氧传感气.EGR
氧气传感器
氧气传感器概述氧气传感器(Oxygen Sensor,简称O2传感器)是一种传感器设备,用于检测火花引擎系统(如汽油发动机)中废气排放中的氧气含量。
该装置是车辆尾气净化系统的重要组成部分,可帮助保持排放符合环保标准,且对于车辆动力性和油耗也有一定的影响。
工作原理氧气传感器利用电化学原理实现氧分子的检测,通常使用的是钢铁氧体氧传感器(Zirconia Oxygen Sensor)和钨氧燃烧分析器O2传感器。
钢铁氧体氧传感器是最常使用的类型,由钛合金制成的传感器包覆着类似小管的氧离子电解质体系。
氧离子通过电解质体系传输进入锆石固电解质,从而产生电流信号。
电流信号根据氧气分压式(Partial Pressure)产生,根据电流信号波动情况排气氧浓度的波动情况获取。
使用场景氧气传感器主要应用在燃油车辆排放控制系统中,通过检测废气中的氧气含量来控制发动机的燃烧过程,以达到有效的控制排放的目的。
此外,氧气传感器也可以用于其他需要检测氧含量的领域,如空气检测和氧化还原过程中,发电设备,建筑材料等领域。
维护保养在正常使用情况下,氧气传感器一般不需要特别的维护和保养。
但考虑到其工作环境复杂,长时间的震动和高温环境会导致传感器零件的疲劳,所以传感器零件有可能出现损坏。
而当氧气传感器失效的时候,可能会导致废气排放不符合环保标准,同时也会影响发动机的性能和油耗。
所以一旦发现氧气传感器出现异常,及时进行更换或修理是非常重要的。
优缺点优点:1.较高的灵敏度,能够对废气中较小的氧含量变化做出反应。
2.检测结果准确,能够在短时间内检测到氧气含量的变化。
3.功能稳定,具有较长的使用寿命。
缺点:1.对工作环境有一定的要求。
2.精度会随着使用时间的增长而下降。
3.价格相对较高,一般需要专业的技术人员进行维护和保养。
结论总体来说,氧气传感器是现代燃油车辆废气排放控制的重要组成部分。
它通过检测废气中的氧含量,控制燃烧过程,保证了排放符合环保标准,同时也对车辆的油耗和动力性有一定的影响。
氧传感器的作用和检测方法
氧传感器的作用和检测方法
氧传感器是一种重要的气体传感器,主要用于检测和测量环境中的氧气含量。
它广泛应用于工业生产过程控制、环境监测、医疗设备以及个人防护装备等领域。
氧传感器的作用是通过测量氧气的浓度来确定环境中的氧气含量,以便进行相应的控制和管理。
它能够提供准确的氧气数据,帮助人们实时了解氧气浓度的变化情况,从而采取必要的措施。
常见的氧传感器有氧电极型传感器和氧传导型传感器。
其中,氧电极型传感器通过氧电极测量环境中的氧气浓度,而氧传导型传感器则是基于氧气在特定材料中的传导性能来测量氧气浓度。
氧传感器的检测方法主要有以下几种:
1. 电化学法:氧电极型传感器通过氧电极的电化学反应来测量氧气浓度。
电化学法具有响应速度快、测量范围广、灵敏度高等优点。
2. 光学法:光学氧传感器利用荧光信号的强度来测量氧气浓度。
它可以提供非常准确的氧气测量结果,但需要特定设备和技术支持。
3. 过硫酸盐法:过硫酸盐法通过过硫酸盐与碘化钾溶液反应产生的氧气量来测量氧气浓度。
此方法简单易行,适用于一些特定场合的氧气浓度测量。
需要注意的是,氧传感器在使用过程中需要校准和维护,以确保其测量结果的准确性和可靠性。
另外,不同类型的氧传感器
在检测原理和操作方法上有所差异,使用时应根据具体情况选择适合的方法。
EGR的功用和工作原理
EGR的功用和工作原理1. 什么是EGREGR,全称为废气再循环(Exhaust Gas Recirculation),是一种用于减少内燃机尾气排放的技术。
它通过将一部分废气重新引入到发动机的进气系统中,以降低燃烧温度和氧气浓度,从而减少氮氧化物(NOx)的生成。
2. EGR的功用EGR技术的主要功用是降低尾气中有害物质的排放。
主要有以下几个方面的作用:2.1 降低氮氧化物(NOx)的生成在内燃机燃烧过程中,高温和高压条件下,氮和氧气会发生反应生成氮氧化物(NOx)。
通过引入一定量的废气进行再循环,降低燃烧温度和氧气浓度,可以有效减少NOx的生成。
2.2 抑制可燃混合气的自燃在部分负载和低转速工况下,发动机容易产生自燃现象。
自燃会导致燃烧不稳定、动力下降和噪音增加。
EGR技术可以减少可燃混合气的氧气浓度,抑制自燃的发生,从而提高发动机的可靠性和性能。
2.3 减少颗粒物的排放颗粒物是指直径小于10微米的尾气固体颗粒,它对空气质量和健康造成严重影响。
EGR技术能够降低可燃混合气的温度和压力,减少颗粒物的生成和排放。
2.4 提高燃油经济性EGR技术可以降低发动机的燃烧温度,减少热损失,并且降低可燃混合气的氧气浓度,从而提高燃油的利用率,降低燃油消耗和排放。
3. EGR的工作原理EGR系统通过一系列的传感器和控制器来实现。
其基本的工作原理如下:3.1 传感器监测EGR系统依靠各种传感器来监测发动机的工作状态,包括发动机转速、负载、温度等参数。
这些传感器将实时的数据传输给控制器,以便后续的调节和控制。
3.2 控制器调节根据传感器提供的数据,控制器会计算出合适的EGR气流量,并通过控制阀门的开启程度来调节气体的再循环比例。
3.3 阀门控制控制器通过电磁阀控制EGR阀门的开启和关闭,以实现对废气的引入和停止。
3.4 调节和反馈EGR系统会不断地监测和调节EGR气体的流动,确保其始终保持在最佳的比例和流量。
同时,系统也会通过反馈机制,检测EGR系统的故障,并及时采取相应的措施进行修复。
EGR废气再循环系统简介
EGR废气再循环系统简介EGR是英文Exhaust Gas Recirculation三个字的缩写,意思是废气再循环系统。
它是针对引擎排气中有害气体之一的氮氧化合物NOx所设置的排气净化装置。
氮氧化物排到大气中,碰到强烈的紫外线时,会生成光化学烟雾。
这种光化学烟雾,会造成眼睛疼痛,严重的话还会呼吸困难。
长期呼吸被氮氧化物和黑烟等污染的空气,也容易带来呼吸器官的疾病和癌症。
在化学上,氮是所谓的惰性气体,不容易起氧化作用,但温度高到一个程度,还是会形成氮氧化物的。
因此若要降低引擎排气中的氮氧化物含量,就必须设法降低引擎的燃烧温度。
目前车辆使用的方法就是在进气管中导入一些已经燃烧过的废气,与新鲜空气混合,使之再次燃烧,作用为降低混合气的含氧浓度、吸收燃烧释放出的热量,使燃烧速度减慢、燃烧温度降低,便减少了NOx的生成数量,现代引擎不论是汽油或柴油的都有EGR废气再循环系统,并且都用计算机来控管废气的进气量,以期许在环保和动力上取得最大的利益和平衡。
发动机控制电脑即ECU根据发动机的转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空度经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧。
少部分废气进入气缸参与混合气的燃烧,降低了燃烧时气缸中的温度,因NOX是在高温富氧的条件下生成的,故抑制了NOX的生成,从而降低了废气中的NOX的含量。
但是,过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。
所以,当发动机在怠速、低速、小负荷及冷机时,ECU控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,ECU控制少部分废气参与再循环,而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOX最低。
EGR—搜狗百科
EGR—搜狗百科产品概要EGR 内燃机在燃烧后排出的⽓体中含氧量极低甚⾄是没有,此排出⽓体与吸⽓混合后会使吸⽓中氧⽓浓度降低,因此会产⽣下列现象:⽐⼤⽓更低的含氧量在燃烧时(最⾼)温度会降低,会抑制氮氧化物(NOx)的产⽣。
燃烧温度降低时,汽缸与燃烧室壁⾯、活塞表⾯的热能发散会降低,另外因热解离造成的损失也会有些微降低。
燃油引擎其部分负荷为汽缸内在⾮EGR时为了提供等量的氧⽓量(为了得到同⼀轴的出⼒),因此需要将油门开⼤,结果吸⽓时的吸油(油门)损失较低,燃料消耗率会提⾼。
此即为活塞在⼀次⾏程下吸⼊的氧⽓降低时,会如同使⽤⼩排⽓量引擎采下加速前进时⼀样的效果。
EGR 的返流量依燃油引擎的情形(在吸⽓量中)下最⼤为15%,⽽怠速时与⾼负载时则会停⽌。
以车辆重量来看引擎出⼒较⼩的⼤型柴油车,其引擎负载较⾼,为了能够达到排⽓量标准也常会使⽤到EGR技术。
⼯作原理EGR废⽓再循环系统(Exhaust Gas Recirculation)简称EGR,是将柴油机或汽油机产⽣的废⽓的⼀⼩部分再送回⽓缸。
再循环废⽓由于具有惰性将会延缓燃烧过程,也就是说燃烧速度将会放慢从⽽导致燃烧室中的压⼒形成过程放慢,这就是氮氧化合物会减少的主要原因。
另外,提⾼废⽓再循环率会使总的废⽓流量(mass flow) 减少,因此废⽓排放中总的污染物输出量将会相对减少。
EGR系统的任务就是使废⽓的再循环量在每⼀个⼯作点都达到最佳状况,从⽽使燃烧过程始终处于最理想的情况,最终保证排放物中的污染成份最低。
由于废⽓再循环量的改变会对不同的污染成份可能产⽣截然相反的影响,因此所谓的最佳状况往往是⼀种折衷的,使相关污染物总的排放达到最佳的⽅案。
⽐⽅说,尽管提⾼废⽓再循环率对减少氮氧化物(NOx)的排放有积极的影响, 但同时这也会对颗粒物和其他污染成份的减少产⽣消极的影响。
系统分类根据废⽓进⼊⽓缸是否通过发动机的进⽓系统,EGR系统可分为:内部系统特点:通过改变配⽓相位实现结构简单,应⽤⽅便但难以精确控制EGR率效果不显著 EGR外部系统特点:需要外加专门的管道通过电控系统可精确控制EGR率效果显著⽬前较为常⽤ EGR循环⽅式EGR 增压中冷柴油机实现废⽓再循环⼀般有两种⽅式:⼀种是将涡轮前的排⽓引⼊中冷器之后,称为⾼压废⽓反向。
排气再循环(EGR)系统原理说明
排气再循环系统(EGR)燃烧原理:燃烧温度越高,NOx产生越多,在最适合于燃烧的点火时期点火及最经济的空燃比时,产生的NOx最多。
为了减少NOx的排放,应该考虑不利于燃烧的空燃比及点火时期,可是这样又容易产生不完全燃烧,增加HC及CO的排放,还会使发动机的功率下降。
可以较好地解决这一矛盾的技术称为排气再循环技术 (Exhaust Gas Recirculation),缩写为EGR。
EGR可使发动机排出气体的一部分重新进入进气系统,引入不活性气体(主要是CO2)到燃烧室,增加燃烧室内气体的热容量,使最高燃烧温度下降,故可抑制 NOx的生成。
下面简单介绍一下EGR系统的工作原理:EGR(废气再循环系统),主要用来降低废气中氮氧化合物的排放量。
其原理如上图所示。
ECU根据发动机转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧,降低了燃烧时气缸中的温度,因NOx是在高温富氧的条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx的含量。
EGR系统的主要元件是位于进气歧管上的EGR阀。
在发动机暖机运转和转速超过怠速时,EGR阀开启,使少量的废气进入进气歧管,与可燃混合气一起进入燃烧室;当发动机在怠速、低速、小负荷、及冷机时,为了避免发动机的动力性能受到影响,ECU控制EGR阀关闭。
EGR阀中有一与其做成一体的EGR阀位置传感器(EVP Sensor),该传感器是一电位计式位移传感器,用于检测EGR阀的实际位置,输出相应电压信号给控制器,控制器据此判断阀门是否对ECU的指令做出正确响应。
同时,它的信号输出也是发动机ECU计算废气再循环流量的依据。
通常,EVP 传感器是一个三线传感器,一条是发动机ECU提供的电源电压,另外一条是传感器的接地线,第三条是传感器给发动机ECU的反馈信号输出线;在EGR 阀关闭时产生1V以下的电压,在EGR阀打开时产生5V以下的电压。
egr工作原理
egr工作原理
EGR(废气再循环)是一种用于减少内燃机排放的技术。
它通过再循环废气将其引入到燃烧室中,与新鲜空气混合,从而减少氮氧化物(NOx)和颗粒物的生成。
EGR系统主要由几个部分组成,包括EGR阀、EGR冷却器和EGR传感器。
当发动机工作时,EGR阀会根据需要控制废气的流量和进入燃烧室的时间。
而EGR冷却器则通过将废气与冷却剂接触来降低其温度,以避免对燃烧过程产生负面影响。
EGR传感器则用于监测EGR系统的工作状态,并将相关信息反馈给发动机控制单元(ECU)。
EGR的工作原理是基于废气中的稀薄燃烧产物不容易生成NOx和颗粒物这一事实。
通过引入废气,可以降低燃烧室内的氧浓度,从而降低燃烧温度和压力。
这样一来,燃烧过程中生成NOx的反应会受到抑制。
此外,废气中含有的尘埃和颗粒物也可以通过再循环的方式较低地重新进入燃烧室,进而减少颗粒物的排放。
通过EGR技术,汽车制造商能够达到国家和地区对排放标准的要求。
此外,EGR还可以提高燃烧效率和燃油经济性。
然而,EGR也存在一些问题。
废气中的积碳会在EGR系统内部堵塞管道和阀门,需要定期进行清洁和维护。
此外,过多的EGR会导致发动机性能降低和燃烧不稳定等问题。
总之,EGR工作原理是利用废气再循环技术来减少内燃机的排放。
它通过引入废气,降低燃烧温度和压力,从而减少氮氧
化物和颗粒物的生成。
然而,EGR也面临着一些挑战,需要进行适当的维护和管理。
氧气传感器原理
氧气传感器原理氧气传感器是一种用于检测空气中氧气浓度的传感器。
它的主要原理是利用化学反应将空气中的氧气和水分解为电子,并通过电路将这些电子转化为电信号输出。
本文将详细介绍氧气传感器的原理、结构、工作方式以及应用领域。
一、原理1.1 化学反应在一个典型的氧气传感器中,通常使用二氧化锆作为传感器材料。
当空气进入到传感器中时,它会与二氧化锆发生化学反应,产生电子和离子。
具体反应方程式如下:ZrO2 + O2 → 2ZrO + 2e-ZrO + H2O → ZrO2 + 2H+ + 2e-这个过程被称为“固态电解质效应”,其中二氧化锆起到了固态电解质的作用。
1.2 电信号转换在上述化学反应发生之后,产生了一些自由电子和离子。
这些自由电子可以通过一个金属导线或半导体材料进行导电,并最终转换成一个可读取的电信号。
这个过程被称为“离子导体效应”。
二、结构氧气传感器的结构通常由两个主要部分组成:传感器和电路板。
传感器通常由二氧化锆制成,而电路板则包含了一个放大器和一个滤波器,用于放大和过滤来自传感器的电信号。
三、工作方式当空气进入到传感器中时,它会与二氧化锆发生化学反应,产生一些自由电子和离子。
这些自由电子通过导线或半导体材料进行导电,并最终转换成一个可读取的电信号。
这个信号被放大并通过滤波器进行过滤,最终输出到显示屏或其他设备上。
四、应用领域氧气传感器广泛应用于医疗、环保、工业等领域。
在医疗领域中,它通常用于监测患者的呼吸情况;在环保领域中,它可以用于检测空气中的有毒物质;在工业领域中,它可以用于监测工厂排放物质的浓度。
总之,氧气传感器是一种非常重要的检测设备,它可以帮助我们更好地了解我们周围空气中的氧气浓度,从而保障我们的健康和安全。
氧传感工作原理
氧传感工作原理
氧传感器是一种检测环境中氧气浓度的设备,常用于工业过程控制、空气质量检测等领域。
它的工作原理主要基于电化学原理。
氧传感器通常由两个电极构成:一个是参考电极,另一个是工作电极。
工作电极表面涂覆有催化剂,通常是氧化铂或氧化金。
参考电极则通常是银/银氧化银电极。
这两个电极之间隔着一
个电解质,常用的电解质是固体氧化物。
当氧气进入氧传感器时,它会与涂覆在工作电极上的催化剂发生反应,产生电流。
这个反应是氧气在催化剂上的还原过程,催化剂使氧气分子的两个氧原子分离,然后将其与电解质中的离子结合形成氧离子。
这些氧离子通过电解质传导到参考电极上,与参考电极的银离子发生氧化还原反应,产生电流。
这个电流的大小与环境中氧气的浓度成正比。
通过测量电流的大小,我们可以确定环境中氧气的浓度。
通常氧传感器的输出是一个电压信号或电流信号,我们可以通过转换电路将其转化为浓度值。
需要注意的是,氧传感器在使用过程中需要保持一定的温度。
因为传感器的反应速率与温度密切相关,过低或过高的温度都会影响传感器的测量准确性。
因此,氧传感器通常会与一个加热装置结合使用,以保持稳定的工作温度。
综上所述,氧传感器基于电化学原理工作,通过催化剂和参考
电极之间的反应产生电流来检测环境中氧气的浓度。
它在许多应用中起到了重要的作用。
汽车氧传感
汽车氧传感汽车氧传感器(O2传感器)是一种能够测量汽车尾气中氧气浓度的传感器,广泛应用于汽车的排放控制系统中。
它的主要作用是通过监测排出氧气浓度的变化,来实时调节发动机燃烧室中的燃料供应,以达到更好的燃烧效果和降低尾气排放。
目前,常用的汽车氧传感器检测方法主要分为两种:电化学法和固体电解质法。
1.电化学法:这种方法是通过测量电气氧化还原反应(也称为红氧反应)来检测氧气的浓度。
传感器中包含两个电极,一个工作电极和一个参比电极,它们之间通过一个电解质介质分离。
当传感器处于工作状态时,工作电极会与汽车尾气中的氧气反应,产生一定的电流。
通过测量这个电流的大小,可以推断出尾气中的氧气浓度。
此方法具有响应迅速,精度高等优点。
2.固体电解质法:这种方法是通过固体电解质薄膜来检测氧气的浓度。
薄膜通常由氧离子导电材料如氧化锆或氧化钇等组成。
当尾气中的氧气分子通过薄膜时,会导致固体电解质发生离子传导,从而产生电流。
通过测量这个电流的大小,可以确定氧气的浓度。
这种方法具有稳定性好、抗干扰能力强等优点。
上述两种方法都是常见的汽车氧传感器检测方法,其原理和实现都有相应的技术难点,需要优化传感器结构、选择合适的材料和制备工艺等。
当汽车氧传感器工作时,会产生大量有关汽车排放和燃烧状态的数据。
这些数据对于汽车工程师和环境科学家来说是非常宝贵的。
通过分析这些数据,可以评估发动机的燃烧状况,检测潜在的问题,优化燃油供应策略,减少尾气排放。
然而,在读取和分析这些数据时,需要注意以下几个问题。
首先,由于汽车氧传感器的工作环境比较恶劣,可能会受到尾气中的污染物的干扰,导致测量结果的不准确。
其次,汽车氧传感器的寿命有限,需要定期更换。
最后,由于传感器的输出信号是模拟电信号,需要进行数字化处理,以便进一步分析和应用。
总结而言,汽车氧传感器是一种重要的汽车排放控制设备,可以通过电化学法和固体电解质法测量汽车尾气中的氧气浓度。
这些传感器产生的数据对于优化燃烧效果、降低尾气排放、保护环境等方面具有重要意义。
国六 egr标定原理
国六 egr标定原理
国六柴油机的EGR阀控制主要有两条路线,一是基于目标新鲜空气质量进
行控制,二是基于目标EGR率进行控制。
基于目标新鲜空气量控制的柴油
机都会在中冷后管路上安装有空气流量传感器(TFI或PFM),EGR冷却后管路上不再有测量EGR流量的传感器。
在发动机硬件(缸径、进排气截面积、增压器等)定型、进排气阻力边界条件固定以后,某一工况(转速、循环油量/扭矩)的缸内充气总量(记作
M22)是几乎不变的。
又把中冷后的进气量(流量传感器测量获得)记作
M21,把EGR的流量记作Megr,根据质量守恒定律:M22=M21+Megr。
前面我们说到工况(转速、扭矩/循环油量)不变时缸内充气总量M22是固定的,所以要想增大M21的值,就可以通过减小Megr的值来实现。
如需更多信息,建议咨询汽车工程专家或查阅汽车工程书籍。
EGR工作原理
1.废气再循环(EGR)的工作原理柴油发动机的废气中不仅含有看得见的颗粒,通常情况下它的NO X含量也会比汽油机的高。
EGR(废气再循环)这种使废气重新进入燃烧室并与新鲜空气一起再次燃烧的方法是一种有效降低排放(尤其)的措施。
再循环废气由于具有惰性将会延缓燃烧过程,也就是说燃烧速度将会放慢,从而导致燃烧室中的是NOX压力形成过程放慢。
这就是氮氧化物会减少的主要原因。
另外,提高废气再循环率会使总的气流量减少,因此废气排放中总的污染物将会减少。
EGR系统的任务就是使废气的再循环量在每一个工作点都达到最佳状态,从而使燃烧过程始终处于最理想的情况,最终保证排放物中的污染成分最低。
在全顺汽车所采用的德国胡贝尔EGR系统中(见下面结构图),所有可能负载/速度点的理想废气再循环率都被定义在发动机图(MAP图)中,适合相应工况点的EGR阀门位置将以连续变化的方式受ECU控制。
全顺车中装有两个同样的EGR阀,阀门靠发电机真空泵提供的真空打开,上面有感知阀门开度的位置传感器,当ECU得到转速、负载、水温和离合器开关闭合的信号时,系统开始工作,ECU在MAP图中找到一个已设定好的EGR 阀门开度,而EGR阀门开度控制又是通过真空调节器的开度来实现,同时EGR阀位置传感器将阀门的开度告诉ECU,ECU将设定值与当前EGR阀门开度进行对比,随时调节真空调节器的开度,尽量把EGR阀门打开到设定的理想值,实现闭环控制。
通过对阀门位置的持续监控,EGR阀总能被调整到正确的开度,从而控制了废气量,即保证了排放,又不影响发动机的功率。
图1 EGR结构原理图1.ECU2.离合器开关3.发动机转速传感器4.真空泵5.油门位置传感器6.真空调节器7.EGR阀及阀门位置传感8.水温传感器2.输入参数为了确定各自最佳的废气再循环状况,系统需要以几个输入信号:当前负载情况⏹ 当前发动机转速⏹ 当前水温⏹ EGR阀门位置反馈信号为了确定负载情况,可通过及时了解油门踏板或油泵调节杆的位置,这将需要采用一个TPS电位器来实现。
EGR原理 汽车发动机废气再循环系统EGR的介绍
EGR原理汽车发动机废气再循环系统EGR的介绍汽车发动机废气再循环系统(EGR)是现代汽车中常见的一个重要组成部分。
本文将详细介绍EGR原理及其工作机制。
1.EGR基本原理EGR系统通过将一部分废气重新引入到发动机燃烧室中,以降低燃烧室温度,减少氮氧化物(NOx)的。
这一废气是由排气系统中的废气再循环阀控制的。
2.EGR系统组成EGR系统由以下几个主要组成部分组成:2.1 EGR阀:控制废气的再循环量,并且根据车辆负载和运行条件进行调节。
2.2 EGR冷却器:冷却废气,降低其温度,以增加EGR系统的效率。
2.3 EGR传感器:可检测废气再循环阀的位置和其他关键参数,以确保EGR系统的正常运行。
3.EGR工作原理当发动机负荷较低或需要减少NOx排放时,EGR系统开始工作。
具体工作原理如下:3.1 发动机运行时,EGR阀封闭,废气无法进入燃烧室。
3.2 当需要再循环废气时,EGR阀打开,一部分废气从排气管进入EGR冷却器。
3.3 在EGR冷却器中,废气被冷却,降低其温度。
3.4 冷却后的废气进入发动机进气道,与新鲜空气混合后进入燃烧室。
3.5 废气与新鲜空气混合会降低燃烧室温度,减少NOx量。
4.EGR系统的优势EGR系统具有以下几个优势:4.1 减少氮氧化物排放量,对环境更友好。
4.2 降低燃烧室温度,延长发动机寿命。
4.3 提高燃烧效率,降低燃油消耗。
5.EGR系统的问题和维护5.1 EGR阀可能会堵塞或卡住,影响EGR系统的正常运行。
定期清洁和维护EGR阀是必要的。
5.2 EGR系统可能出现漏气现象,导致排放异常或发动机性能下降。
及时检查和修复漏气问题至关重要。
5.3 EGR冷却器可能会被沉积物和杂质堵塞,影响废气的冷却效果。
清洁或更换冷却器是必要的维护措施。
6.附件附件:EGR系统工作原理示意图7.法律名词及注释7.1 NOx:氮氧化物,包括一氧化氮(NO)和二氧化氮(NO2),是发动机燃烧产生的有害气体之一。
EGR的功用和工作原理
2.EGR阀
EGR阀膜片旳一边(下部) 通大气,装有弹簧旳另一边 为真空室,其真空度由EGR 电磁阀控制。增大真空室旳 真空度,使膜片克服弹簧力 上拱,阀旳开度就增大,废 气再循环流量也就增长。当 上部失去真空度时,膜片在 弹簧力旳作用下向下拱而使 阀关闭,阻断废气再循环。
安装有EGR阀开度传感器旳 EGR阀如图12-5所示。
3.电控废气再循环系统主要由发动机控制模块、有关传感器 和EGR电磁阀和膜片式EGR阀等构成。
4.在ROM中存储有多种工况下旳最佳EGR流量值,一般以 EGR电磁阀占空比参数旳方式储存。发动机工作时,ECM根据 各传感器信号,输出相应旳占空比脉冲信号至EGR电磁阀。
5.废气再循环系统产生故障时,会出现车辆排气污染增长、 发动机功率下降、怠速运转不稳定甚至熄火等故障。
6.废气再循环系统常见旳故障有EGR阀损坏、EGR阀位置 传感器工作不正常、EGR电磁阀及其控制电路工作不良等 。
二、二次空气供给控制系统
1、二次空气供给系统旳功用
二次空气供给系统旳功用是:在一定工况下,将新 鲜空气送入排气管,促使废气中旳一氧化碳和碳氢化合 物进一步氧化,从而降低一氧化碳和HC旳排放量,同步 加紧三元催化转换器旳升温。
Χ100%
吸入空气量+EGR气体量
工作原理
•废气中具有大量旳CO2 和水蒸气等接近于化学 惰性旳气体,将其导入 汽缸后稀释气缸内混合 气,氧浓度相应降低.从 而缓解了剧烈旳燃烧反 应。 •CO2不能燃烧但能吸收 热量,使温度下降.降低 NOX旳生成.
ECU控制旳开环控制EGR系统工作过程
(3)EGR旳控制策略 综合考虑动力性、经济性、排放性能
所以EGR率必须根据发动机工况要求进行控制。一般将 EGR率控制在10%~20%范围。
大众EGR报警灯和氧传感器报警灯归零复位
大众EGR报警灯和氧传感器报警灯归零复位
大众EGR报警灯和氧传感器报警灯归零复位
1.EGR报警灯
在进行必要的维修保养后,应按动复位按钮,使EGR报警灯熄灭,对于Jetta、GTi、Rabbit、Cabriolet、Golf及Scirocco汽车,应拆下仪表板罩,并将一段端部带钩的金属丝,通过车速表左上角的孔口,拉动计数器左侧的分离臂,以使报警灯熄灭。
复位模块位于车速表线缆附近。
2.氧传感器报警灯
按规定完成相应的维护保养操作后,应按动复位按钮,使氧传感器熄灭。
对于Fox、Jetta、Rabbit、Cabriolet、Golf及Scirocco汽车,应拆下仪表板罩,并将一段端部带钩的金属丝,通过车速表左上角的孔口,拉动计数器右侧的分离臂,以使报警灯熄灭。
复位模块位于车速表线缆附近。
EGR阀位置传感器的作用、结构、原理、检测方法
EGR阀位置传感器的作用、结构、原理、检测方法一作用废气再循环(EGR)系统按照是否设置有反馈监测元件,废气再循环系统可以分为开环控制EGR 系统与闭环控制EGR 系统。
闭环控制EGR 系统与开环控制EGR 系统相比,只是在EGR阀上增设了一个EGR 阀位置传感器作为反馈信号,用以监测EGR阀开度的大小,使EGR率保持在最佳值。
EGR阀位置传感器检测EGR 阀阀杆的上下移动位置,发动机ECU 以此确定阀门开度的大小。
EGR阀位置传感器安装EGR阀的上部。
二结构EGR阀位置传感器结构如图2-108所示,EGR 阀阀针与电位计的滑动触点臂相连,占空比控制的EGR阀随着占空比的变化,控制的真空吸力也不同,引起EGR 阀阀门开启的大小也不一样,阀杆上升的位移也不同。
EGR阀位置传感器结构三工作原理EGR阀阀杆上升,推动与之相连的滑动触点臂的位置发生变化,从而使滑动触点在滑动电阻上滑动,产生不同的电压信号,这个信号会传递到发动机控制ECU,发动机控制ECU 以此监视EGR阀的位置,确保阀门对ECU 的指令作出正确的响应,从而调整和修正开启EGR阀开启时刻和占空比,精确控制再循环量的大小,以减小排放、改善性能。
本田、别克、丰田等的某些车型都安装有EGR阀位置传感器。
四连接电路这里以上海别克废气再循环系统EGR 阀位置传感器为例,介绍其电路连接,如下图所示。
上海别克废气再循环系统EGR阀位置传感器的电路连接别克废气再循环系统的废气再循环真空控制电磁阀和废气再循环EGR位置传感器共用一个5针插头,灰色连接的端子A、白色连接的端子E分别和发动机控制单元PCM 连接,采用正极驱动器和PCM 中的搭铁电路控制,用于废气再循环真空控制电磁阀的驱动,另外3条为电位计式的废气再循环EGR位置传感器所使用,它能够监视EGR阀的位置,确保阀门对PCM 的指令作出正确的响应。
电位计的D端子为5V 参考电源、B端子为搭铁端子、C端子为信号输出端子。
egr温度传感器工作原理
egr温度传感器工作原理
egr温度传感器工作原理EGR阀在发动机中速运转及中等负荷时开启,在发动机低速运转且水温低于60°C时 EGR阀关闭以防止发动机怠速不稳,在发动机大负荷运转时EGR阀也关闭以保证发动机有足够的功率输出。
因此EGR监测温度传感器监测的温度范围为50〜400°C。
由于发动机排出的废气温度很高,当EGR阀开度增大时,流经EGR阀的废气循环量也大,EGR温度传感器处的温度也就高。
EGR温度传感器的电阻随流经废气的温度而变化,并通过测量电路转换为相应的电压信号。
例如,发动机在一般工况下,废气再循环流量较小,EGR温度传感器处的温度为1〇〇〜200°C;发动机在高速或重载工况时,废气再循环流量大,EGR温度传感器处的温度为300〜400°C;而当发动机怠速或低温时不进行废气再循环,即在EGR阀关闭时,EGR温度传感器处的温度较低,通常在50°C以下。
EGR温度传感器将EGR通道的废气温度转换为相应的电压信号,并输送给发动机ECU,ECU据此信号即可判断EGR阀的工作情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1—二氧化钛元件2—金属外壳 3—陶瓷绝缘体 4—接线端子 5—陶瓷元件6—导线7—金属保 护套
汽车00轿车氧传 感器控制电路。 闭环控制,当实际空燃比比理论 空燃比小时,氧传感器向ECU输入的 高电压信号(0.75~0.9V)。此时 ECU减小喷油量,空燃比增大。当空 燃比增大到理论空燃比时,氧传感器 输出电压信号将突变下降至0.1 V左右, ECU立即控制增加喷油量,空燃比减 小。如此反复,就能将空燃比精确地 控制在理论空燃比附近一个极小的范 围内。
汽车发动机电子控制技术
五、废气再循环系统的故障检测方法
故障诊断的第一步就是全面地观察。检测真空操作的 EGR阀是否正常动作,按下列步骤进行: ⑴检查EGR阀内的真空膜片能否保持真空。用手动真 空泵给EGR阀提供真空,以检测阀的动作情况。实际 情况下,当有真空提供时,EGR阀动作,发动机的工 作应受到影响。另外,有真空提供时,EGR阀应能保 持住真空,若EGR阀内真空下降,那么说明阀坏。 ⑵如果EGR阀能保持住真空,但是当EGR阀开启时,发 动机的运转未受到影响,那么必须检查排气阻力。如 果EGR阀不能保持住真空,说明阀本身有问题,需要 更换了。
图bEGR阀的检查
汽车发动机电子控制技术
1.OBDⅡ系统对废气再循环系统的监测
第二代随车诊断系统中对于EGR系统监测,采用了各种 各样的方法,具体使用哪一种方法,取决于制造商和应用 要求。 大多数车辆使用MAP传感器来监测废气再循环情况。有 些排气背压控制的EGR系统利用废气温度感器检测废气再循 环情况,废气温度传感器安装在废气返回通道上。 有些真空控制的EGR系统利用EGR阀位置和废气温度信 号来判断废气再循环情况。 如果废气再循环系统的效率没达到预定的水平,连续 两个发动机驱动循环计算机扑捉不到达标信号,就会置出 故障码并点亮故障指示灯。
汽车发动机电子控制技术
3)氧传感器信号电压的测试 前氧传感器和后氧传感 器都要检测信号电压,以判断传感器信号电压是否停置在某 一值不变(混合气或浓或稀)、传感器信号电压是否超出范围 、传感器是否短路、传感器是否搭铁。
汽车发动机电子控制技术
四、 EGR系统
废气再循环(EGR)系统用于降低废气 中的氮氧化物 (NOX)的排出量。汽车废 气是一种不可燃气体(不含燃料和氧化 剂),在燃烧室内不参与燃烧。 它通过 吸收燃烧产生的部分热量来降低燃烧温 度和压力,以减少氧化氮的生成量。为 了避免影响电控燃油喷射的性能,一些 比较新的发动机已不需要EGR系统来降低 排放,而是利用进、排气门的重叠开启 时刻,吸入一些废气到气缸内重新燃烧。
1)前氧传感器开始工作所需时间 OBDII系统通过 记录氧传感器加热至开始活跃工作所经历的时间, 来判断氧传感器活跃工作的快慢。如果氧传感器加 热功能有问题,那么氧传感器活跃工作变慢甚至无 法监测。这项监测只能在冷车起动时才能监测。 2)前氧传感器响应时间的测试 监测氧传感器 信号电压从300mV到600mV(混和气从稀到浓) 和从600mV到300mV(混和气从浓到稀)跳变所 经历的时间。
汽车发动机电子控制技术
任务十四 氧传感器、EGR 系统的检修
汽车发动机电子控制技术
一、氧传感器结构
单床
双床
常见氧传感器安装位置
汽车发动机电子控制技术
1.氧化锆氧传感器
氧化锆氧 传感器的 结构:
汽车发动机电子控制技术
2.氧化钛氧传感器
结构如右图,主要由二氧化钛元 件、导线、金属外壳和接线端子等组 成。 当废气中的氧浓度高时,二氧化 钛的电阻值增大;反之,废气中氧浓 度较低时二氧化钛的电阻值减小,利 用适当的电路对电阻变量进行处理, 即转换成电压信号输送给ECU,用来 确定实际的空燃比。
汽车发动机电子控制技术
1.真空控制EGR系统结构
主要由真空控制阀VCV、 真空电磁阀VSV、 EGR阀位置传感器、 EGR阀组成,
汽车发动机电子控制技术
2.真空控制阀(VCV)
真空控制阀(VCV)为机械式真空开 关阀,位于真空电磁阀和进气歧管之间, 其作用是调节加在真空电磁阀的真空,使 真空保持在恒定水平(-17 kPa /-l30 mmHg)。如图进气歧管真空通过S口作用 在VCV的膜片上,如果真空度大,在弹簧 作用下膜片下移关闭S口;如果真空度小, 克服弹簧力,阀开启,给VSV提供真空。 这个动作过程不断地调整,使提供给VSV 的真空保持恒定。
汽车发动机电子控制技术
2)氧传感器的常见故障:
(1)氧传感器中毒; (2)积炭; (3)氧传感器陶瓷碎裂; (4)加热器电阻丝烧断; (5)氧传感器线路问题。
汽车发动机电子控制技术
1.氧传感器加热器电阻的检查:
拔下氧传感器线束插头,用万用表电阻 档测量氧传感器接线端中加热器接柱与搭铁 接柱之间的电阻,其阻值为4~40 Ω 。
汽车发动机电子控制技术
2.氧传感器反馈电压的测量:
数字万用表置于直流电压 “DC”量程,在发动机运转期 间,用万用表测试氧传感器的 信号电压,读取最小—最大值 。好的氧传感器应该能被检测 到小于0.3V、高于0.8V的信号 电压。在正常情况下,随着反 馈控制的进行,氧传感器的反 馈电压将在0.45V上下不断变化 ,1s内反馈电压的变化次数应 不少于8次。
汽车发动机电子控制技术 (4) 废气再循环阀(EGR阀)的检修
启动发动机怠速运转,并拆下废气再循环阀的真空软管,接上手 动真空泵,将真空直接加到废气再循环阀的膜片室。如果发动机怠速 不稳定或熄火,则表明该阀工作正常。
汽车发动机电子控制技术
图aEGR电磁阀的检查 1—通大气滤网 2—进气管侧软管接头 3—EGR阀侧软管接头
汽车发动机电子控制技术
3.空燃比传感器检测方 法
空燃比氧传感器产生的是电流信号,并且 电流方向和大小是变化的。由于空燃比传感器 内部有集成电路,就不能直接用万用表或示波 器检测该传感器的信号。检测空燃比传感器的 唯一办法是使用专用的诊断仪通过随车诊断系 统进行检测。
汽车发动机电子控制技术
4. OBDII对系统氧传感器监测
汽车发动机电子控制技术
三、氧传感器的检修
2)使用注意事项
禁用含铅汽油,防止催化剂失效; 三元催化转换器固定不牢或汽车在不平路面上行驶时的颠 簸,容易导致转换器中的催化剂截体损坏; 装用蜂巢型转换器的汽车,一般汽车每行驶80000km应更 换转换器心体。装用颗粒型转换器的汽车,其颗粒形催化剂的 重量低于规定值时,应全部更换。
汽车发动机电子控制技术
真空控制的EGR系统传感器安装位置示意
汽车发动机电子控制技术
2.EGR控制系统的检修
(1)一般检查 拆下EGR阀上的真空软管,发动 机转速应无变化,用手触试真空软管应无真空吸力;发动 机温度达到正常工作温度后,怠速是检查结果应与冷机时 相同,若转速提高到2500 r/min左右,拆下真空软管,发 动机转速有明显提高。 ( 2)EGR电磁阀的检查 冷态测量电磁阀电阻因 为33~39Ω。如图a电磁阀不通电时,从进气管侧吹入空 气应畅通,从滤网处吹应不通;接上蓄电池电压时,应相 反。 ( 3)EGR阀的检查 如图b,用手动真空泵给 EGR阀膜片上方施加约15Kpa的真空度,EGR阀应能开启, 不施加真空度,EGR阀应能完全关闭。