8.2.2二元一次方程组的解法(2)—加减法

合集下载

数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》教学反思

数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》教学反思

《8.2.2加减消元法---解二元一次方程组》教学反思“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。

通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。

加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。

因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。

我讲解了《用加减法解二元一次方程组》这一节课,通过这堂课的教学,使我有以下几方面的认识:一、在教学过程中,结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。

同时,我还将运用讲授法和练习法,将学生的自主练习运用投影的方式展示。

我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。

引导学生充分发挥他们的智慧,发现,提出,讨论,最后解决问题,完成了预定的教学内容,达到了预期的效果。

二、代入消元法和加减法都是二元一次方程组的解法,它们的基本思路都是消元,即将二元方程转化为一元方程。

而加减法是通过相加减达到消元的目的的,因此在教学这部分内容时,引导学生仔细观察、分析、讨论,最后归纳解题方法,并且让学生掌握用加减法解二元一次方程组,然后和代入消元法比较,让学生发现在有些时候用加减消元法更方便、简单。

由此突出了本节课的重点。

三、在整个教学过程中,我始终坚持以学生为主体,让他们不断的发现问题、提出问题、讨论问题、最后解决问题,从而获取知识。

充分体现了目前素质教育所要求的由教师立导型教学模式向学生立导型教学模式的转变。

8.2二元一次方程组的解法(加减消元)

8.2二元一次方程组的解法(加减消元)

5x 6
(4)
x

1
y
5 6

7
y
3 2
解:(1)xy

11(2)xy

3 2
(3)xy

8 x 4(4) y

11 2
14

3
(1)已知关于x、y的方程组( nmx mn)yx6y 5
的解是xy
1,求m, 2

y

2
,所用的消元法是 加减消元法 ,首先用①
Байду номын сангаас
减去 ②,求出 x ,再求出 y 。
2. 解方程组:
(1)22xx

5y 3y

7 1
(3) x
3
y

x
2
y

6
3(x y) 2(x y) 28
(2)32xx

3y 4y

12 17
∴ x y2 x y3 12 33 28
甲、乙两人同解方程组
Ax Cx

By 3y

2 2,
甲正确解得 xy

11,乙抄错C,解得xy

2 ,
6
求A、B、C的值。
(1)解三元一次方程组:
x z 4 (1)z 2 y 1
n的值。
解:将xy
12代入方程组得2mmnn3
, 6
解得:
m 3 n 0
(2)若22000054xx

2005 2004
y y

2003 ,
2006

8.2.2_消元——二元一次方程组的解法(加减消元)

8.2.2_消元——二元一次方程组的解法(加减消元)

3.变式训练 3x 2 y 4 (1)选择:二元一次方程组 的解是(
5 x 2 y 6
x 1 x 1 B. 1 y y 1 2
).
A.
x 1 C. 1 y 2
2
x 1 D. 1 y 2
作业:
1、把你今天学到的知识讲给你的朋友或同学。 2、课本 P103 3 (1)、(4) 6、7、8
例:解方程组:
2x 3 y 1 5x 3 y 6 (1) (2)
1 3y x 解法一:由(1)得: (3) 2 1 3y 5 3y 6 把(3)代人(2)得 2
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
(B)、试试你的能力:
1、解方程组 2 x 3 y 6
2 x 3 y 2
(1) (2)
解:(1)+(2)得 4x=4,x=1 4 (1)–(2)得 6y=8,y= 3 ∴ x=1
4 y= 3 2、已知 3a+b=9 ,求16a–2b的值。 5a–2b=3
解:两式相加得8a–b=12 ∴ 16a–2b=2(8a–b)=2×12=24
4 x 2 y 14 (2) 5 x y 7
x 3 y 20 (3) 3x 7 y 100
2 x 3 y 8 (4) 5 y 7 x 5
3、创新思维: (A)写出一个二元一次方程组,且满足下列条 件: (1)含有2个未知数x和y; (2)能用“加法”消去x,求出y。Fra bibliotek思考题
解方程组

8.2.2二元一次方程组解法 加减消元法

8.2.2二元一次方程组解法 加减消元法

3x 2y 8 ①
(1)
x2y 4

(2)
3x

x

y y

8 4
① ②
解:①-②得
2x=4
x=2 把x=2代入②得
2+2y=4
2y=2
y=1
ห้องสมุดไป่ตู้
x 2
所以这个方程组的解是

y

1
解:①+②得
4x=12
x=3
把x=3代入②得
3+y=4
y=1
x 3
所以这个方程组的解是
法二,+得4a+4b=12 a+b=3
能力拓张
2、已知 5x 3y 23 (x3y7)2 0 ,求 x - y 的值。
解:由题意可得:
5x 3y 23 x 3y 7 0
0
① ②
①-②,得 4x-16=0
解得 x = 4
把x= 4 代入②得 4+3y-7=0
x =-6 解: ①+②,得
8x=16 x =2
填空题:
用加减法解下列方程组
3u 2t 7 (1) 6u 2t 11
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
解得 t = 0.5 所以这个方程组的解是
t 0.5 u
计算题 :用加减法解方程组
8.2.2二元一次方程组解法 加减消元法
问题:
小明和小军到学校饭堂吃早餐,小明买了两支水和一 个面包,花了14元;小军买了一支水和一个面包花了 12元,问:一支水和一个面包分别多少元?

《二元一次方程组》导学案(3)

《二元一次方程组》导学案(3)

8.2二元一次方程组的解法(2)——加减消元法(1)(第19课时)班级: 小组: 姓名: 评价:【学习目标】1.用加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.【知识储备】预习指要: 认真阅读课本99页——102页,然后完成下列问题:1.请用代入法...解方程组21325x y x y +=⎧⎨-=⎩.2.回忆:等式的性质是3.在二元一次方程组21325x y x y +=⎧⎨-=⎩ 中,①+②得一元一次方程 ,这样做的依据是 ,这样做就达到消去未知数 的目的.4.在341236x y x y +=⎧⎨-=⎩ 中,①×3得 ③;②×4得 ④,这种变形的目的是要消去未知数 . 5. 在方程组524,23 5.x y x y -=⎧⎨-=-⎩ 中,若要消去未知数x ,则①式乘以 得 ③;②式可乘以 得 ④;然后再③、④两式 即可消去未知数x .知识链接:归纳总结:把方程组的两个方程(或先作适当变形)相 或相 ,消去其中一个未知数,把解二元一次方程组转化为解 ,这种解方程组的方法叫做加减消元法,简称加减法.① ②① ②① ②【学习过程】例题分析:例3 解方程组(1)3822x y x y +=⎧⎨-=⎩ (2) ⎩⎨⎧-=+=+10418543y x y x(3) ⎩⎨⎧=-=+33651643y x y x (4)2343211x y x y +=⎧⎨-=⎩1、当二元一次方程组中未知数的系数满足什么条件时,用加减消元法?2、当二元一次方程组中未知数的系数满足什么条件时,用加法消元?当二元一次方程组中未知数的系数满足什么条件时,用减法消元?3、当二元一次方程组中没有同一个未知数的系数相反或相同时,如何用加减消元法?【课堂练习】必做题:课本P102页 练习第1题, 课本P103页 习题8.2 第3题选做题:已知方程组5112mx n x my n y +==⎧⎧⎨⎨-==⎩⎩的解是,则m =_____,n =_____. 挑战题:已知二元一次方程组⎩⎨⎧=+=+8272y x y x ,则=-y x ,=+y x .【当堂小结】谈收获:1、学到什么知识: 2、学到什么学习方法:。

七年级下册数学《8.2.2消元二元一次方程组的解法》说课稿

七年级下册数学《8.2.2消元二元一次方程组的解法》说课稿

七年级下册数学《8.2.2消元二元一次方程组的解法》说课稿我说课的内容是人教版初中数学七年级下册第八章第二节二元一次方程组的解法第二课时加减消元法。

我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。

一、说教材分析1、教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。

通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。

理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。

难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,在教学中我主要采用诱思探究的启发式教学达到师生互动三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验。

人教版七年级数学下册复习说课稿:8.2.2用加减消元法解方程组

人教版七年级数学下册复习说课稿:8.2.2用加减消元法解方程组
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.引入加减消元法:首先,通过具体的方程组实例,引导学生观察、思考,发现消元的原理。
2.演示步骤:利用PPT、板书等方式,逐步演示加减消元法的步骤,让学生清晰地了解整个解题过程。
3.解释原理:讲解加减消元法背后的数学原理,使学生知其然也知其所以然。
1.正确判断何时使用加法消元,何时使用减法消元。
2.理解并掌握加减消元法在实际问题中的应用。
3.培养学生总结、归纳解题方法的能力。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,他们正处于青春期初期,具有好奇、好动、求知欲强的特点。在认知水平上,他们已经具备了一定的逻辑思维能力,但抽象思维能力尚在发展之中。学习兴趣方面,学生对新鲜事物充满好奇,喜欢探索和实践,但对于复杂的数学问题可能会感到畏惧。在学习习惯上,部分学生可能还未养成良好的学习习惯,如课前预习、课后复习等,需要教师进行引导和培养。
4.适时给予学生表扬和鼓励,增强他们的自信心,培养积极向上的学习态度。
5.结合学生的兴趣,开展趣味数学活动,如解方程组竞赛等,提高学生的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用以下教学方法:问题驱动的探究学习、分组合作学习和启发式教学。选择这些方法的理论依据如下:
1.问题驱动的探究学习:该方法能够激发学生的好奇心,引导学生主动探究新知识,培养其独立思考和解决问题的能力。
3.实践活动:布置一道实际生活中的问题,要求学生运用加减消元法求解,让学生在实际操作中感受数学的魅力。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价并提供有效的反馈和建议:
1.创设情境:以现实生活中的一组实际问题为例,如“小明和小红去超市购物,已知小明比小红多花了10元,两人一共花了150元,求小明和小红各花了多少钱。”让学生感受到数学知识在实际生活中的应用,激发学习兴趣。

8.2.2 二元一次方程组的解法---加减消元法

8.2.2 二元一次方程组的解法---加减消元法

8.2.2 二元一次方程组的解法---加减消元法教学目标1.知识与技能目标1).理解加减消元法的含义。

2).掌握用加减法解二元一次方程组。

2.过程与方法目标使学生理解加减消元法所体现的“化未知为已知”的化归思想方法;3.情感态度与价值观目标体验数学学习的乐趣,在探索过程中品尝成功的喜悦,树立学好数学的信心. 教学重难点重点:用“加减法“解二元一次方程组难点:用“加减法“解二元一次方程组教学过程一、复习引入:⎩⎨⎧=+=+16210y x y x1、用代入消元法解此方程组2、认真观察此方程组中各个未知数的系数有什么特点,并讨论还有没有更简单的方法解这个方程组3. 类比刚才的方法尝试解方程组⎩⎨⎧=+=+16210y x y x二、讲授新课--加减消元法1.通过上面问题你发现了什么?2.观察上述二元一次方程组的两个方程中,x 或y 的系数有什么关系?利用这种关系你能发现新的消元方法吗?两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.三、典型例题方法总结1、某一未知数的系数 时,用减法。

2、某一未知数的系数 时,用加法。

四、练习1、用加减消元法解下面的方程组 ⎩⎨⎧-=-=+② 253① 743b a b a2.已知二元一次方程组 则x+y= ,x-y=⎩⎨⎧=+=+② 42① 823y x y x ⎩⎨⎧=-=+② 12① 1132x y y x ⎩⎨⎧=+=+8y 2x 7y x 2⎩⎨⎧=---=+②574① 973y x y x五、能力提升思考:这个方程组能用加减消元法来解吗?课堂小结:(1)用加减法解二元一次方程组的思想(2)用加减法解二元一次方程组的条件(3)用加减法解二元一次方程组的步骤 作业布置:1、必做题:课本复习巩固第2题 2、选做题:用加减消元法解方程组 板书设计教学反思:32147x y x y +=-⎧⎨+=-⎩⎩⎨⎧=+=+② 1743①1232y x y x。

8.2.2 二元一次方程组的解法-加减法

8.2.2 二元一次方程组的解法-加减法
解由③④组成的方程组
解得 【点睛】整体代入法(换元法)是数学中的重要方法之一,这种方法往
往能使运算更简便.
练一练
例6:2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆 小卡车工作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车每小时各运 多少吨垃圾?
解:设1辆大卡车和1辆小卡车每小时各运x吨和y吨垃圾.
讲解新知
怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ①
2 x – 5 y = -11 ②
5y和-5y互为相反数……
分析: ①+② (3x+5y)+ (2x-5y) = 21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边 3x+5y +2x - 5y=10 5x=10 x=2
3
将③代入②得 5 23 2 y 2 y 33
3
解得:y=4
把y=4代人③ ,得x=5 x=5
所以原方程组的解为: y=4
除代入消元, 还有其他方法吗?
讲解新知
3x+2y=23 ① 5x+2y=33 ②
y的系数相等
分析: ①-② (3x+2y) - (5x+2y) = 23 - 33 ①左边 - ② 左边 = ① 右边 - ②右边 3x+2y -5x - 2y=-10 -2x=-10 x=5
① ②
解: ②×4得: 4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
知识小结
同一未知数的系数 不相等也不互为相反数 时,利用等式的性质,使得

8.2消元__二元一次方程组的解法(加减法)学案

8.2消元__二元一次方程组的解法(加减法)学案

课题8.2消元---二元一次方程组的解法年级:七年级 备课人:娄婷婷 课型:新授 课时:新课标:掌握加减消元法,能解二元一次方程组。

一、指导思想与理论依据涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。

本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论,并在二元一次方程组的基础上,学习讨论三元一次方程组及解法。

由此为今后进一步学习不等式组以及二次函数奠定基础。

本章主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例。

其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点。

使学生经历建立二(三)元一次方程组这种数学模型并应用它们解决实际问题的过程,体会方程组的特点和作用,掌握运用方程组解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识,是本章的中心任务。

由于含有两(三)个以及多个未知数的实际问题中数量关系比较多,在某些问题中数量关系比较隐蔽,所以列方程组表示问题中的数量关系通常是教学中的难点。

二、教学背景(一)学生情况分析七年级学生由于才进入初中,绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,学习成绩极不理想。

从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。

部分学生有主动学习的行为,深得老师赞赏。

比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会,表现欲较强。

但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。

(二)教学方式与教学手段抓住七年级学生表现欲强的特征,多让学生自主学习与小组合作学习相结合,老师起点拨作用,把课堂还给学生。

8.2 消元──二元一次方程组的解法(2)

8.2 消元──二元一次方程组的解法(2)
课本第99页第4题:张翔从学校出发骑自行车去县城, 中途因道路施工步行一段路,1.5小时后到达县城.他骑 车的平均速度是15千米/时,步行的平均速度是5千米/时, 路程全长20千米. 他骑车与步行各用多少时间?
课堂小结,布置作业
作业:
1.教科书第103页习题8.2第4、6题.
2.(补充作业)用代入法解方程组
4x 4x
5y+1, 3y 25.
3.(选做题)教科书第104页习题8.2第9题.
第八章 二元一次方程组
8.2 消元——二元一次方程 组Байду номын сангаас解法(2)
探究新知,解决问题
【问题3】 例2:根据市场调查,某种消毒液的大瓶装(500g)
和小瓶装(250g)两种产品的销售数量(按瓶计算)比为 2 : 5 . 某厂每天生产这种消毒液 22.5 吨,这些消毒液应该分装大、小 瓶两种产品各多少瓶?
等量关系:⑴大瓶数 : 小瓶数 =2:5;
⑵大瓶所装消毒液 +小瓶所装消毒液 = 总生产量.
解:设这些消毒液应该分装 x 个大瓶和 y个小瓶,根据题意,得
5x 2y, 500x 250y 22500000.
探究新知,解决问题
解y 得
y 50 000
二 5x 2y 变形 y 5 x
元 一
2
x 20000

代入
解x 得

一元一次方程
程 组
500x 250y 22500000 消去 y 500x 250 5 x 22500000
2
用 5 x代替y,消去未知数 y 2
自己动手,实际应用
【问题4】练习:
课本第99页第3题:有48支队520名运动员参加篮、 排球比赛,其中每支篮球队10人,每支排球队12人,每 名运动员只参加一项比赛.篮、排球队各有多少支参赛?

8.2.2消元——二元一次方程组的解法

8.2.2消元——二元一次方程组的解法

3X+5y +2x - 5y=10 5x+0y =10 5x=10
3x 5y 21 2 x 5 y -11
解:由①+②得: 5x=10
① ②
x=2
把x=2代入①,得
y=3
x 3 所以原方程组的解是 y 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
分析:
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程 中有错误步骤,并给予订正: 7x-4y=4 ①
基本思路: 加减消元: 二元
一元
主要步骤: 变形 加减 求解 写解
同一个未知数的系 数相同或互为相反数
消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
探索与思考
ax by 2 3、在解方程组 cx 3 y 5
x 1 时,小张正确的解是 ,小李由于看错 y 2
x 1 所以原方程组的解是 y 1
把y =2代入①, 解得: x=3
对于当方程组中两方 程不具备上述特点时, 必须用等式性质来改 变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为 加减消元法解方程组 创造条件.
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?

8.2——解二元一次方程组(2)教学设计

8.2——解二元一次方程组(2)教学设计

8.2消元——解二元一次方程组(2)教学设计学习目标:1、了解加减消元法的含义,会运用加减消元法解二元一次方程组;2、针对不同方程组会选择适当、简便的消元法解方程组。

过程与方法:从特殊到一般,启发学生观察未知数的系数,思考不同的消元方法;观察未知数的系数特点,解决不同类型系数关系的二元一次方程组,归纳出解题方法,根据等式的性质进行加减消元。

情感、态度与价值观:经历探索、总结加减消元法解方程组的过程,培养学生小组合作交流,主动探索的精神。

学习重点与难点:重点:用加减法解二元一次方程组。

难点:对加减消元法的理解,以及灵活运用加减法解二元一次方程组。

学习过程:一、新课引入1、一个长方形的周长是50cm ,长比宽多5cm,设长为xcm,宽为ycm ,可列出的二元一次方程组是 或 。

2.上面方程组的两个方程中,y 的系数有什么关系?利用这种关系你能发现新的消元方法吗?个别学生回答问题,提高学生观察和思考的主动性和能力。

二、研读课文 认真阅读课本第94至95页的内容,完成下面练习并体验知识点的形成过程.1、对于方程组⎩⎨⎧=+=+16210y x y x ① ② 中未知数y 的系数_______,②-①可消去未知数 ,得(2x+y )-(x+y)=16-10,解得x= 。

把x= 代入①得y= 。

另外①-②也可消去未知数 ,得(x+y)-(2x+y )=10-16,解得x= 。

把x= 代入①得y= 。

最后,方程组的解为 。

2、思考联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+810158.2103y x y x 。

未知数 y 的系数互为_______,因此由①___②(“+”或“-”),可消去未知数y.3、当二元一次方程组的两个方程中同一个未知数的系数_____或_____时,把这两个方程的两边分别 ______或_____,就能消去这个未知数,得到一个________方程,这种方法叫做 ,简称加减法.三、课堂练习1、用加减法解方程组⎩⎨⎧-=-=-382532y x y x ①②时,①-②得一元一次方程 。

8.2消元——二元一次方程组的解法(加减消元法2)

8.2消元——二元一次方程组的解法(加减消元法2)

3 x+y
3
+
xy 2
xy 2
1, 7;
3(x+y) 2(x y)பைடு நூலகம் 8,

x+y
6
x 3
y
4; 3
解二元一次方程组:
解:法1.整理,得

x
3
x
3
y 2 y 2
3, 1;
2x 3y 18,
解 2, 得xyx= =36y,
2.
6;
x
法2.令
3 y
设元 2
a, b
2x- y=8 ④
所以原方程组 的解是
由③-④得: y= -1
练习2.下列方程组各选择哪种消元法来解比
较简便?并用相应的方法求解。
(1) Y=2x
(2) x-2y=y-1
3x-4y=5
代入法
x y
1, 2.
(3) 2x+3y=9
4x-5y=7
2x-3y=10
代入或 x 11, 加减法 y 4. (4) 9x-5y=19
8.2.2 加减消元法(2)
1、解二元一次方程组的方法有哪些? 代入法和加减法
2、解二元一次方程组:
(1)32xx+2yy
1, 3;
(代入法)
(2)52xx63yy170,(; 加减法)
x 1, y 1 x 2, y 1
(3)53xx
2y 4y
1, 13.
(任意方法)
x y
1, 2.
解,得: m = 1
(3)
2(x 5
3(x 5
y) y)
3(x 2
(x y
y ) =8, )= 1.

8.2二元一次方程组的解法----加减消元法2

8.2二元一次方程组的解法----加减消元法2

七年级数学加减消元法讲学稿主备:杨海兰 王钟升 审核:粟景耀 班学生姓名【目标】掌握加减法解二元一次方程组 【重点】用加减法解二元一次方程组【难点】用加减法解相同未知数的系数不成整数倍的二元一次方程组一、预习案:(一)知识回顾用代入法解下列方程组,并检验所得结果是否正确.6,(1)212.x y x y +=⎧⎨-=⎩ 321(2)2410a b a b -=-⎧⎨+=⎩(二)阅读课本P99-100内容,完成下列问题:1.请仔细观察上面两道题未知数的系数有何关系?2.试用加减法解方程组: 6 (1)212 (2)x y x y +=⎧⎨-=⎩解:①+②得:3x= _______解得:x=________。

把x=_______,代入①得:_____________________. ∴y=________. ∴________x y =⎧⎨=⎩(三)尝试练习:23(1)34a b a b +=⎧⎨+=⎩ 41030(2)15108x y x y +=⎧⎨-=⎩二、学习案:【知识点拨】1.什么是加减消元法?2.用加减消元法解二元一次方程。

【课内训练】1.已知45,324,x yx y+=⎧⎨+=⎩,则x-y的值是()A.1 B.0 C.-1 D.不能确定2.用加减消元法解下列方程组:(1)3213,32 5.x yx y+=⎧⎨-=⎩(2)258325m nm n+=⎧⎨+=⎩(3)3416,5633,x yx y+=⎧⎨-=⎩三、反馈案:1.解方程组①2359;x yx y=⎧⎨-=⎩②4273210;x yx y-=⎧⎨+=⎩③341;x yx y+=⎧⎨-=⎩④459237x yx y+=⎧⎨-=⎩比较适宜的方法是()A.①②用代入法,③④用加减法B.②③用代入法,①④用加减法C.①③用代入法,②④用加减法D.②④用代入法,①③用加减法2.用加减法解下列方程组:(1)29321x yx y+=⎧⎨-=-⎩(2)52253415x yx y+=⎧⎨+=⎩(3)25343x yx y-=-⎧⎨-+=-⎩。

《8.2.2加减消元法——解二元一次方程组》说课稿

《8.2.2加减消元法——解二元一次方程组》说课稿

《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。

一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。

通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。

2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。

理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。

而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。

难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请往阅智教育资源店下载全章合集;敬请期待配套课件,视频课程
8.2 二元一次方程组的解法(2)—加减法
一、本课任务:
1. 会用代入法解二元一次方程组;
2. 初步体会解二元一次方程组的基本思想――“消元”。

二、自主学习:
1.把下列方程写成用含x的式子表示y形式:
2、用代入法解下列方程:
(二)、探究新知:
1、观察方程组
你发现哪一个未知数系数之间的关系特殊?此时又如何消元呢?
方法总结:同一未知数的系数时,把两个方程的两边分别!
2、解下列二元一次方程组
方法总结:同一未知数的系数时,把两个方程的两边分别!
3、用加减法解方程组:
方法总结:同一未知数的系数时,利用等式的性质,使得未知数的系数.再.
三、独立练习:
1、加减消元法解下列方程组
请往阅智教育资源店下载全章合集;敬请期待配套课件,视频课程。

相关文档
最新文档