无锡市惠山区2018-2019学年七年级上学期期末考试数学试卷

合集下载

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2018·无锡) 下列等式正确的是()A . ()2=3B . =﹣3C . =3D . (﹣)2=﹣32. (1分) (2019七上·达孜期末) 下列各组量中,互为相反意义的量是()A . 收入200元与赢利200元B . 上升10米与下降7米C . “黑色”与“白色”D . “你比我高3cm”与“我比你重3kg”3. (1分) (2019七上·达孜期末) 为举办广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是()A . 元B . 元C . 元D . 元4. (1分) (2019七上·达孜期末) 绝对值是5的数是()A . ﹣5B . 5C . ±5D .5. (1分) (2019七上·达孜期末) -3的相反数是()A . -3B . -C .D . 36. (1分) (2019七上·达孜期末) 下列运算中,结果正确的是().A . 4+=B .C .D .7. (1分) (2019七上·达孜期末) 下列不是一元一次方程的()A . 5x+3=3x﹣7B . 1+2x=3C .D . x﹣7=08. (1分)下列说法正确的是()A . 过一点P只能作一条直线B . 直线AB和直线BA表示同一条直线C . 射线AB和射线BA表示同一条射线D . 射线a比直线b短9. (1分) (2019七上·达孜期末) 如果α与β互为余角,则()A . α+β=180°B . α﹣β=180°C . α﹣β=90°D . α+β=90°10. (1分) (2019七上·达孜期末) 下面的说法错误的个数有()①单项式 mn的次数是3次;② 表示负数;③1是单项式;④ 是多项式A . 1B . 2C . 3D . 411. (1分) (2019七上·达孜期末) 平方等于4的数是()A . 2B . -2C . ±2D . 以上都不对12. (1分)如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A . 2cmB . 3cmC . 4cmD . 6cm二、填空题 (共7题;共7分)13. (1分) (2019七上·绍兴期中) 代数式的书写有一些规范,比如教材上指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“·”或者省略不写”其实还有一些书写规范,比如,在代数式中如果出现“÷”,通常用分数线“——”来取代;数字与字母相乘时,一般数字写在前面.根据以上书写要求,将代数式(ac×4-b2)÷(4a)简写成________14. (1分)已知|a|=7,|b|=3,且a+b>0,则a=________.15. (1分) (2019七上·达孜期末) ________。

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案
解得: m 22 ----------------------------------------------------------------------9 分 7
CED BCM 90 (已知) ∴ CED ACN (同角的余角相等)-----------8 分
∴AC∥DE(内错角相等,两直线平行)-----------9 分 ∵AC⊥BF(已知)
A
B
M
C
E
N
∴∠ACB=90°(垂直定义)---------------------10 分 又∵AC∥DE(已证)
解得:x=4,-----------------------------------------------------------------------------------------12 分
∴点 P 运动 4 秒时,追上点 Q.------------------------------------------------------------ 13 分
三、解答题
17. 解:原式= 4 1 ( 3) --------------------------------------4 分(绝对值计算 2 分,其他 1 分) 6
=2
------------------------------------------6 分
18. 解法一:原式= 2x 2 y 3x 3y 3x 3y 2x 2 y ---4 分(评分点:每去一个括号正确得 1 分)
2018-2019 学年第一学期七年级期末质量检测 数学试卷参考答案与评分说明
一.选择题(每小题 4 分,共 40 分)
题号
1
2
3
4
5
6

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。

2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷(解析版)
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
16.【答案】-3a+1
【解析】
解:根据数轴上点的位置得:0<a<3,
∴a-3<0,a+1>0,
则原式=3-a-2a-2=-3a+1,
故答案为:-3a+1.
根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.
(1)求∠AOE的度数;
(2)若OF平分∠B5.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.
(1)求购进甲、乙两种款式的服装每件的价格各是多少元?
本题主要考查的是无理数的定义,熟练掌握无理数的常见类型是解题的关键.
4.【答案】B
【解析】
解:将x=-1代入2x-5=x+m,
∴-2-5=-1+m
∴m=-6
故选:B.
根据一元一次方程的解的定义即可求出答案.
本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.
5.【答案】C
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.【答案】-7
【解析】
解:当a2-3b=4时,
原式=1-2(a2-3b)
=1-2×4
=1-8
=-7,
故答案为:-7.
将a2-3b=4整体代入原式=1-2(a2-3b)计算可得.
(2)求三角形ABC的面积.
23.如图,是由8个大小相同的小正方体组合成的简单几何体.

2018—2019学年度第一学期7年级数学期末试题(含答案)

2018—2019学年度第一学期7年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作A. -6℃B. -3℃C. 0℃ D .+3℃ 2.下列各组数中,互为相反数的是A .2和-2B .2和12C .2和12-D .12和-2 3.三个数a ,b ,c 在数轴上的位置如图所示,下列结论不正确的是A. a +b <0B. b +c <0C. b -a >0 D .c -a >0 4.下列说法正确的是A. 23xy -的系数是-2B. 2ab π-的系数是-1,次数是4(第3题图)C. 2x y +是多项式D.31x xy --的常数项是15.下列式子中,互为同类项的是A.2xy -与2y xB.2218x y 与229x y +C. a +b 与a -bD.32a b -与33ab 6.下列方程中是一元一次方程的是A.213x y -=B. 756(1)x x +=-C.21(1)12x x +-=D.12x x-= 7.关于x 的方程(3)10k x --=的解是x =﹣1,那么k 的值是A. k =2B. k =3C. k =-4 D .k =-28.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则永辉超市出售这两台空调会A.不赔不赚B.亏20元C.赚20元D.赚90元9.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是A. 三棱锥B.球C. 圆柱 D 圆锥 10.观察图形,下列说法正确的个数是(1)直线BA 和直线AB 是同一条直线(2)射线AC 和射线AD 是同一条射线(3)AB +BD >AD(4)三条直线两两相交时,一定有三个交点A.1个B. 2个C. 3个D. 4个11.如图,O 为我国南海某人造海岛,某商船在A 的位置,∠1=40°,下列说法正确的是A.商船在海岛的北偏西50°方向B.商船在海岛的北偏西140°方向C.商船在海岛的东偏南40°方向D.商船在海岛的南偏东40°方向 12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中正确的是①90°-∠β; ②∠α-90°; ③180°-∠α; ④12(∠α﹣∠β). A. ①②③④ B. ①②③C. ①②④ D .①②(第10题图)(第11题图)第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.有理数-0.2的倒数是 .14.若一个有理数的绝对值是18,则这个数是 . 15.水星和太阳之间的距离约为57900000km ,这个数用科学记数法表示为 km .16.一个多项式加上-x 2-3x 得5x 2-4x -3,则这个多项式为 .17.李强在解方程5623x x -=时,他是这样做的:同桌张明对李强说:“你做错了,第一步应该去分母”,但李强认为自己没有做错.你认为李强做 (填“对”或“错”)了,他第一步变形的依据是 .18.一张桌子由一张桌面和四条桌腿拼装而成,若做一张桌面需要木材0.03m 3,做一条桌腿需要木材0.002m 3.现在做一批桌子恰好用去木材19m 3,求这批桌子有多少张?如果设这批桌子有x 张,那么根据题意,列得方程为 .19.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔4米栽1棵,则树苗缺21棵;如果每隔5米栽1棵,则树苗正好用完.则原有树苗 棵.20.如图,O 是线段AB 的中点,线段AB 上有一个点C 使得AC =8,CB =6,那么OC = .21.已知∠AOB =55°,∠BOC =25°,则∠AOC = .22.对于一组数:2,-4,8,-16,32,…;按它的排列规律,这组数的第2019个数是 .(第20题图)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)()()1321372142-+÷-; (2)()()231212*********-÷--⨯+⨯-. 24.(1)解方程:2151234x x +--=-; (2如果一个月累计通话t 分钟时两种计费方式所付话费一样,那么通话时间t 等于多少分钟?(列方程解题)25.(1)x 为何值时,代数式().3102x --的值比代数式.105x x +-的值大3? (2)如图,已知B ,C 两点把线段AD 从左至右依次分成2∶4∶3三部分,M 是AD 的中点,BM =5,求线段MC 的长.26.已知代数式22321A x xy y =++-,2332B x xy x =-+-. (1)当x =-1,y =2时,求代数式32A B -的值;(2)若代数式32A B -的值与x 的取值无关,求y 的值.27.已知A 车的平均速度为60km /h ,B 车的平均速度为A 车的1.5倍,若两车同时从甲地驶向乙地,则B 车比A 车提前45分钟到达乙地. (1)求甲乙两地间的路程是多少km ?(2)若A 车从甲地、B 车从乙地分别以各自的平均速度同时相向而行,问经过多少时间两车之间的路程相距15km ?28.如图,已知OD 是∠AOB 的平分线,∠AOC =2∠BOC .(1)∠AOB =120°,求∠COD 的度数; (2)若∠COD =36°,则∠AOB = °;(直接写出结果,不需要写出解答过程)(3)求∠BOC 与∠COD 的有怎样的数量关系?并说明理由.(第28题图) (第25题图)2018—2019学年第一学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.–5;14.18或18-;15.75.7910⨯; 16.263x x--;17.对;合并同类项18.0.03x+0.002×4x=19;19.85;20. 1;21.80°或30°;22.20192.三、解答题:(共74分)23.解:(1)原式=……………………………1分==﹣14+18﹣4 ………………………………4分=0.………………………………………5分(2)原式=﹣9÷3﹣(6﹣8)+ ×(﹣)…………………8分=﹣3+2﹣………………………………………9分=213-. ………………………………………10分24.(1)解:去分母,得﹣4(2x+1)=24﹣3(5x﹣1)………………1分去括号,得﹣8x﹣4=24﹣15x+3 …………………2分移项,得﹣8x+15x=24+3+4 …………………3分合并同类项,得7x=31 …………………4分系数化为1,得x=……………………5分(2)解:根据题意,得30+0.1t=0.3t………………………9分解得 t =150 ……………………11分答:当t 等于150分钟时,两种方式所付话费是一样的. …12分25. 解:(1)由题意,得 3(1)130.20.5x x x -+-=-+ ……………………1分 去分母,得 15(1)2(1)x x x --=+-+……………………2分 去括号,得 ﹣15x +15=2x +2﹣x +3 ……………………3分移项,得 ﹣15x -2x +x =2+3-15 ……………………4分合并同类项,得 1610x -=- ………………………5分系数化为1,得 x =58……………………6分 (2)由题意设AB =2k ,BC =4k ,CD =3k ,则AD =9k , …………………………7分 ∵M 是AD 中点,∴AM =4.5k , …………………………9分 ∴BM =AM ﹣AB =2.5k =5, …………………………10分 ∴k =2, …………………………11分∴CM =DN ﹣CD =4.5k ﹣3k =1.5k =3.…………………………12分 26. 解:(1)3A ﹣2B =()232321x xy y ++-()23232x xy x --+- ……………1分 =6x 2+9xy +6y ﹣3﹣6x 2+2xy ﹣2x +3 ………………………5分=11xy +6y ﹣2x …………………………6分 当x =﹣1,y =2时,3A ﹣2B =11xy +6y ﹣2x=11×(﹣1)×2+6×2﹣2×(﹣1) ……………7分=﹣8; …………………………………8分(2)由(1)可知3A ﹣2B =11xy +6y ﹣2x =(11y ﹣2)x +2y ……………………10分若3A ﹣2B 的值与x 的取值无关,则11y ﹣2=0,…………12分 解得 211y = . ………………………………13分 27.(1)解:设甲乙两地间的路程是xkm ,则456060 1.560x x -=⨯ …………………………………3分 解得 x =135. …………………………………5分 答:甲乙两地间的路程是135 km ;…………………………………6分(2)解:设经过th 两车相距15km ,根据题意,需要分两种情况①当相遇前两车相距15km 时,60t +1.5×60t +15=135,…………………………………8分 解得t =; …………………………………9分 ②当相遇后两车相距15km 时,60t +1.5×60t ﹣15=135,………………………………11分 解得t =1. ………………………………12分 答:经过h 或1h 两车相距15km .………………………………13分28. 解:(1)∵∠AOB =120°,∠AOC =2∠BOC ,∴∠BOC =∠AOB =40°, ………………………………2分 ∵OD 平分∠AOB ,∴∠BOD =∠AOB =60°, ………………………………4分 ∴∠COD =60°﹣40°=20°;………………………………5分(2)∠AOB = 216 °;…………………7分(3)∠BOC =2∠COD ;…………………9分理由如下:∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,……………………………10分∵OD平分∠AOB,∴∠BOD=∠AOB=∠BOC,……………………………12分∴∠COD=∠BOD﹣∠BOC………………………………13分=∠BOC﹣∠BOC=∠BOC,即∠BOC=2∠COD.…………………………………14分。

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。

2018-2019学年度七年级上数学期末试题(含答案)

2018-2019学年度七年级上数学期末试题(含答案)

(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·江南期中) 如图是一个计算程序,若输入a的值为﹣1,则输出的结果应为()A . 7B . ﹣5C . 1D . 52. (2分)下列运算正确的是()A . a2•a3=a6B . ()﹣1=﹣2C . |﹣6|=6D . =±43. (2分) (2016七上·罗田期中) 数轴上的点M对应的数是﹣2,点N与点M距离4个单位长度,此时点N 表示的数是()A . ﹣6B . 2C . ﹣6或2D . 都不正确4. (2分)(2017·贵港模拟) 国家体育馆“鸟巢”的建筑面积达25.8万平方米,请将“25.8万”用科学记数法表示,结果是()A . 25.8×104B . 25.8×105C . 2.58×104D . 2.58×1055. (2分)下列关于多项式5ab2﹣2a2bc﹣1的说法中,正确的是()A . 它是三次三项式B . 它是四次两项式C . 它的最高次项是﹣2a2bcD . 它的常数项是16. (2分) (2017七上·东湖期中) 下列各组单项式中,是同类项的是()A . xyz与 xyB . 与2xC . ﹣0.5x2y3与3x3y2D . 6m2n与﹣2nm27. (2分) (2019七下·北京期中) 已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()A . 110°B . 70°C . 55°D . 35°8. (2分) (2019七上·东源期中) 如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .9. (2分)(2018·定兴模拟) 中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A .B .C .D .10. (2分) (2020八上·长兴期末) 如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A . 8B . 10C .D . 12二、填空题 (共5题;共5分)11. (1分) (2019七上·鄞州期中) 已知数轴上点A表示的数是,若点B到A的距离为3,则点B表示的数为________.12. (1分) (2018七上·兴隆台期末) 某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是________元.13. (1分) (2015七上·郯城期末) 如果一个角的度数为31°42′,那么它的补角的度数为________°.14. (1分)据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是________.15. (1分)时钟的分针1小时转________度,时针1小时转________ 度;时钟的分针1•分钟转________度,时针1分钟转________ 度.三、解答题 (共8题;共62分)16. (10分) (2017七上·娄星期末) 计算①﹣32+1﹣(﹣2)3②(﹣5)2÷[2 ﹣(﹣1+2 )]×0.4.17. (5分) (2020七上·德江期末) 先化简,再求值:,其中,18. (5分)解方程:(1) 3x+7=32-2x(2)19. (15分) (2019七上·伊通期末)(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.20. (5分) (2017七下·简阳期中) 从甲地到乙地的长途汽车原行驶7小时,开通高速公路后,路程减少了30千米,而车速平均每小时增加了30千米,只需4小时即可到达.求甲、乙两地之间高速公路的路程?21. (5分) (2019七上·双城期末) 如图,D是线段AC的中点,E是线段AB的中点.已知AB=10,BC=3,求线段AD和DE的长度.22. (11分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B 种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.23. (6分) (2019七上·金平期末) 如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC是否互补?说明理由;(2)射线OF是∠BOC的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共62分)16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。

2018﹣2019学年第一学期七年级数学期末试卷

2018﹣2019学年第一学期七年级数学期末试卷

2018﹣2019学年第一学期七年级期 末 数 学 试 卷(本卷共4页,三大题,共24小题;满分100分,考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡的相应位置上,答在本试卷一律无效. 学校________________ 班级______________ 姓名________________ 座号________一、选择题(共10小题,每题2分,满分20分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. 小明家的冰箱冷藏室温度是7℃,冷冻室的温度是-15℃,则他家的冰箱冷藏室比冷冻室温度高 A. 8 ℃ B. 22 ℃ C. -8 ℃ D. -22 ℃2. 下列化简过程,正确的是 A .xy y x 633=+ B .2x x x =+ C .36922-=+-y yD .06622=+-x y xy3. 从正面看第3题图,得到的图形是↗(从正面看) A. B.C.D.(第3题)4. 下列式子中去括号错误..的是 A .()525525x x y z x x y z --+=-+-B .()()2223322332a a b c d a a b c d +----=---+C .()22336336x x x x -+=--D .()()222222x y x yx y xy ---+=-+--5. 用一副三角尺,不能画出的角是A. 15° 角B. 75° 角C. 100° 角D. 135° 角6. 如果3221y x a +与1232--b y x 是同类项,那么b a ,的值分别是A. ⎩⎨⎧==21b aB. ⎩⎨⎧==20b aC. ⎩⎨⎧-==12b aD. ⎩⎨⎧==11b a7. 下列方程的变形中正确..的是 A. 由x +5=6x -7得x -6x =7-5B. 由-2(x -1)=3得-2x -2=3C. 由13.03=-x 得 1033010=-xD. 由323921--=-x x 得2x = 6.8. 点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是 A . AC = BCB. AC + BC = ABC. AB = 2ACD. BC =21AB 9. 在数轴上点A 表示数-3,如果把原点O 向负方向移动1个单位,那么此时点A 表示的数是A. -4 B . -3 C. -2 D. -110. 将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1” 中峰顶的位置(C 的位置)是有理数4,那么,“峰5”中C 的位置是有理数 ,2017应排在A 、E 中 的位置.其中两个填空依次为 A .24 , A B .﹣24, A C .25, E D .﹣25, E二、填空题(共6小题,每题2分,满分12分;请将正确答案填在答题卡相应位置) 11. 用四舍五入法取近似数,则8.6549≈_____(精确到百分位).12. 计算:90º-65º 14' 15" =_____.13. 如图,A 是直线BC 外一点,可知AB +AC > BC , 解释这种现象,是根据公理:_________________.14. 若x = 4是方程42=-a x 的解,则a =____ .15. 已知轮船在静水中的速度为 (a +b ) 千米/时,逆流速度 为 (2a -b ) 千米/时,则顺流速度为_____千米/时.16. 如图,F 是直线AE 上一点,∠AFC =90º ,点B 在∠AFC 内部运动,点B 、C 、D 均在AE 同侧,∠BFD =90º ,则图中互补的角有______对.三.解答题(满分68分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.(8分) 计算 (1) 8.35332.612525-+-+ (2) 201722)1()2(2-+-÷-18. (6分)先化简,后求值:y y x x x 2)]2(3)4(2[(2-+-+- 其中2,2=-=y x4 -5-32-16-9 10 8 -7-11C D B AE……峰1峰2峰n(第16题)(第13题) AB C BAEFCD(第10题)19. (8分) 解方程421312+-=-x x . 20. (8分)如图,已知平面上的三个点A 、B 、C ,请根据下列语句画图:(1)画线段AB ,线段AC ,直线BC ;(2)画线段AB 的中点M ,线段AC 的中点N ; (3)画∠ABC 的平分线BD ;(4)延长线段MN ,交BD 于点E .21.(8分) 如图 ,A 、B 、C 三点共线,点M 是AC 的中点,点N 是BC 的中点,AB =8,AM =5,求CN 长.22. (10分) ( 1 ) 阅读下面材料:点A 、B 在数轴上分别表示实数a 、b , A 、B 两点之间的距离表示为AB . 若a ≥ b ,则 | a -b | = a -b ;若a < b ,则 | a -b | = b -a . 当A 、B 两点中有一点在原点时, 不妨设点A 在原点, 如图甲, AB = OB =∣b ∣=∣a - b ∣; 当A 、B 两点都不在原点时,① 如图乙, 点A 、B 都在原点的右边,AB = OB - OA = | b | - | a | = b - a = | a -b |;② 如图丙, 点A 、B 都在原点的左边,AB = OB - OA = | b | - | a | = - b - (-a ) = | a -b | ;③ 如图丁, 点A 、B 在原点的两边AB = OA + OB = | a | + | b | = a + (-b ) = | a -b |.综上所述, 数轴上A 、B 两点之间的距离AB =∣a - b ∣. ( 2 ) 回答下列问题:① 数轴上表示1和3的两点之间的距离是______ , 数轴上表示1和-3的两点之间的距离是______ ;② 数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离表示为______ , 如果AB =2,那么x =________ ;③ 当代数式∣x +1∣+∣x -3∣取最小值时, 相应的x 的取值范围是_________.MNCABb 0 O (A ) B 图甲baO 0 B A 图乙 O a b 0 B A图丙 aO b A B 0图丁 (第20题) (第21题)(第22题)23. (10分) 某超市开展促销活动,出售A 、B 两种商品,活动方式有如下两种:方式一A B 单价(单位:元)100 110 折数七折八五折方式二若购买超过101件(A 、B 两种商品可累计),则打八折优惠(同一种商品不可同时参与两种活动) (1)某单位购买A 商品30件,B 商品90件,选用何种活动方式更划算?能便宜多少钱? (2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多2件. 请问该单位该选用何种活动方式更划算?请说明理由.24. (10分) 如图,∠AOB =90°,∠BOC =30°,C 在∠AOB 外部,OM 平分∠AOC ,ON 平分∠BOC. 则∠MON = 度.(1)若∠AOB =α,其他条件不变,则∠MON = 度. (2)若∠BOC =β(β为锐角),其他条件不变,则∠MON = 度. (3)若∠AOB =α且∠BOC =β(β为锐角),求∠MON 的度数(请在图2中画出示意图并解答).B ACMNO图1BCO备用图图2BCO(第24题)。

2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷一、选择题:(本大题共有10小题,每小题3份,共30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1.(3分)﹣3的相反数是()A.3B.C.﹣3D.﹣2.(3分)下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y3.(3分)下列各数:3.14,﹣2,0.1010010001…,0,﹣π,,0.,其中无理数有()A.1个B.2个C.3个D.4个4.(3分)已知x=﹣1是方程2x﹣5=x+m的解,则m的值是()A.6B.﹣6C.﹣8D.﹣55.(3分)有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.|a|>|b|C.a﹣b<0D.ab>06.(3分)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行7.(3分)一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A.0.8x+28=(1+50%)x B.0.8x﹣28=(1+50%)xC.x+28=0.8×(1+50%)x D.x﹣28=0.8×(1+50%)x8.(3分)如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()A.20°B.30°C.40°D.50°9.(3分)把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民10.(3分)如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2018次相遇在()A.点A B.点B C.点C D.点D二、填空题:(本大题共8小题,每小题2分,共16分,不需要写出解答过程,只需把答案直接填写答题卡上相应的位置)11.(2分)单项式﹣x3y的系数是.12.(2分)若代数式2a m b4与﹣5a2b n+1是同类项,则m n=.13.(2分)若∠α=54°12',则∠α的补角是°(结果化为度)14.(2分)据报道,2016年我市城镇非私营单位就业人员平均工资超过70500元,将数70500用科学记数法表示为.15.(2分)若a2﹣3b=4,则1﹣2a2+6b=.16.(2分)如图,数轴上点A表示的数为a,化简:|a﹣3|﹣2|a+1|=.(用含a的代数式表示)17.(2分)如图,若输入的x的值为正整数,输出的结果为144,则满足条件的x的值为.18.(2分)如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有.三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算:(1)()×(﹣24);(2)﹣12019+(﹣2)2+|1﹣22|.20.(6分)解方程:(1)3(2﹣x)=4﹣x;(2)﹣1=.21.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.22.(6分)在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.已知三角形ABC的三个顶点都在格点上.(1)按下列要求画图:过点B和一格点D画AC的平行线BD,过点C和一格点E画BC的垂线CE,并在图中标出格点D和E;(2)求三角形ABC的面积.23.(6分)如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.24.(6分)如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.25.(6分)某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.(1)求购进甲、乙两种款式的服装每件的价格各是多少元?(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.26.(12分)如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB =5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为4cm/s,点Q的速度为3cm/s,设运动时间为x秒.①当x=秒时,PQ=1cm;②若点M从点O以7cm/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?2018-2019学年江苏省无锡市惠山区七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3份,共30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.2.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.3.【解答】解:在所列的实数中,无理数有0.1010010001…,﹣π这2个,故选:B.4.【解答】解:将x=﹣1代入2x﹣5=x+m,∴﹣2﹣5=﹣1+m∴m=﹣6故选:B.5.【解答】解:由数轴知:﹣1<a<0,1<b<2,|a|<|b|,所以选项B不正确;因为a<0,b>0,|a|<|b|,所以a+b>0,ab<0,故选项A、D不正确;由于小数减大数的差小于0,大数减小数的差大于0,因为a<b,所以a﹣b<0.故选项C正确.故选:C.6.【解答】解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、过直线外一点P,都能画一条直线与已知直线平行,错误;故选:D.7.【解答】解:设成本是x元,可列方程为:x+28=0.8×(1+50%)x.故选:C.8.【解答】解:∵将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,∴∠OGC=∠OGC′=100°,∴∠OGD=180°﹣∠OGC=80°,∴∠DGC'=∠OGC′﹣∠OGD=20°,故选:A.9.【解答】解:由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选:A.10.【解答】解:设两只电子蚂蚁每隔x秒相遇一次,根据题意得:(+)x=1×4,解得:x=2.∵电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,∴它们第1次相遇在B点,第2次相遇在C点,第3次相遇在D点,第4次相遇在A点,第5次相遇在B点,第6次相遇在C点,….又∵2018÷4=504……2,∴第2018次相遇和第2次相遇地点相同,即第2018次相遇在点C.故选:C.二、填空题:(本大题共8小题,每小题2分,共16分,不需要写出解答过程,只需把答案直接填写答题卡上相应的位置)11.【解答】解:单项式﹣x3y的系数是﹣1.故答案为:﹣1.12.【解答】解:由题意可知:m=2,4=n+1∴m=2,n=3,∴m n=23=8,故答案为:813.【解答】解:这个角的补角是:180°﹣54°12′=125°48′=125.8°.故答案125.814.【解答】解:将数70500用科学记数法表示为7.05×104,故答案为:7.05×104.15.【解答】解:当a2﹣3b=4时,原式=1﹣2(a2﹣3b)=1﹣2×4=1﹣8=﹣7,故答案为:﹣7.16.【解答】解:根据数轴上点的位置得:0<a<3,∴a﹣3<0,a+1>0,则原式=3﹣a﹣2a﹣2=﹣3a+1,故答案为:﹣3a+1.17.【解答】解:第一个数就是直接输出其结果的:5x﹣1=144,解得:x=29,第二个数是(5x﹣1)×5﹣1=144解得:x=6;第三个数是:5[5(5x﹣1)﹣1]﹣1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x﹣1)﹣1]﹣1}﹣1=144,解得:x=(不合题意舍去)∴满足条件所有x的值是29或6.故答案为:6或29.18.【解答】解:∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°,∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF,∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC,∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④;故答案为:①④.三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)()×(﹣24)=(﹣6)+20+(﹣16)=﹣2;(2)﹣12019+(﹣2)2+|1﹣22|=﹣1+4×+|1﹣4|=﹣1+5+3=7.20.【解答】解:(1)去括号得,6﹣3x=4﹣x,合并同类项得,﹣2x=﹣2,系数化为1得,x=1;(2)去分母得,3(x+1)﹣6=2(3x﹣2),合并同类项得,﹣3x=﹣1,系数化为1得,x=.21.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.22.【解答】解:(1)如图所示,点BD和EC即为所求.(2)S△ABC=3×3﹣×2×3﹣×1×3﹣×1×2=.23.【解答】解:(1)如图所示:;(2)添加后可得如图所示的几何体:,左视图分别是:.24.【解答】解:(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC =5x,∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线;理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°,∵OF平分∠BOE,∴∠BOF=75°,∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠COF的角平分线.25.【解答】解:(1)设购进乙种款式的服装每件的价格是x元,由题意得:30(x+10)=35x﹣100,解得:x=80,则x+10=90,答:购进乙种款式的服装每件的价格是80元,购进,甲种款式的服装每件的价格是90元;(2)设购进甲款服装a件数,由题意得:第11页(共13页)a+3a=80,解得:a=20,3a=3×20=60,(20+40)×120+20×120×0.8﹣20×90﹣60×80=2520(元),答:这批服装全部售完获得的利润是2520元.26.【解答】解:(1)如图,∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm,∵点C是线段AB的中点,∴AC =AB=7.5cm,∴CO=OA﹣AC=10﹣7.5=2.5cm.(2)①AP=4x,AQ=15+3x,由题意,得15+3x﹣4x=1或4x﹣(15+3x)=1,解得x=14或x=16,故答案为:14或x=16.②由题意,得PM=10+7x﹣4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)﹣7mx=(21﹣7m)x+55,当21﹣7m=0时,4PM+3OQ﹣mOM为定值,此时m=3,∴存在m=3,使得4PM+3OQ﹣mOM为定值,定值55(3)当OC与OD第一次重合时,OC、OD同时停止旋转,OC与OD 第一次重合时所用的时间:=90秒,在这期间,当射线OC⊥OD,则有6t﹣2t=90或270,解得t=22.5秒或t=67.5秒,∴当t=22.5秒或t=67.5秒时,射线OC⊥OD.第12页(共13页)第13页(共13页)。

江苏省无锡市惠山区七年级数学上学期期末考试试题

江苏省无锡市惠山区七年级数学上学期期末考试试题

七年级数学期终考试卷同学们,通过一学期的学习,你一定掌握了许多数学知识与方法.现在就请你展开思维的翅膀,细心完成本试卷.要坚信:细心的体验、深入的思考和独特的思维,永远是最有价值的!一、精心选一选:(本大题共10小题,每小题2分,共20分)1、某种药品说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适.A .18℃~20℃ B.20℃~22℃ C.18℃~21℃ D.18℃~22℃2、初二物理教科书中给出了几种物质的密度,其中符合科学记数法.....的是( ) A .水银 13.6×103kg/m 3B .铁 7.8×103kg/m 3C .金 19.3×103kg/m 3D .煤油0.8×103kg/m 33、下列算式中,运算结果为负数..的是 ( ) A .-(-2) B .2- C .-22D .(-2) 24、下列计算正确..的是( ) A .32xy yx xy -= B .235=-y y C .277a a a =+ D.ab b a 523=+ 5、右图表示一个由相同小立方块搭成的几何体的俯视图...,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图...为( )6、 已知有理数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .|m|<1B .n >1C .mn <0D .m -n >07、下列图形中由∠1=∠2能得到AB ∥CD 的是( )8、已知∠AOB =80°,以O 为顶点,QB 为一边作∠BOC =20°,则∠AOC 的度数为( ) A .100° B. 60° C .80°或20° D.100°或60°A CB D1 2 A CB D12 A .B . 12 A CBDC . B DCA D .121-10 n m9、下列说法中,正确..的是 ( ) A .过一点有且只有一条直线与已知直线平行 B .相等的角是对顶角C .过一点有且只有一条直线与已知直线垂直D .不相交的两条直线叫做平行线 10、找出以下图形变化的规律,则第2013个图形中黑色..正方形的数量是 ( )(1) (2) (3) (4) (5) A .3017 B .3018 C .3019 D .3020 二、细心填一填:(本大题共10小题,每空2分,共22分)11、平方等于9的数是 , 绝对值等于5的数是 .12、 如果关于x 的方程2x+1=3和方程032=--x k 的解相同,那么k =_________.13、如果一个角的度数是70°28′,则这个角的余角..度数..为___ __. 14、有下列三个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时只要定出两棵树的位置,就能确定同一行所在的直线;③把弯曲的公路改直能缩短路程.其中可用“两点之间,线段最短”来解释的现象有 (填序号). 15、如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积.为24, 则x -2y = .16、如图,在长方形ABCD 中,AB =6cm ,BC =10cm ,若此长方形以2cm/s 的速度沿着A →D方向移动,经过 秒平移后的长方形与原来长方形重叠部分的面积为24 cm 2. 17、已知x -2y +2=0,则代数式(2y -x )2-2x +4y -5的值为 .18、已知线段AB =12cm ,点C 是线段AB 上任意一点,M 、N 分别是AC 、BC 的中点,则线段MN = cm .19、在钟面上10点30分时的时针和分针所成的角等于__________度. 20、如图,该多面体一共有60个顶点,则该多面体的棱一共有 条.(第15题)(第16题)(第20题)AD(D)(A) (B) BC(C)……三、耐心解一解(解答需写出必要的文字说明、演算步骤) 21、计算或化简(每小题3分,共9分)(1)()2432÷--- (2)()18)913261(-⨯+- (3)化简:()()213a a ---22、(本题满分6分)先化简,后求值:(1)化简:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b );(2)当(a -1)2+3+b =0时,求上式的值.23、解方程:(每小题3分,共6分)(1)()x x -=-234 (2)132221=--+x x24、(本题满分5分)如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写画法,下同); (2)过点A 画直线BC 的垂线,并注明垂足..为G ; 过点A 画直线AB 的垂线,交BC 于点H .(3)线段 的长度是点A 到直线BC 的距离, (4)因为直线外一点到直线上各点连接的所有线中垂线段最短,所以线段AG 、AH 的大小..关系为AG AH .25、(本题满分6分)某商场用27000元购进A 、B 两种新型节能台灯共600盏,这两种台灯的进价、标价如下表.(1)这两种台灯各购进多少盏?(2)若A 型台灯按标价的9折出售,B 型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?价格\类型 A 型B 型进价(元/盏) 35 65 标价(元/盏)5010026、(本题满分4分)如图,线段AB =6,在直线..AB 上取一点P ,恰好使2 PBAP,点Q 为PB 的中点,求线段AQ 的长.27、(本题满分6分)如图,AB ∥CD ,EF 交AB 于G ,交CD 于H ,PH 平分∠EHD ,交AB 于P ,∠AGE =500.解决下列问题: (1)∠DHF 的度数; (2)∠BPH 的度数.(1)根据题意完成填空(括号内填写理由):∵AB ∥CD (已知)∴∠EHC =∠AGE ( ) ∵∠AGE =500(已知) ∴∠EHC =500 ∵∠______=∠_______( ) ∴∠DHF =50(2)请你完成第2题的解答过程:P GE DCAHF BBA28、(本题满分6分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,中间最小的正方形A的边长是1米,设图中最大正方形B的边长是x米.(1)填空:正方形F的边长是,正方形E的边长是,正方形C的边长是(用含..x.的代数式表示......)(2)观察图形特点可知长方形相对的两边是相等的(如图中MN=PQ).请根据这个等量关系,求出x的值.29、(本题满分10分)如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,则∠DC E= ;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE(其中∠B=45°)不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD(其中∠D=30°)绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°﹤α﹤90°)①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.②当这两块三角尺各有一条边互相垂直时直接写出α的所有可能值.七年级数学期终考试答案一、精心选一选:(本大题共10小题,每小题2分,共20分)1、D2、B3、C4、A5、C6、C7、B8、D9、C 10、D二、细心填一填:(本大题共10小题,每小题2分,共22分)11、±3 ;±5 12、7 13、19°32′ 14、③ 15、0 16、3 17、3 18、6 19、135° 20、90 (备注:有两个答案的,对一个得1分)三、耐心解一解(解答需写出必要的文字说明、演算步骤) 21、计算:(1)()2432÷---= -9-(-2)………………2分= -7 ………………3分 (2)()18)913261(-⨯+-= -3 +12-2 ………………2分 = 7 ………………3分 (3)()()213a a ---=223a a --+………………2分 = 1a + ………………3分 22、(本题6分)先化简,后求值:(1)化简:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b );解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b ………………1分=-ab 2 ………………3分(2)当(a -1)2+3+b =0时,求上式的值.由题意得: 1=a ,b =-3, ………………5分 原式=()9312-=-⨯- ………………6分 23、解方程:(1) ()x x -=-234463-=+-x x ………………1分22=x ………………2分1x = ……………3分(2) 132221=--+x x3(x +1) -2(2-2x )=6 ………………1分3x +3-4+4x =6 ………………2分 x =1 ………………3分24、(1)画对……1分 (2)画对……3分 (3)AG ……4分 (4) <……5分 25、(1)设A 型台灯购进x 盏.由题意列出方程:35x +65(600-x )=27000 ………………1分x =400 ………………2分600-x=200 ………………3分(2)列出算式:(50×90%-35)×400+(100×80%-65)×200………………5分 =7000 ………………6分答:略26、AQ=5……………2分 或9 ……………2分27、(1)两直线平行,同位角相等 …………1分∠DHF =∠EHC ………………2分 对顶角相等 ………………3分 (2)由角平分线得到∠DHP =65° ………5分由AB ∥CD 得到∠BPH =115° ………6分28、(1)正方形F 的边长x -1(1分),E 的边长x -2 (1分),C 的边长x -3 (1分) (2)根据题意,得:()1232-+=-+-x x x x ………5分 7=x ………6分 29、(1)145° (1分) 40°(1分) (2)∠ACB+∠DCE=180°或互补(1分) 说理(2分)(3)列关于α的方程(1分) 求出α=54°(2分) (4)α=30°,45°,75°(每个结果1分,共3分)PGE DCAHF。

七年级上期末数学试卷(含解析)

七年级上期末数学试卷(含解析)

2018-2019学年江苏省无锡市长安中学七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣52.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab23.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.4.下图中,是正方体的展开图是( )A.B.C.D.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥06.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7 D.87.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.48.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数__________.10.单项式的系数是__________.11.太阳半径大约是696 000千米,用科学记数法表示为__________米.12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为__________元.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=__________.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有__________块15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=__________.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于__________.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系__________.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=__________.4100×0.25100=__________.②通过上述验证,归纳得出:(a•b)n=__________;(abc)n=__________.③请应用上述性质计算:(﹣0.125)2013×22012×42012.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=__________.(2)若MN=a,BC=b,用a、b表示线段AD.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有__________;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据__________,可得∠BOC=__________度;(3)∠EOF=∠AOD,求∠EOF的度数.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?2014-2015学年江苏省无锡市长安中学七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣5的倒数是﹣,故选:B.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2考点:合并同类项.分析:根据同类项的定义及合并同类项的方法进行判断即可.解答:解:A、6a+a=7a≠6a2,错误;B、﹣2a与5b不是同类项,不能合并,错误;C、4m2n与2mn2不是同类项,不能合并;D、3ab2﹣5ab2=﹣2ab2,正确.故选:D.点评:本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.3.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=2代入方程2x﹣3m﹣1=0即可求出m的值.解答:解:∵x=2是关于x的方程2x﹣3m﹣1=0的解,∴2×2﹣3m﹣1=0,解得:m=1.故选C.点评:此题考查的知识点是一元一次方程的解,本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.下图中,是正方体的展开图是( )A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A、多了一个面,不可以拼成一个正方体;B、可以拼成一个正方体;C、不符合正方体的展开图,不可以拼成一个正方体;D、不符合正方体的展开图,不可以拼成一个正方体.故选B.点评:解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥0考点:绝对值.专题:计算题.分析:根据绝对值的意义由|﹣a|=﹣a得到﹣a≥0,然后解不等式即可.解答:解:∵|﹣a|=﹣a,∴﹣a≥0,∴a≤0.故选B.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.6.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7D.8考点:一元二次方程的应用.专题:规律型.分析:这是个规律性题目,关键是找到不在同一直线上的n个点,可以确定多少条直线这个规律,当有n个点时,就有,从而可得出n的值.解答:解:设有n个点时,=21n=7或n=﹣6(舍去).故选C.点评:本题是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入21可求出解.7.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.4考点:代数式求值.专题:整体思想.分析:由x2﹣2x﹣3=0得,x2﹣2x=3,所以代入2x2﹣4x﹣5=2(x2﹣2x)﹣5即可求得它的值.解答:解:∵x2﹣2x﹣3=0,∴x2﹣2x=3,又知:2x2﹣4x﹣5=2(x2﹣2x)﹣5=2×3﹣5=1.故本题选A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣2x的值,然后利用“整体代入法”求代数式的值.8.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数﹣.考点:有理数大小比较.专题:开放型.分析:根据有理数的大小比较法则和负分数的意义找出即可.解答:解:大于﹣4的负分数有﹣,﹣3等;故答案为:﹣.点评:本题考查了负分数和有理数的大小比较,注意:两个负数比较大小,其绝对值大的反而小.10.单项式的系数是﹣.考点:单项式.分析:根据单项式系数的定义进行解答即可.解答:解:∵单项式的数字因数是﹣∴此单项式的系数是﹣.故答案为:﹣.点评:本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.11.太阳半径大约是696 000千米,用科学记数法表示为6.96×108米.考点:科学记数法—表示较大的数.专题:应用题.分析:先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:696 000千米=696 000 000米=6.96×108米.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为28元.考点:一元一次方程的应用.专题:销售问题.分析:设标价是x元.则0.9x=21×(1+20%),解方程即可.解答:解:设标价是x元,列方程得0.9x=21×(1+20%),解得x=28.故填28.点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=17°.考点:翻折变换(折叠问题).分析:先由折叠的性质可知△ADE≌△AFE,故∠DAE=∠EAF,再由∠BAD=90°即可解答.解答:解:∵△AEF是△AED沿直线AE折叠而成,∴△ADE≌△AFE,∴∠DAE=∠EAF,∵∠BAF=56°,∠BAD=90°,∴∠DAF=90°﹣∠BAF=90°﹣56°=34°,∴∠DAE=∠DAF=×34°=17°.故答案为:17°.点评:本题考查的是图形的翻折变换,熟知图形折叠的性质是解答此题的关键.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有4块考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有4个正方体.故答案为4.点评:此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=90°.考点:余角和补角.分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解答:解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故答案为:90°.点评:此题考查了余角和补角的知识,掌握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于11.考点:有理数的加法.专题:计算题.分析:根据每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,确定出x与y的值,即可求出x+y的值.解答:解:根据题意得到x前面的数字为9,后面的数字为2,则有9+x+2=20,即x=9,表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算除法运算及绝对值运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣15+6+5=﹣15+11=﹣4;(2)原式=﹣8××+1.8+=﹣8+2.6=﹣5.4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).考点:解一元一次方程.专题:计算题.分析:(1)注意移项要变号;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)6x﹣3﹣2+2x=0整理得:8x=5∴x=;(2)去分母得:3y﹣18=﹣5+2﹣2y整理得:5y=15∴y=3.点评:主要考查了一元一次方程的解法,解题的关键是要掌握去括号,移项的方法.注意括号前是负号,去掉括号后各项要变号,移项要变号.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=4xy﹣x2﹣5xy+y2+x2+3xy﹣2y2=2xy﹣y2,当x=﹣,y=时,原式=﹣﹣=﹣.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系相等.考点:作图-平移变换.分析:(1)根据题意画出△A1B1C1即可;(2)由图形平移的性质即可得出结论.解答:解:(1)如图所示;(2)∵△A1B1C1由△ABC平移而成,∴AB=A1B1.故答案为:相等.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=1.4100×0.25100=1.②通过上述验证,归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.③请应用上述性质计算:(﹣0.125)2013×22012×42012.考点:有理数的乘方.专题:阅读型.分析:①先算括号内的,再算乘方,先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.解答:解:①:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为:a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2012×22012×42012×(﹣0.125)=(﹣0.125×2×4)2012×(﹣0.125)=(﹣1)2012×(﹣0.125)=1×(﹣0.125)=﹣0.125.点评:本题考查了同底数幂的乘法,再根据积的乘方,有理数乘方的定义的应用,主要考查学生的计算能力.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=13.(2)若MN=a,BC=b,用a、b表示线段AD.考点:两点间的距离.专题:计算题.分析:(1)由已知M是AB的中点,N是CD的中点,可求出AB和CD,从而求出AD;(2)由已知M是AB的中点,N是CD的中点,推出AM=MB=AB,CN=ND=CD,则推出AB+CD=2a﹣2b,从而得出答案.解答:解:(1)∵M是AB的中点,N是CD的中点,∴AB=2MB=6,CD=2CN=5,∴AD=AB+BC+CD=6+2+5=13,故答案为:13;(2)∵M是AB的中点,N是CD的中点,∴AM=MB=AB,CN=ND=CD,∵MN=MB+BC+CN=a,∴MB+CN=MN﹣BC=a﹣b,∴AB+CD=2MB+2CN=2(a﹣b),∴AD=AB+BC+CD=2a﹣2b+b=2a﹣b.点评:此题考查的知识点是两点间的距离,关键是根据线段的中点及各线段间的关系求解.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;(3)∠EOF=∠AOD,求∠EOF的度数.考点:对顶角、邻补角;余角和补角.分析:(1)根据余角的定义、性质,可得答案;(2)根据对顶角的性质,可得答案;(3)根据余角的性质,可得∠EOF与∠BOD的关系,根据平角的定义,可得答案.解答:解:(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;故答案为:∠EOF,∠AOC,∠BOD;对顶角相等,140;(3)∵∠EOF+AOF=90°,∠AOC+∠AOF=90°,∴∠EOF=∠AOC=∠BOD.∵∠AOD+∠BOD=180°,∠EOF=∠AOD∴5∠EOF+∠BOD=180°,即6∠EOF=180°,∠EOF=30°.点评:本题考查了对顶角、邻补角,利用了余角的性质,对顶角的性质,邻补角的性质.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?考点:一元一次方程的应用.分析:设A工程队一共做的天数为x天,根据工作总量为“1”列出方程并解答.解答:解:设A工程队一共做的天数为x天,则由题意得:x+(x﹣6)=1,解得:x=12答:A工程队一共做的天数为12天.点评:本题考查了一元一次方程的应用,解答本题的关键是表示出两工程队的工作效率,根据工作总量为单位1,建立方程.25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?考点:一元一次方程的应用.专题:应用题.分析:(1)设甲旅行团的人数为x人,那么乙旅行团的人为(x+4)人,由于两团人数之和恰等于两团人数之差的18倍,即:两数之和为:4×18=72,以两数之和为等量关系列出方程求解;(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,根据等量关系:甲乙所花门票相等可以列出方程,求解即可.解答:解:(1)设甲旅行团的人数为x人,那么乙旅行团的人为x+4人,由题意得:x+x+4=4×18解得:x=34,∴x+4=38答:甲、乙两个旅行团的人数各是34人,38人.(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,所以甲团成人有(34﹣m)人,乙团成人有(38﹣3m+2)人.根据题意列方程得:100(34﹣m)+m×100×60%=100(38﹣3m+2)+(3m﹣2)×100×60%,解得:m=6.∴3m﹣2=16.答:甲团儿童人数为6人,乙团儿童人数为16人.点评:本题考查了一元一次方程的运用,解决本类问题一般都是找到等量关系列方程求解即可.属于基本的题型.26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?考点:一元一次方程的应用;数轴.分析:(1)根据点B对应的数为1,AB=6,BC=2,得出点A对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)根据动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,表示出移动的距离,即可得出对应的数;(3)分两种情况讨论:当点P与点Q在原点两侧时和当点P与点Q在同侧时,根据OP=OQ,分别列出方程,求出t的值即可.解答:解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.点评:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,在计算时(3)要注意分两种情况进行讨论.。

江苏无锡惠山区18-19学度初一上年末考试试题-数学

江苏无锡惠山区18-19学度初一上年末考试试题-数学

江苏无锡惠山区18-19学度初一上年末考试试题-数学【一】填空题:〔本大题共有15小题,1-9每空1分,10-15每空2分,合计28分,〕 1、-3的相反数是________,绝对值是。

2、计算或化简:(1)|−7|+5=_____.(2)(−2)÷12=_________. (3)−x −x −x =_________.(4)2(a −1)−a =___________. 3、写出一个与y x 221-是同类项的代数式:.4、单项式4a 723b -的系数是,次数是。

5、假设方程04323=+-n x 是一元一次方程,那么_____=n 、方程的解为。

6、36°18′=___________°、7、点A 表示数轴上的一个点,将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,那么点A 表示的数是8、平面上有A 、B 、C 三点,过其中的每两点画直线,最多可画条直线,最少能够画条直线。

9、如图:P 位于北偏东45°方向,那么Q 位于O 的方向上.(第9题)(第11题)(第12题)10、一个棱柱共有12个顶点,所有的侧棱长的和是120cm ,那么每条侧棱长为cm. 11、如下图的阴影部分的面积 .12、如下图,线段AB =24cm ,C 是线段AB 上任意一点,M ,N 分别是AC ,BC 的中点,MN 的长为_____cm 、13、假设∠1+∠2=90°,∠2+∠3=90°,那么∠l=∠3、理由是、14、、当1-=x 时,代数式635-+-cx bx ax 的值为17,那么当1=x 时,那个代数式的值为。

15、爱因斯坦说过,提出一个问题比解决一个问题更重要、请你依照方程2x ×3+3x =27 设计一道应用题,要求问题情景内容与我们的日常生活、学习有关,不用解答。

【二】选择题〔本大题有10小题,每题2分,共20分.在每题所给出的四个选项中,只有一项为哪一项符合题意的.把所选项前的字母代号填在题后的括号内〕 1、一种面粉的质量标识为“25±0.25千克”,那么以下面粉中合格的有〔〕 A 、25.30千克B 、24.70千克C 、25.51千克D 、24.80千克 2、某超市进了一批商品,每件进价为a 元,假设要获利25%,那么每件商品的零售价应定为:〔〕A 、25%aB 、(1-25%)aC 、(1+25%)aD 、a1+25%3、温家宝总理有句名言:多么小的问题乘以13亿,都会变得特别大;多么大的经济总量,除以13亿都会变得特别小、将1300000000用科学记数法表示为〔〕 A 、1.3×109B 、1.3×108C 、13×108D 、1.394、在方程①322313=-;②2232x x x =--;③021=x ;④3132+=-y y ;⑤23=-y x ;⑥21=-+xx 中一元一次方程的个数为〔〕 A 、1个B 、2个C 、3个D 、4个5、平面展开图如下图,其中是三棱柱的是〔〕6、如右图,把弯曲的河道改直,能够缩短航程如此做的依照〔〕A 、两点之间,直线最短B 、两点确定一条线段C 、两点确定一条直线D 、两点之间,线段最短7、如图,通过直线a 外一点O 的4条直线中,与直线a 相交的直线至少有〔〕A 、4条B 、3条C 、2条D 、1条8、右图是一个正方体的展开图,每个面内都标注了字母,假如画F 在前面, 从左面看是B ,那么哪一面会在上面〔〕 A 、A 面B 、C 面C 、D 面D 、E 面9、观看表l ,查找规律、表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为〔〕 表1表2A 、20,25,24B 、25,20,24C 、18,25,24D 、20,30,2510、在15º、65º、75º、145º的角中,能用一副三角尺画出来的有〔〕 A 、1个B 、2个C 、3个D 、4个 【三】认真答一答:〔本大题共9小题,总分值45分〕 1、计算:〔每题3分,共6分〕 (1)6)2(5)1(22+-⨯--(2)()().12475.231181200-+-⨯⎪⎭⎫ ⎝⎛-+2、解方程:〔每题3分,共6分〕 〔1〕()x x =--125〔2〕163242=--+x xO P F EDC BA3、(此题4分)先化简,再求值:〔2〕)2(2)3(22222b a ab b a ab b a ---+-,其中2,1-=-=b a4(此题5分)、如图,过点P 画OB 的垂线,交OA 于点C;过点P 画OA 的垂线,垂足为H 。

惠山区七年级数学试卷答案

惠山区七年级数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.5B. √2C. -1/3D. 0答案:B解析:有理数包括整数和分数,而√2是一个无理数,因此不属于有理数。

2. 下列各数中,最大的是()A. -2B. -1/2C. 0D. 1/2答案:D解析:在负数中,绝对值越大,数值越小;在正数中,绝对值越大,数值越大。

因此,1/2是最大的。

3. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 2C. 4x + 5 = 0D. 5x - 6 = 10答案:C解析:方程4x + 5 = 0没有解,因为无论x取何值,方程两边都不可能相等。

4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 2/xC. y = x^2D. y = 3x - 4答案:B解析:反比例函数的一般形式是y = k/x,其中k为常数。

因此,y = 2/x是反比例函数。

5. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 三角形D. 圆形答案:D解析:在所有平面图形中,圆形的面积最大,其次是正方形、长方形和三角形。

二、填空题(每题5分,共25分)6. 3/4 - 1/2 = ____答案:1/4解析:分数相减,先通分,再相减。

3/4 - 1/2 = 6/8 - 4/8 = 2/8 = 1/4。

7. 如果a = -2,那么2a + 3的值是______答案:-1解析:将a的值代入方程,2a + 3 = 2(-2) + 3 = -4 + 3 = -1。

8. 下列数中,绝对值最小的是______答案:0解析:绝对值表示数与0的距离,0的绝对值是0,是所有数中绝对值最小的。

9. 一辆汽车从甲地出发,以每小时60公里的速度行驶,2小时后到达乙地。

那么甲地到乙地的距离是______答案:120公里解析:速度乘以时间等于路程,60公里/小时 2小时 = 120公里。

10. 下列图形中,对角线互相垂直的是______答案:菱形解析:菱形的对角线互相垂直,并且平分对角线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省无锡市惠山区2018-2019学年七年级上学期
期末考试数学试题
一、选择题
1.﹣3的相反数是()
A. 3
B.
C. ﹣3
D.
2.下列计算正确的是()
A. 3a+2b=5ab
B. 5y-3y=2
C. 7a+a=7a2
D. 3x2y-2yx2=x2y
3.下列各数:,其中无理数有()
A. 1个
B. 2个
C. 3个
D. 4个
4.已知是方程的解,则m的值是()
A. ﹣4
B. ﹣6
C. ﹣7
D. ﹣8
5.有理数,在数轴上对应点的位置如图所示,下列各式正确的是()
A. B. C. D.
6.下列说法错误的是()
A. 对顶角相等
B. 两点之间所有连线中,线段最短
C. 等角的补角相等
D. 过任意一点P,都能画一条直线与已知直线平行
7.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()
A. 0.8x+28=(1+50%)x
B. 0.8x﹣28=(1+50%)x
C. x+28=0.8×(1+50%)x
D. x﹣28=0.8×(1+50%)x
8.如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()
A. 20°
B. 25°
C. 30°
D. 40°
9.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()
A. 富
B. 强
C. 文
D. 民
10.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2018次相遇在()
A. 点A
B. 点B
C. 点C
D. 点D
二、填空题.
11.单项式﹣x3y的系数是_____.
12.若代数式2a m b4与-5a2b n+1是同类项,则=__________.
13.若∠α=54°12',则∠α的补角是_____________.
14.据报道,2018年我市城镇非私营单位就业人员年平均工资超过70500元,将数70500用科学计数法表示为_________________.
15.若a2﹣3b=4,则1﹣2a2+6b=____.
16.如图,数轴上点A表示的数为a,化简:|a﹣3|﹣2|a+1|=________.(用含a的代数式表示)
17.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的的值为_______.
18.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:
①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有___________.
三、解答题.
19.计算:
(1)
(2)
20.解方程:
(1)
(2)
21.先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.
22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.已知三角形ABC 的三个顶点都在格点上.
(1)按下列要求画图:过点B和一格点D画AC的平行线BD,过点C和一格点E画BC的垂线CE,并在图中标出格点D和E;
(2)求三角形ABC的面积.
23.如图,是由8个大小相同的小正方体组合成的简单几何体.
(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请在下列网格图中画出添加小正方体后所得几何体所有可能的左视图.
24.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;
(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.
25.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.
(1)求购进甲、乙两种款式的服装每件的价格各是多少元?
(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.
26.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.
(1)若点C是线段AB的中点,求线段CO的长.
(2)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,
①当x=__________秒时,PQ=1cm;
②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM
为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?。

相关文档
最新文档