2017年高考全国二卷文科数学试题

合集下载

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1。

答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2,3},{2,3,4}A B ==,则AB =A. {}123,4,,B. {}123,,C. {}234,,D 。

{}134,,2。

(1)(2)i i ++=A.1i -B. 13i +C 。

3i +D.33i +3。

函数()sin(2)3f x x π=+的最小正周期为A 。

4πB 。

2πC. π D 。

2π4. 设非零向量a ,b 满足+=-b b a a 则A 。

a ⊥bB. =b aC. a ∥bD 。

>b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. 2+∞(,) B 。

22(,) C 。

2(1,) D 。

12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63π C 。

42π D 。

36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩.则2z x y =+ 的最小值是 A. —15B.-9C. 1 D 98。

函数2()ln(28)f x x x =-- 的单调递增区间是A.(—∞,—2) B 。

(—∞,-1) C 。

(1, +∞) D. (4, +∞) 9。

甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B 。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合{1,2,3},{2,3,4}A B ==,则A B =UA. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是 A. -15B.-9C. 1 D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。

2017年高考文科数学全国Ⅱ卷及答案

2017年高考文科数学全国Ⅱ卷及答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=A BA. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i3.函数()f x =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π 4.设非零向量a,b 满足a+b =a-b 则A.a ⊥bB. a =bC.a ∥bD. a b >5.若a >1,则双曲线x y a=222-1的离心率的取值范围是 A. 2+∞(,) B. 22(,) C. 2(1,) D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体有一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.367.设x、y满足约束条件2+330233030x yx yy-≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y=+的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x=--的单调区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,学|科网根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A2 B3 C4 D511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A1 10B 1 5C3 10D 2 512.过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴上方),l为C的准线,点N 在l上,且MN⊥l,则M到直线NF的距离为A5B22C23D33二、填空题,本题共4小题,每小题5分,共20分13.函数f(x)=2cosx+sinx 的最大值为 .14.已知函数f(x)是定义在R 上的奇函数,当x ()-,0∈∞时,()322f x x x =+, 则()2f =15.长方体的长宽高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=三、解答题:共70分。

2017年高考全国Ⅱ文科数学试题及答案(word解析版)

2017年高考全国Ⅱ文科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(全国II )数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年全国Ⅱ,文1,5分】设集合{1,2,3},{2,3,4}A B ==,则A B = ( )(A ){}123,4,, (B ){}123,, (C ){}234,, (D ){}134,, 【答案】A【解析】由题意{1,2,3,4}A B = ,故选A .(2)【2017年全国Ⅱ,文2,5分】()()12i i ++=( )(A )1i - (B )13i + (C )3i + (D )33i + 【答案】B【解析】由题意()()1213i i i ++=+,故选B .(3)【2017年全国Ⅱ,文3,5分】函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )(A )4π (B )2π (C )π (D )2π【答案】C【解析】由题意22T ππ==,故选C . (4)【2017年全国Ⅱ,文4,5分】设非零向量a ,b 满足a b a b +=-则( )(A )a b ⊥ (B )a b = (C )//a b (D )a b > 【答案】A【解析】由||||a b a b +=- 平方得2222()2()()2()a ab b a ab b ++=-+ ,即0ab = ,则a b ⊥,故选A . (5)【2017年全国Ⅱ,文5,5分】若1a >,则双曲线2221x y a-=的离心率的取值范围是( )(A))∞ (B)) (C)(1 (D )()12,【答案】C【解析】由题意的22222221111,1,112,1c a e a e a a a a+===+>∴<+<∴<< C .(6)【2017年全国Ⅱ,文6,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A )90π (B )63π (C )42π (D )36π 【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B .(7)【2017年全国Ⅱ,文7,5分】设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值12315z =--=-,故选A .(8)【2017年全国Ⅱ,文8,5分】函数()2()ln 28f x x x =-- 的单调递增区间是( )(A )(),2-∞- (B )(),1-∞- (C )()1,+∞ (D )()4,+∞【答案】D【解析】函数有意义,则2280x x -->,解得2x <-或4x >,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为()4,+∞,故选D . (9)【2017年全国Ⅱ,文9,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )(A )乙可以知道两人的成绩 (B )丁可能知道两人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .(10)【2017年全国Ⅱ,文10,5分】执行右面的程序框图,如果输入的1a =-,则输出的S =( )(A )2 (B )3 (C )4 (D )5 【答案】B 【解析】阅读流程图,初始化数值1,1,0a k S =-==,循环结果执行如下:第一次:1,1,2S a k =-==;第二次:1,1,3S a k ==-=;第三次:2,1,4S a k =-==;第四次:2,1,5S a k ==-=; 第五次:3,1,6S a k =-==;第六次:3,1,7S a k ==-=;循环结束,输出3S =,故选B .(11)【2017年全国Ⅱ,文11,5分】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )(A )110 (B )15(C )310 (D )25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种,所以所求概率为102255=,故选D .(12)【2017年全国Ⅱ,文12,5分】过抛物线2:4C y x =的焦点F ,且斜C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) (A(B) (C) (D)【答案】C【解析】由题意):1MF y x -,与抛物线24y x =联立得231030x x -+=,解得113x =,23x =,所以(3,M , 因为M N l ⊥,所以(1,N -,因为()1,0F,所以):1NF y x =-,所以M 到NF 的距离为=C .二、填空题:本大题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,文13,5分】函数()=2cos sin f x x x +的最大值为______.【解析】()f x .(14)【2017年全国Ⅱ,文14,5分】已知函数()f x 是定义在R 上的奇函数,当x ()∈∞-,0时,()322f x x x =+,则()2f =__ ____.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=. (15)【2017年全国Ⅱ,文15,5分】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O的表面积为_______. 【答案】14π【解析】球的直径是长方体的对角线,所以2414R S R ππ==∴==. (16)【2017年全国Ⅱ,文16,5分】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =_______.【答案】3π 【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 三、解答题:共70分。

2017年全国高考文科数学试题及答案-全国卷2(最新整理)

2017年全国高考文科数学试题及答案-全国卷2(最新整理)
在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C1 的极坐标方程 为 cos 4 .
(1) M 为曲线 C1 上的动点,点 P 在线段 OM 上,且满足| OM | | OP | 16 ,求点 P 的轨迹 C2 的直角坐标
方程;
(2)设点
A
的极坐标为
(2,
16. ABC 的内角 A, B,C 的对边分别为 a,b, c ,若 2b cos B a cos C c cos A ,则 B
三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤,第 17 至 21 题为必考题,每个试题考生都
必须作答。第 22、23 题为选考题,考生根据要求作答。
又过点 P 存在唯一直线垂直于 OQ ,
所以过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .
(21)(12 分) 解:
(1) f (x) (1 2x x2 )ex
令 f (x) 0 得 x 1 2, x 1 2
当 x (, 1 2) 时, f (x) 0 ;
当 x (1 2, 1 2) 时, f (x) 0 ;
D. 3 3i
3.函数 f (x) sin(2x ) 的最小正周期为 3
A.4
B.2
C.
D.
2
4.设非零向量 a , b 满足 a+b = a-b 则
A. a ⊥ b
B. a = b
C. a ∥ b D. a b
5.若 a
1 ,则双曲线
x2 a2
y2
1的离心率的取值范围是
A.( 2,+)B.( 2,2) C.(1,2) D.(1,2)
B. 2 2

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1。

答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2。

回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2,3},{2,3,4}A B ==,则AB =A 。

{}123,4,,B 。

{}123,,C 。

{}234,,D 。

{}134,,2. (1)(2)i i ++=A 。

1i - B. 13i +C 。

3i +D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为A 。

4πB 。

2πC 。

πD 。

2π4。

设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB 。

=b aC. a ∥bD. >b a5。

若1a >,则双曲线2221x y a-=的离心率的取值范围是A 。

2∞(,) B. 2(,) C 。

2(1,) D 。

12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A 。

90π B. 63π C 。

42π D 。

36π7。

设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是 A. -15B.-9C 。

1D 98。

函数2()ln(28)f x x x =-- 的单调递增区间是A.(—∞,-2) B 。

(—∞,-1) C 。

(1, +∞) D. (4, +∞)9。

甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A 。

2017年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版)

2017年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版)

2017年普通高等学校招生全国统一考试(新课标Ⅱ卷)文 科 数 学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷(选择题)一、选择题:(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.设集合{}{}123234A B ==,,, ,,, 则=AB ( )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2.(1+i )(2+i )= ( )A.1-iB. 1+3iC. 3+iD. 3+3i3.函数()sin(2)3π=+f x x 的最小正周期为( )A.4πB.2πC. πD.2π4.设非零向量,a b ,满足+=-a b a b 则A .a ⊥bB. =a bC. a ∥bD. >a b5.若a >1,则双曲线2221-=x y a的离心率的取值范围是( )A. 2+∞(,)B. 22(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90πB. 63πC. 42πD. 36π2017年高考数学试题(文) 第2页【共8页】7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+ 的最小值是( )A. -15B. -9C. 1D. 98.函数2()ln(28)f x x x =-- 的单调递增区间是( )A. (-∞,-2)B. (-∞,-1)C. (1,+∞)D. (4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2 位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A. 乙可以知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a = -1,则输出的S = ( )A. 2B. 3C. 4D. 511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. 110B. 15C. 310D. 2512.过抛物线C :y 2 = 4x 的焦点FC 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.B.C.D. 第Ⅱ卷(非择题)二、填空题:(本题共4小题,每小题5分,共20分.)13.函数()2cos sin =+f x x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当(0),∈-∞x 时,32()=2+f x x x ,则(2)f = 15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A , B , C 的对边分别为a , b , c ,若2b cos B =a cos C +c cos A ,则B = 三、解答题:(共70分。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的、准考证号填写在本试卷和答题卡相应位置上。

2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答复非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:此题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.〔1+i 〕〔2+i 〕=-i B. 1+3i C. 3+i D.3+3i()fx =πsin (2x+)3的最小正周期为ππ C. π D.2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.假设>1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为π π ππx 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.411.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M 〔M 在x 轴上方〕,l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,此题共4小题,每题5分,共20分.()cos sin =2+f x x x 的最大值为 .()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的外表积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,假设2b cosB=a cosC+c cosA,则B= 三、解答题:共70分。

2017年高考真题全国2卷文科数学(附答案解析)

2017年高考真题全国2卷文科数学(附答案解析)

uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.

2017年高考数学(文科)全国2卷(精校版)

2017年高考数学(文科)全国2卷(精校版)

2017年高考数学(文科)全国2卷(精校版)一、选择题1.设集合{}1,2,3A =,{}2,3,4B =,则AB =( ) A.{}1,2,3,4 B.{}1,2,3 C.{}2,3,4D.{}1,3,4 2.()()12i i ++=( )A.1i -B.13i +C.3i +D.33i +3.函数()sin(2)3f x x π=+的最小正周期为( )A.4πB.2πC.πD.2π 4.设非零向量,a b 满足a b a b +=-,则( )A.a b ⊥B.a b =C.a b ∥D.a b > 5.若1a >,则双曲线2221x y a-=的离心率的取值范围是() A.)+∞ B.2)C. D.(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z xy =+的最小值为( )A.-15B.-9C.1D.9 8.函数()2ln(28)f x x x =--的单调增区间为( )A.(),2-∞-B.(),1-∞C.()1,+∞D.()4,+∞9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有2为优秀,2位良好,我现在给甲看乙、丙成绩,给乙看丙成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行如图所示程序框图,如果输入的1a =-,则输出的S =( )A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110 B.15 C.310 D.2512.过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( )B. C. D.二、填空题13.函数()2cos sin f x x x =+的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时()322f x x x =+,则()2f = .15.长方体的长宽高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .16.ABC ∆的内角,,A B C 的对边分别为,,a b c .若2cos cos cos b B a C c A =+,则B = .三、解答题(一)必考题17.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S .18.如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=. (1)证明:直线//BC 平面PAD ;(2)若PCD ∆的面积为,求四棱锥P ABCD -的体积.19.湖水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg ),其频率直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,对这两种养殖方法进行优劣比较.附:()()()()()2n ad bc K a b c d a c b d -=++++20.设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.设函数()()21xf x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,若()1f x ax ≤+,求a 的取值范围.(二)选考题22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为2,3π⎛⎫ ⎪⎝⎭,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修4-5:不等式选讲]已知0a >,0b >,332a b +=.证明:(1)()()554a b a b ++≥;(2)2a b +≤.。

2017年高考数学文科试卷全国二卷附答案解析

2017年高考数学文科试卷全国二卷附答案解析

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x +)的最小正周期为()A.4πB.2πC.πD .4.(5分)设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y 满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A .B .C .D .12.(5分)过抛物线C:y2=4x的焦点F ,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A .B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x )=2x3+x2,则f (2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C :+y2=1上,过M作x轴的垂线,垂足为N,点P 满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1。

答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合{1,2,3},{2,3,4}A B ==,则AB =A 。

{}123,4,,B 。

{}123,, C. {}234,,D 。

{}134,,2。

(1)(2)i i ++=A 。

1i -B 。

13i + C. 3i +D.33i +3。

函数()sin(2)3f x x π=+的最小正周期为A 。

4πB 。

2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则A 。

a ⊥bB 。

=b aC. a ∥bD 。

>b a5。

若1a >,则双曲线2221x y a-=的离心率的取值范围是A. 2∞(,) B 。

2(,) C. 2(1,) D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A 。

90π B. 63π C. 42π D. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是 A. -15B 。

-9C 。

1D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B 。

(-∞,—1)C 。

(1, +∞) D. (4, +∞)9。

甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A 。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的XX 、XX 号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=ABA.{}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若>1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 22(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =--的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1,+∞)D. (4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为.14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。

2017年高考全国二卷文科数学试卷

2017年高考全国二卷文科数学试卷

A D
B
C
文科数学 第 2 页(共 4 页)
19. (12 分) 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了
品的产量(单位: kg),其频率分布直方图如下:
100 个网箱,测量各箱水产
( 1)记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率;
( 2)填写下面列联表,并根据列联表判断是否有
20. (12 分)
设 O 为坐标原点, 动点 M 在椭圆 C: x 2 2
y 2 1 上,过 M 作 x 轴的垂线, 垂足为 N,点 P 满足 NP
( 1)求点 P 的轨迹方程;
2 NM 。
( 2)设点 Q 在直线 x 3上,且 OP·PQ 1 ,证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F。
( 2)设点 A 的极坐标为 (2, ) ,点 B 在曲线 C2 上,求△ OAB 面积的最大值。 3
23. [ 选修 4— 5:不等式选讲 ] (10 分)
已知
a > 0,b > 0,a3 +
3
b = 2。证明:
( 1) (a + b)( a5 +b5) ≥4;
( 2) a + b ≤2。
文科数学 第 4 页(共 4 页)
抽得的第一张卡片上的数大于第二张卡片上的数的概率为
1
A.
10 3
C.
10
1
B.
5 2
D.
5
文科数学 第 1 页(共 4 页)
2
12. 过抛物线 C: y = 4 x 的焦点 F,且斜率为
3 的直线交 C 于点 M( M 在 x 轴的上方), l 为 C 的准线,点 N 在 l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)M 为曲线 C1 上的动点,点 P 在线段 OM 上,且满足 | OM | | OP | 16 ,求点 P 的轨迹 C2 的直角
坐标方程;
(2)设点
A
的极坐标为
(2,
π 3
)
,点
2017 年全国二卷高考文科数学试题 1.设集合 A {1, 2, 3}, B {2, 3, 4} ,则 A B
A.1,2,3, 4 B.1,2,3 C.2,3,4 D.1,3,4
2. (1 i)(2 i)
A.1 i
B.1 3i C. 3 i
D. 3 3i
3.函数 f (x) sin(2x π ) 的最小正周期为 3
y 3 0,
A. 15
B. 9 C.1 D. 9
8.函数 f (x) ln(x2 2x 8) 的单调递增区间是
A. (, 2) B. (,1) C. (1, ) D. (4, )
9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有 2 位优秀,2 位良
好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的
A. 4π
B. 2π C. π
π
D.
2
4.设非零向量 a , b 满足 a+b = a b ,则
A. a ⊥ b
B. a = b C. a ∥ b D. a b
5.若 a
1,则双曲线
x2 a2
y2
1的离心率的取值范围是
A. ( 2, )
B. ( 2, 2)
C. (1, 2) D. (1, 2)
6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱
截去一部分后所得,则该几何体的体积为
A. 90π
B. 63π
C. 42π D. 36π
2x+3y 3 0, 7.设 x, y 满足约束条件 2x 3y 3 0, ,每小题 5 分,共 20 分.
13.函数 f (x) 2 cos x sin x 的最大值为
.
14 . 已 知 函 数 f (x) 是 定 义 在 R 上 的 奇 函 数 , 当 x (, 0) 时 , f (x) 2x3 x 2 , 则
f (2)
.
15.长方体的长,宽,高分别为 3, 2,1,其顶点都在球 O 的球面上,则球 O 的表面积为
箱产量<50 kg
箱产量≥50 kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P(
) 0.050
0.010
0.001
k
3.841 6.635 10.828
K2
n(ad bc)2
.
(a b)(c d)(a c)(b d)
20.(12 分)
设 O 为坐标原点,动点 M 在椭圆 C
2
3
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤,第 17~21 题为必考题,每个试题考
生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.(12 分)
已知等差数列{an} 的前 n 项和为 Sn ,等比数列{bn}的前 n 项和为 Tn , a1 1,b1 1, a2 b2 2 . (1)若 a3 b3 5 ,求{bn}的通项公式; (2)若 T3 21,求 S3 .
18.(12 分)
如 图 , 四 棱 锥 P ABCD 中 , 侧 面 PAD 为 等 边 三 角 形 且 垂 直 于 底 面
ABCD , AB BC 1 AD, BAD ABC 90. 2
(1)证明:直线 BC∥平面 PAD ; (2)若△ PCD 的面积为 2 7 ,求四棱锥 P ABCD 的体积.
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足
NP 2 NM .
(1)求点 P 的轨迹方程;
(2)设点 Q 在直线 x 3 上,且 OP PQ 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F.
21.(12 分)设函数 f (x) (1 x2 )ex .
19.(12 分) 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱 水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记 A 表示事件“旧养殖法的箱产量低于 50 kg”,估计 A 的概率; (2)填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:
.
16 . △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 若 2b cos B a cos C c cos A , 则
B
.
2sin B cos B sin Acos C sin C cos A sin( A C) sin B cos B 1 B π .
的数大于第二张卡片上的数的概率为
1
A.
10
1
B.
5
3
C.
10
D. 2 12.过抛物线 C : y 2 4x 的焦点 F ,且斜率为 5
3 的直线
交 C 于点 M ( M 在 x 的轴上方), l 为 C 的准线,点 N 在 l 上且 MN l ,则 M 到直线 NF 的距离

A. 5 B. 2 2 C. 2 3 D. 3 3
成绩,根据以上信息,则
A.乙可以知道四人的成绩
B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
10.执行下面的程序框图,如果输入的 a 1 ,则输出的 S
A.2 B.3 C.4 D.5
11.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上
(1)讨论 f (x) 的单调性;
(2)当 x 0 时, f (x) ax 1 ,求 a 的取值范围.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修 4−4:坐标系与参数方程](10 分)
在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C1 的极坐标方程为 cos 4.
相关文档
最新文档