最新湘教版2018-2019学年数学九年级上学期期末考试模拟试题2及答案解析-精编试题
最新湘教版2018-2019学年数学九年级上学期期末考试模拟试题一及答案解析-精编试题
湘教版最新九年级数学上学期期末测试(二)(时间:90分钟 满分:120分)题号 一 二 三 总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.(本溪中考)已知2x =5y(y≠0),则下列比例式成立的是( )A.x 2=y 5B.x 5=y 2C.x y =25D.x 2=5y2.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x ,则可列方程为( )A .48(1-x)2=36 B .48(1+x)2=36 C .36(1-x)2=48 D .36(1+x)2=483.(崇左中考)若反比例函数y =kx的图象经过点(m ,3m),其中m≠0,则此反比例函数图象经过( )A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限4.(怀化中考)设x 1,x 2是方程x 2+5x -3=0的两个根,则x 21+x 22的值是( )A .19B .25C .31D .305.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A.5714B.2114 C.35 D.2176.下列四组条件中,能判定△ABC ∽△DEF 的是( )A .∠A =45°,∠B =55°;∠D=45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =10,EF =8,∠D =45° C .AB =6,BC =5,∠B =40°;DE =5,EF =4,∠E =40° D .BC =4,AC =6,AB =9;DE =18,EF =8,DF =127.从鱼塘打捞草鱼240尾,从中任选9尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.8,1.3,1.4(单位:kg),依此估计这240尾草鱼的总质量大约是( )A .300 kgB .360 kgC .36 kgD .30 kg8.(白银中考)如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y.则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每小题3分,共24分)9.在Rt △ABC 中,∠C =90°,sinA =35,则tanB =________.10.(酒泉中考)关于x 的方程kx 2-4x -23=0有实数根,则k 的取值范围是________.11.已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长是________厘米. 12.(沈阳中考)如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AB ∶DE =________.13.如图,已知AB∥CD∥EF,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD =6,DF =3,BC =5,那么BE =________.14.(济宁中考)如图是反比例函数y =k -2x的图象的一个分支,对于给出的下列说法:①常数k 的取值范围是k >2; ②另一个分支在第三象限;③在函数图象上取点A(a 1,b 1)和点B(a 2,b 2),当a 1>a 2时,则b 1<b 2;④在函数图象的某一个分支上取点A(a 1,b 1)和点B(a 2,b 2),当a 1>a 2时,则b 1<b 2. 其中正确的是________(在横线上填出正确的序号).15.(达州中考)“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8 200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表.时间段频数频率29分钟及以下108 0.5430~39分钟24 0.1240~49分钟m 0.1550~59分钟18 0.091小时及以上20 0.1表格中,m=________,这组数据的众数是________________,该校每天锻炼时间达到1小时的约有________人.16.如图,在边长为6 cm的正方形ABCD中,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2 cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了________秒,△PBQ的面积等于8 cm2.三、解答题(共72分)17.(6分)计算:(1)2tan60°·sin30°+cos230°-6cos45°;(2)2sin60°-4cos230°+sin45°·tan60°.K18.(6分)解下列方程:(1)x2-3x-7=0; (2)(x+3)2=x(5x-2)-7.19.(8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1).以O 点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2).(1)画出图形;(2)分别写出B 、C 两点的对应点B′、C′的坐标;(3)如果△OBC 内部一点M 的坐标为(x ,y),写出M 的对应点M′的坐标.20.(8分)(昭通中考)如图,直线y =k 1x +b(k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A(1,m)、B(-2,-1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1)、A2(x2,y2)、A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.21.(10分)(广东中考)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10 m,到达B点,在B处测得树顶C的仰角为60°(A、B、D三点在同一直线上).请你根据他们测量的数据计算这棵树CD的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)22.(10分)(绥化中考)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)估计这240名学生共植树多少棵?23.(10分)百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1 200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价________元,那么平均每天就可多售出________件,现在一天可售出________件,每件盈利________元.24.(14分)(巴中中考)如图,在 ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE =∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.参考答案1.B 2.D 3.A 4.C 5.B 6.D 7.B8.C 提示:根据题意知,BF =1-x ,BE =y -1,且△EFB ∽△EDC,则BF DC =BE EC ,即1-x 1=y -1y ,所以y =1x(0.2≤x ≤0.8).该函数图象是位于第一象限的双曲线的一部分.9.43 10.k ≥-6 11.5-1 12.2∶3 13.7.5 14.①②④ 15.30 29分钟及以下 820 16.2或10317.(1)原式=23×12+(32)2-6×22=3+34-3=34.(2)原式=2×32-4×(32)2+22×3=62-3+62=6-3. 18.(1)在方程x 2-3x -7=0中,a =1,b =-3,c =-7.则x =-b±b 2-4ac 2a =3±(-3)2-4×1×(-7)2×1=3±372,解得x 1=3+372,x 2=3-372.(2)原方程可化为x 2-2x -4=0.∴(x-1)2=5. ∴x-1=± 5.∴x 1=1+5,x 2=1- 5.19.(1)图略. (2)B′(-6,2),C ′(-4,-2). (3)M′的坐标为(-2x ,-2y).20.(1)把B(-2,-1)代入y =k 2x中,得k 2=2.∴y=2x .把点A(1,m)代入y =2x,得m =2,则A(1,2).把点A(1,2)、B(-2,-1)分别代入y =k 1x +b ,得⎩⎪⎨⎪⎧k 1+b =2,-2k 1+b =-1.解得⎩⎪⎨⎪⎧k 1=1,b =1.∴y =x +1. (2)y 2<y 1<y 3. 21.∵∠CBD=∠A+∠ACB,∴∠ACB =∠CBD-∠A=60°-30°=30°. ∴∠A =∠ACB.∴BC=AB =10 m . 在Rt△BCD 中,CD =BC·sin ∠CBD =10×32=53≈8.7(m). 答:这棵树CD 的高度约为8.7 m .22.(1)D 类的人数为:20-4-8-6=2(人).图略.(2)x =4×4+5×8+6×6+7×220=5.3(棵),240×5.3=1 272(棵).答:估计这240名学生共植树1 272棵.23.x 2x (20+2x) (40-x) 设每件童装降价x 元,则(40-x)(20+2x)=1 200,即x 2-30x +200=0.解得x 1=10,x 2=20.∵要扩大销售量,减少库存,∴舍去x 1=10.答:每件童装应降价20元. 24.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B=180°,∠ADF =∠DEC. ∵∠AFD+∠AFE=180°,∠AFE =∠B,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎪⎨⎪⎧∠AFD=∠C,∠ADF =∠DEC,∴△ADF ∽△DEC.(2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC,∴AD DE =AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理,得AE =DE 2-AD 2=122-(63)2=6.。
2018-2019学年最新湘教版九年级数学第一学期期末模拟试题及答案解析-精编试题
湘教版九年级数学上学期期末复习检测题(时量:120分钟 满分:120分)一、精心选一选,旗开得胜 (每小题3分, 满分30分,请将正确答案的序号填写在下表内)1. 方程x 2=x 的解是 ( ) A. x=0 B. x=1 C. x=±1 D. x=1, x=02.如果一元二次方程212270x x ++=的两个根是12,x x ,那么12x x +的值为A. -6B. -12C. 12D. 27 3.下列描述不属于定义的是A .两组对边分别平行的四边形是平行四边形B .正三角形是特殊的三角形C .在同一平面内三条线段首尾相连得到的图形是三角形D .含有未知数的等式叫做方程 4.下列命题是假命题的是A. 平行四边形的对角相等B. 等腰梯形的对角线相等C. 对角线互相垂直的四边形是菱形D. 两条对角线相等的平行四边形是矩形 5. 下列说法中正确的是A .所有的等腰三角形都相似B .所有的菱形都相似C .所有的矩形都相似D .所有的等腰直角三角形都相似 6.如图1:点O 是等边△ABC 的中心,A ′、B ′、C ′分 别是OA ,OB ,OC 的中点,则△ABC 与△A ′B ′C ′是位 似三角形,此时,△A ′B ′C ′与△ABC 的位似比、位似中心分别为A .12, 点A ′ B .2,点A C .12,点OD .2,点O7.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是 A .c=A a sinB .c=A a cosC .c=A a tan ⋅D .c=Aatan 8. 计算: 0222sin304cos 30tan 45+-的值等于A .4B.C .3D .29. 学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,则剩余学生参加全市优秀学生表彰会的概率是 A.61 B.152 C.295 D.29410. 准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是 A.31 B.41 C.51 D.61二、耐心填一填,一锤定音 (每小题3分, 满分18分)C图2ABCDE11. 方程x2-2x-3=0变为(x+a)2=b 的形式,正确的是____________ . 12.定理“等腰梯形的对角线相等”的逆定理是 . 13. 在ABC 中,∠C=900,若a=4,b=3,则sinA=____________. 14. 如果两个相似三角形的相似比为2:3, 那么这两个相似三角形的面积比为 .15. 如图2: △ABC 中,D,E 分别在AB 、AC 上,且DE 与BC 不 平行,请填上一个适当的条件: ., 可得△ADE ∽△ABC16. 张洁和曾巧两个同学的生日在同一个月的概率是____________ .三、细心想一想,慧眼识金 (第17、18题各6分,第19 题8分,满分20分)17. 已知关于x 的一元二次方程5x 2+kx -10=0一个根是-5,求k 的值及方程的另一个根.18.如图3,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,问此路灯有多高?图319.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数). (1)列举所有可能出现的结果. (2)出现奇数的概率是多少?四、用心做一做,马到成功 (每小题8分,满分16分)20、如图4,梯形ABCD 中,AD ∥BC,AB=DC,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F,且PA=PD.(1)写出图中三对你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.图4_F _E _ P _ D_ C_B _ A21. 如图5,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.五、综合用一用,再接再厉(每小题8分,满分16分)22.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.如果制作这面镜子共花了195元,求这面镜子的长和宽.图5ABCDE 1 223.如图6,直升飞机在资江大桥AB 的上方P 点处,此时飞机离地面的高度PO=450米,且A 、B 、O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .六、探究试一试,超越自我 (第24题8分,第25题12分,满分20分)24. 已知:α为锐角,关于x 的一元二次方程0tan 3232=+-αx x 有两个相等的实数根. (1)求锐角α; (2) 求方程的根.OBA450图625.如图7,在梯形ABCD 中,AB∥CD,AB =7,CD =1,AD =BC =5.点M 、N 分别在边AD 、BC 上运动,并保持MN∥AB ,ME⊥AB ,NF⊥AB ,垂足分别为E 、F .(1)求梯形ABCD 的面积;(2)设AE =x,用含x 的代数式表示四边形MEFN 的面积. (3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.图7C DABE F NM期末检测九年级数学参考答案一、(每小题3分, 满分30分) 二、(每小题3分, 满分18分)11、(x-1)2=4 12、对角线相等的梯形是等腰梯形 13、5414、4:9 15、∠ ADE =∠ C,或∠ AED=∠ B 或AB AE =AC AD , 任选一种情况均可 16、121三、(第17、18题各6分,第19 题8分,满分20分)17、 k=23 (2分) 522=x (4分) 18、△CDE ∽△ABE , (2分) 则 BEDE AB CD =,即4226.1+=AB ,AB=4.8米 (4分) 19、(1)所有可能出现的结果: 一位数3个:1、2、3; 两位数6个:12、13、21、23、31、32;三位数6个:123、132、213、231、312、321. (6分) (2)出现奇数的概率为32(2分) 四、(每小题8分, 满分16分)20、(1)△ABE ≌△DCF ,△ABP ≌△DCP ,△PBE ≌△PCF ,△PBF ≌△P CE 任写三种情况均可 (3分) (2)证明过程 略 (5分)21、先证DE=DB (3分) 再求DB=38(5分) 五、(每小题8分, 满分16分)22、设长方形镜子的宽为x m , 则长为2x m, 则1954563021202=+⨯+⨯x x (4分) 即05682=-+x x 解得5.0),(25.421=-=x x 舍去 答略 (4分)23、 30,45PAO PBO ∠=︒∠=︒,tan 30,tan 45PO POOA OB=︒=︒,(4分)450tan 30OA ∴==︒450450tan 45OB ==︒, 1)()AB OA OB m ∴=-= 答略 (4分)六、(第24题8分,第25题12分,满分20分)24、(1)0tan 34)32(2=⨯⨯--=∆α,解得1tan =α,∴045=α; (4分)(2) 013232=+-x x ,解得3321==x x . (4分) 25、(1)分别过D 、C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .易四边形DGHC 为矩形,∴GH =DC =1.又可证△AGD ≌△BHC . ∴ AG =BH =3. 在Rt △AGD 中,AG =3,AD =5, ∴ DG =∴16247)(1=⨯+=ABCD S 梯形. (4分) (2)易证四边形MEFN 为矩形, △MEA ≌△NFB, △MEA ∽△DGA ∴ AE =BF . 设AE =x ,则EF =7-2x .∴DG ME AG AE =. ME =x 34. ∴ x x x x EF ME S MEFN 32838)2(7342+-=-=⋅=矩形. (4分) (3)能.四边形MEFN 为正方形,则ME =EF . 由(2)知,AE =x ,EF =7-2x ,ME =x 34.∴=34x7-2x .解得1021=x .∴ EF =51427=-x <4. ∴251965142=⎪⎭⎫ ⎝⎛=MEFNS 正方形. (4分)ABE F G H2013年下期九年级数学期末检测试卷命题双向细目表(时量:120分钟,满分120分)命题人:何杰(新田十字中学)程训#精品期末模拟试题#。
2018-2019学年湘教版九年级数学第一学期期末测试卷及答案
2018-2019学年湘教版九年级数学上册期末检测试卷一、单选题(共10题;共30分)1.用配方法解方程x2+2x-1=0时,原方程应变形为()A.(x+1)2=2B.(x-1)2=2C. (x+2)2=9D.(x-2)2=92.已知x=1是一元二次方程x2-2mx+1=0的解,则m的值是()A. -1B. 0C. 1D. 0或13.如图,已知l3∥l4∥l5,它们依次交直线l1、l2于点E,A,C和点D,A,B,如果AD=2,AE=3,AB=4,那么CE=()A. 6B. 32 C. 9 D. 834.已知方程x2-x-2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A. −3B. 1C. 3D. -15.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)26.在△ABC中,D、F、E分别在边BC、AB、AC上一点,连接BE交FD于点G,若四边形AFDE是平行四边形,则下列说法错误的是()A. AFAB =EGBEB. FGGD=BGGEC. FGAB=DGBCD. AFBF=AEBC7.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A. B. C. D.8.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A. -2B. -1C. 1D. 29.已知关于x的一元二次方程x²-kx-4=0的一个根为2,则另一根是()A. 4B. 1C. -2D. 210.(2017•佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 5﹣2.A. 2B. 3C. 4D. 5二、填空题(共10题;共30分)11.请计算:(1+π)0+(﹣13)﹣2+2sin60°﹣| 3+1|=________.12.如图,已知ADDB =AEEC,AD=6.4 cm,DB=4.8 cm,EC=4.2 cm,则AC=________ cm.13.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=________.14.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是________.15.已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.16.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=23厘米,则△ABC的边BC的长为________厘米.17.某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为________.18.如果反比例函数y=3−4a的图象在每一个象限内y随x的增大而增大,那么a满足的条件是________x19.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是________.20.(2017•盐城)如图,曲线l是由函数y= 6在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,x过点A(﹣4 2,4 2),B(2 2,2 2)的直线与曲线l相交于点M、N,则△OMN的面积为________.三、解答题(共10题;共60分)21.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),在建立的平面直角坐标系中,△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1.(1)在图中标示出旋转中心P,并写出它的坐标;(2)以原点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,在图中画出△A2B2C2,并写出C2的坐标.22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,某游客在山脚下乘览车上山.导游告知,索道与水平线成角∠BAC为40°,览车速度为60米/分,11分钟到达山顶,请根据以上信息计算山的高度BC.(精确到1米)(参考数据:sin40°=0.64,cos40°=0.77,tan40°=0.84)24.如图是一个由12个相似(形状相同,大小不同)的直角三角形所组成的图案,它是否有点像一个商标图案?你能否也用相似图形设计出几个美丽的图案?最好再给你设计的图案取一个名字.25.如图,湛河两岸AB与EF平行,小亮同学假期在湛河边A点处,测得对岸河边C处视线与湛河岸的夹角∠CAB=37°,沿河岸前行140米到点B处,测得对岸C处的视线与湛河岸夹角∠CBA=45°.问湛河的宽度约多少米?(参考数据:sin37°≈0.60,cos37°=0.80,tan37°=0.75)26.如图1所示的是一种置于桌面上的简易台灯,将其结构简化成图2,灯杆AB与CD交于点O(点O固定),灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,测得OC=20cm,∠COB=70°,∠F=40°,EF=EG,点G到OB的距离为12cm.(1)求∠CEG的度数.(2)求灯罩的宽度(FG的长;结果精确到0.1cm,可用科学计算器).(参考数据:sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)27.某小区规划在一块长32米,宽20米的矩形场地修建三条同样宽的小路,使其中两条平行,另一条与之垂直,其余部分种草,草坪的面积为570米2,小路的宽度应是多少?28.如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB 与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)29.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E为BC上一点,连接AE,作EF⊥AE交AB于F.(1)求证:△AGC∽△EFB.(2)除(1)中相似三角形,图中还有其它相似三角形吗?如果有,请把它们都写出来.30.黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?答案解析部分一、单选题1.【答案】A2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】D7.【答案】B8.【答案】A9.【答案】C10.【答案】C二、填空题11.【答案】912.【答案】9.813.【答案】214.【答案】5215.【答案】2516.【答案】6+4317.【答案】60018.【答案】a>3419.【答案】320.【答案】8三、解答题21.【答案】(1)解:如图,点P为所作,P点坐标为(3,1)(2)解:如图,△A2B2C2为所作,C2的坐标为(2,4)或(﹣2,﹣4).22.【答案】解: ∵ODOB =OEOA,∠AOB=∠EOD(对顶角相等),∴△AOB∼△EOD,∴ODOB =OEOA=13,∴37.2AB =13,解得AB=111.6米.所以,可以求出A、B之间的距离为111.6米23.【答案】解:由题意可得:∠BAC=40°,AB=66米.∵sin40°= BCAB,∴BC≈0.64×660=422.4米≈422米.答:山的高度BC约为422米.24.【答案】解:由12个相似的直角三角形形成的图案很有创意,给人以美的享受,可以作为一个商标的图案.以下几个图案分别是用相似形设计的美丽图案.25.【答案】解:过C作CD⊥AB于点D,设CD=x米.在Rt△BDC中,∠CDB=90°,∠CBD=45°,∴BD=CD=x .在Rt△ADC中,∠ADC=90°,∠CAD=37°,∴AD= xtan370=x0.75=4x3.∵AB=AD+DB=140,∴4x3+x=140,∴x=60.答:湛河的宽度约60米.26.【答案】解:(1)∵EF=EG,∠F=40°,∴∠G=40°,∠FEG=180°﹣∠F﹣∠G=100°,∵灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,∴∠CEG=∠CEF= 360°−∠FEG2=130°.(2)延长FG交AB于点N,过点E作EM⊥AB于点M,延长CE交FG于点H,如图所示.∵CE∥AB,FG处于水平位置,EM⊥AB,∴四边形CHNM为长方形,CH⊥FG,∴CM=HN.在Rt△OMC中,OC=20cm,∠COM=70°,∠OMC=90°,∴CM=OC•sin∠COM≈20×0.940=18.8(cm),∵GN=12cm,HN=CM,∴HG=CM﹣GN=6.8(cm).∵EF=EG,CH⊥FG,∴FH=HG=12FG,∴FG=2×6.8=13.6(cm).答:灯罩的宽度为13.6cm.27.【答案】解:设小路的宽是x米,(20﹣x)(32﹣2x)=570 x=1或x=35(舍去).故小路的宽为1米28.【答案】解:过点C作CM⊥AB交AB延长线于点M,由题意得:AC=40×10=400(米).在直角△ACM中,∵∠A=30°,∴CM= 12AC=200米,AM= 32AC=200 3米.在直角△BCM中,∵tan20°= BMCM,∴BM=200tan20°,∴AB=AM﹣BM=200 3﹣200tan20°=200(3﹣tan20°),因此A,B两地的距离AB长为200(3﹣tan20°)米.29.【答案】(1)证明:∵CD⊥AB,EF⊥AE∴∠FDG=∠FEG=90°∴∠DGE+∠DFE=360°﹣90°﹣90°=180°又∠BFE+∠DFE=180°,∴∠BFE=∠DGE,又∠DGE=∠AGC∴∠AGC=∠BFE,又∠ACB=∠FEG=90°∴∠AEC+∠BEF=180°﹣90°=90°,∠AEC+∠EAC=90°,∴∠EAC=∠BEF,∴△AGC∽△EFB(2)解:有.∵∠GAD=∠FAE,∠ADG=∠AEF=90°,∴△AGD∽△AFE;第11页共11页 ∴∠CAD=∠BAC ,∴△ACD ∽△ABC ,同理得△BCD ∽△BAC ,∴△ACD ∽△CBD ,即△ACD ∽△ABC ∽△CBD ,30.【答案】(1)解:设2018至2020年寝室数量的年平均增长率为x ,根据题意得:64(1+x )2=121,解得:x 1=0.375=37.5%,x 2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%。
最新湘教版2018-2019学年数学九年级上学期期末复习检测题及答案解析-精编试题
湘教版最新九年级数学上册复习期末检测试卷一.选择题(共8小题)1.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一2.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是()A.﹣3 B.﹣1 C.1 D.33.在反比例函数13myx-=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>13B.m<13C.m≥13D.m≤134.若3a=2b,则a ba-的值为()A.12- B.12C.13-D.135.△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()A.27 B.12 C.18 D.206.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越小,梯子越陡B.cosA的值越小,梯子越陡C.tanA的值越小,梯子越陡D.陡缓程度与上A的函数值无关7. 2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体8.有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.103B.102﹣10 C.10 D.103﹣10二.填空题(共8小题)9.如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=1x的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.10.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为.11.将一元二次方程x2+8x+3=0化成(x+a)2=b的形式,则a+b的值为.12.若sinα=cos35°,则锐角α=.13.若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为.14.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.15.将一副三角板按图叠放,则△AOB与△DOC的面积之比等于.16.如图是某中学七、八、九年级为贫困山区儿童捐款的统计图,已知该校七、八、九年级共有学生2000人,请根据统计图计算七、八、九年级共捐款元.三.解答题(共10小题)17.计算:(3﹣2)0+(13)﹣1+4cos30°﹣|3﹣27|18.已知关于x的一元二次方程12mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.19.如图,直线y=mx+n与双曲线y=kx相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.20.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.21.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A 到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:3≈1.7)22.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.某学校对某班学生“五•一”小长假期间的度假情况进行调查,并根据收集的数据绘制了两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:(1)求出该班学生的总人数.(2)补全频数分布直方图.(3)求出扇形统计图中∠α的度数.(4)你更喜欢哪一种度假方式.24.如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)则S△A1B1C1:S△A2B2C2.25.直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线nyx(x<0)交于点A(﹣1,n).(1)求直线与双曲线的解析式.(2)连接OA,求∠OAB的正弦值.(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.26.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<103),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.参考答案:一.选择题(共8小题)1.D 2.A 3.B 4.A 5.C 6.B 7.B 8.D二.填空题(共8小题)9. (2,0) .10.12 x (x ﹣1)=2×5 .11. 17 .12. 55° .13. ()251-或65-2 .14.2213 .15. 1:3 .16. 25180 元.三.解答题(共10小题)17.解:原式=1+3+4×32﹣23 =4.18.解:(1)∵关于x 的一元二次方程12mx 2+mx+m ﹣1=0有两个相等的实数根, ∴△=m 2﹣4×12m×(m ﹣1)=0,且m≠0, 解得m=2;(2)由(1)知,m=2,则该方程为:x 2+2x+1=0,即(x+1)2=0,解得x 1=x 2=﹣1.19.解:(1)把x=﹣1,y=2;x=2,y=b 代入y=k x , 解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n ,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y 轴交点C 的坐标为(0,1),所以点D 的坐标为(0,﹣1), 点B 的坐标为(2,﹣1),所以△ABD 的面积=1111232++=⨯⨯()().20.证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AB∥CD, ∴GF CF =DF BF ,CF EF =DF BF, ∴GF CF =CF EF , 即CF 2=GF•EF.21.解:(1)如图,连接PA .由题意知,AP=39m .在直角△APH 中,PH 223915-=36(米);(2)由题意知,隔音板的长度是PQ 的长度.在Rt△ADH 中,DH=AH•cot30°=153(米).在Rt△CDQ 中,DQ=030CQ Sin =3912=78(米). 则PQ=PH+HQ=PH+DQ ﹣DH=36+78﹣153≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板至少需要89米.22.解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据题意得6000 x =480080x,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1﹣y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.23.解:(1)该班学生的总人数是:60.12=50(人);(2)徒步的人数是:50×8%=4(人),自驾游的人数是:50﹣12﹣8﹣4﹣6=20(人);补图如下:(3)扇形统计图中∠α的度数是:360°×2050=144°;(4)最喜欢的方式是自驾游,它比较自由,比较方便.24.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)∵△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2,关于原点位似,位似比为1:2,∴S△A1B1C1:S△A2B2C2=1:4.25.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b得:b=﹣4,∴直线的解析式是:y=x﹣4;∵直线也过A点,∴把A点代入y=x﹣4得到:n=﹣5∴A(﹣1,﹣5),把将A点代入nyx(x<0)得:m=5,∴双曲线的解析式是:5y x ;(2)过点O 作OM⊥AC 于点M ,∵B 点经过y 轴,∴x=0,∴0﹣4=y ,∴y=﹣4,∴B(0,﹣4), AO=2215+=26,∵OC=OB=4,∴△OCB 是等腰三角形,∴∠OBC=∠OCB=45°,∴在△OMB 中 sin45°=OM OB =4OM, ∴OM=22,∴在△AOM 中, sin∠OAB=OM OA =2226=21313;(3)存在;过点A 作AN⊥y 轴,垂足为点N ,则AN=1,BN=1,则AB=2,∵OB=OC=4, ∴BC=42,∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA ∽△BCD 或△OBA ∽△DCB,∴OBBC=BACD或OBDC=ABBC,∴442=2CD或4DC=442,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(20,0)或(6,0).26.解:(1)由题意知,BM=3tcm,CN=2tcm,∴BN=(8﹣2t)cm,BA=10(cm),当△BMN∽△BAC时,BM BN BA BC=,∴382108t t-=,解得:t=2011;当△BMN∽△BCA时,BM BN BC BA=,∴382810t t-=,解得:t=3223,∴△BMN与△ABC相似时,t的值为2011或3223;(2)过点M作MD⊥CB于点D,由题意得:DM=BMsinB=3t610∙=95t(cm),BD=BMcosB=3t810∙=125t(cm),BM=3tcm,CN=2tcm,∴CD=(8﹣125t)cm,∵AN⊥CM,∠ACB=90°,∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°,∴∠CAN=∠MCD,∵MD⊥CB,∴∠MDC=∠ACB=90°,∴△CAN∽△DCM,∴AC CD CN DM=,∴62t=128595tt-,解得t=1312.。
2018-2019学年最新湘教版九年级数学上学期期末模拟综合检测题及答案解析-精编试题
湘教版最新九年级数学上学期期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分)1.(2分)下列计算正确的是()A.2+4=6B.=4C.÷=3 D.=﹣32.(2分)使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(2分)如图,已知∠ACB是⊙O的圆周角,∠ACB=50°,则圆心角∠AOB是()A.40°B.50°C.80° D.100°4.(2分)下列事件中是必然事件的是()A.阴天一定下雨B.随机掷一枚质地均匀的硬币,正面朝上C.男生的身高一定比女生高D.将油滴在水中,油会浮在水面上5.(2分)如果x1,x2是一元二次方程x2﹣6x﹣2=0的两个实数根,那么x1+x2的值是()A.﹣6 B.﹣2 C. 6 D. 26.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.(2分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.8.(2分)如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP 至P′,使△ABP绕点A旋转后,与△ACP′重合.若AP=,则PP′的长为()A . 2B .C .D . 29.(2分)如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为()A .B .C .D .10.(2分)如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a ﹣b+c 的值为()A . 0B . ﹣1C . 1D . 2二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.(2分)方程x 2﹣2x=0的解是.12.(2分)若=a﹣3,则a与3的大小关系是.13.(2分)将抛物线y=x2+1向左平移1个单位,再向上平移2个单位后,所得的抛物线的顶点坐标是.14.(2分)已知两圆的半径分别为3cm和5cm,且它们内切,则两圆的圆心距为cm.15.(2分)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求AB′的长.16.(2分)将二次函数y=x2﹣4x+3化为y=a(x+m)2+k的形式:y=.三、解答题17.(3分)计算:(1)2•;(2)(2﹣3)÷.18.(2分)解方程:(1)(x+6)2=9;(2)3x2﹣8x+4=0;(3)(2x﹣1)2=(x﹣3)2.19.(7分)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.(1)求证:CD是⊙O的切线;(2)若BC=3,求CD的长.20.(7分)(1)判断方程4x2﹣3x=﹣1是否有实数根?(2)若关于x的一元二次方程kx2﹣6x+9=0有实数根,求实数k的取值范围.21.(8分)已知一个二次函数y=ax2+bx+c的图象经过A(,0)、B(0,1)和C(1,0)三点,(1)求此二次函数的解析式;(2)画出此函数的图象(画草图即可,不必列表),写出开口方向和对称轴;(3)根据图象回答,x取何值时,函数值y>0?22.(8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)23.(7分)如图,AB是⊙O的直径,AD、BC和CD分别与⊙O相切于点A、B和E,DA=3.6,CB=6.4,(1)判断CO与OD是否垂直?(2)求⊙O的半径和图中阴影部分的面积(精确到0.01).24.(8分)某工厂生产的瓷砖按色号及质量分为10个产品档次.第1档次(最低档次)的产品一天能生产760箱,每箱利润100元.每提高一个档次,每件利润增加20元,但每天产量会减少40箱.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为108000元,求该产品的质量档次.25.(9分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分)1.(2分)下列计算正确的是()A.2+4=6B.=4C.÷=3 D.=﹣3考点:实数的运算.分析:A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.解答:解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.点评:此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.2.(2分)使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2考点:二次根式有意义的条件.专题:计算题.分析:利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.解答:解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.点评:本题考查了二次根式有意义的条件,此类考题相对比较简单,但从近几年的2015届中考看,几乎是一个必考点.3.(2分)如图,已知∠ACB是⊙O的圆周角,∠ACB=50°,则圆心角∠AOB是()A.40°B.50°C.80° D.100°考点:圆周角定理.专题:压轴题.分析:根据同弧所对圆心角是圆周角2倍,可得∠AOB=2∠ACB=100°.解答:解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°.故选D.点评:此题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2分)下列事件中是必然事件的是()A.阴天一定下雨B.随机掷一枚质地均匀的硬币,正面朝上C.男生的身高一定比女生高D.将油滴在水中,油会浮在水面上考点:随机事件.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.解答:解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴是必然事件的是:将油滴在水中,油会浮在水面上,符合题意.故选D.点评:理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2分)如果x1,x2是一元二次方程x2﹣6x﹣2=0的两个实数根,那么x1+x2的值是()A.﹣6 B.﹣2 C. 6 D. 2考点:根与系数的关系.专题:压轴题.分析:由一元二次方程根与系数的关系,得x1+x2=6.解答:解:∵x1+x2=﹣,∴x1+x2=6.故答案为:6.点评:本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.6.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)考点:坐标与图形变化-旋转.专题:动点型.分析:根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.解答:解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.点评:考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.(2分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:轴对称图形;中心对称图形.专题:新定义.分析:根据轴对称图形的概念与中心对称的概念即可作答.解答:解:A、B、D都是中心对称也是轴对称图形,C、是轴对称,但不是中心对称.故选C.点评:此题由复合图形组成,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.8.(2分)如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP 至P′,使△ABP绕点A旋转后,与△ACP′重合.若AP=,则PP′的长为()A.2B.C. D.2考点:旋转的性质.专题:计算题.分析:根据旋转的性质得AP=AP′,∠PAP′=∠BAC=90°,则可判断△APP′为等腰直角三角形,于是PP′=AP=2.解答:解:∵△ABC是等腰直角三角形,BC是斜边,∴∠BAC=90°,∵△ABP绕点A旋转后,与△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′为等腰直角三角形,∴PP′=AP=×=2.故选A.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.9.(2分)如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为()A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况,让两人选到同一条绳子的情况数除以总情况数即为所求的概率.解答:解:将三条绳子记作1,2,3,则列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)可得共有9种情况,两人选到同一条绳子的有3种情况,∴两人选到同一条绳子的机率为=.故选B.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(2分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C. 1 D. 2考点:二次函数的图象.专题:压轴题.分析:由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.解答:解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.点评:巧妙利用了抛物线的对称性.二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.(2分)方程x2﹣2x=0的解是x1=0,x2=2.考点:解一元二次方程-因式分解法.分析:首先把方程左边分解因式可得x(x﹣2)=0,进而得到x=0,x﹣2=0,再解即可.解答:解:x2﹣2x=0,x(x﹣2)=0,则x=0,x﹣2=0,x1=0,x2=2.故答案为:x1=0,x2=2.点评:此题主要考查了因式分解法解一元二次方程,因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.(2分)若=a﹣3,则a与3的大小关系是a≥3.考点:二次根式的性质与化简.分析:根据二次根式的性质:=a(a≥0),可得答案.解答:解:由=a﹣3,得a﹣3≥0,解得a≥3.故答案为:a≥3.点评:本题考查了二次根式的性质与化简,注意二次根式的值是非负数.13.(2分)将抛物线y=x2+1向左平移1个单位,再向上平移2个单位后,所得的抛物线的顶点坐标是(﹣1,3).考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.解答:解:抛物线y=x2+1的顶点坐标是(0,1),则其向左平移1个单位,再向上平移2个单位后的顶点坐标是(﹣1,3).故答案是:(﹣1,3).点评:本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.14.(2分)已知两圆的半径分别为3cm和5cm,且它们内切,则两圆的圆心距为2cm.考点:圆与圆的位置关系.分析:内切时的圆心距=两圆的半径差,据此列式求解.解答:解:∵两圆内切,∴两圆的圆心距为5﹣3=2cm.点评:主要是考查圆与圆的位置关系与数量关系间的联系:内切,则P=R﹣r.(P表示圆心距,R,r分别表示两圆的半径).15.(2分)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求AB′的长2.考点:中心对称.分析:利用中心对称图形关于A为对称中心,得出两图形全等,即可解决.解答:解:∵此图是中心对称图形,A为对称中心,∴△BAC≌△B′AC′,∴∠B=∠B′,∠C=∠C′,AC=AC′∵∠C=90°,∠B=30°,AC=1,∴AB′=2AC′=2.故答案为:2.点评:此题主要考查了中心对称图形的性质,以及在直角三角形中30°,所对的直角边是斜边的一半.16.(2分)将二次函数y=x2﹣4x+3化为y=a(x+m)2+k的形式:y=(x﹣2)2﹣1.考点:二次函数的三种形式.分析:利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.解答:解:y=x2﹣4x+3=(x﹣2)2﹣4+3=(x﹣2)2﹣1.故填:(x﹣2)2﹣1.点评:本题考查了二次函数的三种形式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).三、解答题17.(3分)计算:(1)2•;(2)(2﹣3)÷.考点:二次根式的混合运算.分析:(1)先进行二次根式的乘法运算,然后化简;(2)先进行二次根式的化简,然后进行二次根式的除法运算.解答:解:(1)原式=2;(2)原式=(8﹣9)÷=﹣1.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简以及合并.18.(2分)解方程:(1)(x+6)2=9;(2)3x2﹣8x+4=0;(3)(2x﹣1)2=(x﹣3)2.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法.专题:计算题.分析:(1)方程利用平方根定义开方即可求出解;(2)方程利用因式分解法求出解即可;(3)方程利用平方相等的两数相等或互为相反数转化为两个一元一次方程,求出方程的解即可.解答:解:(1)开方得:x+6=3或x+6=﹣3,解得:x1=﹣3,x2=﹣9;(2)分解因式得:(3x﹣2)(x﹣2)=0,可得3x﹣2=0或x﹣2=0,解得:x1=,x2=2;(3)开方得:2x﹣1=x﹣3或2x﹣1=3﹣x,解得:x1=﹣2,x2=.点评:此题考查了解一元二次方程﹣因式分解法,直接开平方法,熟练掌握运算法则是解本题的关键.19.(7分)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.(1)求证:CD是⊙O的切线;(2)若BC=3,求CD的长.考点:切线的判定.专题:证明题.分析:(1)连结OD,根据邻补角和三角形外角性质可得到∠ADC=120°,∠A=30°,则∠ODA=30°,于是可计算出∠ODC=∠ADC﹣∠ODA=90°,然后根据切线的判定定理即可得到结论;(2)由于在Rt△ODC中,∠C=30°,根据含30度的直角三角形三边的关系得OC=2OD,则可计算出OD=3,然后利用DC=OD求解.解答:(1)证明:连结OD,如图,∵∠ADE=60°,∠C=30°,∴∠ADC=180°﹣∠ADE=120°,∠A=∠ADE﹣∠C=30°,∵OA=OD,∴∠ODA=∠A=30°,∴∠ODC=∠ADC﹣∠ODA=90°,∴OD⊥DC,∴CD是⊙O的切线;(2)解:在Rt△ODC中,∠C=30°,∴OC=2OD,即OB+BC=2OD,而OD=OB,BC=3,∴OD+3=2OD,解得OD=3,∴DC=OD=3.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.20.(7分)(1)判断方程4x2﹣3x=﹣1是否有实数根?(2)若关于x的一元二次方程kx2﹣6x+9=0有实数根,求实数k的取值范围.考点:根的判别式.专题:计算题.分析:(1)先把方程化为一般式得到4x2﹣3x+1=0,再计算出△=﹣7,然后根据根的判别式的意义进行判断方程根的情况;(2)根据一元二次方程的定义和根的判别式的意义得到k≠0且△=36﹣4×k×9≥0,然后求出两个不等式的公共部分即可.解答:解:(1)移项得4x2﹣3x+1=0,∵△=(﹣3)2﹣4×4×1=﹣7<0,∴原方程没有实数根;(2)根据题意得k≠0且△=36﹣4×k×9≥0,所以k≤1且k≠0.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.21.(8分)已知一个二次函数y=ax2+bx+c的图象经过A(,0)、B(0,1)和C(1,0)三点,(1)求此二次函数的解析式;(2)画出此函数的图象(画草图即可,不必列表),写出开口方向和对称轴;(3)根据图象回答,x取何值时,函数值y>0?考点:待定系数法求二次函数解析式;二次函数的图象.分析:(1)将A、B、C三点坐标代入y=ax2+bx+c中,列方程组求a、b、c的值即可.(2)理由五点法画出图象,根据图象即可求得开口方向和对称轴.(3)由图象可知y>0时x的取值.解答:解:(1)将A(,0)、B(0,1)、C(1,0)三点代入y=ax2+bx+c中,得解得∴此二次函数的解析式y=2x2﹣3x+1.(2)如图:开口向上,对称轴为x==.(3)由图象可知:当x<或x>1时,y>0.点评:本题考查了用待定系数法求二次函数解析式的方法,学生画图的能力以及二次函数的性质.关键是数形结合思想的应用.22.(8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)考点:列表法与树状图法;一次函数图象上点的坐标特征;概率公式.分析:(1)利用概率的计算方法解答;(2)由图表解答.解答:解:(1)∵共有3张牌,两张为负数,∴k为负数的概率是;(2)画树状图共有6种情况,其中满足一次函数y=kx+b经过第二、三、四象限,即k<0,b<0的情况有2种,所以一次函数y=kx+b经过第二、三、四象限的概率为.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.用到的知识点为:概率=所求情况数与总情况数之比.23.(7分)如图,AB是⊙O的直径,AD、BC和CD分别与⊙O相切于点A、B和E,DA=3.6,CB=6.4,(1)判断CO与OD是否垂直?(2)求⊙O的半径和图中阴影部分的面积(精确到0.01).考点:切线的性质;扇形面积的计算.分析:根据切线长定理得出OD平分∠ADE,OC平分∠BCE,从而求得∠1=∠2,∠3=∠4,然后即可得出∠2+∠3=90°,从而证得CO⊥OD;(2)由∠A=∠B=90°,利用切线的性质得到AD与BC都与圆O相切,再由CD与圆相切,利用切线长定理得到AD=DE,CE=CB,可得出CD=DE+CE=AD+BC,解答:解:(1)连接OE,如图1,∵AD、BC和CD分别与⊙O相切于点A、B和E,∴OA⊥AD,OB⊥BC,OE⊥DC,∠ADO=∠EDO,∠BCO=∠ECO,∴∠1=2,∠3=∠4,∴∠2+∠3=90°,即∠DOC=90°,∴CO⊥DO;(2)∵AB为⊙O的直径,OA⊥AD,OB⊥BC,∴AD∥BC,∴四边形ABCD是直角梯形,∴AD、BC均为⊙O的切线,又CD与⊙O相切于点E,∴DE=DA,CE=CB,∴CD=AD+BC=10,如图2,过D作DF⊥BC,则AD=BF=3.6,AB=DF,∴CF=6.4﹣3.6=2.8,在Rt△CDF中,由勾股定理得:DF2+FC2=CD2,∴DF==≈9.60.∴AB=9.60,∴⊙O的半径为4.80,∴S阴影=S梯形﹣S半圆=×10×9.60﹣=48﹣36.17=11.83.点评:此题考查了切线的性质,切线长定理,勾股定理,以及半圆的面积,熟练掌握切线的性质是解本题的关键.24.(8分)某工厂生产的瓷砖按色号及质量分为10个产品档次.第1档次(最低档次)的产品一天能生产760箱,每箱利润100元.每提高一个档次,每件利润增加20元,但每天产量会减少40箱.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为108000元,求该产品的质量档次.考点:二次函数的应用.分析:(1)由总利润=每箱利润×数量就可以得出y关于x的函数关系式;(2)当y=108000时代入(1)的解析式求出x的值即可.解答:解:(1)由题意,得y=[100+20(x﹣1)][760﹣40(x﹣1)],y=﹣800x2+12800x+64000.答:y关于x的函数关系式为y=﹣800x2+12800x+64000;(2)当y=108000时,108000=﹣800x2+12800x+64000,解得:x1=11,x2=5.∵1≤x≤10,∴x=5.答:生产第5档次的产品一天的总利润为108000元.点评:本题考查了销售问题的数量关系总利润=每箱利润×数量的运用,二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.25.(9分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方形的性质.专题:压轴题.分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.解答:(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.点评:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.。
2019—2020年最新湘教版九年级数学上册上学期期末考试模拟测试及答案解析(试卷).docx
湘教版最新九年级数学上学期期末数学试卷一、选择题(36分)1.(3分)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤22.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D. m >﹣1且m≠03.(3分)在Rt△ABC中,∠C=90°,若AC=2,BC=1,则tanA的值是()A.B.2C. D.4.(3分)下列多边形一定相似的为()A.两个三角形B.两个四边形C.两个正方形D.两个平行四边形5.(3分)⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A 的位置关系是()A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外6.(3分)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130°B.120°C.110° D. 100°7.(3分)如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),下列结论中错误的是()A.a bc<0 B.9a+3b+c=0 C.a﹣b=﹣3 D. 4ac﹣b2<08.(3分)二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A.y=x2﹣2 B.y=(x﹣2)2C.y=x2+2 D. y=(x+2)29.(3分)若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离 D.无法确定10.(3分)抛物线y=3x2,y=﹣3x2,y=x2+3共有的性质是()A.开口向上B.对称轴是y轴C.都有最高点D.y随x值的增大而增大11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有()个.A.2个B.3个C.4个D. 5个12.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D. 2二、填空题(24分)13.(3分)9的平方根是.14.(3分)方程x2=x的解是.15.(3分)在△ABC中,∠C=90°,sinA=,则tanB=.16.(3分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.17.(3分)已知AB为⊙0的直径,AC、AD为⊙0的弦,若AB=2AC=AD,则∠DBC的度数为.18.(3分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1≠x2有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的结论是(填正确结论的序号)19.(3分)已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是.20.(3分)已知关于x的方程x2+6x+k=0的两个根分别是x1、x2,且+=3,则k的值为.三、解答题(60分)21.(6分)计算:.22.(6分)解方程:2(x﹣3)=3x(x﹣3).23.(6分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.24.(6分)已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.25.(8分)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.26.(8分)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.27.(10分)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.28.(10分)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.参考答案与试题解析一、选择题(36分)1.(3分)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,2﹣x≥0,解得x≤2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D. m >﹣1且m≠0考点:根的判别式;一元二次方程的定义.分析:由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.解答:解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.3.(3分)在Rt△ABC中,∠C=90°,若AC=2,BC=1,则tanA的值是()A.B.2C. D.考点:锐角三角函数的定义.分析:直接利用锐角三角函数关系得出tanA的值即可.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AC=2,BC=1,∴tanA==.故选:A.点评:此题主要考查了锐角三角函数关系,正确记忆正切值与各边之间的关系是解题关键.4.(3分)下列多边形一定相似的为()A.两个三角形B.两个四边形C.两个正方形D.两个平行四边形考点:相似多边形的性质.分析:通过特例对A、B、D矩形判定;根据相似多边形的定义对C进行判定.解答:解:A、一个直角三角形与一个等边三角形不相似,所以A选项错误;B、一个矩形与一个梯形不相似,所以B选项错误;C、所有的正方形都相似,所以C选项正确;D、一个菱形和一个矩形不相似,所以D选项错误.故选C.点评:本题考查了相似多边形:如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.5.(3分)⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A 的位置关系是()A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外考点:点与圆的位置关系;坐标与图形性质.专题:计算题.分析:先根据两点间的距离公式计算出PA的长,然后比较PA与半径的大小,再根据点与圆的关系的判定方法进行判断.解答:解:PA==5,∵⊙A半径为5,∴点P点圆心的距离等于圆的半径,∴点P在⊙A上.故选A.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了坐标与图形性质.6.(3分)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130°B.120°C.110° D. 100°考点:切线长定理.分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为360度可解.解答:解:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°﹣∠A=110°.故选C.点评:本题利用了切线的性质,四边形的内角和为360度求解.7.(3分)如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),下列结论中错误的是()A.a bc<0 B.9a+3b+c=0 C.a﹣b=﹣3 D. 4ac﹣b2<0考点:二次函数图象与系数的关系.分析:A、由对称轴可判断ab的符号,再由抛物线与y轴的交点可判断c的符号,从而确定abc的符号;B、观察图象,不能得出x=3时,函数值的符号,所以9a+3b+c不一定等于0;C、将(﹣1,0)、(0,3)分别代入y=ax2+bx+c,即可得出a﹣b=﹣3;D、根据抛物线与x轴的交点个数可判断b2﹣4ac的符号,从而确定4ac﹣b2的符号.解答:解:A、∵抛物线对称轴x=﹣>0,∴ab<0,又∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,正确,故本选项不符合题意;B、观察图象,由于没有给出对称轴方程,所以不能得出x=3时,函数值的符号,所以9a+3b+c 不一定等于0,即9a+3b+c=0不一定正确,故本选项符合题意;C、∵二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),∴,②代入①,整理,得a﹣b=﹣3,正确,故本选项不符合题意;D、∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,正确,故本选项不符合题意.故选B.点评:本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点.8.(3分)二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A.y=x2﹣2 B.y=(x﹣2)2C.y=x2+2 D. y=(x+2)2考点:二次函数图象与几何变换.专题:压轴题.分析:由抛物线平移不改变a的值,根据平移口诀“左加右减,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.解答:解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为:(0,2).可设新抛物线的解析式为y=(x﹣h)2+k,代入得y=x2+2.故选C.点评:解决本题的关键是得到新抛物线的顶点坐标.9.(3分)若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离 D.无法确定考点:直线与圆的位置关系.分析:根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.解答:解:∵⊙O的直径为20cm,∴⊙O的半径为10cm,∵圆心O到直线l的距离是10cm,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选B.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P <R﹣r.10.(3分)抛物线y=3x2,y=﹣3x2,y=x2+3共有的性质是()A.开口向上B.对称轴是y轴C.都有最高点D.y随x值的增大而增大考点:二次函数的性质.分析:根据二次函数的性质分别分析解题即可.解答:解:(1)y=3x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣3x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2+3开口向上,对称轴为y轴,有最低点,顶点为(0,3).故选:B.点评:此题主要考查了二次函数顶点式y=a(x﹣h)2+k的性质,正确把握相关性质是解题关键.11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有()个.A.2个B.3个C.4个D. 5个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤三个.故答案为:B.点评:此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D. 2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(24分)13.(3分)9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)方程x2=x的解是x1=0,x2=1.考点:解一元二次方程-因式分解法.分析:将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.解答:解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.15.(3分)在△ABC中,∠C=90°,sinA=,则tanB=.考点:互余两角三角函数的关系.分析:设BC=4x,AB=5x,由勾股定理求出AC=3x,代入tanB=求出即可.解答:解:∵sinA==,∴设BC=4x,AB=5x,由勾股定理得:AC==3x,∴tanB===,故答案为:.点评:本题考查了解直角三角形,勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.16.(3分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式.专题:常规题型.分析:根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.解答:解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:=.故答案为:.点评:此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17.(3分)已知AB为⊙0的直径,AC、AD为⊙0的弦,若AB=2AC=AD,则∠DBC的度数为15°或75°.考点:垂径定理;特殊角的三角函数值.专题:分类讨论.分析:根据题意画出图形,由于点C、D的位置不能确定,故应分点C、D在直径AB的同侧与异侧两种情况进行讨论.解答:解:当点C、D在直径AB的异侧时,如图1所示:∵AB为直径,∴∠ACB=∠ADB=90°,∵AB=2AC,∴sin∠ABC==,∴∠ABC=30°,∵AB=AD∴AD=AB,∴∠ABD=45°∴∠DBC=∠ABC+∠ABD=30°+45°=75°;当点C、D在直径AB的同侧时,如图2所示,同理可得,∠DBC=∠ABD﹣∠ABC=45°﹣30°=15°.故答案为:15°或75°.点评:本题考查的是垂径定理,在解答此题时要要注意进行分类讨论,不要漏解.18.(3分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1≠x2有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的结论是②③(填正确结论的序号)考点:抛物线与x轴的交点.分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6﹣m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.解答:解:一元二次方程(x﹣2)(x﹣3)=m化为一般形式得:x2﹣5x+6﹣m=0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣5)2﹣4(6﹣m)=4m+1>0,解得:m>﹣,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6﹣m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m=x2﹣5x+(6﹣m)+m=x2﹣5x+6=(x﹣2)(x﹣3),令y=0,可得(x﹣2)(x﹣3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故答案为:②③.点评:此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是2015届中考中常考的综合题.19.(3分)已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是2.考点:根的判别式.专题:计算题.分析:根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.解答:解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,则b的值为2.故答案为:2点评:此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.20.(3分)已知关于x的方程x2+6x+k=0的两个根分别是x1、x2,且+=3,则k的值为﹣2.考点:根与系数的关系.专题:计算题.分析:首先根据一元二次方程根与系数得到两根之和和两根之积,然后把+=3转换为=3,然后利用前面的等式即可得到关于k的方程,解方程即可求出结果.解答:解:∵关于x的方程x2+6x+k=0的两个根分别是x1、x2,∴x1+x2=﹣6,x1x2=k,∵+==3,∴=3,∴k=﹣2.故答案为:﹣2.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过变形可以得到关于待定系数的方程解决问题.三、解答题(60分)21.(6分)计算:.考点:特殊角的三角函数值;零指数幂;负整数指数幂.专题:计算题.分析:分别根据二次根式的化简、特殊角的三角函数值、0指数幂及负整数指数幂的运算计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3﹣3×+1+9(4分)=2+10.(5分)故答案为:2+10.点评:本题考查的是实数的综合运算能力,涉及到特殊角的三角函数值,负整数指数幂、零指数幂、二次根式的相关知识,熟知以上知识是解答此题的关键.22.(6分)解方程:2(x﹣3)=3x(x﹣3).考点:解一元二次方程-因式分解法.分析:移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可.解答:解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.点评:本题考查了因式分解法解一元二次方程,解题的关键是先移项,然后提取公因式,避免两边同除以x﹣3,这样会漏根.23.(6分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.考点:相似三角形的判定与性质.专题:证明题.分析:利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.解答:证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.点评:此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.24.(6分)已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.考点:待定系数法求二次函数解析式.专题:待定系数法.分析:根据题意知,将A(2,﹣3),B(﹣1,0)代入二次函数的解析式,利用待定系数法法求该二次函数的解析式即可.解答:解:根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.点评:本题主要考查了待定系数法求二次函数的解析式.解题时,借用了二次函数图象上点的坐标特征:经过图象上的点一定在函数图象上,且图象上的每一个点均满足该函数的解析式.25.(8分)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)由A层次的人数除以所占的百分比求出调查的学生总数即可;(2)由D层次人数除以总人数求出D所占的百分比,再求出B所占的百分比,再乘以总人数可得B层次人数,用总人数乘以C层次所占的百分比可得C层次的人数不全图形即可;(3)用360°乘以C层次的人数所占的百分比即可得“C”层次所在扇形的圆心角的度数;(4)求出样本中A层次与B层次的百分比之和,乘以4000即可得到结果.解答:解:(1)90÷30%=300(人),答:本次被抽查的居民有300人;(2)D所占的百分比:30÷300=10%B所占的百分比:1﹣20%﹣30%﹣10%=40%,B对应的人数:300×40%=120(人),C对应的人数:300×20%=60(人),补全统计图,如图所示:(3)360°×20%=72°,答:“C”层次所在扇形的圆心角的度数为72°;(4)4000×(30%+40%)=2800(人),答:估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.26.(8分)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.考点:切线的性质.专题:计算题.分析:根据切线长定理得到PA=PB,根据等腰三角形的性质得∠PAB=∠PBA=40°,然后利用三角形内角和计算∠P的度数.解答:解:∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA=40°,∴∠P=180°﹣40°﹣40°=100°.故答案为100°.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.27.(10分)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.考点:圆的综合题;三角形中位线定理;圆周角定理;切线的判定.专题:证明题;压轴题.分析:(1)连接OD、DE,求出∠A=∠ADO,求出∠ADO+∠CDB=90°,求出∠ODB=90°,根据切线的判定推出即可;(2)求出∠ADE=90°=∠C,推出BC∥DE,得出E为AB中点,推出AE=AB,DE=BC=3,设AD=4a,AE=5a,由勾股定理求出DE=3a=3,求出a=1,求出AE即可.解答:(1)证明:连接OD、DE,∵OA=OD,∴∠A=∠ADO,∵∠A+∠CDB=90°,∴∠ADO+∠CDB=90°,∴∠ODB=180°﹣90°=90°,∴OD⊥BD,∵OD是⊙O半径,∴直线BD与⊙O相切.(2)解:∵AE是⊙O直径,∴∠ADE=90°=∠C,∴BC∥DE,∴△ADE∽△ACB,∴=∵D为AC中点,∴AD=DC=AC,∴AE=BE=AB,DE是△ACB的中位线,∴AE=AB,DE=BC=×6=3,∵设AD=4a,AE=5a,在Rt△ADE中,由勾股定理得:DE=3a=3,解得:a=1,∴AE=5a=5,答:⊙O的直径是5.点评:本题考查的知识点有圆周角定理、切线的判定、三角形的中位线定理,解(1)小题的关键是求出OD⊥BD,解(2)小题的关键是求出DE长,题目比较好,综合性比较强.28.(10分)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.考点:二次函数综合题.分析:(1)根据直线方程求得点A、B的坐标;然后把点A、B的坐标代入二次函数解析式,通过方程组来求系数b、c的值;(2)如图,过点C作CH⊥x轴交x轴于点H,构建等腰△AOC.则∠OAC=∠OCA,故sin∠OCA=;(3)如图,过P点作PQ⊥x轴并延长交直线y=﹣x+5于Q.设点P(m,m2﹣6m+5),Q(m,﹣m+5),则PQ=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m.由S△ABP=S△PQB+S△PQA得到:,则易求m的值.注意点P位于第四象限.解答:解:(1)由直线y=﹣x+5得点B(0,5),A(5,0),将A、B两点的坐标代入y=x2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣6x+5;(2)如图,过点C作CH⊥x轴交x轴于点H.由(1)知,抛物线的解析式为:y=x2﹣6x+5,则配方得y=(x﹣3)2﹣4,∴点C(3,﹣4),∴CH=4,AH=2,AC=,∴OC=5.∵OA=5,∴OA=OC,∴∠OAC=∠OCA,∴sin∠OCA=;(3)如图,过P点作PQ⊥x轴并延长交直线y=﹣x+5于Q.设点P(m,m2﹣6m+5),Q(m,﹣m+5),则PQ=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m.∵S△ABP=S△PQB+S△PQA=PQ•OA,∴,∴m1=1,m2=4,∴P(1,0)(舍去),P(4,﹣3).点评:本题综合考查了待定系数法求二次函数解析式,抛物线方程的三种形式,以及三角形面积的求法.解答(3)题时,要注意点P的位置.需要舍去位于x轴上的P(1,0).。
湘教版九年级数学上册期末考试及答案【最新】精选全文完整版
可编辑修改精选全文完整版湘教版九年级数学上册期末考试及答案【最新】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤7 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:33a b ab -=___________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:231133x x x x -+=--2.已知a 、b 、c 满足2225(32)0a b c -+-+-=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF 和AD .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠EAC =60°,求AD 的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、B6、B7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、ab(a+b)(a﹣b).3、x≥-3且x≠24、85、360°.6、 1三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)a=,b=5,c=;(2)能;.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)AD=.5、(1)50;(2)240;(3)1 2 .6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
2018-2019学年最新湘教版九年级数学上学期期末模拟试卷及答案解析-精编试题
湘教版最新九年级数学上学期期末数学模拟试卷一、选择题3’*101.(3分)若双曲线y=的图象经过第二、四象限,则k的取值范围是()A.k>0 B.k<0 C.k≠0 D.不存在2.(3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D. y2<y1<03.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2C.﹣1 D. 14.(3分)天柱山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志.从而估计该地区有穿山甲()A.400只B.600只C.800只D. 1000只5.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C. 1 D. 26.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D. 3:27.(3分)在Rt△ABC中,∠C=90°,若tanA=,则sinA等于()A.B.C.D.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20m B.16m C.18m D. 15m9.(3分)方程(x﹣1)(x+2)=0的根是()A.x1=1,x2=﹣2 B.x1=﹣1,x2=2 C.x1=﹣1,x2=﹣2 D.x1=1,x2=210.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25二、填空题3’*811.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.(3分)若两个连续偶数的积是224,则这两个数的和是.13.(3分)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.14.(3分)函数的图象是开口向下的抛物线,则m=.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=.16.(3分)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=.17.(3分)已知:如图,E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为.18.(3分)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.三、计算题6’*219.(6分)计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.20.(6分)解方程:2x2+3x﹣5=0.四、解答题21.(10分)如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.22.(10分)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)23.(10分)某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,经调查发现,每件童装每降价1元,商场平均可多销售2件,若商场每天想盈利1200元,则童装应降价多少元?24.(10分)为进一步促进青少年科技模型教育的普及和发展,丰富校园科技体育活动,某市6月份将举行中小学科技运动会.下图为某校将参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别?)的参赛人数统计图:(1)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是;(2)把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年该市中小学参加航模比赛人数共2485人,请你估算今年参加航模比赛的获奖人数约是多少人?25.(14分)如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米).如果AB的长为x,面积为y,(1)求面积y与x的函数关系(写出x的取值范围);(2)x取何值时,面积最大?面积最大是多少?参考答案与试题解析一、选择题3’*101.(3分)若双曲线y=的图象经过第二、四象限,则k的取值范围是()A.k>0 B.k<0 C.k≠0 D.不存在考点:反比例函数的性质.分析:直接根据反比例函数的性质直接回答即可.解答:解:∵双曲线y=的图象经过第二、四象限,∴k<0,故选B.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.(3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D. y2<y1<0考点:反比例函数图象上点的坐标特征.专题:压轴题.分析:根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.解答:解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.点评:在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.3.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2C.﹣1 D. 1考点:二次函数的最值.分析:考查对二次函数顶点式的理解.抛物线y=(x﹣1)2+2开口向上,有最小值,顶点坐标为(1,2),顶点的纵坐标2即为函数的最小值.解答:解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选:B.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(3分)天柱山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志.从而估计该地区有穿山甲()A.400只B.600只C.800只D. 1000只考点:用样本估计总体.专题:应用题.分析:40只穿山甲,发现其中2只有标志,说明在样本中,有标记的占到,而有标记的共有20只,根据比例可求出总数.解答:解:20=400(只).故选A.点评:统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.5.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C. 1 D. 2考点:二次函数的图象.专题:压轴题.分析:由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.解答:解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.点评:巧妙利用了抛物线的对称性.6.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D. 3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(3分)在Rt△ABC中,∠C=90°,若tanA=,则sinA等于()A.B.C.D.考点:同角三角函数的关系.分析:据三角函数的定义,tanA==,因而可以设a=3,b=4根据勾股定理可以求得c 的长,然后利用正弦的定义即可求解.解答:解:∵tanA==,∴设a=3,b=4,∴由勾股定理得到c=5,∴sinA=,故选D.点评:本题考查了三角函数的定义,正确理解三角函数可以转化成直角三角形的边的比值,是解题的关键.8.(3分)在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是()A.20m B.16m C.18m D. 15m考点:相似三角形的应用.分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.解答:解:∵,∴,解得旗杆的高度==18m.故选C.点评:本题考查相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.9.(3分)方程(x﹣1)(x+2)=0的根是()A.x1=1,x2=﹣2 B.x1=﹣1,x2=2 C.x1=﹣1,x2=﹣2 D.x1=1,x2=2考点:解一元二次方程-因式分解法.专题:计算题.分析:根据因式分解法把原方程转化为x﹣1=0或x+2=0,然后解一次方程即可.解答:解:x﹣1=0或x+2=0,所以x1=1,x2=﹣2.故选A.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=25,把相应数值代入即可求解.解答:解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题3’*811.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.考点:根的判别式.分析:由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.点评:此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(3分)若两个连续偶数的积是224,则这两个数的和是±30.考点:一元二次方程的应用.专题:数字问题.分析:设这两个连续偶数为x、x+2,根据“两个连续偶数的积是224”作为相等关系列方程x(x+2)=224,解方程即可求得这两个数,再求它们的和即可.解答:解:设这两个连续偶数为x、x+2,则x(x+2)=224解之得x=14或x=﹣16则x+2=16或x+2=﹣14即这两个数为14,16或﹣14,﹣16所以这两个数的和是30或﹣30.点评:找到关键描述语,用代数式表示两个连续的偶数,找到等量关系准确的列出方程是解决问题的关键.13.(3分)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣1<x<3.考点:二次函数的图象.专题:压轴题.分析:由图可知,该函数的对称轴是x=1,则x轴上与﹣1对应的点是3.观察图象可知y >0时x的取值范围.解答:解:已知抛物线与x轴的一个交点是(﹣1,0)对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.点评:此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=ax2+bx+c的完整图象.14.(3分)函数的图象是开口向下的抛物线,则m=﹣1.考点:二次函数的性质.分析:根据题意可得二次项系数a<0,未知数的次数为2,由此可得出m的值.解答:解:∵二次函数的图象是一条开口向下的抛物线,∴,解得:m=﹣1.故答案为:﹣1.点评:本题考查了二次函数的定义,注意掌握二次函数的性质,开口向下二次项系数小于零.15.(3分)如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=8.5.考点:相似三角形的性质.分析:先求出AC的长,再根据相似三角形对应边成比例列式求出AB的长,然后根据DE=AB﹣AE,代入数据进行计算即可得解.解答:解:∵AD=3,DC=4,∴AC=AD+DC=3+4=7,∵△ADE∽△ABC,∴=,即=,解得AB=10.5,∴DE=AB﹣AE=10.5﹣2=8.5.故答案为:8.5.点评:本题考查了相似三角形的性质,熟记相似三角形对应边成比例并列出比例式是解题的关键.16.(3分)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.专题:计算题.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17.(3分)已知:如图,E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为(﹣2,1)或(2,﹣1).考点:位似变换.分析:E(﹣4,2)以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以或﹣,因而得到的点E′的坐标为(﹣2,1)或(2,﹣1).解答:解:根据题意可知,点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以或﹣,所以点E′的坐标为(﹣2,1)或(2,﹣1).点评:关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(﹣kx,﹣ky).是需要记忆的内容.18.(3分)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为32.考点:菱形的性质;待定系数法求反比例函数解析式.分析:根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值.解答:解:∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=32.故答案为:32.点评:本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.三、计算题6’*219.(6分)计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1﹣1+﹣1﹣3×=1﹣1+﹣1﹣=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)解方程:2x2+3x﹣5=0.考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(2x+5)(x﹣1)=0,2x+5=0,x﹣1=0,x1=﹣,x2=1.点评:本题考查了解一元二次方程的应用,解此题的关键是把一元二次方程转化成一元一次方程,题目比较好,难度适中.四、解答题21.(10分)如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.考点:相似三角形的判定与性质;三角形的面积;平行四边形的性质.专题:几何综合题.分析:(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.解答:(1)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四边形ABCD是平行四边形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四边形BCDF=S△BCE﹣S△DEF=16∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=24.点评:本题考查了平行四边形的性质、相似三角形的判定和性质等知识.22.(10分)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:作CE⊥AB于点E,图中将有两个直角三角形,利用30°、60°角的正切值,分别计算出AE和BE,即可解答.解答:解:作CE⊥AB于点E.∵CE∥DB,CD∥AB,且∠CDB=90°,∴四边形BECD是矩形.∴CD=BE,CE=BD.在Rt△BCE中,β=60°,CE=BD=90米.∵tanβ=,∴BE=CE•tanβ=90×tan60°=90(米).∴CD=BE=90(米).在Rt△ACE中,α=30°,CE=90米.∵tanα=,∴AE=CE•tanα=90×tan30°=90×=30(米).∴AB=AE+BE=30(米).答:甲楼高为90米,乙楼高为120米.点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.(10分)某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,经调查发现,每件童装每降价1元,商场平均可多销售2件,若商场每天想盈利1200元,则童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润,列出方程解答即可.解答:解:设每件童装应降价x元,根据题意列方程得,(40﹣x)=1200,解得x1=20,x2=10(因为尽快减少库存,不合题意,舍去).答:每件童装降价20元;则童装应降价20元.点评:本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(10分)为进一步促进青少年科技模型教育的普及和发展,丰富校园科技体育活动,某市6月份将举行中小学科技运动会.下图为某校将参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别?)的参赛人数统计图:(1)该校参加航模比赛的总人数是24人,空模所在扇形的圆心角的度数是120°;(2)把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年该市中小学参加航模比赛人数共2485人,请你估算今年参加航模比赛的获奖人数约是多少人?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由海模的人数除以占的百分比求出参加航模的总人数即可;求出空模占的百分比,乘以360即可得到结果;(2)求出空模的人数,补全条形统计图即可;(3)求出样本中获奖的百分比,即为总体中获奖得百分比,即可确定出所求人数.解答:解:(1)根据题意得:6÷25%=24(人);空模人数为24﹣(6+4+6)=8(人),则参加航模总人数为24人,空模所在扇形的圆心角的度数是×360°=120°;(2)补全条形统计图,如图所示;(3)根据题意得:2485×=994(人),则今年参加航模比赛的获奖人数约是994人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.25.(14分)如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米).如果AB的长为x,面积为y,(1)求面积y与x的函数关系(写出x的取值范围);(2)x取何值时,面积最大?面积最大是多少?考点:一元二次方程的应用.分析:(1)AB长为x米,则BC长为:(24﹣3x)米,该花圃的面积为:(24﹣3x)x;进而得出函数关系即可;(2)根据x的取值范围,判断出最大面积时x的取值,代入解析式便可得到最大面积.解答:解:(1)由题意得:y=x(24﹣3x),即y=﹣3x2+24x,∵x>0,且10≥24﹣3x>0∴≤x<8;故y与x的函数关系为y=﹣3x2+24x,(≤x<8);(2)y=﹣3x2+24x=﹣3(x﹣4)2+48(≤x<8);∵开口向下,对称轴为4,∴当x=时,花圃有最大面积,最大为:=﹣3(﹣4)2+48=.答:当x为时,面积最大,最大为.点评:本题考查了一元二次方程的应用,根据题意列出方程是解答本类题目的关键.。
湘教版九年级2018--2019学年度第一学期期末考试数学试卷
试卷第1页,总9页绝密★启用前 湘教版九年级2018--2019学年度第一学期期末考试 数学试卷 分望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计40分) 1.(本题4分)方程)3(3-=-x x x 的解为( ) A .0=x B .01=x ,32=x C .3=x D .11=x ,32=x 2.(本题4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( ) A . B . C . D . 3.(本题4分)在学校乒乓球比赛中,从陈亮、李明、刘松、周杰、王刚这五人中,随机抽签一组对手,正好抽到王刚与刘松的概率是( ) A .15 B .16 C .110 D .14 4.(本题4分)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是( ) A . 300(1+x )=507 B . 300(1+x )2=507 C . 300(1+x )+300(1+x )2=507 D . 300+300(1+x )+300(1+x )2=507 5.(本题4分)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程试卷第2页,总9页 x 2﹣6x+n ﹣1=0的两根,则n 的值为 ( ) A . 9 B . 10 C . 9或10 D . 8或10 6.(本题4分)若反比例函数y=x k 3 的图象经过点(2,3),则k 的值是 ( ) A . 6 B . ﹣6 C . 3 D . ﹣3 7.(本题4分)数学活动课,老师和同学一起去测量校内某处的大树AB 的高度,如图,老师测得大树前斜坡DE 的坡度i=1:4,一学生站在离斜坡顶端E 的水平距离DF 为8m 处的D 点,测得大树顶端A 的仰角为α,已知sin α=53,BE=1.6m ,此学生身高CD=1.6m ,则大树高度AB 为( )m .A . 7.4B . 7.2C . 7D . 6.88.(本题4分)如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A . (3,1)B . (3,3)C . (4,4)D . (4,1)9.(本题4分)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=8,则CD 的长为( )A . 42B . 8 2C . 8D . 1610.(本题4分)已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中试卷第3页,总9页 (1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个二、填空题(计20分) 11.(本题5分)将抛物线向右平移个单位,再向下平移个单位后所得到新抛物线的解析式是________,顶点坐标是________. 12.(本题5分)如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的上,若OA =1cm ,∠1=∠2,则的长为 cm . 13.(本题5分)两个相似多边形对应边的比为,小多边形的面积为,那么大多边形的面积为________. 14.(本题5分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB=2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为_____km (精确到0.1).试卷第4页,总9页 三、解答题(计90分) 15.(本题8分)解下列方程: (1)x 2+6x+5=0; (2)2(x ﹣1)2=3x ﹣3;16.(本题8分)一条单车道的抛物线形隧道如图所示.隧道中公路的宽度,隧道的最高点到公路的距离为.建立适当的平面直角坐标系,求抛物线的表达式;现有一辆货车的高度是,货车的宽度是,为了保证安全,车顶距离隧道顶部至少,通过计算说明这辆货车能否安全通过这条隧道.试卷第5页,总9页 17.(本题8分)如图所示,反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的表达式; (2)请你判断,B(1,6)是否在这个反比例函数的图象上,并说明理由. 18.(本题8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总统方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题: (1)被调查的学生共有 人. (2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为 度; (3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?试卷第6页,总9页19.(本题10分)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg .(2)当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开试卷第7页,总9页 始,经多长时间学生才可以回教室?20.(本题10分)如图所示,学校准备在教师周转房旁边搭建一个简易矩形摩托车车棚,一边利用教学楼的后墙(可利用的墙长为19m ),另外三边利用学校现有总长38m 的铁栏围成. (1)若围成的面积为180m 2,试求出摩托车车棚的长和宽; (2)能围成的面积为200m 2摩托车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.试卷第8页,总9页21.(本题12分)如图,点D 、E 分别在AB 、AC 边上,且AD=5,BD=3,AE=4,CE=6. 试说明:(1)△ADE ∽△ACB ;(2)若BC=9,求DE 的长.22.(本题12分)如图,海中有一小岛P ,在距小岛P 的海里范围内有暗礁,一轮船自西向东航行,它在A 处时测得小岛P 位于北偏东60°,且A 、P 之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A 处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?试卷第9页,总9页 23.(本题14分)如图,在Rt △ABC 中∠ABC=90°,AC 的垂直平分线交BC 于D 点,交AC 于E 点,OC=OD . (1)若,DC=4,求AB 的长; (2)连接BE ,若BE 是△DEC 的外接圆的切线,求∠C 的度数.参考答案1.D【解析】试题分析:本题首先进行移项,然后利用因式分解法进行求解.移项得:(x -3)-x (x -3)=0,因式分解可得:(x -3)(1-x )=0,解得:121,3x x ==.考点:解一元二次方程2.D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选D .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.C【解析】试题分析:画树状图得:∵共有20种等可能的结果,正好抽到王刚与刘松的有2种情况, ∴正好抽到王刚与刘松的概率是:212010.故选C .考点:列表法与树状图法求概率4.B【解析】【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.5.B【解析】试题解析:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2-6x+n-1=0的两根,∴x=2,把x=2代入x2-6x+n-1=0得,22-6×2+n-1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2-6x+n-1=0有两个相等的实数根,∴△=(-6)2-4(n-1)=0解得:n=10,故选B.考点:1.根的判别式;2.一元二次方程的解;3.等腰直角三角形.6.C【解析】【分析】把(2,3)代入y=即可求出k的值.【详解】把(2,3)代入y=得,3=,∴k=3.故选C.【点睛】本题考查了反比例函数的图像与性质,反比例函数图像上点的横纵坐标满足反比例函数解析式.7.D【解析】如图所示:过点C作延长线于点G,交EF于点N,根据题意可得:,计算得出:,,,,,设,则,故,即,计算得出:,故,则,故选D.8.C【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为:1:2,∴点C的坐标为:(4,4)故选:C.【点睛】本题主要考查位似变换,坐标与图形性质,关键在于找到相似比即可解答.9.B【解析】【分析】根据圆周角定理得∠BOC=2∠A=45°,由于O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以然后利用CD=2CE进行计算.【详解】∵∴∵O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴∴故选:B.【点睛】考查垂径定理,等腰直角三角形,圆周角定理,综合性比较强,注意垂径定理的应用. 10.A【解析】【分析】由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到a与b异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a大于0,得到-2a小于0,在不等式两边同时乘以-2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=-1时对应的函数值大于0,将x=-1代入二次函数解析式得到a-b+c大于0,又4a大于0,c大于0,可得出a-b+c+4a+c大于0,合并后得到(4)正确,综上,即可得到正确的个数.【详解】由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误;又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;∵对称轴在1和2之间,∴又a>0,∴在不等式左右两边都乘以−2a得:−2a>b>−4a,故(2)正确;又x=−1时,对应的函数值大于0,故将x=1代入得:a−b+c>0,又a>0,即4a>0,c>0,∴5a−b+2c=(a−b+c)+4a+c>0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.【点睛】考查二次函数图象与系数的关系,掌握二次函数系数对图象的影响是解题的关键.11.【解析】【分析】根据“上加下减,左加右减”的原则写出平移后抛物线的解析式,然后根据解析式写出顶点坐标.【详解】将抛物线y=−2x2+1向右平移1个单位,再向下平移3个单位后所得到新抛物线的解析式是y=−2(x−1)2−2,其顶点坐标为:(1,−2).故答案是:y=−2(x−1)2−2;(1,−2).【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.12.【解析】试题分析:连接OB,菱形的性质得出OA∥BC,OC=BC,求出∠AOC+∠OCB=180°,OC=BC=OB,根据等边三角形的判定得出△OCB是等边三角形,求出∠OCB=60°,求出∠AOC=120°,求出∠FOE=120°,OF=1cm,代入公式求出即可.解:连接OB,则OC=OB,∵四边形OABC为菱形,∴OA∥BC,OC=BC,∴∠AOC+∠OCB=180°,OC=BC=OB,∴△OCB是等边三角形,∴∠OCB=60°,∴∠AOC=180°﹣60°=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠AOC=120°,∵OA=OC=OF=1cm,∴的长为=cm,故答案为:.考点:菱形的性质;弧长的计算.13.72【解析】【分析】根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算.【详解】两个相似的七边形的相似比为3:2,面积的比是9:4,因而可以设较小的七边形的面积是4xcm2,则较大的多边形的面积是9xcm2,根据小多边形的面积为32cm2,就得到4x=32解得x=8因而大多边形的面积是9x=72cm2.【点睛】本题考查相似多边形的性质.14.3.4.【解析】分析:根据题意在CD上取一点E,使BD=DE,设BD=DE=x,则由AD与CD的关系和勾股定理可求得x,从而可求得CD的长.详解:在CD上取一点E,使BD=DE,设BD=DE=x.∵BD=DE,∴∠EBD=45°,由题意可得∠CAD=45°,∴AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=AD﹣BD=2km,∴EC=BE=DC﹣DE=2km,∵BD=DE=x,∴CE=BE=x,∴2+x=x+x,解得x=.∴DC=(2+)≈3.4(km)故答案为3.4.点睛:此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.15.(1)x1=-1,x2=-5;(2)x1=1,x2=2.5【解析】【分析】(1)因为二次项系数为1,所以利用配方法求解即可求得答案;(2)原式可变为2(x−1)2=3(x−1),然后提取公因式,可得(x−1)(2x−2−3)=0,继而求得答案.【详解】(1)x2+6x+5=0,x2+6x=-5,x2+6x+9=-5+9,(x+3)2=4,解得:x+3=±2,x1=-1,x2=-5;(2)2(x−1)2=3x−3,2(x−1)2=3(x−1),∴(x−1)(2x−2−3)=0,∴x−1=0,2x−2−3=0,∴x1=1,x2=2.5.【点睛】此题考查了一元二次方程的解法.此题比较简单,注意选择适宜的解题方法是解此题的关键.16.能安全通过这条隧道【解析】【分析】(1)以AB所在直线为x轴,以抛物线的对称轴为y轴建立平面直角坐标系xOy,如图所示,利用待定系数法即可解决问题.(1)求出x=1时的y的值,与4.4+0.5比较即可解决问题.【详解】本题答案不唯一,如:以所在直线为轴,以抛物线的对称轴为轴建立平面直角坐标系,如图所示.∴,,. 设这条抛物线的表达式为. ∵抛物线经过点, ∴. ∴ ∴抛物线的表达式为,.当时,, ∵,∴这辆货车能安全通过这条隧道.【点睛】本题考查的是二次函数的实际应用,熟练掌握二次函数的性质是解题的关键.17.(1)y=6x(2)点B(1,6)在这个反比例函数的图象上 【解析】试题分析:(1)先把A 点的坐标代入反比例函数k y x =中,求出k ,即可求出函数解析式;(2)再把B 点的横坐标代入反比例函数的解析式,可求出y ,若y 的值与B 点的纵坐标相等,则说明B 在函数的图象上,否则就不在函数图象上.试题解析:(1)把(2,3)代入k y x =中得 3=2k , ∴k=6, ∴函数的解析式是y=6x;(2)把x=1代入y=6x中得y=6, ∴点B 在此函数的图象上.考点:1.待定系数法求反比例函数解析式;2.反比例函数图象上点的坐标特征.18.(1)300;(2)108;(3)0.4.【解析】试题分析:(1)根据统计图中的数据可以求得本次调查的人数;(2)根据条形统计图中的数据可以求得在扇形统计图中,表示“比较了解”的扇形的圆心角度数;(3)根据统计图中的数据可以求得从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率.试题解析:(1)由题意可得,被调查的学生有:60÷20%=300(人),故答案为:300;(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为:360°×90300=108°,故答案为:108;(3)由题意可得,从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是:300609030300---=0.4,即从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是0.4.考点:概率公式;扇形统计图;条形统计图;统计与概率.19.(1)从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg ;(2)从消毒开始经过50分钟学生才可返回教室.【解析】【分析】(1)首先根据题意,药物燃烧阶段,室内每立方米空气中的含药量y 与燃烧时间x 成正比例;燃烧后,y 与x 成反比例,且其图象都过点(10,8),将数据代入用待定系数法可得反比例函数的关系式,分别求出函数解析式,再计算出y=4时,x 的值即可;(2)根据题意可知得<1.6,解不等式即可.【详解】 (1)设药物燃烧阶段函数解析式为y=k 1x (k 1≠0),由题意得:8=10k 1,∴k1=,∴此阶段函数解析式为y=x(0≤x≤10).当y=4时,x=5;设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:=8,∴k2=80,∴此阶段函数解析式为y=(x≥10).,当y=4时,x=20,答:从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4m g;(2)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,解得x>50.答:从消毒开始经过50分钟学生才可返回教室.【点睛】本题主要考查了一次函数、反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20.摩托车棚长19m,宽10m.【解析】【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【详解】(1)设AB=x,则BC=38−2x;根据题意列方程的,x(38−2x)=180,解得x1=10,x2=9;当x=10,38−2x=18(米),当x=9,38−2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38−2x)=200,整理得出:x2−19x+100=0;△=b2−4ac=361−400=−39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.【点睛】考查一元二次方程的应用,读懂题目,设出未知数,根据题目中的等量关系列出方程是解题的关键.21.(1)证明见解析;(2)DE=4.5【解析】【分析】(1)由条件可得,且为公共角,则可证明;(2)由(1)可得,可求得.【详解】⑴∵AD=5,BD=3,AE=4,CE=6,∴AB=8,AC=10,∴,∵∠A=∠A,∴△ADE∽△ACB;⑵∵△ADE∽△ACB,∴,∵BC=9,∴DE=4.5.【点睛】本题主要考查相似三角形的判定和性质,掌握三角形相似的判定方法,即有两组角对应相等、两组对应边的比相等且夹角相等或三组对应边的比相等是解题的关键.22.轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.【解析】试题分析:过P作PB⊥AM于B,则PC的长是A沿AM方向距离P点的最短距离,求出P C 长和16比较即可,第二问设出航行方向,利用特殊角的三角函数值确定答案.试题解析:过P作PB⊥AM于B,在Rt△APB中,∵∠PAB=30°,∴PB=AP=×32=16海里,∵16<16故轮船有触礁危险,为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,设安全航向为AC,作PD⊥AC于点D,由题意得,AP=32海里,PD=16海里,∵sin∠PAC=,∴在Rt△PAD中,∠PAC=45°,∴∠BAC=∠PAC-∠PAB=45°-30°=15°,答:轮船自A处开始至少沿东偏南15°度方向航行,才能安全通过这一海域.23.(1);(2)30°【解析】【分析】(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等边三角形,∴∠EDC=60°,∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.。
2018-2019学年九年级(上)期末数学试卷(含解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
2018-2019学年上 学期期末考试九年级数学试题(含答案)
2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
最新湘教版2018-2019学年度第一学期九年级期末复习数学试卷
绝密★启用前最新湘教版2018-2019学年度第一学期九年级期末复习数学试卷一、单选题(计30分)1.(本题4分)已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数y=x4的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1<y 2<y 3B . y 3<y 2<y 1C . y 2<y 1<y 3D . y 3<y 1<y 22.(本题4分)若两个相似三角形的面积之比为1∶4,则它们的周长之比为( ) A . 1∶2 B . 1∶4 C . 1∶5 D . 1∶163.(本题4分)若函数与y=﹣2x ﹣4的图象的交点坐标为(a ,b ),则的值是( )A . ﹣4B . ﹣2C . 1D . 24.(本题4分)正方形网格中,∠AOB 如图放置,则tan ∠AOB 的值为( )A . 2B .C .D .5.(本题4分)在一幅长80cm ,宽50cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5000cm 2,设金色纸边的宽为xcm ,那么满足的方程是( )A . x 2+130x ﹣1400=0B . x 2﹣130x ﹣1400=0C . x 2+65x ﹣250=0D . x 2﹣65x ﹣250=0试卷第2页,总10页6.(本题4分)已知方程x 2﹣7x+10=0的两个根是等腰三角形的两边长,则这个等腰三角形的周长为( )A . 9B . 12C . 12或9D . 不能确定7.(本题4分)一个袋中有黑球12个,白球若干,小明从袋中随机一次摸出10个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程20次,发现共有黑球48个,由此估计袋中的白球数是( )个.A . 28个B . 38个C . 48个D . 50个8.(本题4分)下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( )A . 平均数、中位数B . 众数、方差C . 平均数、方差D . 众数、中位数9.(本题4分)如图,C ,D 是以线段AB 为直径的⊙O 上两点.若CA =CD ,且 ∠ACD =40°,则∠CAB 的度数为( )A . 15°B . 20°C . 25°D . 30°10.(本题4分)如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法: ①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A . ①②④B . ①②⑤C . ②③④D . ③④⑤ 二、填空题(计20分)11.(本题5分)若1﹣3是方程x 2﹣2x+c=0的一个根,则c 的值为_____. 12.(本题5分)如图,正方形OABC 的边长为2,反比例函数y=xk过点B ,则该反比例函数的解析式为_____.13.(本题5分)如图,已知△ABC 与△A′B′C′是以坐标原点O 为位似中心的位似图形,'OA OA =21,若点A (﹣1,0),点C (21,1),则A′C′=_____.14.(本题5分)如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC=4:5,则tan ∠CFD=_____.三、解答题(计90分)15.(本题8分)解方程:(1)x 2+3x+1=0 (2)(x ﹣3)2+4x (x ﹣3)=0.试卷第4页,总10页16.(本题8分)已知:关于x 的方程,(1)求证:当时,方程有两个实数根;(2)若方程的两根的平方和等于2,求k 的值.17.(本题8分)如图,一次函数y=kx +b 的图象与反比例函数y=xm的图象交于点 A (3,8﹣m ),B (n ,﹣6)两点. (1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.18.(本题8分)如图,在正方形ABCD 中,点E 在边BC 上(点E 不与点B 重合),连结AE ,过点B 作BF ⊥AE 于点F ,交CD 于点G .(1)求证:△ABF ∽△BGC .(2)若AB=2,G 是CD 的中点,求AF 的长.试卷第6页,总10页19.(本题10分)放风筝是大家喜爱的一种运动.星期天的上午小明在万达广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此吋的风筝线的长度是多少米?(本题中风筝线均视为线段,结果保留根号).20.(本题10分)某教育局组织了“落实十九大精神,立足岗位见行动”教师演讲比赛,根据各校初赛成绩在小学组、中学组分别选出10名教师参加决赛,这些选手的决赛成绩如图所示:根据上图提供的信息,回答下列问题: (1)请你把下面表格填写完整:(2)考虑平均数与方差,你认为哪个组的团体成绩更好些,并说明理由;(3)若在每组的决赛选手中分别选出3人参加总决赛,你认为哪个组获胜的可能性大些?请说明理由.试卷第8页,总10页21.(本题12分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题: (1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少? (2)该游戏是否公平?请用列表或画树状图的方法说明理由.22.(本题12分)某公司营销A ,B 两种产品,根据市场调研,确定两条信息: 信息1:销售A 种产品所获利润y (万元)与所售产品x (吨)之间存在二次函数关系,如图所示:信息2:销售B 种产品所获利润y (万元)与销售产品x (吨)之间存在正比例函数关系y=0.3x .根据以上信息,解答下列问题; (1)求二次函数的表达式;(2)该公司准备购进A 、B 两种产品共10吨,请设计一个营销方案,使销售A 、B 两种产品获得的利润之和最大,最大利润是多少万元?试卷第10页,总10页23.(本题14分)如图,以Rt△ABC 的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边上的中点,连结DE.(1)DE 与半圆O 相切吗?若相切,请给出证明;若不相切,请说明理由; (2)若AD 、AB 的长是方程x 2-10x+24=0的两个根,求直角边BC 的长.参考答案1.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.2.A【解析】试题分析:根据相似三角形的性质,相似三角形的面积之比等于相似比的平方,利用面积之比是1:4,求出相似比,然后再根据相似三角形的周长之比等于相似比,即可求出它们的相似比.∵两个相似三角形的面积之比是1:4,∴两个相似三角形的相似比是1:2.∴两个相似三角形的周长之比是1:2.故选择A.考点:相似三角形的性质.3.B【解析】【分析】求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.【详解】解方程组,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故选B.【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.4.A【解析】【分析】认真读图,在以∠AOB为顶点的直角三角形里求tan∠AOB的值.【详解】由图可得tan∠AOB=2.故选A.【点睛】本题考查了锐角三角函数的概念:在直角三角形中,正切等于对边比邻边.5.C【解析】【分析】挂图长为(80+2x)cm,宽为(50+2x)cm,根据整个挂图的面积是5000cm2,即长×宽=5000,列方程进行化简即可.【详解】解:挂图长为(80+2x)cm,宽为(50+2x)cm;所以(80+2x)(50+2x)=5000,即4x2+160x+4000+100x=5000,所以4x2+260x-1000=0.即x2+65x-250=0.故选:C.【点睛】本题考查了一元二次方程的应用,根据面积列方程是解题的关键.6.B【解析】【分析】可先求得方程的两根,再根据等腰三角形的性质,结合三角形三边关系进行判断,再求得三角形的周长即可.【详解】解:解方程x2﹣7x+10=0可得x=2或x=5,∴等腰三角形的两边长为2或5,当底为2时,则等腰三角形的三边长为2、5、5,满足三角形三边关系,此时等腰三角形的周长为12;当底为5时,则等腰三角形的三边长为5、2、2,2+2<5,不满足三角形三边关系;∴等腰三角形的周长为12,故选:B.【点睛】本题主要考查等腰三角形的性质及一元二次方程的解法,确定出等腰三角形的边长是解题的关键.7.B【解析】【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率,再近似估计白球数量.【详解】解:设袋中的白球数是x个,根据题意得:=,解得:x=38,答:袋中的白球数是38个;故选:B.【点睛】此题考查了用样本估计总体.大量反复试验下频率稳定值即概率.关键是根据黑球的频率得到相应的等量关系.8.D【解析】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.9.B【解析】【分析】连接CB,根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【详解】如图,连接CB,∵∠ACD=40°,CA=CD,∴∠CAD=∠CDA=(180°-40°)=70°,∴∠B=∠ADC=70°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°-∠B=20°,故选B.【点睛】本题考查圆周角定理、直径的性质、等腰三角形的性质等知识,解题的关键是灵活应用这些知识解决问题.10.A【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).11.-2【解析】【分析】把x=1﹣代入方程x2﹣2x+c=0得(1﹣)2﹣2(1﹣)+c=0,然后解关于c的方程.【详解】把x=1﹣代入方程x2﹣2x+c=0得(1﹣)2﹣2(1﹣)+c=0,解得c=﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y=﹣【解析】【分析】将A点坐标为(-2,2)代入函数式中解出k的值即可得出答案.【详解】因为正方形ABOC的边长为2,所以A点坐标为(-2,2).再把A点代入反比例函数的解析式,得2=,解得k=-4.故反比例函数的解析式为y=﹣..【点睛】本题考查的知识点是待定系数求反比例函数解析式,解题的关键是熟练的掌握待定系数求反比例函数解析式.13.【解析】【分析】根据位似图形的性质和已知求出A′、C′的坐标,根据两点间的距离公式求出A′C′即可.【详解】∵△ABC与△A′B′C′是以坐标原点O为位似中心的位似图形,且=,点A(﹣1,0),点C(,1),∴A′(﹣2,0),C′(1,2),∴A′C′===.故答案为:.【点睛】本题考查了位似变换、坐标与图形性质、两点间的距离公式等知识点,求出点A′和C′的坐标是解答此题的关键.14.【解析】【分析】根据折叠的定义可以得到CB=CF,则sin∠CFD=,然后再求得tan∠CFD的值即可.【详解】由折叠可知,CB=CF.矩形ABCD中,AB=CD,sin∠CFD==.∴tan∠CFD=.故答案是:.【点睛】考查折叠变换的性质及锐角三角函数的定义,检测学生灵活运用知识的能力.15.(1)x1=,;(2),.【解析】【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2+3x+1=0∵b2﹣4ac=32﹣4×1×1=5,∴,;(2)分解因式得:(x﹣3)(x﹣3+4x)=0,x﹣3+4x=0,x﹣3=0,∴,.【点睛】本题考查了一元二次方程的解法,一元二次方程的解法有直接开平方法、配方法、公式法及因式分解法,解方程时要根据方程的特点选择合适的方法解方程.16.(1)见解析;(2)【解析】【分析】(1)根据方程的系数结合根的判别式,可得出△=(k-9)2≥0,由此可证出:无论k取任何实数时(k≠0),方程总有实数根;(2)根据根与系数的关系可得x1+x2=-、x1x2=,结合x12+x22=2即可得出关于k的一元二次方程,解之即可得出k值.【详解】(1)由题知:当k≠0时,关于x的方程是一元二次方程,△=()2-4×k×9=(k-9)2≥0,∴无论k取任何实数时(k≠0)方程总有两个实数根;(2)设方程的两个根为x1、x2,∴x1+x2=-,x1x2=,∵x12+x22=(x1+x2)2-2x1x2=2,即(-)2-=2,整理,得:k2=81,解得:k=±9.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.17.(1)y=2x﹣4;;(2)8.【解析】【分析】(1)将A(3,8﹣m)代入反比例函数y=,求出m,求出点A的坐标,根据反比例函数图象上点的坐标特征求出反比例函数的解析式,利用待定系数法求出一次函数解析式;(2)求出AB与x轴相交于点C的坐标,根据三角形的面积公式计算即可.【详解】(1)将A(3,8﹣m)代入反比例函数y=,得=8﹣m,解得m=6,8﹣m=8﹣6=2,∴点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,﹣6)代入y=得=﹣6,解得n=﹣1,所以,点B的坐标为(﹣1,﹣6),将点A(3,2),B(﹣1,﹣6)代入y=kx+b得,解得,则一次函数解析式为y=2x﹣4;(2)如图,设AB与x轴相交于点C,令2x﹣4=0,解得x=2,∴点C的坐标为(2,0),即OC=2,S△AOB=S△AOC+S△BOC=×2×2+×2×6=8.【点睛】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、坐标与图形的性质是解题的关键.18.(1)见解析;(2).【解析】【分析】(1)根据正方形的性质得出∠ABE=∠BCG=90°,进而得出∠BAE=∠CBG,再利用相似三角形的判定证明即可;(2)根据(1)中的相似三角形,利用其性质解答即可.【详解】(1)∵在正方形ABCD中,∴∠ABE=∠BCG=90°,∵∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG,∴△ABF∽△CBG;(2)∵△ABF∽△CBG,∴,∵AB=2,G是CD的中点,正方形ABCD,∴BC=2,CG=1,∴BG==,∴=,解得:AF==.【点睛】此题考查相似三角形的判定和性质,关键是根据正方形的性质得出∠ABE=∠BCG=90°,进而得出∠BAE=∠CBG.19.小明此时的风筝线的长度为()米.【解析】分析:设CD为x米,根据三角函数即可表示出AC于BC的长,根据AC-BC=AB 即可得到一个关于x的方程,解方程即可求得x的值.详解:设CD为x米.∵∠ACD=90°,∴在直角△ADC中,∠DAC=30°,AC=CD÷tan30°=x,在直角△BCD中,∠DBC=45°,BC=CD=x,BD=x,∵AC-BC=AB=10米,∴x-x=10,∴x=,∴BD=x=(米).则小明此时的风筝线的长度为米点睛:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.(1)见解析;(2)中学组实力强一些;(3)小学组实力更强些.【解析】【分析】(1)众数即出现次数最多的那个数,通过读图得到,小学组有三人拿了80分,中学组有3人拿了85分,从而确定众数;(2)根据方差的意义分析;(3)分别计算两个组别前三名的总分,得出较高的一个组实力较强一些.【详解】解:(1)完成表格如下:(2)由于平均数一样,而中学组的方差小于小学组的方差,方差越小则其稳定性就越强,所以应该是中学组实力强一些;(3)小学组前三名总分:99+91+89=279(分),中学组前三名总分:97+88+88=273(分),故小学组实力更强些.【点睛】本题考查了折线统计图,此题不但要求学生能看懂折线统计图,而且要求掌握方差、平均数、众数的运用.21.(1);(2)该游戏公平.【解析】【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【详解】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= ;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率=;两次的数字都是偶数的结果数为4,所以小张胜的概率= ,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.【点睛】本题考查的知识点是游戏公平性,概率公式,树状图法,解题关键是熟练运用树状图法. 22.(1)销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2) 购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元【解析】【分析】(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx,再利用待定系数法求解可得;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=﹣0.1m2+1.5m+0.3(10﹣m),配方后根据二次函数的性质即可知最值情况.【详解】解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,将(1,1.4)、(3,3.6)代入解析式,得:,解得:,∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m),=﹣0.1m2+1.2m+3,=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.【点睛】本题主要考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A产品的吨数的关系式是解题的关键.23.(1)DE与半圆O相切.证明见解析;(2).【解析】分析:(1)DE与半圆O相切,理由为:连接OD,BD,由AB为半圆的直径,根据直径所对的圆周角为直角得到一个角为直角,可得出三角形BDC为直角三角形,又E为斜边BC的中点,利用中点的定义及斜边上的中线等于斜边的一半,得到ED=EB,利用等边对等角得到一对角相等,再由OD=OB,利用等边对等角得到一对角相等,根据∠EBO 为直角,得到∠EBD与∠OBD和为90°,等量代换可得出∠ODE为直角,即DE与OD 垂直,可得出DE为圆O的切线,得证;(2)利用因式分解法求出x2-10x+24=0的解,再根据AB大于AD,且AD和AB为方程的解,确定出AB及AD的长,在直角三角形ABD中,利用勾股定理即可求出BD的长,然后根据三角形相似即可求得BC的长.详解:(1)证明:DE与半圆O相切,理由为:连接OD,BD,如图所示:∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为BC的中点,∴DE=BE=BC,∴∠EBD=∠EDB,∵OB=OD,∴∠OBD=∠ODB,又∵∠ABC=90°,即∠OBD+∠EBD=90°,∴∠EDB+∠ODB=90°,即∠ODE=90°,∴DE为圆O的切线;(2)解:方程x2-10x+24=0,因式分解得:(x-4)(x-6)=0,解得:x1=4,x2=6,∵AD、AB的长是方程x2-10x+24=0的两个根,且AB>AD,∴AD=4,AB=6,∵AB是直径,∴∠ADB=90°,在Rt△ABD中,根据勾股定理得:BD=,∵△ABD∽△ACB,∴,即,∴BC=.点睛:此题考查了切线的判定,勾股定理,直角三角形斜边上中线的性质,圆周角定理,以及利用分解因式的方法解一元二次方程,熟练掌握定理及性质是解本题的关键.。
2018-2019学年最新湘教版数学九年级第一学期期末模拟试题及答案解析-精编试题
九年级第一学期期末考试试卷数 学考试时量:120分钟 满分:120分考生注意:请将解答写在答题卡上,答案写在本试卷上无效。
一、精心选一选,旗开得胜(每小题3分,共30分,每小题只有一个选项是正确的)1、若5x 2=6x -8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是A 、5,6,-8B 、5,-6,-8C 、5,-6,8D 、6,5,-8 2、现有一个测试距离为5m 的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m 的视力表,则图中的a b的值为A .32B .23C .35D .533、经过调查研究,某工厂生产一种产品的总利润L (元)与产量 X (件)的关系式为L=-x 2+2000x-10000(0<x <1900),要使总利润达到99万元,则这种产品应生产ab(第3题图)A.1000件B.1200件C. 2000件D.10000件 4、下列命题中错误的命题是A 2)3(-的平方根是3±B 平行四边形是中心对称图形C 单项式y x 25与25xy -是同类项D 近似数31014.3⨯有三个有效数字5、如图,在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是A.sinA=B.tanA= 12C.cosB=D.tanB= 6、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是A.B.C.D.7、如图,点A 是反比例函数(x <0)的图象上的一点,过点A作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为 A.1 B.3 C.6 D.128、已知抛物线y=x2﹣4x+3,则下列判断错误的是A. 对称轴x=2B. 最小值y=-1C. 在对称轴左侧y随x的增加而减小D. 顶点坐标(-2,-1)9、已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx+ (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根10、如果两个相似三角形的相似比是,那么它们的面积比是A B.C.D.二、精心填一填,一锤定音(每小题4分,共32分)11、已知x = 1是关于x的一元二次方程2x2 + kx -1 = 0的一个根,则实数k的值是。
【湘教版】九年级数学上期末模拟试卷(及答案)(2)
一、选择题1.下式中表示y 是x 的反比例函数的是( )A .4y x =--B .2y xC .21y x =D .53y x = 【答案】D 【分析】根据反比例函数的概念:形如y=k x (k 为常数,k≠0)的函数称为反比例函数.其中x 是自变量,y 是函数进行分析即可.【详解】解:A 、4y x =--是一次函数,错误;B 、2yx 是二次函数,错误; C 、21y x =中,y 是x 2的反比例函数,错误; D 、53y x=表示y 是x 的反比例函数,故此选项正确. 故选:D .【点睛】本题主要考查了反比例函数定义,关键是掌握反比例函数的形式.2.在同一直角坐标系中,反比例函数k y x=与一次函数y kx k =-的图象可能是( ) A . B . C . D .【答案】B【分析】根据反比例函数与一次函数的图象与系数的关系:当k >0时,可得出反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时,可得出反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第一、二、四象限.再对照四个选项即可得出结论.【详解】解:当k >0时,∵k >0,−k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时,∵k <0,−k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第一、二、四象限.故选:B .【点睛】本题考查了反比例函数的图象以及一次函数图象与系数的关系,分k >0和k <0两种情况,找出反比例函数图象与一次函数图象经过的象限是解题的关键.3.如图,过点O 作直线与双曲线()0k y k x=≠交于A ,B 两点,过点B 作BC x ⊥轴于点C ,作BD y ⊥轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE AF =.设图中矩形ODBC 的面积为1S ,EOF △的面积为2S ,则1S ,2S 的数量关系是( )A .12S SB .122S S =C .123S S =D .124S S =【答案】B【分析】过点A 作AM ⊥x 轴于点M ,根据反比例函数图象系数k 的几何意义即可得出S 矩形ODBC =-k 、S △AOM =-12k ,再根据中位线的性质即可得出S △EOF =4S △AOM =-2k ,由此即可得出S 1、S 2的数学量关系.【详解】解:过点A 作AM ⊥x 轴于点M ,如图所示.∵AM⊥x轴,BC⊥x轴,BD⊥y轴,∴S矩形ODBC=-k,S△AOM=-12k.∵AE=AF.OF⊥x轴,AM⊥x轴,∴AM=12OF,ME=OM=12OE,∴S△EOF=12OE•OF=4S△AOM=-2k,∴2S矩形ODBC=S△EOF,即2S1=S2.故答案为:2S1=S2.【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、S△EOF=-2k是解题的关键.4.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时5.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.6.一个物体如图所示,它的俯视图是()A .B .C .D . 7.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为( )cm .A .20B .18C .15D .168.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相相交于点G ,若3AE ED =,DF CF =,则BG GE 的值是( )A .73B .83C .2D .749.如图,41AG GD =︰︰,23BD DC =︰︰,则BG GE =︰( )A .11︰B .43︰C .65︰D .1312︰ 10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( )A .6个B .10个C .15个D .30个11.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( )A .10B .9C .8D .712.如图,矩形纸片ABCD ,3AB =,5AD =,折叠纸片,使点A 落在BC 边上的E 处,折痕为PQ ,当点E 在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在AB 、AD 边上移动,则点E 在BC 边上可移动的最大距离为( )A .1B .2C .4D .5二、填空题13.如图,ABCD 的顶点A 在反比例函数2y x =-的图象上,顶点B 在x 轴的正半轴上,顶点C 和D 在反比例函数8y x =的图象上,且对角线//AC x 轴,则ABCD 的面积等于______.14.如图,反比例函数(0)k y k x=≠的图象经过等边ABC 的顶点A ,B ,且原点O 刚好在线段AB 上,已知点C 的坐标是()3,3-,则k 的值为________.15.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.16.长方体的主视图与俯视图如图所示,则这个长方体的体积是_______________________.17.在ABC中,D、E分别是AB、AC的中点,若ADE面积为14,则四边形DBCE的面积为_____.18.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920;③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是________(填序号)19.若m 是一元二次方程x 2﹣3x +1=0的一个根,则2020﹣m 2+3m =_____.20.如图,平面内直线1234//////l l l l ,且相邻两条平行线间隔均为1,正方形ABCD 四个顶点分别在四条平行线上,则正方形的面积为________.三、解答题21.如图,直线21y x =+与反比例函数(0)k y k x =≠的图象相交于点3,2A m ⎛⎫ ⎪⎝⎭,与x 轴交于点B .(1)求反比例函数的解析式;(2)点P 在x 轴上,如果ABP △的面积为6,求点P 的坐标.22.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.【答案】见解析【分析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.【详解】由图可得几何体的三视图如下:主视图 左视图 俯视图【点睛】本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.23.梅涅劳斯定理梅涅劳斯(Menelaus )是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与ABC ∆的三边AB ,BC ,CA 或它们的延长线交于F 、D 、E 三点,那么一定有1AF BD CE FB DC EA⋅⋅=. 下面是利用相似三角形的有关知识证明该定理的部分过程: 证明:如图(2),过点A 作//AG BC ,交DF 的延长线于点G ,则有AF AG FB BD =.任务:(1)请你将上述材料中的剩余的证明过程补充完整;(2)如图(3),在ABC ∆中,13AB AC ==,10BC =,点D 为BC 的中点,点F 在AB 上,且2BF AF =,CF 与AD 交于点E ,则AE =________.24.布袋中有红、黄、蓝三种只有颜色不同的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋并搅匀,再摸出一个球,记录下颜色.求摸出的两个球颜色为“一红一黄”的概率.25.小虎同学用配方法推导一元二次方程20(a 0)++=≠ax bx c 的求根公式时,对于240b ac -≥的情况,他是这样做的:由于0a ≠,方程20ax bx c ++=变形为:2b c x x a a+=-, 第一步 22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭, 第二步222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 第三步 2424b b ac x a a-+=, 第四步 244b b ac x a-+-=. 第五步 (1)小虎的解法从第_______步开始出现错误;事实上,当240b ac -≥时,方程20(a 0)++=≠ax bx c 的求根公式是:_____________________.(2)用配方法解方程:2640x x ++=.26.如图,矩形ABCD 中,AB =6,BC =8,E 为BC 上一动点.将△ABE 沿AE 翻折后得到AFE ,延长AF 交CD 所在直线于点G ,设BE =x .(1)若点G 在CD 边上,求x 的取值范围;(2)若x =5,求CG 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.5.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.6.D解析:D【解析】【分析】从图形的上方观察即可求解.【详解】俯视图从图形上方观察即可得到,故选D.【点睛】本题考查几何体的三视图;熟练掌握组合体图形的观察方法是解题的关键.7.B解析:B【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.【详解】解:如图,∵DE∥BC,∴△AED∽△ABC∴AE DEAC BC=设屏幕上图形的高度是x,则206 60x=解得x=18cm.所以,屏幕上图形的高度为18cm.故选:B.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.B解析:B【分析】如图,延长BC、AF,交于点H,由正方形的性质及DF=CF判定△ADF≌△HCF(AAS),从而可得CH=AD;由AE=3ED,可设DE=x,从而可用x表示出正方形的边长;然后由AD∥BC判定△AEG∽△HBG,从而可得比例式,化简比例式即可得到答案.【详解】解:如图,延长BC、AF,交于点H,∵AE=3ED,∴设DE =x ,则AE =3x ,∵四边形ABCD 是正方形,∴AD =BC =4x ,AD ∥BC ,∴∠DAF =∠CHF ,∠D =∠FCH ,∴在△ADF 和△HCF 中,DAF CHF D FCHDF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ADF ≌△HCF (AAS ),∴CH =AD =4x ,∴BH =BC +CH =8x ,∵AD ∥BC ,∴△AEG ∽△HBG , ∴8833BH x GE AE BGx === . 故选:B .【点睛】 本题考查了正方形的性质、全等三角形的判定与性质及相似三角形的判定与性质等知识点,正确作出辅助线并熟练掌握相关性质及定理是解题的关键.9.D解析:D【分析】过点G 作//GF CA 交BC 于F ,如图,利用平行线分线段成比例定理,由//GF CE 得到BG BF GE CF =,DF DG CF AG =,进而可得21133515BF CD CD CD =+=,45CF CD =,即可得.【详解】解:过点G 作//GF CA 交BC 于F ,如图,BG BF GE CF ∴=,DF DG CF AG=, 41AG GD =︰︰,15DF CD ∴=,45CF CD =, 23BD DC =︰︰,23BD CD ∴=, 21133515BF CD CD CD ∴=+=, 1313154125CD BG BF GE CF CD ∴===. 故选:D .【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所截得的三角形的三边与原三角形的三边对应成比例.10.C解析:C【分析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可.【详解】∵共试验400次,其中有240次摸到白球,∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个, 则0.610x x =+, 解得:x=15, ∴盒子中的白球大约有15个,故选:C .【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.11.D解析:D【分析】根据两天后共有128人患上流感,列出方程求解即可.【详解】解:依题意得2+2x +x (2+2x )=128,解得x1=7,x2=-9(不合题意,舍去).故x值为7.故选:D.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12.B解析:B【分析】根据翻折变换,当点Q与点D重合时,点E到达最左边,当点P与点B重合时,点E到达最右边,所以点E就在这两个点之间移动,分别求出这两个位置时EB的长度,然后两数相减就是最大距离.【详解】解:如图1,当点D与点Q重合时,根据翻折对称性可得ED=AD=5,在Rt△ECD中,ED2=EC2+CD2,即52=(5-EB)2+32,解得EB=1,如图2,当点P与点B重合时,根据翻折对称性可得EB=AB=3,∵3-1=2,∴点E在BC边上可移动的最大距离为2.故选:B.【点睛】本题考查的是翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.二、填空题13.10【分析】作轴于轴于于设AC交y轴于点P可得四边形AMNC四边形AMOP 四边形OPNC 都是矩形根据平行四边形的性质得则再根据反比例函数系数k 的几何意义解答即可【详解】解:作轴于轴于于设AC 交y 轴于 解析:10【分析】作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,可得四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形,根据平行四边形的性质得CAD ACB △≌△,则AMNC 1222ABCD ACB SS AC BE S ==⨯⋅=△矩形,再根据反比例函数系数k 的几何意义解答即可.【详解】 解:作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,∵//AC x 轴,∴AC AM ⊥,AC CN ⊥,BE x ⊥轴,AC OP ⊥,∴四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形,∵ABCD ,∴CAD ACB △≌△, ∴AMNC 1222ABCD ACB S S AC BE S ==⨯⋅=△矩形, ∵顶A 在反比例函数2y x =-的图象上,顶点C 和D 在反比例函数8y x =的图象上,AMNC AMOP OPNC S S S =+矩形矩形矩形,∴AMNC 2810S =+=矩形.故答案为:10.【点睛】本题考查平行四边形的性质,据反比例函数系数k 的几何意义,作辅助线把平行四边形的面积转化为两个矩形的面积的和是解题的关键.14.3【分析】连结OC 过C 作CD ⊥x 轴于DBE ⊥x 轴于E 由对称性可知:OA =OB由△ABC是等边三角形得三线合一知OC⊥AB再根据C点坐标求出OCOB的长利用直角三角形OCD求出∠DOC=45º∠EOB解析:3【分析】连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,由△ABC是等边三角形得三线合一知,OC⊥AB,再根据C点坐标,求出OC,OB的长,利用直角三角形OCD,求出∠DOC=45º,∠EOB=45º,得到OE=BE在Rt△BEO中OE2+BE2=OB2=6求出OE=BE=3,根据点B所在象限求出B点坐标,再代入即可求出k值.【详解】解:连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,∵△ABC是等边三角形,∴OC⊥AB,∵C(-3,3),∴OC=32,∴OB=33OC=6,∵OD=CD=3,∴∠DOC=∠DCO=45º,∴∠EOB=90º-∠DOC=90º-45º=45º,∴OE=BE,在Rt△BEO中OE2+BE2=OB2=6,∴OE=BE=3,∵点B在第三象限,∴B(-3,﹣3),把B点坐标代入y=kx,得到k=3,故答案为:3.【点睛】此题主要考查反比例函数的图像和性质,等腰直角三角的性质,勾股定理,解题的关键是利用反比例函数的对称性与等边三角形的三线合一.15.上午8时【解析】解:根据地理知识北半球不同时刻太阳高度角不同影长也不同规律是由长变短再变长故答案为上午8时点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短再变长来解答此题解析:上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题. 16.36【分析】根据所给的三视图判断出长方体的长宽高再根据体积公式进行计算即可【详解】解:由主视图可知这个长方体的长和高分别为4和3由俯视图可知这个长方体的长和宽分别为4和3因此这个长方体的长宽高分别为 解析:36【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【详解】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点睛】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.17.【分析】先根据三角形的中位线定理可得再根据相似三角形的判定与性质可得由此即可得出答案【详解】在中DE 分别是ABAC 的中点即面积为面积为则四边形DBCE 的面积为故答案为:【点睛】本题考查了三角形的中位 解析:34【分析】 先根据三角形的中位线定理可得1,//2DE BC DE BC =,再根据相似三角形的判定与性质可得14ADE ABC S S =,由此即可得出答案. 【详解】在ABC 中,D 、E 分别是AB 、AC 的中点,1,//2DE BC DE BC ∴=,ADEABC ∴, 214ADE ABC S DE S BC ⎛⎫∴== ⎪⎝⎭,即4ABC ADE S S =△△, ADE 面积为14, ABC ∴面积为1414⨯=, 则四边形DBCE 的面积为13144ABC ADE SS -=-=, 故答案为:34. 【点睛】本题考查了三角形的中位线定理、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 18.②【分析】观察表格利用大量重复试验中频率的稳定值估计概率即可【详解】解:观察表格发现:随着试验的次数的增多口罩合格率的频率逐渐稳定在0920附近所以可以估计这批口罩中合格的概率是0920故答案为:② 解析:②【分析】观察表格,利用大量重复试验中频率的稳定值估计概率即可.【详解】解:观察表格发现:随着试验的次数的增多,口罩合格率的频率逐渐稳定在0.920附近, 所以可以估计这批口罩中合格的概率是0.920,故答案为:②.【点睛】本题主要考查了利用频率估计概率及概率的意义等知识,解题的关键是了解大量重复试验中频率的稳定值估计概率,难度不大.19.2021【分析】先根据意元二次方程根的定义得到m2=3m ﹣1然后把m2=3m ﹣1代入2020﹣m2+3m 中后合并即可【详解】解:∵m 是一元二次方程x2﹣3x+1=0的一个根∴m2﹣3m+1=0∴m2解析:2021【分析】先根据意元二次方程根的定义得到m 2=3m ﹣1,然后把m 2=3m ﹣1代入2020﹣m 2+3m 中后合并即可.【详解】解:∵m 是一元二次方程x 2﹣3x +1=0的一个根,∴m 2﹣3m +1=0,∴m 2=3m ﹣1,∴2020﹣m2+3m=2020﹣(3m﹣1)+3m=2020﹣3m+1+3m=2021.故答案为2021.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.利用整体代入的方法解决此类问题.20.5【分析】过C点作直线EF与平行线垂直与l交于点E与l交于点F易证△CDE≌△CBF得CF=1BF=2根据勾股定理可求BC得正方形的面积【详解】解:过C点作EF⊥l交l于E点交l于F点∵l∥l∥l∥解析:5【分析】过C点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△CDE≌△CBF,得CF=1,BF=2.根据勾股定理可求BC2得正方形的面积.【详解】解:过C点作EF⊥l1,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,90CED BFCCDE BCFBC CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD 的面积为5.故答案为:5.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.三、解答题21.(1)双曲线解析式为y =38x ;(2)P 点坐标为(﹣172,0)或(152,0). 【分析】(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PB 的长,进一步表示出△ABP 的面积,可得到关于t 的方程,则可求得P 点坐标.【详解】解:(1)把A 点坐标代入21y x =+得: 3212m +=, 解得:m =14, ∴A (14,32). ∵A 点也在双曲线上,∴k =133=428⨯, ∴双曲线解析式为y =38x; (2)在y =2x +1中,令y =0可求得:x =﹣12, ∴B (﹣12,0). ∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴BP =|t +12|,且A (14,32), ∴S △ABP =12×32|t +12| .∵△ABP 的面积为6, ∴12×32|t +12|=6,解得:t =﹣172或t =152, ∴P 点坐标为(﹣172,0)或(152,0). 【点睛】本题主要考查一次函数与反比例函数图象的交点,以及两三角形面积,解绝对值方程,掌握函数图象的交点坐标满足每个函数解析式,利用动点P 的坐标表示三角形面积构造方程是解题的关键.22.无23.(1)见解析;(2)6【分析】(1)由题意可得CE CD AE AG=,然后根据比例的性质可进行求证; (2)由(1)可得1AF BC DE BF DC AE ⋅⋅=,进而由题意易得12AF BF =,2BC CD=,然后可得DE AE =,则由勾股定理可得12AD =,最后问题可求解.【详解】解:(1)补充的证明过程如下://AG BD , CE CD AE AG ∴=, 1AF BD CE AG BD CD FB DC EA BD DC AG∴⋅⋅=⋅⋅=; (2)根据梅涅劳斯定理得1AF BC DE BF DC AE⋅⋅=, ∵点D 为BC 的中点,2BF AF =, 12AF BF ∴=,2BC CD =, DE AE ∴=,∵13AB AC ==,10BC =,∴AD ⊥BC ,BD=5, ∴在Rt ABD ∆中,12AD ==,6AE ∴=.故答案为6.【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.29【分析】先画出树状图,由树状图求得所有等可能的结果数,找出一红一黄的情况数,再利用概率公式,即可求得答案.【详解】解:画树状图得:由树状图可知:共有9种等情况数,其中“一红一黄”的有2种,∴摸出的两个球颜色为“一红一黄”的概率为29. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)四;24b b ac x -±-=;(2)135x =-235x =-. 【分析】(1)观察小虎的解法找出出错的步骤,写出求根公式即可;(2)利用配方法求出方程的解即可.【详解】解:(1)小虎的解法从第四步开始出现错误;当b 2﹣4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是x 24b b c a -±- ; 故答案为:四;x 24b b c a -±-; (2)移项得:264x x +=-,配方得:x 2+6x +9=-4+9,即(x +3)2=5,开方得:x 5解得:x 1= - 5x 2= 5【点睛】本题考查了解一元二次方程﹣公式法与配方法,熟练掌握各种解法是解本题的关键.26.(1)36x ≤≤;(2)CG 的长为6815. 【分析】 (1)分别求得当点G 与点C 重合和点G 与点D 重合时x 的值,即可得到x 的取值范围; (2)连接GE ,在Rt AGD 和Rt EFG 以及Rt ECG 中,利用勾股定理列式进行计算即可得解.【详解】(1)设BE x =,当点G 与点C 重合时,在Rt ABC 中,22226810AC AB BC =+=+=,由折叠的性质,得△ABE ≅△AFE ,∴AF=AB=6,BE= FE x =,在Rt CEF 中,∠CFE=90︒,CF 1064=-=,CE=8-x ,∴222EF FC EC +=,即()22248x x +=-,解得:3x =;当点G 与点D 重合时,同理,AF=AB=6,BE= FE ,∠BQF=∠B=∠AFE=90︒,∴四边形ABEF 为矩形,∴BE= AB=6,即6x =,∴点G 在CD 边上时,x 的取值范围为:36x ≤≤;(2)由(1)知,当36x ≤≤时点G 在CD 边上,连接EG ,∴当5x =时点G 在CD 边上,且点G 不与C 、D 两点不重合,设DG=y ,由折叠的性质,得△ABE ≅△AFE ,∴AF=AB=6,BE= FE 5=,在Rt AGD 中,∠D=90︒,AD 8=,DG=y , ∴22228AG AD DG y =+=+ ∴2646FG AG AF y =-=+,在Rt EFG 中,222EF FG EG +=,在Rt ECG 中,222EC CG EG +=,∴2222EF FG EC CG +=+, 即)()()222225646856y y ++=-+-, ∴2215y =, ∴226861515CG =-=. 【点睛】本题主要考查了矩形的性质,折叠的性质,全等三角形的判定和性质,勾股定理,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数,构建方程解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版最新九年级数学上学期期末测试(二)得分________ 卷后分________ 评价________一、选择题(每小题3分,共24分)1.在Rt △ABC 中,∠C =90°,若∠A=30°,则cos A +sin B 等于( C ) A.3+12B .1 C.3D.2+122.(2014·陕西)若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( B )A .1或4B .-1或-4C .-1或4D .1或-43.某生物学院共有生物兴趣小组5个,到校外采集植物标本,每组11人,其中一组采集情况是:2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这5个兴趣小组平均每人采集到的标本大约是( B )A .3件B .4件C .5件D .6件4.如图,△ABC 的边BC =y ,BC 边上的高AD =x ,△ABC 的面积为3,则y 与x 的函数图象大致是( A )5.如图,在△ABC 中,M ,N 分别是边AB ,AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( B )A.12B.13C.14D.236.已知反比例函数y =k -2x (k≠2)的图象如图所示,则一元二次方程x 2-(2k -1)x +k2-1=0的根的情况是( C )A .有两个不等实根B .有两个相等实根C.没有实根 D.无法确定第5题图第6题图第7题图7.如图,M是Rt△ABC的斜边BC上异于B,C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( C )A.1条 B.2条 C.3条 D.4条8.如图,学校大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大门BC打开的宽度为2米,以下哪辆车可以通行?(栏杆高度,汽车反光镜忽略不计)(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.车辆尺寸:长×宽×高)( C )A.宝马Z4(4 200 mm×1 800 mm×1 360 mm)B.奇瑞QQ(4 000 mm×1 600 mm×1 520 mm)C.大众朗逸(4 600 mm×1 700 mm×1 400 mm)D.奥迪A4(4 700 mm×1 800 mm×1 400 mm)二、填空题(每小题3分,共24分)9.反比例函数y =m -1x 的图象在第一、三象限,则m 的取值范围是__m >1__.10.若x 1,x 2为方程x 2+x -1=0的两个实数根,则x 1-x 1x 2+x 2=__0__.11.为了检测甲、乙两种灯泡的使用寿命,从甲、乙两种灯泡中各抽取20个进行检测,检测结果为甲灯泡的方差s 甲2=3.6且比乙灯泡稳定,则乙灯泡的方差s乙2应满足的条件是__s 乙2>3.6__.12.如图,平行四边形ABCD 中,E 为AD 延长线上的一点,D 为AE 的一个黄金分割点,即AD =5-12AE.BE 交DC 于点F ,若CF =2,则AB 的长为__5+1__. 13.如图,在△ABC 中,∠C =90°,点D 在BC 上,BD =6,AD =BC ,cos ∠ADC =35,则AC的长为__12__.第12题图第13题图第14题图第15题图第16题图14.如图,交警为提醒广大司机前方道路塌陷在路口设立了警示牌,已知立杆AD 的高度是3 m ,从侧面B 点测得警示牌顶端C 点和底端D 点的仰角分别是60°和45°,那么警示牌CD的高度为__33-3__m.15.如图,在双曲线y =16x 的一支上有点A 1,A 2,A 3,…,正好构成图中多个正方形,点A 2的坐标为__(2+25,-2+25)__.16.如图,▱ABCD 的对角线AC 与BD 相交于点O ,E 为BC 的中点.则下列结论:①OE=12AB ;②△ABC ≌△CDA ;③△OEC 与△ABC 位似,且位似比为12;④△ACD ∽△COE;⑤S △BCD =4S△BEO.其中正确的有__①②③④⑤__.(填序号) 三、解答题(共72分)17.(6分)(1)计算:tan 60°cos 30°+(sin 45°-3)0-4sin 260°tan 45°; 解:-12;(2)解方程:(x -1)2-4(x -1)+3=0. 解:x 1=4,x 2=2.18.(6分)如图,在Rt △ABC 中,∠ACB =90°,已知CD⊥AB,BC =1.(1)如果∠BCD=30°,求AC ; (2)如果tan ∠BCD =13,求CD.解:(1)由题意得:∠A=∠BCD=30°,则AC =3BC =3;(2)由tan ∠BCD =BD CD =13,设BD =k ,则CD =3k ,BC =10k ,∴BC =10k =1,k =1010,∴CD =3k =31010.19.(6分)为了解某品牌A 、B 两种型号冰箱的销售情况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成了如下的统计图表:(单位:台)表一:月份 一月 二月 三月 四月 五月 六月 七月 A 型销售量 10 14 17 16 13 14 14 B 型销售量 6101415161720表二:平均数 中位数 方差 A 型销售量 14 B 型销售量1418.6(1)完成表二;(结果精确到0.1)(2)请你根据七个月的销售情况绘制折线统计图,并根据折线图的变化趋势,对专卖店今后的进货情况提出建议.(字数控制在20~50字)解:(1)A 型销售量:平均数14;方差14.3,B 型销售量:中位数15;(20)图略:建议多进B 型,从折线变化趋势,B 比A 更有潜力,因为B 型一直呈上升趋势.20.(8分)如图,直线y =2x -6与反比例函数y =kx (x>0)的图象交于点A(4,2),与x轴交于点B.(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.解:(1)k =8,B(3,0);(2)存在.设点C 的坐标为(m ,0),过点A 作AD⊥x 轴,垂足为D ,则点D(4,0),∴BD =1,CD =|m -4|,∵AB =AC ,∴BD =CD ,即|m -4|=1,解得m =5或3,∴点C 的坐标是(5,0)或(3,0)(此时与B 点重合,舍去),故点C 的坐标是(5,0).21.(8分)如图,一艘小船从码头A 出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C 处,这时从码头A 测得小船在码头A北偏东23°的方向上,求此时小船与码头之间的距离.(2≈1.4,3≈1.7,结果保留整数)解:由题意∠BAC=53°-23°=30°,∠C =23°+22°=45°,过点B 作BD⊥AC,垂足为点D ,则CD =BD ,∵BC =10,∴CD =BD·cos45°=10×22=52≈7.0,AD =BD tan30°=52÷33=52×3≈5×1.4×1.7≈11.9,∴AC =AD +CD =11.9+7.0=18.9≈19.故小船与码头之间的距离为19海里.22.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米. (1)当x 为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)由题意得:x(16-x)=60,即(x -6)(x -10)=0.解得 x 1=6,x 2=10,即当x 为6或10时,围成的养鸡场面积为60平方米;(2)不能围成面积为70平方米的养鸡场.理由如下:由题意得:x(16-x)=70,即x 2-16x +70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无解.故不能围成面积为70平方米的养鸡场.23.(8分)如图,等腰△MBC 中,MB =MC ,点A ,P 分别在MB ,BC 上,作∠APE=∠B,PE 交CM 于点E.(1)求证:AP PE =BPCE;(2)若∠C=60°,BC =7,CE =3,AB =4,求△ABP 的面积.解:(1)证明:∵MB=MC ,∴∠B =∠C=∠APE,∵∠APC =∠B+∠BAP,即∠APE+∠EPC =∠B+∠BAP,∴∠BAP =∠EPC,∴△ABP ∽△PCE ,∴AP PE =BP CE ;(2)∵△APB ∽△PEC,∴BPEC =AB PC ,设BP =x ,则PC =7-x ,∵BC =7,CE =3,AB =4,∴x 3=47-x ,整理得:x 2-7x +12=0,解得x =3或4,∵∠C =60°,MB =MC ,∴△MBC 是等边三角形,①当AB =BP =4时,△ABP 是等边三角形,∴S △ABP =12×4×23=43,②当BP =3时,△ABP 的高为4×sin 60°=23,∴S △ABP =12×3×23=3 3.综上所述,△ABP 的面积为43或3 3.24.(10分)(2014·呼和浩特)如图,已知反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C.(1)写出反比例函数的解析式; (2)求证:△ACB ∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式. 解:(1)∵y=kx (x >0,k 是常数)的图象经过点A(1,4),∴k =4,∴反比例函数的解析式为y =4x ;(2)∵点A(1,4),点B(m ,n),∴AC =4-n ,BC =m -1,ON =n ,OM =1,∴ACNO =4-n n =4n -1,∵B(m ,n)在y =4x 上,∴4n =m ,∴AC ON =m -1,而BC MO =m -11,∴AC NO =BC MO ,又∵∠ACB =∠NOM=90°,∴△ACB ∽△NOM ;(3)∵△ACB 与△NOM 的相似比为2,∴m -1=2,m =3,∴B(3,43),设AB 所在直线的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧43=3k +b ,4=k +b ,解得⎩⎪⎨⎪⎧k =-43,b =163,∴AB 所在直线的解析式为y =-43x +163.25.(12分)图①至图③中,直线MN 与线段AB 相交于点O ,∠1=∠2=45°.(1)如图①,若AO =OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图①中的MN 绕点O 顺时针旋转得到图②,其中AO =OB.求证:AC =BD ,AC ⊥BD ; (3)将图②中的OB 拉长为AO 的k 倍得到图③,求BDAC 的值.解:(1)AO =BD ,AO ⊥BD ;(2)证明:如图④,过点B 作BE∥CA 交DO 于点E ,∴∠ACO =∠BED,又∵AO=BO ,∠AOC =∠BOE,∴△AOC ≌△BOE ,∴AC =BE ,又∵∠1=45°,∴∠ACD =BEO =135°,∴∠DEB =45°,∵∠2=45°,∴∠EBD =90°,BE =BD ,∴AC =BD ,延长AC 交BD 的延长线于点F ,如图④.∵BE∥AC,∴∠AFD =90°,∴AC ⊥BD ;(3)如图⑤,过点B 作BE∥CA 交DO 于点E ,∴∠BEO =∠ACO.又∵∠BOE=∠AOC,∴△BOE ≌△AOC ,∴BE AC =BOAO .又∵OB=k·AO,由(2)的方法易得BE =BD ,∴BDAC=k.。