热电偶知识
热电阻热电偶基础知识资料
热电偶热电阻测温应用原理1热电偶测温的应用原理1.1热电偶测温基本原理1.2热电偶的种类及结构形成1.2.1热电偶的种类1.2.2热电偶的结构形式1.3热电偶冷端的温度补偿1.4温度测量仪表的分类2热电阻的应用原理2.1热电阻测温原理及材料2.2.1精通型热电阻2.2.2铠装热电阻2.2.3端面热电阻2.2.4隔爆型热电阻2.3热电阻测温系统的组成热电偶热电阻测温应用原理1热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.1热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个接触点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
1.2热电偶的种类及结构形成1.2.1热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
1.2.2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
热电偶和热电阻的知识
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
Nanmac热电偶知识培训-坤驰
一.传感器在测试系统中的地位和作用从信号流的流向来看,一个测试系统一次包括了传感部件→信号调理部件→信号采集部件→结果处理与显示控制部件。
一般来讲,一个测试系统中最重要的部件就是传感器,因为所有的物理现象都是通过传感器转换成电信号来进行处理与控制的。
如果把一个测试系统比喻成一个人,那传感器就是人的眼、耳、鼻、舌、身,就是这个测试系统系统的五官感觉。
整个测试系统进行测试处理的外部信息都是依赖传感器传入测试系统的。
二.热电偶传感器工作原理Ⅰ。
热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
K型热电偶规格参数及使用性质
K型热电偶规格参数及使用一、热电偶基础知识热电偶是温度测量中应用最普遍的测温器件,它的特点是测温范围宽,性能稳定,有足够的测量精度,能够满足工业过程温度测量的需要。
结构简单,动态响应好;输出为电信号,可以远传,便于集中检测和自动控制。
热电偶的测温原理基于热电效应。
将两种不同的导体或半导体连成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象即是热电效应,又称赛北克效应。
热电偶的要求:(1)在测温范围内热电偶性能稳定,不随时间和被测对象而变化;(2)在测温范围内物理化学性能稳定,不易氧化和腐蚀,耐辐射;(3)所组成的热电偶要有足够的灵敏度,热电势随温度的变化率要足够大;(4)热电特性接近单值线性或近似线性;(5)电导率高,电阻温度系数小;(6)机械性能好,机械强度高,材质均匀;工艺性好,易加工,复制性好,制造工艺简单,价格便宜。
目前市面上流行的主要有8种常用热电偶以及测高温的钨铼热电偶(0〜2300°C),综合考虑上述热电偶,只有K型热电偶比较适合大规模的工业现场应用。
K型热电偶是由镍铬-镍硅(铝)双金属组成的,其中镍铬为正极,镍硅(铝)为负极。
K型热电偶的测温范围为-270〜1300C之间,适用于氧气气氛中,稳定性属于中等程度。
K型热电偶性能稳定,产生的热电势大,热电特性线性好,复现性好,高温下抗氧化能力强,耐辐射,使用范围宽,应用广泛。
本资料所说的温度极限就是最高的温度值,K型热电偶各种规格尺寸导线的最高温度如下表所示:这个表举出各类热电偶和导线尺寸的推荐温度上限。
这些温度上限应用于有防护的热电偶,即有普通封闭端保护套管的热电偶,不用于具有压制矿物质氧化物绝缘体的套装热电偶。
一般在实际应用中,会有超过推荐温度极限的情况。
同样,在推荐温度极限内应用而没有得到满意寿命的情况也是有的。
但是,总的说来,当导线在列举的温度范围内连续工作时,能保证热电偶有满意的寿命。
K类热电偶适宜在温度高达1260°C的氧化性或惰性气氛中连续使用,因为它们的抗氧化特性要比其它金属热电偶好。
热电偶和热电阻的知识.
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
热电偶基本知识
镍铬—镍硅(镍铝)热电偶(分度号为K)该种热电偶的正极为含铬10%的镍铬合金(KP),负极为含硅3%的镍硅合金(KN)。
它的负极亲磁,依据此特性,用磁铁可以很方便地鉴别出热电偶的正负极。
它的特点是,使用温度范围宽,高温下性能稳定,热电动势与温度的关系近似线性,价格便宜,因此,它是目前用量最大的一种热电偶。
K型热电偶适于在氧化性及惰性气氛中连续使用。
短期使用温度为1200℃,长期使用温度为1000℃。
经过选择后优质K型热电偶可以作为标准,用以分度工作用镍铬-镍硅等贱金属热电偶。
在这种热电偶的两极添加金属钇及镁等元素,抗氧化性能可进一步提高,最高使用温度可达到1300℃。
为了充分发挥贱金属价格便宜的优点,在同一测温场所中,可多安装几支热电偶,利用其灵敏度高和热电特性近似线性的特点,达到准确测量的目的。
我国已经基本上用镍铬—镍硅热电偶取代了镍铬—镍铝热电偶。
国外仍然使用镍铬—镍铝热电偶。
两种热电偶的化学成分虽然不同,但其热电特性相同,使用同一分度表。
K型热电偶是抗氧化性较强的贱金属热电偶。
不适宜在真空、含碳、含硫气氛及氧化与还原交替的气氛下裸丝使用。
当氧分压较低时,镍铬极中的铬将则优氧化(也称绿蚀),使热电动势发生很大变化。
但金属气体对其影响较小。
因此,多采用金属制热电偶保护管。
K型热电偶有以下缺点:1、热电动势的高温稳定性较N型热电偶及贵金属热电偶差。
在较高温度下,往往因氧化而损坏。
在氧化性气氛中,直径3.2mm的K型热电偶,在1100℃,1200℃下经650h左右,均超过0.75级允许误差;但N型热电偶在相同条件下,经过1000h,其热电动势的最大变化为96.6μV(2.6℃)。
在1250℃下经过1000h后仍未超差。
2、在250~550℃范围内短期热循环稳定性不好,即使在同一温度点上,在升降温过程中其热电动势值也不一样,其差值可达2~5℃。
3、K型热电偶的负极,在150~200℃范围内要发生磁性转变,致使在室温至230℃范围内,分度值往往偏离分度表,尤其在磁场中使用时,常出现与时间无关的热电动势干扰。
热电偶基础知识介绍
从实验到理论:热电效应
1821年,德国物理学家赛贝克用两种不同金属组成闭
合回路,并用酒精灯加热其中一个接触点(称为结 点),发现放在回路中的指南针发生偏转(说明什 么?),如果用两盏酒精灯对两个结点同时加热,指 南针的偏转角反而减小(又说明什么?)。
显然,指南针的偏转说明回路中有电动势产生并有电
3/22/2019 第四章 非电量的电测技术 18
(一)补偿导线法
采用相对廉价的补偿导线,可延长热电偶的冷端,使
之远离高温区;可节约大量贵金属;易弯曲,便于敷 设。 所谓补偿导线:实际上是一对材料化学成分不同的导 线,在0~100℃温度范围内与配接的热电偶有一致 的热电特性,但价格相对要便宜。若利用补偿导线, 将热电偶的冷端延伸到温度恒定的场所(如仪表室), 其实质是相当于将热电极延长。
1)热电势的大小仅与材料的性质及其两端点的温度
有关,而与热电偶的形状、大小无关。 烧断的热电偶可重新焊接,用于测温。
2)如果构成热电偶的两个热电极为材料相同的均质
导体,则无论两结点温度如何,热电偶回路内的总热 电势为零——均质导体定律 必须采用两种不同的材料作为热电极。
k t N At E AB (t , t0 ) ln dT 0 e t 0 N At
热电偶回路中总的热电势应是接触电势与温差电势之
和。
EA(t,t0)
A(+)
,
t EAB(t)
B(-)
t0 EAB(t0)
EB(t,t0) t>t0,NA>NB
EAB(t,t0)=EAB(t) +EB(t,t0) -EAB(t0)-EA(t,t0)
经实践证明,在热电偶中起主要作用的是接触电动势,温差 电动势只占极小部分。可以忽略不计: t
热电偶基础知识介绍
A
+
T
自 由 B电 子 2020/7/9
eAB(T)
EAB (t)
kt e
ln
NAt NBt
k:波尔兹曼常数;
e:单位电荷电量;
NAT 、 NBT : 温 度 为 T 时 , 导 体 A 、 B 的自由电子密度。
5
(二)温差电动势
温度的影响
温度标志着物质内 部大量分子无规则 运动的剧烈程度。 温度越高,表示物 体内部分子热运动 越剧烈。
EA(t,t0)=UAt-UAt0
EA (t, t0 ) U At
U At0
k e
t
t0
1 N At
d (N At ,t) dT dt
考虑:如果同一导体各点温度相同,即t=t0,则回路总电
动势必为零?
2020/7/9
7
(• 三热电)偶回热路中电总的偶热回电势路应是的接触热电势电与势温差电势之和。
t EAB(t)
EA(, t,t0)
A(+)
B(-)
t0 EAB(t0)
EB(t,t0)
t>t0,NA>NB
EAB(t,t0)=EAB(t) +EB(t,t0) -EAB(t0)-EA(t,t0)
经实践证明,在热电偶中起主要作用的是接触电动势,温差
电动势只占极小部分。可以忽略不计:
EAB(t,t0)= EAB(t)-EAB(t0)
2. 对于已选定的热电偶, 当参考端温度t0恒定时, EAB(t0)为常数,则总
的热电动E势AB就(t只,tE与0)A温=BE度A(Bt(t,t成t)0-单)C=值φ函f((tt数)) 关- f系(t,0 )即
2020/7/9
热电偶和热电阻相关知识点
热电偶和热电阻相关知识点在日常工作当中经常遇到使用温度测量仪表,热电阻与热电偶同为温度测量仪表,同一个测温地点我们如何选择热电阻还是选择热电偶?一、热电偶的结构热电偶前端接合的形状有3种类型,如下图所示。
可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。
在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。
套管一般分为保护管型和铠装型。
带保护管的热电偶是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。
保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。
保护管有多种类型,常用的如下表所示。
二、铠装型热电偶铠装热电偶的测量原理与带保护管的热电偶相同。
它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。
由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。
此外,与带保护管的热电偶相比,其反应速度更为灵敏。
铠装热电偶的套管外径范围较广,可以拉长加工为8.0mmф到0.5mmф的各种尺寸。
芯线拉伸得越细,常用温度上限越低。
如K型热电偶,套管外径0.5mmф的常用温度上限是600℃,8.0mmф的是1050℃。
热电阻的结构如下图所示,热电阻的元件形状有3种,目前陶瓷封装型占主导地位。
陶瓷封装型用于带保护管的热电阻以及铠装热电阻。
陶瓷与玻璃封装型的铂线裸线直径为几十微米左右,云母板型的约为0.05mm。
引线则使用比元件线粗很多的铂合金线。
三、热电阻元件的种类带保护管的热电阻图例铠装热电阻区别:1.虽然都是接触式测温仪表,但它们的测温范围不同。
热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小(查表可以看一下),当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。
热电偶培训ppt课件
热电偶在能源行业中的应用主要包括在燃气轮机、锅炉、核反应堆等高温设备 中监测温度,以及在太阳能和风能发电系统中监测环境温度和设备温度,确保 设备的稳定运行和能源的高效利用。
热电偶在化工行业的应用
总结词
热电偶在化工行业中用于监测化学反应过程中的温度变化, 保证产品质量和生产安全。
详细描述
在化工行业中,热电偶被广泛应用于各种化学反应装置中, 如合成炉、裂化炉、保证产品质量和生产安全。
热电偶培训PPT课件
目录 CONTENT
• 热电偶基础知识 • 热电偶在工业中的应用 • 热电偶的安装与维护 • 热电偶的发展趋势与未来展望 • 实践操作与案例分析
01
热电偶基础知识
热电偶工作原理
01
热电偶工作原理基于塞贝克效应 ,即两种不同导体组成的闭合回 路中,当两个接触点处于不同温 度时,回路中将产生电动势。
03
热电偶的安装与维护
热电偶的安装方法与注意事项
安装位置选择
选择能准确反映被测物体温度 的位置,避免安装在温度梯度 大、流动剧烈、振动较大的地
方。
安装方式
根据被测物体的形状和大小, 选择合适的安装方式,如固定 支架、活动连接等。
热电偶插入深度
确保热电偶插入足够的深度, 以减少温度梯度对测量的影响 。
经验总结
分享实际应用中的经验教 训,提高热电偶应用水平 。
热电偶与其他温度传感器的比较分析
比较内容
选择依据
热电偶、热电阻、红外线温度传感器 等不同类型温度传感器的性能特点。
根据实际需求和测量环境,选择合适 的温度传感器类型。
优缺点分析
分析各种温度传感器的优点和缺点, 适用场合和局限性。
热电偶在新能源领域的应用前景
马弗炉中的热电偶有 型、 型等等不同规格 以下是有关热电偶的小知识
马弗炉中的热电偶有K型、S型、R型等等不同规格,以下是有关热电偶的小知识。
热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:1. 测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
2. 测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
3. 构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应该注意以下基本概念:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这热电偶的热电势仅是工作端温度的单值函数。
常用热电偶丝材及其性能:1、铂铑10-铂热电偶(S型,也称为单铂铑热电偶)Orton使用的就是这种热电偶该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂;它的特点是:热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;精度高,它是在所有热电偶中,准确度等级最高的,通常用作标准或测量较高的温度;使用范围较广,均匀性及互换性好;主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。
热电偶知识收集整理
热电偶知识收集整理第一章热电偶的基础知识1、什么是热电偶所谓热电偶是指由两种不同材质的金属导体构成的温度传感器。
与其他温度计(水银温度计、热敏电阻等)相比较,主要用于工业行业的热电偶具有其特点:①响应速度快。
②可进行-200C到+1700C之间大范围的温度测量。
③可对特定点和小空间进行温度测量。
④由于温度信息可检测为电信号(热电动势),信息的处理和分析非常便利。
⑤价格低廉,易购买。
2、热电偶的原理1821年德国科学家塞贝克(T.J Seebeck发现:当连接两种不同金属,并对两端的接点施加不同温度时,金属之间会产生电压并有电流通过。
这一现象以发现者的名字命名为“塞贝克效应”。
该回路中生成电流的电力被称为热电动势(Thermoelectromotive force),其极性和大小仅由两种导体的材质和两端之间的温度差决定。
塞贝克效应利用前面所说的塞贝克效应,热电偶工作原理为其凭借2 种不同金属的接合处(测温接点)T1与热电偶显示仪表接点(基准接点)T0之间的温度差T,从而产生电压。
使用热电偶测量温度时,显示仪表会测量该电压。
热电偶工作原理热电偶显示仪表的测量方式有以下2种。
2、测量基准接点的气温(基准接点补偿),计入温度差△ T o1、将基准接点设为0C(冷端补偿),直接读取温度。
2、测量基准接点的气温(基准接点补偿),计入温度差△ T o热电偶显示仪表的测量方式测量时,将冷端维持在0C非常困难。
通过测量端子周围的温度,将其与以0C为基准的热电动势相加,可以获得测温接点的温度。
我们称之为基准接点补偿。
3、热电偶的感温部分位于何处?下图是将热电偶插入装有热液体的杯中的示意图。
假设液体内温度为均匀100 C (无温度梯度)。
此时,液体内的热电偶部分不会产生热电动势。
热电动势只产生于存在温度梯度的部分。
由于热电偶的感温部位会产生热电动势,因此该温度梯度部位即为热电偶的感温部位。
热电偶的感温部分位置示意图”丽快星第二章热电偶的选择1、根据测量温度选择热电偶按照两种金属导体的组合方式可分为以下8大种类。
热电偶温度计基础知识
热电偶温度计1、热电偶测温的基本原理在两种不同的导体或半导体A 和B 组成的闭合回路中,如果它们的两个接点的温度不同,则在回路中会产生电流,如图1所示。
这时回路中存在一个电动势,称其为热电动势,也常被称为塞贝克电动势或塞贝克效应。
热电动势由接触电动势和温差电动势组成。
图1 塞贝克效应示意图1)接触电动势接触电动势是在两种不同的导体A 和B 接触处产生的一种热电势。
由于A 、B 两种不同导体含有不同的电子密度N 、N ,当它们接触时,接触处就会发生自由电子的扩散。
假设N >N ,则在单位时间内,由导体A 扩散到导体B 的电子数比导体B 扩散到导体A 的多,导体A 失去电子带正电,导体B 得到电子带负电;因此,在A 、B 导体的接触面上便形成从A 到B 的静电场,如图2所示。
这个静电场会阻碍电子扩散作用的继续进行,在某一温度下,自由电子扩散能力与静电场的阻力达到动态平衡,此时在接触处形成的电动势称为接触电势。
图2 接触电势原理图2)温差电动势温差电动势是在同一根导体中因两端的温度不同而产生的热电动势。
若导体两端A 、B 的温度分别为T 和T ,且T>T ,自由电子会从高温端扩散到低温端,结果高温端因失去电子而带正电,低温端因得到电子而带负电;因此,在同一导体的两端便产生电位差。
这个电位差将阻止电子从高温端向低A B A B 00温端继续扩散,最后达到相对的动态平衡状态,即从高温端扩散到低温端的电子数等于从低温端扩散到高温端的电子数。
此时,在导体的两端便产生一个电位差,这个电位差被称作温差电势,如图3所示。
图3 温差电势原理图关于热电偶闭合回路的热电动势,有以下几个结论:a. 热电偶回路热电势的大小只与组成热电偶的材料及两端温度有关,它与热电偶的长度、粗细无关;b. 只有用不同性质的导体或半导体才能组合成热电偶;c. 只有当热电偶两端温度不同时才能有热电势产生;d. 当热电偶材料确定后,热电势的大小只与热电偶两端的温度有关。
晶圆热电偶-概述说明以及解释
晶圆热电偶-概述说明以及解释1.引言1.1 概述热电偶是一种常用的温度传感器,用于测量物体的温度。
它利用热电效应原理,通过测量两个不同金属接点之间的温差产生的电势差来确定温度。
晶圆热电偶则是一种基于晶圆制备技术的热电偶,具有制备工艺简便、性能稳定等优点。
热电效应是指在两个不同金属或半导体接触的接点处,由于温度差异而产生的电势差。
根据热电效应的类型不同,热电偶可以分为热电势型和热电流型。
热电偶的原理是基于热电效应产生的电势差与温度之间的线性关系,利用这种关系来测量温度。
晶圆热电偶的制备方法主要包括选择合适的金属材料、精确控制制备工艺、对晶圆进行特殊处理等步骤。
通常情况下,选择高温稳定性好、热电效应显著的金属材料作为制备晶圆热电偶的材料。
制备过程中,需要控制金属材料的成分和厚度,并在晶圆表面形成保护层,以确保晶圆热电偶的稳定性和精度。
晶圆热电偶的应用领域广泛,包括但不限于电力、冶金、石油化工、航天航空等领域。
晶圆热电偶可以用于各种温度测量场合,如高温窑炉、炼钢过程中的温度监测、石油化工装置中的温度控制等。
由于晶圆热电偶具有制备工艺简便、性能稳定等特点,因此在实际应用中得到了广泛的应用。
对于晶圆热电偶的性能评估,主要包括测量精度、响应时间、稳定性、抗干扰能力等指标的评价。
测量精度是指晶圆热电偶测量结果与真实温度之间的偏差,响应时间是指晶圆热电偶从温度变化到测量结果发生变化的时间,稳定性是指晶圆热电偶在长时间使用过程中的性能变化情况,抗干扰能力是指晶圆热电偶对外界电磁干扰的抗干扰能力。
综上所述,晶圆热电偶是一种基于晶圆制备技术的温度传感器,具有制备工艺简便、性能稳定等优点。
它的原理是利用热电效应产生的电势差与温度之间的线性关系来测量温度。
在实际应用中,晶圆热电偶被广泛应用于电力、冶金、石油化工、航天航空等领域的温度测量和控制。
对于晶圆热电偶的性能评估,需要考虑测量精度、响应时间、稳定性和抗干扰能力等指标。
仪表知识大全(热电偶)
热电偶(C)”号长期短期S16001600Γ柏钝30粕然60.5YOO1800K锲硅N镁铭畦镁羟__________ 215 ____________ 110012003.2 ___ 120013001・2550650 E懈桐镁 2 __________ 650750_32 ______________J50然0桐镁桐堞S型热电偶知识S型热电偶(粕铐Io-柏热电偶)粕铐104白热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.02mm,其正极(SP)的名义化学成分为铀铐合金,其中含铐为10%,含钠为90%,负极(SN)为纯粕,故俗称单粕铐热电偶。
该热电偶长期最高使用温度为130(ΓC,短期最高使用温度为1600o C o粕铐Io-粕热电偶优点是准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,〃ITS-90〃虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
热电偶补偿导线详解1结构及定义热电偶补偿导线简称补偿导线,通常由补偿导线合金丝、绝缘层、护套、屏蔽层组成。
在一定温度范围内(包括常温)、具有与所匹配的热电偶的热电动势的标称值相同的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。
热电偶与测量装置之间使用补偿导线,其优点有二:L改善热电偶测温线路的物理性能和机械性能,采用多股线芯或小直径补偿导线可提高线路的挠性,是接线方便,也可调节线路电阻或屏蔽外界干扰;2.降低测量线路成本,当热电偶与测量装置距离很远,使用补偿导线可以节省大量的热电偶材料,特别是使用贵金属热电偶时,经济效益更为明显。
铜康铜热电偶工作原理
铜康铜热电偶工作原理今天咱们来唠唠铜 - 康铜热电偶这个超有趣的小玩意儿的工作原理。
你看啊,热电偶这东西呢,就像是一个小小的温度侦探。
铜 - 康铜热电偶呢,就是由铜和康铜这两种材料组成的。
这就好比是两个性格不同但又配合默契的小伙伴。
咱们先说说这两种材料的特性。
铜呢,是咱们生活里很常见的一种金属,导电性好,而且对温度也挺敏感的。
康铜呢,它是一种铜镍合金,它也有自己独特的脾气。
当这两种材料放在一起的时候,就像是一场奇妙的组合。
想象一下,在一个有温度变化的环境里。
当这个环境的温度升高或者降低的时候,铜和康铜内部的电子就像是一群调皮的小粒子,开始变得不安分起来。
你知道吗,不同的材料,它们的电子活跃程度对温度的反应是不一样的。
就像每个人对冷热的感受不同一样。
对于铜 - 康铜热电偶来说,由于温度的变化,铜和康铜之间就会产生一个小小的电势差。
这个电势差就像是它们之间的一个秘密信号。
温度变了,这个信号的大小也跟着变。
这就好像是这对小伙伴之间有一种特殊的语言,温度就是那个指挥它们说话的指挥官。
打个比方啊,就像你和你的好朋友有一个只有你们俩才懂的暗号。
温度一变化,铜和康铜之间的电势差这个暗号就跟着变了。
这个电势差是怎么来的呢?其实就是因为温度改变了两种材料内部电子的分布情况。
温度高的地方,电子就更活跃,就想往电子不那么活跃的地方跑。
这样一跑,就产生了电势差。
那这个电势差有啥用呢?这可就太有用啦!我们可以用专门的仪器去测量这个电势差。
就像有个翻译器,能把铜和康铜之间的这个秘密信号翻译成我们能看懂的温度数值。
这样,我们就知道周围环境的温度是多少啦。
比如说在一个大工厂里,有很多的设备,这些设备的温度很重要。
如果温度太高或者太低,设备可能就会出问题。
这时候,铜 - 康铜热电偶就像一个个小小的温度卫士,悄悄地待在设备旁边,感受着温度的变化,然后通过产生的电势差告诉我们设备是冷了还是热了。
再说说在科学研究里吧。
科学家们研究一些化学反应或者物理现象的时候,温度是个很关键的因素。
端面热电偶
端面热电偶
产品简介:
端面热电偶是一种温度测量设备,广泛应用于工业自动化过程控制和温度监测领域。
该热电偶由两个不同金属导体组成,通过测量两个导体之间的温差来确定环境或物体的温度。
端面热电偶具有高精度、快速响应以及更大的测量范围等优势,因此被广泛应用于各个行业。
产品特点:
1. 高精度测量:采用优质金属导体和先进技术,确保高精度和稳定的温度测量。
2. 快速响应:独特的热电效应使得热电偶具有非常快速的温度响应能力。
3. 宽波动范围:能够在宽波动范围内准确测量温度,适应各种恶劣环境。
4. 耐高温:具有优良的耐高温性能,适用于高温环境下的温度测量。
5. 方便安装:端面热电偶采用标准的接线方式和连接接口,易于安装和集成。
应用领域:
端面热电偶广泛应用于以下领域:
- 能源工业:用于发电厂、核能站、石油化工等领域的温度监测和控制。
- 金属冶炼:用于铁矿石、铝矿石等冶炼过程的温度测量。
- 制药工业:用于药物生产、灭菌过程的温度控制。
- 燃气工业:用于燃气管道、燃气设备等的温度监测和安全控制。
- 食品加工:用于食品加工过程中的温度监控,确保产品质量和安全。
备注:为了保护知识产权和商业机密,本产品介绍中所述的名称和引用为虚构,仅用于描述功能和应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电偶科技名词定义中文名称:热电偶英文名称:thermocouple定义1:基于泽贝克效应在电路中产生电动势的一对不同材料的导电体。
所属学科:电力(一级学科);电测与计量(二级学科)定义2:一端结合在一起的一对不同材料的导体,并应用其热电效应实现温度测量的敏感元件。
所属学科:机械工程(一级学科);仪器仪表元件(二级学科);仪器仪表机械元件-敏感元件(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片热电偶是温度测量仪表中常用的测温元件,是由两种不同成分的导体两端接合成回路时,当两接合点热电偶温度不同时,就会在回路内产生热电流。
如果热电偶的工作端与参比端存有温差时,显示仪表将会指示出热电偶产生的热电势所对应的温度值。
热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关,与热电极的长度、直径无关。
各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表,记录仪表和电子调节器配套使用。
目录展开编辑本段概述热电偶是一种感温元件,是一种仪表。
它直接测量温度,并把温度信号转热电偶换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。
热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。
铠装热电偶热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。
若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。
在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。
附:热电偶冷端补偿计算方法:从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度。
从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度编辑本段常见问题对于热电偶的热电势,应注意如下几个问题:装配热电偶1:热电偶的热电势是热电偶工作端与冷端两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
编辑本段工作原理两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就热电偶是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;热电偶3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
编辑本段特点◆装配简单,更换方便◆压簧式感温元件,抗震性能好◆测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃)◆ 机械强度高,耐压性能好◆ 耐高温可达2800度编辑本段种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
编辑本段热电偶结构热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结热电偶构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
编辑本段常用热电偶材料热电偶分度号热电极材料使用温度范围(℃)热电偶正极负极S 铂铑合金(铑含量10 %)纯铂 0-1400R 铂铑合金(铑含量13 %)纯铂 0-1400B 铂铑合金(铑含量30%)铂铑合金(铑含量6% ) 0-1400K 镍铬镍硅 -200-+1000T 纯铜铜镍 -200-+300J 铁铜镍 -200-+600从理论上讲,任何两种不同导体(或半导体)都可以配制成热电热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。
热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。
具有防溅式接线盒的热电偶,当相对温度为93±3℃时,绝缘电阻≥0.5兆欧(电压100V)高温下的绝缘电阻,热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。
编辑本段热电偶的基本定律1,均质导体定律由同一种均质材料(导体或半导体)两端焊接组成闭合回路,无论导体截面如何以及温度如何分布,将不产生接触电势,温差电势相抵消,回路中总电势为零。
可见,热电偶必须由两种不同的均质导体或半导体构成。
若热电极材料不均匀,由于温度梯存在,将会产生附加热电势。
2,中间导体定律在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。
应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。
有人担心用铜导线连接热电偶冷端到仪表读取mV值,在导线与热电偶连接处产生的接触电势会使测量产生附加误差。
根据这个定律,是没有这个误差的!3,中间温度定律热电偶回路两接点(温度为T、T0)间的热电势,等于热电偶在温度为T、Tn时的热电势与在温度为Tn、T0时的热电势的代数和。
Tn称中间温度。
应用:由于热电偶E-T之间通常呈非线性关系,当冷端温度不为0℃时,不能利用已知回路实际热电势E(t,t0)直接查表求取热端温度值;也不能利用已知回路实际热电势E(t,t0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律进行修正。
初学者经常不按中间温度定律热点偶原理图来修正!4,参考电极定律这个定律是专业人士才研究、关注的,一般生产、使用环节的人士不太了解,简单说明就是:用高纯度铂丝做标准电极,假设镍铬-镍硅热电偶的正负极分别和标准电极配对,他们的值相加是等于这支镍铬-镍硅的值。
编辑本段热电偶的安装要求对热电偶与热电阻的安装,应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下几点:1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻.2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米;(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;(3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插入深度1 m即可.(4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.编辑本段热电偶的正确使用正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。
安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。
1、安装不当引入的误差如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。