化高分子外围羟基很多,易产生氢键,在和聚倍半硅氧烷共混成膜时,很可能自身团聚,不能与PMSQ很好相容. 因此,我们考虑将超支化高分子改性,利用异氰酸酯基与羟基反应,生成端基为三乙氧基硅烷的改性产物,反应过程见图3.图3 超支化高分子端基改性反应示意图Fig.3 Reaction process of G4’s modification图4是改性前后超支化高分子及TPIC的红外光谱图,对各个谱峰进行归属,可知: (a)中~3 435 cm-1的宽峰为-O-H的伸缩振动,表明大量羟基的存在,并伴有少量分子内缔合现象; 2 980~2 880 cm-1的为甲基和亚甲基的-C-H伸缩振动;~1 732 cm-1为酯羰基的伸缩振动峰. (b)中由于存在大量的甲基和亚甲基,2 980~2 880 cm-1甲基和亚甲基的-C-H伸缩振动峰很大;~2 272 cm-1处的强峰是异氰酸酯的特征峰; 1 000~1 100 cm-1为-Si-O-键的伸缩振动;~800 cm-1的强峰为-Si-C-键的伸缩振动. 超支化高分子经过TPIC改性后的红外谱图4(c)与4(a)相比,羟基峰有了明显减小,~3 350 cm-1的中强峰为TPIC反应后生成仲胺的N-H伸缩振动峰; 2 980~2 880 cm-1甲基和亚甲基的-C-H伸缩振动峰大幅度增强;同时出现了~1 530 cm-1仲酰胺基峰的伸缩振动, 1 000~1 100 cm-1 -Si-O-键的伸缩振动和~780 cm-1 -Si-C-键的伸缩振动峰.图4(c)中异氰酸酯峰的消失,羟基峰的减少, -Si-O-峰、 -Si-C-峰、仲酰胺基峰以及胺基峰的形成说明了我们已经对该超支化高分子进行了成功改性.为了进一步验证超支化高分子端基改性是否成功,本文使用分子纳米粒度分析法研究了改性前后超支化高分子的粒径变化. 改性前测得分子粒径为1.54 nm,改性后体系的粒径分布主要集中在3.7 nm及20.3 nm(如图5). 其中20.3 nm处的粒径分布并不是真实的分子粒径,而是因为改性后超支化高分子团聚后所生成分子团簇的粒径分布.图4 红外光谱图 (a) G4, (b) TPIC, (c) G4/TPICFig.4 FT-IR spectra of (a) G4, (b) TPIC, (c) G4/TPIC图5 改性后超支化高分子的粒径分布图Fig.5 Size distribution of modified hyperbranched polymer根据键长的计算公式rA-B=rA+rB-9|χA-χB|[5](其中rA, rB为原子半径,χA, χB 为原子电负性)进行理论计算,得到改性后超支化高分子粒径的理论值约为4.0 nm,与实验值基本吻合. 说明了本文已对该超支化高分子进行了成功的端基改性,与FT-IR的实验结论一致.2.3 超支化高分子桥联聚倍半硅氧烷复合物的结构表征2.3.1 固体 13C CP/MAS NMR超支化高分子经过改性后,表面端基从羟基变为三乙氧基硅,与MSQ的基团相同,因此,通过三乙氧基硅基团之间的水解缩聚过程就可以将超支化高分子与MSQ通过化学键连接起来,得到超支化高分子桥联聚倍半硅氧烷. 图6给出了这一过程的示意图.复合物的固体13C CP/MAS 核磁谱见图7. 从中可以看出,超支化高分子的部分谱峰有所增宽,有的还出现了裂分现象. 这是由于作为桥联剂,超支化高分子在网状结构的复合物中所处的化学环境和空间位置不尽相同,其中处在端基位置的亚甲基碳原子(C2*)和处在侧链位置的甲基(C1)受改性反应的影响比较大. 图7中位于δ 31.4, δ 36.7, δ 163.4的谱峰,分别是由溶剂N, N-二甲基甲酰胺(DMF)的两个甲基碳和一个羰基碳所形成. 由于桥联聚倍半硅氧烷复合物的特殊网状结构,部分溶剂分子被包裹在体系中,使得固体13C CP/MAS 核磁谱图中出现了DMF 的溶剂峰,其化学位移也略有偏移. 与常规的13C CP/MAS相比,两个甲基碳峰化学位移值增大0.1~0.3,羰基碳的化学位移值降低约0.2. 造成该现象的原因可能在于复合物中聚倍半硅氧烷部分含有大量的电负性较强的氧原子,产生去屏蔽效应,因此溶剂DMF的甲基碳峰向低场位移. 而DMF分子中的羰基与高分子的羟基有氢键作用,产生屏蔽效应,使得羰基碳峰移向高场.图6 超支化高分子桥联聚倍半硅氧烷复合物的制备过程示意图Fig.6 Reaction process of preparing G4 bridged PMSQ composites membrane图7 超支化高分子桥联聚倍半硅氧烷复合物的13C CP/MAS核磁谱图Fig.7 13C CP/MAS NMR spectrum of G4 bridged PMSQ composites membrane2.3.2 固体29Si CP/MAS NMR硅氧烷聚合是由烷氧基水解开始的[6],水解生成硅羟基,硅羟基再与另一个硅原子上的烷氧基聚合,生成-Si-O-Si-键和醇. 硅原子上参与水解及聚合反应的烷氧基数量不同,在固体29Si CP/MAS核磁谱中主要表现为化学位移的不同. Jian-hua Zou等人[7, 8]曾对固体29Si CP/MAS核磁谱图的归属有过详细的描述,根据硅原子上形成的-Si-O-Si-键数目命名谱峰. 当某个硅原子上只有一个键水解并和其他硅氧烷聚合生成一个-Si-O-Si-键,这个硅原子形成的谱峰被归属为T1. 依次类推生成两个-Si-O-Si-键被归属为T2,三个被归属为T3.本文中的固体29Si CP/MAS NMR谱图主要有3个峰,约在δ -50, δ -56, δ -64,分别归属为T1, T2, T3. 一般情况下硅原子上的烷氧基如果全部参加反应,均生成-Si-O-Si-键和相应的醇[9],则认为硅氧烷是完全聚合. 本文中制备的复合物,如果其中的硅氧烷完全聚合,所有硅原子上都应生成三个-Si-O-Si-键,在固体29Si CP/MAS 核磁谱图中应只看到T3的峰. 所以T3峰的积分面积所占比例越大,生成-Si-O-Si-键的数量越多,也就说明硅氧烷的聚合程度越高.如图8所示,甲基三乙氧基硅烷自身聚合时,聚合程度很高,经分峰拟合得知T2和T3的峰面积比值为19∶81;当加入桥联剂后, T2组分增加,硅氧烷的聚合程度降低, T2、 T3的峰面积比值为28∶72;当桥联剂先经过改性后再加入,硅氧烷的聚合程度进一步降低,还出现了T1组分,此时T1、 T2、 T3的峰面积比值为3∶47∶50. 原因在于体积和分子量都很大的桥联剂均匀分散在体系中,形成较大的空间位阻,尤其端基改性后,分子体积更大,这在一定程度上破坏了PMSQ的网状结构,使局部乙氧基数量不匹配,因而硅氧烷的聚合程度下降.图8 固体29Si CP/MAS核磁谱图 (a) PMSQ, (b) G4/PMSQ, (c) G4/TPIC/MSQFig.8 29Si CP/MAS NMR spectra of (a) PMSQ, (b) G4/PMSQ, (c)G4 /TPIC/MSQ2.4 复合物的分子运动能力为了进一步研究复合物中各组分的分子运动能力,我们对各组分的1H 自旋-自旋弛豫时间(1H T2 )和13C自旋-晶格弛豫时间(13C T1)进行了测量. 一般认为1HT2反映的是低频的分子运动, 13C T1反映的是几十至数百兆的高频分子运动[10-12]. 较长的T2一般对应于运动能力较强的柔性区域,较短的T2一般对应于运动能力较弱的刚性区域. 而对于大分子体系而言, T1越长,对应区域的运动能力越弱. 为了使积分拟合准确,选择没有重叠的G4-C2/2*峰和PMSQ-CA峰进行拟合. 如表1所示,两者混合后体系的1H T2和13C T1发生变化,说明体系的运动性发生了改变.复合物中超支化高分子部分的1H T2变大, 13C T1变小;聚倍半硅氧烷部分的1H T2变小, 13C T1变大. 这说明在无论在低频分子运动范围还是在高频分子运动范围,超支化高分子部分运动性能增强,聚倍半硅氧烷部分运动性能稍有减弱,经过端基改性后现象更明显. 这可能是由于超支化高分子在体系中较分散,避免了分子之间的团聚,而聚倍半硅氧烷部分的网状结构受到一定程度的破坏而造成的. 表1 样品弛豫时间Table 1 Relaxation time of samples1H T2/μs G4-C2/2* PMSQ-CA13C T1/sG4-C2/2* PMSQ-CA1H T1ρ/msG4-C2/2* PMSQ-CAG414.21-6.96-1.67-MSQ-20.20-3.56-14.49G4+MSQ-17.43-4.15-2.63G4+TPIC+MSQ15.7616.234.144.181.481.382.5 复合物的相容性为了研究复合体系中各组分的相容性,本文又对体系1H T1ρ进行了测量. 1HT1ρ过程是在旋转坐标系中质子的自旋-晶格弛豫过程,所测的数值是偶合质子的弛豫时间平均值. 当复合体系两组分混合在一起且相分离程度较小时,质子自旋扩散将会使本来不同的弛豫时间平均化,使得在表观上只能测得一个平均的弛豫时间;而当相分离程度较大时,由于有限的自旋扩散速率不足于平均不同组分的弛豫,体系仍然表现出两个不同的弛豫时间. 所以测量多相高聚物的1H T1ρ就可以对体系的相分离程度进行直接的判断[13, 14],同时质子自旋扩散速率决定了1H T1ρ所反映的是较微观尺寸的相容状况. 通过半定量的公式计算可以得到多相体系相容区域的大致尺寸[15, 16],1H T1ρ数值与体系内分子之间平均距离(L)的近似关系为其中D为自旋扩散系数,对于大部分体系, D值近似为5×10-16m2s-1 [13]. 由表1数据可知,本体系加入超支化高分子后,聚倍半硅氧烷的1H T1ρ大幅度降低,尤其是端基改性后,1H T1ρ值进一步降低,整个体系的1H T1ρ趋于一致,即体系中两组分的相容性良好. 据1H T1ρ大小与高分子之间平均距离的近似关系,得出的复合物中两种组分的相容尺寸约为几个nm.3 结论利用固体核磁共振等方法对一种超支化高分子复合物的合成,改性及结构进行研究,得到以下的结论:本文所合成的第四代端羟基超支化高分子及其改性产物的分子大小符合制备纳米级多孔材料的要求,与聚倍半硅氧烷复合或桥联后,使得硅氧烷的聚合程度有所降低. 复合体系中,无论在低频分子运动范围还是在高频分子运动范围, G4部分运动性能增强, PMSQ部分运动性能稍有减弱,经过端基改性后现象更明显. 但是1H T1ρ的测量说明超支化高分子与聚倍半硅氧烷相容性很好,高分子经TPIC改性后相容性进一步增强. 通过计算,得知两组分的相容尺寸约为几个nm,可用于制备出功能化的纳米级多孔材料. 本文的研究给未来的合成工作提供了前期的理论研究基础.参考文献:【相关文献】[1] Loy D A, Shea K J. Bridged Polysilsesquioxanes. Highly porous hybrid organic-inorganic materials[J]. Chem Rev, 1995, 95(5): 1 431-1 442.[2] Torchia D A. The measurement of proton-enhanced carbon-13 T1 values by a methodwhich suppresses artifacts[J]. J Magn Reson, 1978, 30: 613-616.[3] Cheng S Z D, Li C Y, Calhoun B H, et al. Thermal analysis: the next two decades[J]. Thermochim Acta, 2000, 355: 59-68.[4] Goldman M, Shen L. Spin-lattice relaxation in LaF3[J]. Phys Rev, 1966,144, 321-331.[5] Zhou Gong-du(周公度), Duan Lian-yun(段连运). Structural Chemistry(结构化学基础)[M]. Beijing(北京): Peking University Press(北京大学出版社), 1995.[6] Trammell B C, Ma L J, Luo H, et al. Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases[J]. J Chromatogr A, 2004, 1 060: 61-76.[7] Zou J H, Shi W F, Hong X Y. Characterization and properties of a novel organic-inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol-gel process Source[J]. Compos Part A-Appl S, 2005, 36(5): 631-637.[8] Joseph R, Zhang S, Ford W T. Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy[J]. Macromolecules, 1999, 29: 1 305-1 312.[9] Derouet D, Forgeard S, Brosse J C, et al. Application of solid-state NMR (13C and 29Si CP/MAS NMR) spectroscopy to the characterization of alkenyltrialkoxysilane and trialkoxysilyl-terminated polyisoprene grafting onto silica microparticles[J]. J Polym Sci Pol Chem, 1998, 36: 437-453.[10] Qiu Zu-wen(裘祖文), Pei Feng-kui(裴奉奎). NMR Spectroscopy(核磁共振波谱)[M]. Beijing(北京): Science Press(科学出版社), 1992.[11] Mc Brierty V J. NMR of solid polymers: a review[J]. Polymer, 1974, 15: 503-520.[12] Yi Ju-zhen(易菊珍), Feng Han-qiao(冯汉桥). The NMR study of crystalline PMMA(结晶PMMA的NMR研究)[J]. Chinese J Magn Reson(波谱学杂志), 1999, 16(1): 41-44.[13] Ando I, Asakura T. Solid State NMR of Polymers[M]. Netherlands: Elsevier Press, 1998. 351-414.[14] Yi Ju-zhen (易菊珍), Feng Han-qiao(冯汉桥), Chen Wei-bin( 陈卫兵). A high resolution solid-state NMR study of miscibility and crystallization behavior of crystalline poly(Methyl Methacrylate) (PMMA) with poly(Styrene-Acrylonitrile) (SAN) blends(结晶PMMA/SAN共混体系的相容性和PMMA结晶行为的NMR研究)[J]. Chinese J Magn Reson(波谱学杂志), 1999, 16(5): 461-464.[15] Marco C, Fatou J G, Gomez M A, et al. Molecular weight effect on the miscibility of poly(ethylene oxide) and isotactic poly(methyl methacrylate) in their blends[J]. Macromolecules, 1990, 23: 2 183-2 188.[16] Zhao Hui-peng(赵辉鹏), Lin Wei-xin(林伟信), Yang Guang(杨光), et al. The structure and mobility of the noncrystalline region of ethylene-acrylic acid copolymers as studiedby 13C CP/MAS and VT 1H wideline NMR spectroscopy(乙烯-丙烯酸共聚物非晶区结构和分子运动的固体核磁共振研究)[J]. Acta Polym Sinica(高分子学报), 2003, 5: 631-636.。
应用化学专业外文翻译--一种新型的粒径尺寸呈梯度分布的电解沉积的纳米结构镍镀层
一种新型的粒径尺寸呈梯度分布的电解沉积的纳米结构镍镀层Liyuan Qin, Jiying Xu, Jianshe Lian *, Zhonghao Jiang, Qing Jiang Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, China摘要在直流电解沉积中,随着粒度细化剂糖精的浓度逐渐增加,薄钢板作为沉积基底得到具有纳米结构的镍镀层,其颗粒尺寸呈梯度分布。
X-射线衍射分析表明随着糖精含量增加,沉积的优先方位从200晶面变成111晶面。
透射电镜照片可以看到粒径由表面层的22nm变到镀层和基底的界面附近的586nm。
NaCl溶液中的电化学性能测试、硬度和弯曲测试结果表明在同一基底上粒径呈梯度分布的镀层比粒径均匀的镀层有更高的硬度、更好的抗腐蚀性能且与基底有更强的结合力。
1引言由于纳米结构材料与常见的大尺寸颗粒材料相比,具有独特的化学与机械性能,因此其研究是科学与工业团体的焦点[1-4]。
这些材料大部分被用来作为工程基地的表面涂层。
在包含热学表面耐磨与耐腐蚀性能以及电子学应用中,由于表面涂层与基底间性质的差异而导致压力集中而造成界面处的结合不佳。
解决这个问题的一个可能办法是采用斜晶材料,一种可以延长材料使用寿命的材料[5-7]。
斜晶型材料可以提供一种改进材料性质的方法,因为他的性质会依据合成物而改变,结构也会由内到外的发生改变。
所以满足更高要求的关键是用一种简单方法制造一种理想的材料。
电沉积技术是一种有用而通用的制造纳米金属的方法[8-9]。
一些纳米金属例如镍[3,10],铜[4,11],钴[2]等以经被制造出来了而且被用于研究微结构金属的力学性能和变形机理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Invited PaperHigh density Si nanodots- fabrication and propertiesJ. Xu*, J. Zhou, X. Li, Z. Cen, D. Chen, W. Li, L. Xu, Z. Ma, K. ChenNational Laboratory of Solid State Microstructures and Department of Physics, Nanjing University,Nanjing, China 210093ABSTRACTWe propose an approach to achieve single layer of Si nanodots arrays on insulating layer by using KrF pulsed excimer laser irradiation on ultra-thin hydrogenated amorphous silicon films followed by thermal annealing. Under the suitable fabrication conditions, the area density of formed Si nanostructures can be higher than 1011cm-2 as revealed by AFM images. The size of formed Si nanodots is 3-4 nm for sample with initial a-Si:H film thickness of 4 nm. Room temperature visible light emission can be observed from laser irradiated a-Si:H film after thermal annealing. The results on electron field emission properties were also presented in this paper.Keywords: Si nanodots, laser crystallization, luminescence, field emission1.INTRODUCTIONRecently, fabrication and properties of low-dimensional Si structures, such as Si quantum well and Si nanodots, have attracted much attention because of their potential applications in many kinds of electric and optical devices.1-2 So far, many approaches have been proposed to fabricate semiconductor nanostructures, especially Si nanodots.3-5 However, it is still an open question to develop an approach to obtain the dense and uniform Si nanodots with controllable size and position. More important, the used techniques must be compatible with the mature Si technology.Laser crystallization technique is widely used to crystallize hydrogenated amorphous silicon (a-Si:H) films with submicron thickness in order to achieve micro-crystalline Si materials due to its low temperature process.6 In our previous work, laser induced crystallization of amorphous Si films technique was proposed to prepare Si nanodots in hydrogenated amorphous SiN(a-SiN:H)/a-Si:H multilayers and an intense photo- and electro-luminescence was observed at room temperature.7 Since the optical band gap of a-SiN:H layer is much higher than that of a-Si:H films, the photon energy of irradiation laser was mainly absorbed by a-Si:H layers, which results in the phase transition from amorphous to crystalline state and the size can be well confined by the a-Si:H thickness.In this paper, we report our work on the formation of a single layer Si nanodots with high density on insulating layer by using KrF excimer laser annealing on ultrathin a-Si:H films. It is shown that Si nanodots array with size less than 10nm can be achieved and the area density can be higher than 1011/cm2. Visible light emission can be observed even from a single layer of Si nanodots at room temperature. It is also demonstrated that the prepared films containing Si nanodots show a good field emission characteristics which can be developed as a cold cathodes materials.2.EXPERIMENTFigure 1 is the schematic illustration of sample preparation process. Ultra-thin a-SiN:H and a-Si:H films were successively fabricated in conventional plasma enhanced chemical vapor deposition system. The film thickness of a-SiN:H layer is about 30-40 nm and a-Si:H film thickness is controlled by considering the deposition rate (0.1nm/s). The detailed deposition parameters can be found elsewhere.8 As-deposited a-Si:H films were then crystallized by using KrF excimer laser with wavelength of 248nm and the pulse duration of 30ns. The laser beam was focused and passed through a rectangle quartz mask to a-Si:H films. The irradiated area on the film surface is about 3x5 mm2. A single pulse was*E-mail: junxu@; Fax: 86-25-83595535; Tel: 86-25-83594836Sixth International Conference on Thin Film Physics and Applications, edited by Wenzhong Shen, Junhao Chu,Proceedings of SPIE Vol. 6984, 69840E, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.792268used to irradiate the samples and the laser fluence was change from 0 to 1.4J/cm 2. Subsequently, the irradiated samples were thermally annealed at 900o C for 30min in pure N 2 ambient. Crystalline Si wafers and quartz glass plates were used as substrates for various measurements.Atomic force microscopy (AFM, Digital Instruments Nano Scope III) was used to characterize the surface morphology of a-Si:H films before and after laser irradiation. Raman spectra were used to monitor the crystallization of a-Si:H films. The formation of Si nanodots was revealed by using planar and cross-sectional transmission elelctron microscopy (TEM). Photoluminescence measurements were carried out at room temperature by using Ar + laser as an excitation source operating at a wavelength of 488nm. Electron field emission properties for irradiated samples were measured in a vacuum chamber (<10-6 Torr). The samples acted as cathode electrode and the gap distance between the sample and Cu anode is in a range of 100-400µm.Fig.1. The schematic illustration of Si nanodots sample preparation process.3. RESULTS AND DISCUSSIONLaser induced crystallization of ultrathin a-Si:H films can be verified by using Raman scattering technique. Figure 2 is the Raman spectra for 4nm-thick a-Si:H film after laser irradiation at various fluence and subsequent thermal annealing. Two apparent bands can be identified which are TO modes related to amorphous Si-Si (~ 475cm -1) and crystallized Si-Si (~516cm -1) phases, respectively. It is found that the crystallization is occurred when the laser fluence exceeds 0.6J/cm 2. With increasing the laser fluence, the intensity of band located around 516cm -1 is gradually increased which suggests the increase of the crystallization ratio in amorphous Si layer.Fig.2. Raman spectra of 4nm-thick a-Si:H film after irradiation at different laser fluence. Inset is highresolution TEM image of irradiated sample. Fig.3. AFM top image for laser irradiated a-Si:H film.The film surface morphology is changed after laser irradiation as shown in figure 3, which is AFM top image of irradiated a-Si:H film with thickness of 4 nm. The scanning area is 2x2 µm2 and the vertical scale is 5nm/div. It is found that the smooth film surface of as-deposited sample becomes extensively fragmented after laser irradiation. High-density, well-defined outgrowths with nanometers size can be identified on the surface. The average lateral size of the outgrowth is about 10nm and the vertical size is around 3-4 nm with area density higher than 1011cm-2. The size distribution of Si nanostructures can be estimated from AFM images. It is found that the lateral size distribution can be well fitted by a Guass function and the size deviation is less than 18%, which means the uniform and dense Si nanostructures are formed on a-SiN:H layer by combining the laser crystallization and thermal annealing techniques.The formation of Si nanodots is directly revealed by planar and cross-sectional TEM images. It is found that the surface outgrowths contain at least one Si grain. Inset of figure 2 is the high resolution TEM image for irradiated samples with the initial a-Si:H film thickness of 4 nm. The formed Si grain with spherical shape can be well identified and the size is about 3.2 nm which is almost equal to the initial a-Si:H film thickness. It is suggested that the size of formed Si nanodots can be controlled by the a-Si:H film thickness due to the constrained recrystallization effect in ultrathin a-Si:H layer. Nano-second pulsed laser irradiation induces the melt of amorphous Si thin films when the laser fluence exceeds the threshold value. The subsequent super-freezing process results in the surface roughening of irradiated samples and the formation of Si nanodots. If the initial a-Si:H film thickness is thin enough and the size of formed Si nanodots can be well defined in the suitable laser irradiation fluence range. In our previous work, we demonstrated that the critical a-Si:H film thickness is around 15nm. It is also suggested that there exists a narrow window for laser irradiation fluence to obtain high-density Si nanostructures.9samples. A strong visible light is emitted from samples after laser irradiation and the subsequently thermal annealing as shown in figure 4. The PL spectra show a broad band entered at 660 nm with full width at half maximum (FWHM) of 180nm. The PL peak energy is almost the same for samples irradiated under the different laser fluence. It is found that the PL becomes weak and finally quenched in samples irradiated at high laser fluence. It looks like that the presence of Si nanodots plays an important role in the visible light emission. However, it is difficult to ascribe the luminescence to the quantum size effect of Si nanodots although the size-dependent luminescence spectra was observed.9 It is found that the luminescence peak energy keeps its position with changing the measurement temperature from 85K-300K. The temperature-dependent PL results indicate that the visible light emission from a single layer of Si nanodots in our casemay due to the radiative recombination via the interface states or luminescent centers existing in the Si nanodots surface rather than the band-to-band recombination in Si nanodots.The irradiated a-Si:H films also show a good electron field emission characteristics. Figure 5 gives the emission current from laser irradiated sample with initial a-Si:H thickness of 15 nm as a function of applied electric field. The emission current (I) was measured by applying voltage from 0 to 5000V. The macroscopic electric field (E) is simply deduced by dividing the applied voltage by the gap distance between anode and cathode electrodes. The sample was deposited on heavy-doped n-type Si (n +-Si) wafer covered by 30 nm a-SiN:H layer. The used laser irradiation fluence is about 1.0J/cm 2. As a reference, the field emission result from as-deposited a-Si:H film is also presented in figure 5. It is obviously that the electron field emission characteristics are improved after the laser irradiation. The threshold electric field defined as the emission current at 1µA, is 9.8V/µm for irradiated sample which is significantly reduced compared with that of the reference sample (~15 V/µm). The maximum emission current can reach as high as 0.1mA when the applied electric field exceeds 15V/µm.It is found that the field emission process from laser irradiated a-Si:H films obeys the Fowler-Nordheim (F-N) tunneling model described as J=A(βE)2exp(-B φ-3/2/βE), in which A and B are constant and β is the field enhancement factor.10 From the field emission results, one can deduce the field enhancement factor β by choosing Si work function of 3.59eV. It is found that the β-value for laser irradiated sample is increased by over 3-folds compared with that for as-deposited sample which means the effective tunneling barrier is significantly reduced after the laser irradiation. It has been reported that the main tunneling barrier of amorphous semiconductors is the front surface of the films. The electrons are injected from the substrate into the semiconductor films under the applied electric field, they are then pass through the film to the film front surface, finally, they are emitted by tunneling the surface barrier. Therefore, the surface morphology and the film microstructures are very critical for controlling the field emission behavior.The enhancement of electron field emission behavior after laser irradiation in our case can be attributed to the following two factors: one is the surface roughening as revealed by AFM measurements and another one is the formation of Si nano-dots in the films. As mentioned before, laser irradiation under the suitable fluence results in the appearance of dense and uniform outgrowths on the film surface. The surface roughening after laser irradiation can improve the field enhancement factor geometrically. Previously, It has been reported the fabrication of two-dimensional Si tip array by electrochemical etching technique. It is very interesting to find that the field emission properties can be improved byFig.5. Electron field emission characteristics of laser irradiated and as-deposited a-Si:H sample. The initial a-Si:H film thickness is 15 nm.forming the patterned structures.11 Since the area density in our case is obviously high, it is reasonable that the threshold electric field obtained here is significantly improved. It is also suggested that the formation of Si nanodots in the films can induce the internal field enhancement process which may increase the effective local electric field significantly and the field emission properties can be improved as a consequence. 124.CONCLUSIONSIn conclusion, KrF pulsed excimer laser irradiation on ultrathin a-Si:H films followed by thermal annealing technique was used to prepare a single layer of Si nanodots with high density and uniformity. The area density of formed Si nanostructures can be higher than 1011cm-2 and the size can be well controlled by the film thickness as revealed by the TEM images. Our approach can avoid the high temperature treatments (>1000o C) and therefore, the cheap glass substrates can be used. An intense light emission in visible light range was observed from the laser irradiated sample after subsequently thermal annealing which can be ascribed to the recombination of photo-excited electron-hole pairs via the surface luminescence centers of Si nanodots. The enhanced electron field emission behavior was also observed and the improvements can be attributed to the local electric field enhancement due to the surface roughening and the existence of Si nanodots in the films.ACKNOWLEDGEMENTSThe work was supported by NSF of China (No. 60425414, 60508009 and 10574069), NSF of Jiangsu Province (BK2006715) and the State Key Program for Basic Research of China (2007CB613401).REFERENCES1. A. Irrera, G. Franzo, F. Iacana, A. Canino, G. Di Stefano, D. Sanfilippo, A. Piana, P. Fallica and F. Priolo, "Light emiiting devices based on silicon nanostructures," Physica E 38, 181-187 (2007).2.L. Yu, K. Chen, L. Wu, J. Xu, W. Li and X. Huang, "Coupling induced subband structures and collective single electron behavior in a single layer Si quantum dot array," J. Appl. Phys. 100, 083701 (2006).3.Jambois, H. Rinnert, X. Devaux and M. Vergnat, "Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO2 thin films," J. Appl. Phys. 98, 046105 (2005).4.R. Rolver, S. Bruninghoff, M. Forst, B. Spangenberg and H. Kurz, "Fabrication of a Si/SiO2 multiple-quantum-well light emiiting diode using romote plasma enhanced chemical vapor deposition," J. Vac. Sci. Technol. B 23(6), 3214-3218 (2005).5.J. Heitmann, F. Muller, M. Zacharias and U. Gosele, "Silicon nanocrystals: size matters," Advanced Materials 17 (7), 795-803 (2005).6.J. Boyce, R. Fulks, J. Ho, R. Lau, J. Lu, P. Mei, R. Street, K. Van Schuylenbergh and Y. Wang, "Laser processing of amorphous silicon for large-area polysilicon imagers," Thin Solid Films 383 (1-2), 137-142 (2001).7.M. Wang, X. Huang, J. Xu, W. Li, Z. Liu and K. Chen, "Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiN x:H superlattices," Appl. Phys. Lett. 72(6), 722-724 (1998).8.J. Xu, X. Li, Z. Cen, W. Li, L. Xu, Z. Ma, Y. Rui, X. Huang and K. Chen, "Formation of a dense nanocrystalline Si array on an insulting layer by laser irradiation of ultrathin amorphous Si films," Scripta Materialia 53, 811-815 (2005). 9.Z. Cen, J. Xu, Y. Liu, W. Li, L. Xu, Z. Ma, X. Huang and K. Chen, "Visible light emission from single layer Si nanodots fabricated by laser irradiation method," Appl. Phys. Lett. 89, 163107 (2006).10.J. Xu, X. Huang, W. Li, L. Wang, X. Huang and K. Chen, "Vacuum electron emission with low turn-on electric field from hydrogenated amorphous carbon thin films," Appl. Phys. Lett. 79 (1), 141-143 (2001).11.K. Ng, J. Yuan, J. Cheung and K. Cheah, "Electron field emission characteristics of electrochemical etched Si tip array," Solid State Communication 123 (5), 205-207 (2002).12.J. D. Carey, R. D. Forrest and S. R. P. Silva, "Origin of electric field enhancement in field emission from amorphous carbon thin film," Appl. Phys. Lett. 78 (16), 2339-2341 (2001).。