七年级数学下册期末复习测试题1

合集下载

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x 轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

初中数学人教版七年级下册期末-章节测试习题(1)

初中数学人教版七年级下册期末-章节测试习题(1)

章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。

【好题】七年级数学下期末模拟试题(含答案)(1)

【好题】七年级数学下期末模拟试题(含答案)(1)

【好题】七年级数学下期末模拟试题(含答案)(1)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 7.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .98.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,xx x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y22< D .2x 2y -<-二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.14.不等式组11{2320x x ≥--<的解集为________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________18.关于x的不等式1x <-的非负整数解为________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表.根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.C解析:C 【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.5.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .7.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.8.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==.【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,18.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O则直线与坐标轴围成的三角形是以OAOB为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

鲁教版数学七年级下册期末测试卷(1)

鲁教版数学七年级下册期末测试卷(1)

鲁教版数学七年级下册期末测试卷(1)一.选择题(共12小题)1.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角.A.①②B.①③C.②③D.③④2.下列事件中,不是随机事件的是()A.抛掷1枚骰子,出现6点向上B.两条直线被第三条直线所截,同位角相等C.买彩票中奖D.实数的绝对值是非负数3.下列命题中,属于真命题的是()A.相等的角是对顶角B.全等三角形对应边相等C.同位角相等D.面积相等的两个三角形全等4.我国明代《算法统宗》一书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x尺,绳索长y尺,根据题意可列方程组为()A.B.C.D.5.已知方程2x m+1+3y2n+1=7是二元一次方程,则m,n内值分别为()A.﹣1,0B.﹣1,1C.0,0D.1,16.下列命题中,为真命题的是()A.内错角相等B.同位角相等C.若a2=b2,则a=﹣b D.若a=b,则﹣2a=﹣2b7.某厂从生产的一批零件中抽取2000个进行质量检查,结果发现有10个是次品,那么这次抽查零件次品的概率为()A.B.C.D.8.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b﹣1≤0的解集是()A.x≤2B.x≤0C.x≥2D.x≥09.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列选项错误的是()A.AB∥CD B.∠AEB+∠ADC=180°C.DE平分∠ADC D.∠F为定值10.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC长为()A.4B.4.5C.3D.3.511.已知关于x的不等式组的解为x>﹣5,则m的取值范围是()A.m<﹣5B.m≥﹣5C.m>﹣5D.m≤﹣512.如图,等边△ABC中,BD=CE,AD与BE相交于点P,下列结论:(1)BE=AP;(2)∠ABE=∠CAD;(3)∠APE=60°;其中正确的个数为()A.0个B.1个C.2个D.3个二.填空题(共6小题)13.已知(m﹣2)x m﹣3﹣3y=1是关于x,y的二元一次方程,则m=.14.如图,CD∥AB,OF平分∠BOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:①∠AOE=65°;②OE平分∠AOD;③∠GOD=∠GOE;④∠GOE=∠DOF.其中正确结论是.(填序号)15.如图,数学兴趣小组的同学在利用等边三角形画出美丽的“三角玫瑰”图案,已知等边△ABC的边长是24,D,E,F分别在三边上,且DE⊥BC,EF⊥AC,FD⊥AB,则BE 的长是.16.如图,BE交AC于点M,交CF于点D,AB交CF于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出的下列五个结论中正确结论的序号为.①∠1=∠2;②BE=CF;③△CAN≌△BAM;④CD=DN;⑤△AFN≌△AEM.17.如图所示,AB=AC,AF⊥BC于点F,D、E分别为BF、CF的中点,则图中全等三角形共有对.18.如图,直线y=kx+2与直线y=相交于点A(a,2),与x轴交于点B,根据图象可得关于x的不等式kx+2<x的解集为.三.解答题(共7小题)19.解方程组:20.某商场投入10400元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2028乙2430(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.如图,在△ABC中,AD是BC边上的高,F是AC边上一点,BF与AD交于点E,∠ABC=45°,∠BAC=75°,∠AEB=120°.求证:BF⊥AC.22.【阅读理解】:两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;【类比应用】已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图2,已知∠A=50°,∠D=150°,求∠APD的度数;说明理由.(2)如图3,设∠P AB=α、∠CDP=β、直接写出∠α、∠β、∠P之间的数量关系为.【联系拓展】如图4,直线AB∥CD,P为平面内一点,连接P A、PD.AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠P,运用(2)中的结论,求∠N的度数.说明理由.23.如图,等腰△ABC中,AB=AC,点D为直线BC下方一点.(1)如图1,若DB=CD,求证:AD平分∠BDC;(2)如图2.若∠ABD+∠ACD=180°(∠ABD>∠ACD),DA平分∠BDC,过点A作CD的垂线,垂足为点E,DE=3,CD=4.求BD的长度.24.某公司生产A、B两种型号的小黑板,已知一块A型小黑板比一块B型小黑板售价多20元,且5块A型小黑板和4块B型小黑板总共售价为820元.(1)求一块A型小黑板、一块B型小黑板售价各为多少元?(2)某中学根据学校实际情况,需从该公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买B种型号小黑板总数量的.请通过计算,求出该中学从该公司购买A、B两种型号的小黑板有哪几种方案?25.如图,在△ABC中,AD为BC的垂直平分线,CE⊥AB,垂足为点E.(1)若CE=AE,试说明△AEF≌△CEB;(2)若∠BAC=50°,求∠AFE的度数.。

七年级下册数学期末复习试卷(一附答案

七年级下册数学期末复习试卷(一附答案

七年级下册数学期末复习试卷(一)一、选择题(本大题共6小题,每小题3分,共18分) 1.下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ; D.1cm ,3cm ,5cm ;2.下面是一位同学做的四道题:①a 3+a 3=a 6;②(xy 2)3=x 3y 6;③x 2•x 3=x 6;2A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 4.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC5.如图,一只蚂蚁以均匀的速度沿台阶12345A A AA A →→→→爬行,那么蚂蚁爬行的高度h 随时间t 变化的图象大致是( )6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分)1A 2A 3A 4A 5A A .B .C .D .7.计算21()2--= _______8.如图有4个冬季运动会的会标,其中不是轴对称图形的有______个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为___________. 10.已知:2211,63a b a b -=-=,则22a b +=_______ 11.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=_______. 12.如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是 .(将你认为正确的结论的序号都填上)第11题图 第12题图 第13题图13.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____14.如果a 2+b 2+2c 2+2ac-2bc=0,那么2015a b+的值为三、(本大题共4小题,每小题6分,共24分) 15.已知:2x ﹣y=2,求:〔(x 2+y 2)﹣(x ﹣y )2+2y (x ﹣y )〕÷4y 的值.16.若2(1)()a a a b --- =4,求222a b ab +-的值17.已知:如图,AB ∥CD ,∠ABE=∠DCF ,说明∠E=∠F 的理由.18.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长方形ABCD的面积.四、(本大题共3小题,每小题8分,共24分)19.将一副直角三角尺BAC和BDE如图放置,其中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,判断AC与BE的位置关系,并说明理由;(2)连接EC,如果AC∥BE,AB∥EC,求∠CED的度数.20.投掷一枚普通的正方体骰子24次.(1)你认为下列四种说法中正确的为(填序号);①出现1点的概率等于出现3点的概率;②投掷24次,2点一定会出现4次;③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;④若只连续投掷6次,出现的点数之和不可能等于37.(2)求出现奇数的概率;(3)出现6点大约有多少次?21.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,(1)若∠DAE=50°,求∠BAC的度数;(2)若△ADE的周长为19cm,求BC的长.五、(本大题共2小题,每小题9分,共18分)22.小明的父亲在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图像回答下列问题:(1)降价前他每千克西瓜出售的价格是多少?(2)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(3)小明的父亲这次一共赚了多少钱?23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.六、(本大题共1小题,共12分)24.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)①找出图1中的一对全等三角形并说明理由;②写出图1中线段DE、AD、BE满足的数量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时, 探究线段DE、AD、BE之间的数量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,问DE、AD、BE之间又具有怎样的数量关系?直接写出这个数量关系(不必说明理由).七年级下册综合复习试卷(一)参考答案1~6. CBDBBB 7.4 8.3 9.20 10.1 11.90°12.①②③13.∠2=∠314.1 15. 1.16.8 17.略18.解:∵把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,∴BF=PF,PH=CH,∵△PFH的周长为10cm,∴PF+FH+HC=BC=10cm,∴长方形ABCD的面积为:2×10=20(cm 2),19. (1)AC∥BE,理由略(2)45°.20. (1)①④(2)12(3)421. (1)∠BAC=115°;(2)BC=19cm.22(1)3.5元(2)120千克,(3)450﹣120×1.8﹣50=184元,②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,24. 解:(1)①△ADC≌△CEB.理由如下::∵∠ACB=90°,∠ADC=90°,∠BEC=90°∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC与△BEC中,,∴△ADC≌△BEC(AAS);②DE=CE+CD=AD+BE.理由如下:由①知,△ADC≌△BEC,∴AD=CE,BE=CD,∵DE=CE+CD,∴DE=AD+BE;(2)∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.在△ADC和△CEB中,∴△ADC≌△CEB.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)同(2),易证△ADC≌△CEB.∴AD=CE,BE=CD∵CE=CD﹣ED∴AD=BE﹣ED,即ED=BE﹣AD;当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).。

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y-=⎧⎨-=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x y x y -=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥P P ,,,,…,则直线1a 与2019a 的位置关系是___________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?AB CD,点E在直线AB与CD之间,连接AE、CE,22.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).EF AB.证明:如图①过点E作//∴∠=∠(),A1Q(已知),EF//AB(辅助线作法),//AB CD∴(),EF CD//∴∠=∠(),2DCE12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a <.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A ∴∠=∠(两直线平行,内错角相等), //AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

(必考题)初中数学七年级下期末经典测试题(提高培优)(1)

(必考题)初中数学七年级下期末经典测试题(提高培优)(1)

一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.2-的相反数是( )A .2-B .2C .12D .12- 5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣56.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩7.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .58.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.89.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个10.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .11.不等式组1212x x +>⎧⎨-≤⎩的解集是( )A .1x <B .x ≥3C .1≤x ﹤3D .1﹤x ≤3 12.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .215.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( ) A .453560(2)35x y x y -=⎧⎨-=-⎩ B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩ 二、填空题16.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.17.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°18.不等式组11{2320x x ≥--<的解集为________.19.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.20.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 21.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.关于x 的不等式(3a-2)x<2的解为x >23a−2 ,则a 的取值范围是________23.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.24.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 25.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.三、解答题26.ABC 与111A B C △,在平面直角坐标系中的位置如图所示,(1)分别写出下列各点的坐标:A ;B ;C ;(2)111A B C △由ABC 经过怎样的平移得到?(3)若点P x y (,)是ABC 内部一点,则111A B C △内部的对应点1P 的坐标为____________;(4)求ABC 面积.27.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积28.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.29.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.30.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.D4.B5.A6.A7.D8.C9.C10.D11.D12.D13.B14.D二、填空题16.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<417.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质18.【解析】∵解不等式①得:x⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x<19.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平20.【解析】将代入方程得a-2=3解得a=5故答案为521.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD⊥AB于D∵AC2+B22.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次23.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点24.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x-5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等25.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-三、解答题26.27.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.6.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.7.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.8.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.9.C解析:C【解析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.12.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.13.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.15.B解析:B【解析】根据题意,易得B.二、填空题16.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4 解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①② 由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.17.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.本题考查平行线的性质及三角形外角的性质.18.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】 112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 19.(﹣1﹣1)【解析】试题解析:点B 的横坐标为1-2=-1纵坐标为3-4=-1所以点B 的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B 的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B 的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.20.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.21.【解析】【分析】过C 作CD ⊥AB 于D 根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD ⊥AB 于D ∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>23a−2,∴3a-2<0,解得:a<23,故答案为:a<23【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.23.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】 本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.24.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x-5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】 本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.3【解析】试题分析:先根据二元一次方程的定义得出关于mn 的方程求出mn 的值再代入m-n 进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m -3=1解得m=4;2-n=1解得n=1∴m -n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m 、n 的方程,求出m 、n 的值,再代入m-n 进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.三、解答题26.(1)()54,,()35,,()22,;(2)见解析;(3)1P (x -4,y -3);(4)72【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点1P 的坐标; (4)利用△ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)()5,4;()3,5;()2,2;(2)由ABC 先向下平移3个单位长度再向左平移4个单位长度得到.(3)1P (x -4,y -3);(4)1117331323122222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△ 【点睛】此题考查平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键. 27.(1)详见解析;(2)A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3)72【解析】【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(4,−2), B1(1,−4), C1(2,−1);(3) △A1B1C1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则28.(1)a=5,b=2,c=3;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c13∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.29.(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.30.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.。

新人教版七年级数学下册期末考试题及答案【一套】

新人教版七年级数学下册期末考试题及答案【一套】

新人教版七年级数学下册期末考试题及答案【一套】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:10216x y x y +=⎧⎨+=⎩2.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、D5、A6、D7、A8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、203、-74、2m≤-5、①③④⑤.6、5三、解答题(本大题共6小题,共72分)1、64 xy=⎧⎨=⎩2、(1)–2x2+6;(2)5.3、(1)y=x+1;(2)C(0,1);(3)14、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、A型粽子40千克,B型粽子60千克.。

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试卷一、单选题1.下列实数中,无理数是()A .0B .2C .0.5D .-92.已知21x y =⎧⎨=-⎩是方程1x ay +=的解,则a 的值为()A .2B .1-C .1D .2-3.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .4.为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是()A .1500B .300C .150D .505.如图,ABC 沿着BC 方向平移到DEF ,已知6BC =、2EC =,那么平移的距离为()A .2B .4C .6D .86.下列调查中,调查方式选择最合理的是()A .为了解柳州市中学生的课外阅读情况,选择全面调查B .调查七年级某班学生打网络游戏的情况,选择抽样调查C.为确保长征六号遥二火箭成功发射,应对零部件进行全面调查D.调查某种灯泡的使用寿命,选择全面调查7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.若x y>,且(3)(3)a x a y-<-,则a的值可能是()A.0B.3C.4D.59<8<;③5112<;④510.52->.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个10.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC二、填空题11.计算:=______.12.把方程21x y +=改写成用含x 的式子表示y 的形式,得y =__.13.若某个正数的平方根是3a -和5a +,则这个正数是__.14.某药品说明书上标明药品保存的温度是10±4∘,设该药品合适的保存温度为∘,则的取值范围是______.15.将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是__.16.将一个矩形纸片按如图所示折叠,若140 ∠=,则2∠的度数是______o .三、解答题17.解不等式:2(1)3x +<,并把它的解集在数轴上表示出来.18.解方程组:3223y x x y-=⎧⎨=-⎩19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点2,4,1,1,3,2.(1)将三角形B先沿着轴负方向平移6个单位,再沿轴负方向平移2个单位得到三角形111,在图中画出三角形111;(2)直接写出点1,1,1的坐标.20.某市数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评价调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中七年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将频数分布直方图补充完整;(3)如果全市有40000名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?21.如图,已知12180∠+∠= ,AED C ∠=∠,试判断3∠与B Ð的大小关系,并说明理由.22.某中学计划为学校科技活动小组购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用235元,购买4个A 型放大镜和6个B 型放大镜需用170元.(1)求每个A 型放大镜和每个B 型故大镜各多少元?(2)该中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1300元,那么最多可以购买多少个A 型放大镜?23.对于实数a ,b 定义两种新运算“※”和“*”:a ※b a kb =+,*a b ka b =+(其中k 为常数,且0)k ≠,若对于平面直角坐标系xOy 中的点(,)P a b ,有点P '的坐标(a ※b ,*)a b 与之对应,则称点P 的“k 衍生点”为点P '.例如:(1,3)P 的“2衍生点”为(123,213)P '+⨯⨯+,即(7,5)P '.(1)点(1,5)P -的“3衍生点”的坐标为;-,求点P的坐标;(2)若点P的“5衍生点”P的坐标为(9,3)(3)若点P的“k衍生点”为点P',且直线PP'平行于y轴,线段PP'的长度为线段OP长度的3倍,求k的值.参考答案1.B【解析】根据无理数的定义逐一判断即可得.【详解】A、0是有理数;B、2是无理数;C、12是分数,为有理数;D、-9是有理数;故选B.【点睛】本题主要考查无理数的定义,属于简单题.2.C【解析】把x与y的值代入方程计算即可求出a的值.【详解】把21xy=⎧⎨=-⎩代入方程得:21a-=,解得:1a=,故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l 的距离.故选A.4.B【解析】【分析】根据总体、个体、样本容量、样本的定义解答即可.【详解】∵为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,∴该调查中的样本容量是:300.故选B.【点睛】本题考查了总体、个体、样本容量、样本的定义,正确把握相关定义是解题关键.5.B【解析】【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离==-=,进而可得答案.BE624【详解】=-=-=,由题意平移的距离为BE BC EC624故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、为了解柳州市中学生的课外阅读情况,选择抽样调查,错误;B、调查七年级某班学生打网络游戏的情况,选择全面调查,错误;C、为确保长征六号遥二火箭成功发射,应对零部件进行全面调查,正确;D、调查某种灯泡的使用寿命,选择抽样调查,错误;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5 15 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A【解析】【分析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.9.C【解析】【分析】①两个正数,哪个数的越大,则它的算术平方根就越大,据此判断即可.②首先分别求出8的平方各是多少;然后根据两个正数,哪个数的平方越大,则这个数就越大,8的大小关系即可.③根据1-12所得的差的正负,判断出12、1的大小关系即可.④根据510.52--所得的差的正负,判断出512-、0.5的大小关系即可.【详解】810<,∴<,∴①正确;265=,2864=,6564>,∴8>,∴②不正确; 51533310222----=<=,∴112-<,∴③正确; 5152220.50222----=>=,∴510.52>,∴④正确.综上,可得大小关系正确的式子的个数是3个:①③④.故选:C .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0>>负实数,两个负实数绝对值大的反而小.解答此题的关键还要明确:两个正数,哪个数的平方越大,则这个数就越大.10.B【解析】【分析】根据平行线的判定定理分析即可.【详解】A 、错误.由∠BAD +∠ABC =180°应该推出AD ∥BC .B 、正确.C 、错误.由∠2=∠4,应该推出AB ∥CD .D 、错误.由∠BAD +∠ADC =180°,应该推出AB ∥CD ,故选:B.【点睛】考核知识点:平行线的判定.理解判定是关键.11.【解析】【分析】合并同类二次根式即可得出答案.【详解】(3-=-=故答案为:【点睛】此题考查了二次根式的加减运算,属于基础题,掌握同类二次根式的合并是关键.12.12x-.【解析】【分析】把x当成已知数,解关于y的方程即可.【详解】21x y+=,21y x=-,12xy-=,故答案为:12x-.【点睛】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.16.【解析】【分析】利用一个非负数的平方根互为相反数即可得到关于a的方程,解方程即可解决问题.【详解】一个正数的平方根是3a-和5a+,则350a a -++=,解得:1a =-,则34a -=-,所以这个正数是16.故答案为:16.【点睛】此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,它们互相为相反数.14.6≤≤14【解析】【分析】根据正数和负数的定义即可得出答案.【详解】某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.【点睛】此题考查了正负数在实际生活中的应用,解题关键是理解(10±4)℃的意义.15.(0,3).【解析】【分析】根据向右平移横坐标加,向上平移纵坐标加即可得解.【详解】将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是(11,12)-++,即(0,3).故答案为(0,3).【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.16.70【解析】【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【详解】如图,由题意可得:∠1=∠3=∠4=40°,由翻折可知:∠2=∠5=180402︒-︒=70°.故答案为:70.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.12x<,不等式的解在数轴上表示见解析.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】2(1)3x-<,223x∴+<,21x<12x<,不等式的解在数轴上表示为:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.11x y =⎧⎨=⎩.【解析】【分析】方程组利用加减消元法求出解即可.【详解】3223y x x y -=⎧⎨=-⎩①②,由①得:624y x -=③,由②得:23x y +=④,③+④得,77y =,解得:1y =,代入①解得,1x =,综上知原方程组的解为:11x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(1)详见解析;(2)1−4,2,1−5,−1,1−3,0【解析】【分析】(1)分别将点A,B,C向左平移6个单位,再向下平移2个单位,再首尾顺次连接即可得.(2)根据所作图形可得三顶点的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(-4,2),B1(-5,-1),C1(-3,0).【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.20.(1)560;(2)详见解析;(3)在试卷评讲课中,“独立思考”的七年级学生约有12000人.【解析】【分析】(1)由专注听讲的人数及其所占百分比可得总人数;(2)根据各项目人数之和等于总人数可得讲解题目对应的人数,从而补全图形;(3)利用样本估计总体思想求解可得.【详解】(1)在这次评价中,一共抽查学生为:224÷40%=560人,(2)“讲解题目”的人数是:5608416822484---=(人).作图如下:(3)1684000012000560⨯=(人)故在试卷评讲课中,“独立思考”的七年级学生约有12000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.3B ∠=∠,理由详见解析【解析】【分析】求出∠2=∠4,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出∠3=∠ADE ,根据平行线的判定得出DE ∥BC ,根据平行线的性质得出∠B=∠ADE ,即可得出答案.【详解】3B ∠=∠,理由如下:∵12180∠+∠= ,14180∠+∠=o ,∴24∠∠=,∴EF AB ∥,∴3ADE ∠=∠.∵AED C ∠=∠,∴DE BC ‖,∴ADE B ∠=∠,∴3B ∠=∠.【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,解题时注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)最多可以买35个A 型放大镜.【解析】【分析】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【详解】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得852*******x y x y +=⎧⎨+=⎩①②.解得:2015x y =⎧⎨=⎩,答:每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)设购买A 型放大镜a 个,根据题意可得:2015(75)1300a a +⨯-,解得:35a.答:最多可以买35个A 型放大镜.【点睛】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.23.(1)(14,2);(2)点(1,2)P -;(3)k=±3.【解析】【分析】(1)直接利用新定义进而分析得出答案;(2)直接利用新定义结合二元一次方程组的解法得出答案;(3)先由//PP y '轴得出点P 的坐标为(,0)a ,继而得出点P '的坐标为(,)a ka ,由线段PP '的长度为线段OP 长度的3倍列出方程,解之可得.【详解】(1)点(1,5)P -的“3衍生点”P '的坐标为(135,135)-+⨯-⨯+,即(14,2),故答案为:(14,2);(2)设(,)P x y 依题意,得方程组5953x y x y +=⎧⎨+=-⎩.解得12x y =-⎧⎨=⎩.∴点(1,2)P -;(3)设(,)P a b ,则P '的坐标为(,)a kb ka b ++.PP ' 平行于y 轴a a kb ∴=+,即0kb =,又0k ≠ ,0b ∴=.∴点P 的坐标为(,0)a ,点P '的坐标为(,)a ka ,∴线段PP '的长度为||ka .∴线段OP 的长为||a .根据题意,有3PP OP '=,3ka a ∴=.∴k=±3.【点睛】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.。

人教版数学七年级(下)期末质量测试卷1(附答案)

人教版数学七年级(下)期末质量测试卷1(附答案)
B组合:一个笔袋、一副三角板单价b元
C组合:一个笔袋、一支签字笔、一副三角板单价33元
已知B组合的单价比A组合的单价多3元.2份A组合和1份B组合共需78元.请回答以下问题:
(1)A.B组合的单价分别是多少元?
(2)若他共购买了8个笔袋、5支签字笔、n副三角板.则他选了份A组合份B组合、份C组合;(可用含n 代数式表示)
C. 对乘坐某航班 乘客进行安检.采用全面调查
D. 某市为了解该市中学生的睡眠情况.选取某中学初三年级的学生进行抽样调查
3.如图.把小河里的水引到田地A处.若使水沟最短.则过点A向河岸l作垂线.垂足为点B.沿AB挖水沟即可.理由是( )。
A. 两点之间.线段最短B. 垂线段最短
C. 两点确定一条直线D. 过一点可以作无数条直线
4.如图.点A.C.E在同一条直线上.下列条件中能判断AB∥CD的是( )。
A ∠1=∠4B. ∠3=∠4
C. ∠1=∠2D. ∠D+∠ACD=180°
5.已知点 在 轴上.则点 的坐标是( )。
A. B. C. D.
6.如果a<b.那么下列不等式中错误的是( )。
A.a+2<b+2B.a﹣2<b﹣2C. D.﹣2a<﹣2b
参考答案
BCA6-10. DCDAB
11.假12. 13.±314.x-y=0(答案不唯一)
15.150°16. ①.2016②.201517.-1
18. ①.1(答案不唯一)②. 19.解:原式=
20.
将解集 表示在数轴上:
21.解:
解①式得:x≥− .
解②式得: .
故不等式组的解集为:
(3)由已知可得:
解得:
因为n为整数.所以n=4,5,6.所以.共有3种购买方案:

人教版七年级下册数学期末考试卷含答案

人教版七年级下册数学期末考试卷含答案

人教版七年级下册数学期末考试试题一、单选题1.下列实数是无理数的是()A.-2B.0C.13D2.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图3.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B.a bc c>C.c-a>c-b D.c+a>c+b4.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°5.若方程mx-2y=3x+4是关于x,y的二元一次方程,则m的取值范围是()A.m≠0B.m≠3C.m≠-3D.m≠26.若不等式组1+x a{2x40>-≤有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤2二、填空题7_____.8.点P(2,m)在x轴上,则B(m-1,m+1)在第________________象限.9.“十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________________.10.有100个数据,其中最大值为76,最小值为28,若取组距为5,对数据进行分组,则应分为________________组.11.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值______.12.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.三、解答题13.(1);(2)已知()2x1-=4,求x的值.14.解方程组24 {231 x yx y+=-=15.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+2b+c的平方根。

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试题一、单选题1.在实数:3.14159,1.010010001,4.21 ,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列运算正确的是()A .3a+2a =5a 2B .2a 2b ﹣a 2b =a 2bC .3a+3b =3abD .a 5﹣a 2=a 33.下列调查中,最适合采用全面调查的是()A .对全国中学生睡眠时间的调查B .了解一批节能灯的使用寿命C .对“中国诗词大会”节目收视率的调查D .对玉免二号月球车零部件的调查4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A .90°B .110°C .108°D .100°5.不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A .3元B .5元C .8元D .13元6.将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是()A .()5,3B .()5,5-C .()1,5--D .()1,3-7.不等式组2−1<5<的解集是x <3,那么m 的取值范围是()A .m >3B .m ≥3C .m <2D .m ≤28.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0二、填空题9.16的平方根是.10.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.11.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.12.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.13.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是_____.14.如图,把“QQ”笑脸图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是____________.15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.16.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是__.三、解答题17.计算题:(1|1| --(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:513(1) 131722x xx x->+⎧⎪⎨-≤-⎪⎩①②18.已知5a+2的立方根是3,4b+1的算术平方根是3,ca+b+c的值.19.已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.20.如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移4格,再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B(,),B′(,).21.如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.22.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.23.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?24.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)25.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y 轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.参考答案1.A【解析】【分析】根据无理数的的定义解答即可.【详解】3.14159364=4,1.010010001,4.21 ,227是有理数;π是无理数.故选A.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断即可.【详解】A 、325a a a +=,故本选项错误;B 、222 2a b a b a b ﹣=,故本选项正确;C 、3a 与3b 不是同类项,不能合并,故本选项错误;D 、a 5与a 2不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项,正确理解同类项的意义是解题的关键.3.D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A 、对全国中学生睡眠时间的调查,应采用抽样调查,故此选项不合题意;B 、了解一批节能灯的使用寿命,应采用抽样调查,故此选项不合题意;C 、对“中国诗词大会”节目收视率的调查,应采用抽样调查,故此选项不合题意;D 、对玉免二号月球车零部件的调查,意义重大,应采用普查,故此选项符合题意;故选:D.【点睛】考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.D【解析】【分析】依据l1∥l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=100°.【详解】如图,∵l1∥l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-50°-30°=100°,故选:D.【点睛】考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.C【解析】【分析】设每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可【详解】设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得+314 3530x yx y=⎧⎨+=⎩.解得53xy=⎧⎨=⎩.所以x +y =5+3=8(元)故选C .【点睛】此题主要考查二元一次方程组的应用,难度不大,关键在于列出方程组6.D【解析】【分析】根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【详解】将点A (2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B (−1,3),故选:D .【点睛】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7.B【解析】【分析】由已知不等式组的解集确定出m 的范围即可.【详解】不等式组整理得:<3<,由解集为x <3,得到m 的范围为m≥3,故选:B .【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.D【解析】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.9.±4.【解析】【详解】由(±4)2=16,可得16的平方根是±4.10.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.11.120【解析】分析:先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=150°,求得答案.详解:如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.点睛:此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.12.250.【解析】【分析】设这件夹克衫的成本是x 元,根据售价=原价×(1+20%)×0.9,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设这件夹克衫的成本是x 元,依题意,得:(1+20%)×0.9x=270,解得:x=250.故答案是:250.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.0<a ≤1.【解析】【分析】不等式组整理后,由整数解共有3个,确定出a 的范围即可.【详解】不等式组整理得:3x a x ≥⎧⎨≤⎩,即a≤x≤3,由不等式组的整数解共有3个,即1,2,3,则a 的取值范围是0<a≤1,故答案是:0<a≤1.【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.(-1,1)【解析】【分析】根据左眼,右眼坐标,得到嘴唇C的坐标【详解】解:∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标是(-1,1),故答案为:(-1,1)【点睛】本题考查了坐标确定位置:直角坐标系内的点与有序实数对一一对应.记住平面内特殊位置的点的坐标特征:(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.15.340.【解析】【分析】用600乘以第3组和第4组的频率和可估计该校一分钟仰卧起坐的次数不少于25次的人数.【详解】600×125 310125++++=340,所以估计该校一分钟仰卧起坐的次数不少于25次的有340人.故答案是:340.【点睛】考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.2或3.【解析】【分析】根据题意得出经过1次运算结果不大于7及经过2次运算结果大于7,得出关于x的一元一次不等式组,解之即可得出结论.【详解】根据题意得:若运算进行了2次才停止,则有()21217217x x ⎧+⨯+⎨+≤⎩>,解得:1<x≤3.则x 可以取的所有值是2或3,故答案是:2或3.【点睛】考查了一元一次不等式组的应用,根据运算程序找出关于x 的一元一次不等式组是解题的关键.17.(1(2)31x y =⎧⎨=⎩;(3)24x <≤.【解析】【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)原式;(2)21239x y x y -⎧⎨+⎩=①=②,①×2-②得:y=1,代入①得:x=3,所以方程组的解为:31x y ⎧⎨⎩==;(3)解①得:x >2,解②得:x≤4,综合得:2<x≤4.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.10.【解析】【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,相加可得结论.【详解】由已知得:5a+2=27,4b+1=9,c=3,解得:a=5,b=2,c=3,所以:a+b+c=10.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.19.-1.【解析】【分析】分别求出每一个不等式的解集,根据口诀确定不等式组的解集,再结合-6<x<3得出关于m、n的方程组,解之可得.【详解】解x-1<2n得:x<2n+1,解2x+5>6m-1得:x>3m-3,所以,不等式组的解集为:3m-3<x<2n+1,由已知得:3m-3=-6,2n+1=3,解得m=-1,n=1所以:2m+n=-1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)见解析;(2)(1,2),(3,6).【解析】【分析】(1)根据平移方式作图即可;(2)首先以点A为坐标原点建立平面直角坐标系,然后写出点的坐标即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)如图,以点A为坐标原点建立平面直角坐标系,则B(1,2),B′(3,6).【点睛】本题考查了平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,左右平移改变点的横坐标.21.见解析.【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】∵∠ADE=∠B(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等);∵CD∥FG(已知),∴∠1=∠2(同位角相等,两直线平行),∴∠2=∠3.(等量代换).【点睛】考查平行线的性质和判定,解题的关键是熟练掌握基本知识.22.(1)样本容量是50;(2)m=16,n=30;(3)补全条形统计图见解析.【解析】【分析】(1)用答对6题的人数除以它所占的百分比得到调查的总人数,即本次抽查的样本容量;(2)用答对7题的人数除以总人数得到A所占的百分比,根据各组所占百分比的和等于单位1得到D所占的百分比,进而求出m、n;(3)用总人数乘以D所占的百分比,得到答对9题的人数,用总人数乘以E所占的百分比,得到答对10题的人数,据此补充条形统计图.【详解】(1)样本容量是:510%=50;(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如图,【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x 元/个,篮球的单价为y 元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个足球,则购买篮球(24-m )个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x 元,一个篮球需y 元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。

(完整版)人教版七年级数学下册期末测试题及答案(共五套)

(完整版)人教版七年级数学下册期末测试题及答案(共五套)
-5-
at a time and All things in their being are good for some
x 55
解得
y
48
故甲班有 55 人,乙班有 48 人. 25. 解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得
35x 25(50 x) 1530 15x 35(50 x) 1150
A.a B.b
C.│a│ D.│b│
7.已知 a<b,则下列式子正确的是( )
A.a+5>b+5 B.3a>3b; C.-5a>-5b
8.如图,不能作为判断 AB∥CD 的条件是( )
ab
D. >
33
A.∠FEB=∠ECD
B.∠AEC=∠ECD; C.∠BEC+∠ECD=180°
9.以下说法正确的是( )
x 3
因此,原方程组的解为
2
y 2
21. ∠B=∠C。 理由: ∵AD∥BC ∴∠1=∠B,∠2=∠C ∵∠1=∠2 ∴∠B=∠C
22. 解:因为∠AFE=90°, 所以∠AEF=90°-∠A=90°-35°=55°.
所以∠CED=∠AEF=55°, 所以∠ACD=180°-∠CED-∠D
at a time and All things in their being are good for some
七下期期末
姓名:
学号
一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)
班级
1.若 m>-1,则下列各式中错误的是( ) A.6m>-6 B.-5m<-5 C.m+1>0
D.1-m<2

新人教版七年级数学下册期末考试题及答案一

新人教版七年级数学下册期末考试题及答案一

新人教版七年级数学下册期末考试题及答案一 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.3.分解因式:32x2x x-+=_________.4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、C6、B7、B8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、10.3、()2x x 1-.4、-15、16、5三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)x >125.2、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、(1)见解析(2)成立(3)△DEF 为等边三角形4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、略。

人教版七年级下册数学期末考试题及答案一

人教版七年级下册数学期末考试题及答案一

人教版七年级下册数学期末考试题及答案一 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A.5个B.4个C.3个D.2个7.若关于x的一元一次不等式组11 (42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若+x x-有意义,则+1x=___________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)1311 48x x---=2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,右下表是调控后的价目表.(1)若该户居民8月份用水8吨,则该用户8月应交水费 元;若该户居民9月份应交水费26元,则该用户9月份用水量 吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、B6、B7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、垂线段最短.3、135°4、15、AC=DF(答案不唯一)6、54°三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、x=10;a=-4;11.3、(1)y=x+1;(2)C(0,1);(3)14、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、⑴ 20元;9.5吨;⑵10.25吨;⑶ 11月交16元、12月交36元或11月交36元、12月交16元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师七年级(下)期末复习测试题
数学
一、精心选一选(每小题3分,共30分) 1. 计算(x 2)3·(-2x)4的结果是( ).
A.9
16x
B.1016x
C.12
16x
D.24
16x
1.向如图1所示的高为H 的水杯中注水,注满为止,那么注水量V 与水深h 关系的图象是( ).
图1 A B C D
3.如图2,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( ).
A.带①去 B .带②去 C.带③去 D.带①和②去
图2 图3
4. 如图3,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A ,B.若击打小球A , 经过球台边的反弹后,恰好击中小球B ,那么小球A 击出时,应瞄准球台边上的点( ). A.P 1 B.P 2 C. P 3 D. P 4
5.下列说法中不正确的是( ).
A.三角形三条中线相交于一点
B.直角三角形三条高相交于直角顶点
C. 钝角三角形只能画一条高
D. 等腰三角形底边上的中线平分顶角 6. 下列图形中,是轴对称图形的有( )
A.4个 B.3个 C.2个 D.1个
7.小明骑自行车上学,从家里出发后以某一速度匀速前进,中途由于自行车出了故障,停下修车耽误了一段时间.为了按时到校,小明加快速度 (仍保持匀速)前进,结果准时到达学校.下列能大致表示小明行进路程s(千米)与行
进时间t(小时)之间关系的图象为( ).
A B C D
8.如图4是赛车跑道的一段示意图,其中AB ∥ DE ,测得∠B=140°, ∠D=120°,则∠C 的度数为( ). A .120° B .100° C .140° D .90°
图4
9.一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ).
A.
31 B.81 C.154 D.11
4 10.如图5,在△ABC 与△DEF 中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D,⑤∠B=∠E ⑥∠C=∠F.以其中三个条件作为已知,不能判断△ABC 与△DEF 全等的是( ).
A.①⑤②
B.①②③
C. ④⑥①
D.②③④
图5 二、细心填一填(每小题3分,共30分)
11.纳米是长度单位,纳米技术已广泛应用于各个领域.已知1纳米=0.000000001米,一个氢原子的直径大约是0.1纳米,用科学记数法表示一个氢原子的直径约为________米.
12.如图6,已知AE= AF ,∠B=∠C ,则图中全等的三角形有__________对.
图6
13.小明的妈妈为了奖励小明在学习中取得的进步,给小明新买了一个文具盆,你估计这个文具盒的厚度为 3
(填上合适的长度单位).
14.已知∠α与∠β互余,且∠α=35°18′,则∠β=_____°_____′.
15.底面半径为r ,高为h 的圆柱,两底的面积之和与它们的侧面积相等,h 与r 的函数关系为_______.
16.为大力支持少数民族地区的经济建设和社会繁荣,1998年以来,国家安排5个民族自治区的国债投资累计达1117.3亿元.这个数据精确到百亿位,并用科学记数法表示为 元,它有 个有效数字.
17. 从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。

18.有4条线段,分别为3cm,4cm,5cm,6cm,从中任取3条,能构成三角形的概率是____.
19. 小宇同学在一次手工制作活动中,先把一张矩形纸片按图7-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图7-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是_______cm.
图7-1 图7-2
20.小明骑车外出,所行的路程S(千米)与时间t(小时)的关系如图8所示,现有下列四种说法:①第3小时的速度比第1小时的速度快;②第3小时的速度比第1小时慢;③第三小时已停止前进;④第三小时后保持匀速前进.其中说法正确的是________.
图8
三、用心解一解(共40分)
21.(5分)先化简,再求值:
2
()()()
y x y x y x y x
+++--,其中2
x=-,
1
2
y=.
22.(5分)如图9,在△ABC中,AB=AC,AE平分∠BAC的外角∠DAC,成倪同学说:“AE//BC”,她说得对吗?请你说明理由.
图9
23.(6分)如图10,口袋中有5张完全相同的卡片,分别写有1cm、2cm、3cm、4cm和5cm,口袋外有2张卡片,分别写有4cm和5cm。

现随机从袋中取出一张卡片,与口袋外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:
(1)求这三条线段能构成三角形的概率;
(2)求这三条线段能构成等腰三角形的概率。

图10
24.(6分) 如图11是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.
图11
25.(6分) 如图12,有一池塘,要测量两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CA=CD.连接BC.并延长到E,使CB=CE.连接DE,那么量出DE的长,就是A、B两点间的距离.请说理理由.
图12
26.(7分)某港受潮汐的影响,近日每天24小时港内的水深变化大体如图13:
图13
一艘货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港.已知这艘货轮卸完货后吃水深度为2.5m,(吃水深度即船底离开水面的距离).该港口规定:为保证航行安全,只有当船底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给的条件,回答下列问题:
(1)要使该船能在当天卸完货并安全出港,则出港时水深不能少于 m ,卸货最多只能用 小时; (2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段时间后,交由乙队接着单独卸,每小时卸120吨.如果要保证该船能在当天卸完货并安全出港,则甲队至少应工作几小时,才能交给乙队接着卸?
27.(7分)阅读题目以及解题过程:
已知:如图14,D 是△ABC 中BC 边一点,E 是AD 上一点,EB=EC ,∠ABE=∠CAE ,∠BED=∠CED.说明AB=AC.
解:在△AEB 和△AEC 中,
EB=EC ,∠ABE=∠ACE ,AE=AE ,所以△AEB ≌△AEC , (第一步) 所以AB=AC. (第二步)
问上面的说明过程是否正确,若正确,请写出每一步说理的依据;若不正确,请指出错在哪一步,并写出你认为正确的说理过程.
图14
参考答案:
一、1.B 2.A 3.C 4.B 5.D 6.C 7.A 8.B 9.C 10.D
二、11. 1.1×10-10
; 12.两 13.厘米; 14.44,42; 15.h=v
R 2
; 16.1.1173×1011 ; 17.BA629; 18.1; 19.1; 20.②③
三、21.原式=2
2
2
2
xy y x y x xy ++--=. 当2x =-,12y =
时,原式1
212
=-⨯=-. 22. 对.因为∠DAB=∠B+∠C ,∠B=∠C ,所以∠DAC=2∠B ,又因为AE 平分∠DAC ,所以∠DAE=2
1
∠DAC=∠B ,所以AE//BC.
23. (1)4()5P =
构成三角形. (2)2
()5
P =构成等腰三角形
24. 下面给出几种不同补图方法.如图所示.
25.在△ACB 和△DCE 中
因为AC=DC ,∠ACB=∠DCE ,BC=EC , 所以△ACB ≌△DCE , 所以DE=AB ,
所以测量DE 的长就点A 、B 间的距离. 26.(1)6, 8;
(2)设甲至少应工作x 小时,则x+
8120
1801200=-x
,解得x=4,即甲队至少应工作4小时,才能交给乙队接
着卸.
27.上面的说明过程是错误的,错在第一步. 正确说明过程:
因为∠BED=∠CED ,所以∠AEB=∠AEC 在△ABE 和△ACE 中,
AE=AE ,∠AEB=∠AEC ,BE=CE , 所以△AEB ≌△AEC ,所以AB=AC。

相关文档
最新文档