七年级下数学 第一单元垂线(第1课时)
七年级数学下册《垂线》课案(1)(学生用)(无答案) 新人教版
七年级数学下册《垂线》课案(1)(学生用)(无答案)新人教版5.1.2 垂线(1)(新授课)【学习目标】1.知识技能(1)使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论.(2)会用三角板或量角器过一点画一条直线的垂线.2.解决问题通过探索垂线的性质,能解决相关的垂线问题,并能够进行适当的说理.3.数学思考经历观察、分析、概括、论述的学习过程,培养学生逻辑思维能力以及推理能力,进一步训练学生的作图能力.4.情感态度通过创设情境,激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐.【学习重难点】1.重点:使学生掌握垂线,理解垂线的性质.2.难点:用垂线定义判断两条直线是否垂直及垂线的画法.课前延伸【知识梳理】1.下列说法中,不正确的是()A.经过一点能画一条直线和已知线段垂直B.一条直线可以有无数条垂线C.过射线的端点与该射线垂直的直线只有一条D.过直线外一点并过直线上一点可画一条直线与该直线垂直2.下列说法正确的有()①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若1l ⊥2l ,则1l 是2l 的垂线,2l 不是垂线.A .2个B .3个C .4个D .5个3.过一条线段外一点,画这条线段的垂线,垂足在( )A . 这条线段上B .这条线段的端点C . 这条线段的延长线上D .以上都有可能4.如图,直线AB 与直线CD 的位置关系是__________,记作__________,此时,∠AOD =∠________=∠________=∠________=90°.5.如图,直线AB 、CD 相交于点O ,OE 为射线,若∠1=35°,∠2=55°,则OE 与AB _____(填“垂直”或“不垂直”).ABCDOADOBCE1 2第4题 第5题自主学习记录卡课内探究一、课堂探究1(问题探究,自主学习)1.(1)现有一条已知直线AB ,分别过直线外一点C 和直线上一点D ,作AB 的垂线,你能有几种方法?CADB(2)通过上述方法画出的垂线有几条?从中你能发现什么结论? 二、课堂探究2(分组讨论,合作探究)1.已知如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE =3∠COE ,求∠AOD 的度数.OEDCBA2.如图,OA ⊥OB ,OC ⊥OD ,OE 是OD 的反向延长线.(1)试说明:∠AOC =∠BOD ;(2)若∠BOD =32°,求∠AOE 的度数.三、反馈训练1.如图,OB ⊥CD ,∠AOC ∶∠BOC =2∶5,则∠AOB 等于( )A .36°B .126°C .108°D .162°CDAB O ABDCOABCDO第1题 第2题 第3题 2.如图,AO ⊥BO ,CO ⊥DO ,∠AOC ∶∠BOC =1∶5,则∠BOD = ( )A .105°B .112.5°C .135°D .157.5°3.∠A 的两边分别垂直于∠B 的两边,∠A 比∠B 大60°,则∠A 是( )A .120°B .35°C .40°D .38°4.如图,AO ⊥BC ,垂足为O ,且∠COD -∠DOA =34°28′,则∠BOD =________.ADO B CAEF BCD OADOCBPSTRQ第4题 第5题 第6题 第7题5.如图,直线AB 、EF 相交于点O ,OC ⊥AB ,∠DOE =2∠AOE ,∠BOF =33°,则∠AOD =__________,∠DOC =__________,∠COE =__________,∠DOF =__________. 6.如图,直线AB 、CD 相交于点O ,AD ⊥CD 于点D ,CB ⊥AB 于点B ,若∠A =35°,则∠C等于____________°.7.如图,∠PQR =138°,SQ ⊥QR ,QT ⊥PQ ,则∠SQT 等于____________. 8.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =21°,求∠AOM 的度数.9.如图,AB 、CD 、EF 相交于O 点,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC ∶∠COG =4∶7,求∠DOF 、∠DOH 的大小.EF H BACGD四、布置作业:1.必做题:教科书第8页习题5.1第3、4、5、6题2.选做题:(1)如图,∠A=∠ABC=∠ACB=60°,延长AC交直线MN于E,作ED⊥BC,垂足为D,请你找出图中5对互余的角和5对互补的角.(2)已知如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.3.【预习题】1.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度2.和一个已知点P的距离等于3㎝的直线可以画()A.1条B.2条C.3条D.无数条G OFEDC BA3.P 为直线l 外一点,A 、B 、C 为直线l 上三点,PA =5Cm ,PB =3Cm ,PC =4Cm ,则点P 到直线l 的距离为( ) A .4㎝B .3㎝C .小于3㎝D .不大于3㎝4.如图,若把水渠中的水引到水池C ,挖一条沟CD 垂直于渠岸AB ,垂足为D ,这时沟CD最短,这时根据_________________________。
垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)
专题5.4垂线(知识讲解)1.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;2.理解并运用“垂线段最短”解决实际问题;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.特别说明:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).特别说明:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.特别说明:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.特别说明:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、垂线➽➼定义的理解➼➻垂直✬✬直角1.如图,直线AB ,CD 相交于点O ,下列条件:90AOD ∠=︒①;AOC BOC ∠=∠②;AOC BOD ∠=∠③,其中能说明AB CD ⊥的有()A .①B .①或②C .①或③D .①或②或③【答案】B 【分析】根据垂直定义“当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直”进行判定即可.解:90AOD ∠=︒①,可以得出AB CD ⊥,故符合题意;180AOC BOC ∠+∠=︒ ②,AOC BOC ∠=∠,故符合题意,90AOC BOC ∴∠=∠=︒,可以得出AB CD ⊥;AOC BOD ∠=∠③,不能得到AB CD ⊥,故不符合题意;故能说明AB CD ⊥的有①②.故选:B .【点拨】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90︒.举一反三:【变式1】如图,同一平面内的三条直线交于点O ,130∠=︒,260∠=︒,AB 与CD 的关系是()A .平行B .垂直C .重合D .以上均有可能【变式2】如图,120∠=︒,则2∠的度数是()A.50︒B.60︒C.70︒D.80︒【答案】C【分析】根据图象可得:∠1+∠2=90°,代入求解即可得出结果.解:∵∠1+∠2+90°=180°,∴∠1+∠2=90°,∵∠1=20°,∴∠2=70°,故选:C.【点拨】题目主要考查角度计算,从图中得出∠1+∠2=90°是解题关键.类型二、垂线➽➼垂线的画法条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点拨】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.举一反三:【变式1】下列用三角板过点P画AB的垂线CD,正确的是()【变式2】过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以【答案】D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.解答:由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点拨】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.类型三、垂线➽➼点到直线的距离✬✬垂线段画法3.如图,90AOB ∠=︒,P 是OB 上的一点,用刻度尺分别度量点P 到直线OA 和到直线OC 的距离.【答案】点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm【分析】过点P 作PD OC ⊥,用刻度尺分别度量PO 和PD 的长度,即可得到点P 到直线OA 和到直线OC 的距离.【详解】解:过点P 作PD OC ⊥,用刻度尺分别度量,可得点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm .【点拨】本题考查了点到直线的距离,解题的关键是清楚点到直线的距离是垂线段的长度.举一反三:【变式1】如图,AB 、CD 、NE 相交于点O ,OM 平分BOD ∠,OM ON ⊥,55AOC ∠=︒.(1)线段______的长度表示点M 到NE 的距离;(2)比较MN 与MO 的大小(用“<”号连接):____________,并说明理由:____________;(3)求AON ∠的度数.【答案】(1)MO ;(2)MO MN <,是因为垂线段最短;(3)62.5︒【分析】(1)根据点到直线的距离求解即可;(2)根据垂线段最短求解即可;(3)根据垂直的定义和角之间的关系求解即可.(1)解:线段MO 的长度表示点M 到NE 的距离,故答案为:MO ;(2)解:比较MN 与MO 的大小为:MO MN <,是因为垂线段最短,故答案为:MO MN <,是因为垂线段最短;(3)解:55BOD AOC ∠=∠=︒ ,OM 平分BOD ∠,27.5BOM ∴∠=︒,18018027.59062.5AON BOM MON ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】本题考查了点到直线的距离、角平分线、垂线段最短,解题的关键是掌握点到直线的距离.【变式2】已知:点P 是直线MN 外一点,点A 、B 、C 是直线MN 上三点,分别连接PA 、PB 、PC .(1)通过测量的方法,比较PA 、PB 、PC 的大小,直接用“>”连接;(2)在直线MN 上能否找到一点D ,使PD 的长度最短?如果有,请在图中作出线段PD ,并说明它的理论依据;如果没有,请说明理由.【答案】(1)PA PB PC >>;(2)见解析,垂线段最短【分析】(1)直接测量,比较大小即可;(2)作MN 的垂线,垂足为D ,PD 即所求.解:(1)通过测量可知, 3.7PA =cm , 3.2PB =cm , 2.8PC =cm ,故PA PB PC >>;(2)过点P 作PD MN ⊥,则PD 最短.理由:垂线段最短【点拨】本题考查了垂线段最短的性质,解题关键是能熟练的测量线段的长度,知道垂线段最短.类型四、垂线➽➼点到直线的距离✬✬垂线段的长4.如图,在ABC 中,90ACB ∠=︒,8cm AC =,6cm BC =,10cm AB =,点P 从点A 出发,沿射线AB 以2/cm s 的速度运动,点Q 从点C 出发,沿线段CB 以1cm /s 的速度运动,P 、Q 两点同时出发,当点Q 运动到点B 时P 、Q 停止运动,设Q 点的运动时间为t 秒.(1)当t =______时,2BP CQ =;(2)当t =______时,BP BQ =;(3)画CD AB ⊥于点D ,并求出CD 的值;(4)当t =______时,有2ACP ABQ S S = .举一反三:【变式1】如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP⊥AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.解:当MP⊥AB时,MP有最小值,∵AB=10,MB=6,MA=8,∠AMB=90°,∴AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点拨】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关键.【变式2】如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC 上(不与点A,C重合)移动,则线段BP最短时的长为_________________.中考真题专练4.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .【点拨】本题考查垂线段最短,熟知垂线段最短是解答的关键.举一反三:【变式1】(2022·河南·中考真题)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A .26°B .36°C .44°D .54°【答案】B 【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解.解: EO ⊥CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,2180905436∴∠=︒-︒-︒=︒.故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.【变式2】(2021·北京·中考真题)如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A .30︒B .40︒C .50︒D .60︒【变式3】(2021·浙江杭州·中考真题)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则()A .PT PQ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ≤【答案】C 【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,∴是垂线段,即连接直线外的点P与直线上各点的所有线段中距离最短,PQ=,当点T与点Q重合时有PQ PT≥,综上所述:PT PQ故选:C.【点拨】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.。
人教初中数学七下 5.1.2 垂线(第1课时)课件 【经典初中数学课件】
②性质:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
(∠AOC=∠BOC=∠BOD=90° )
合作探究 达成目标
例1:如图,直线AB,CD相交于点O,OE⊥CD于 O, ∠AOE:∠COE=1:3,求∠BOD的度数。
解:∵OE⊥CD ∴ ∠COE=90°
E
A
D
又∵∠AOE:∠COE=1:3
请 风景4:二元一次方程组的
思 考
解
x=1
x= 2
x=6
y=6 y=5
…
y=1
方程x+y=7的解集
x=6 x=7 y=1 y=3
…
x= 5 y= -1
方程2x-y=11的解集
x=1
x= 2
y=6
y=5
…
方程x+y=7的解集
x=6 x= 7 x= 5
y=1
y= 3
…
y= -1
方程2x-y=11的解集
求a的值. a=7
2. 已知
x=2 y=b
是方程2x+3y=13的一个解,
求b的值. b=3
水天 一色
3. 你能写出以
x 1 为解的二元一次方程.
y3
你还能写出两个以 x 1 为解得二元一次
方程组吗?
y3
4、二元一次方程 x2y 8 的正整数解.
破茧成蝶
1、已知方2程xa3 3y 4 是二元一次方程, a的求值?
创设情景 明确目标
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,a、b所 b 成的角α也会发生变化. b
b
bb
当α =90°时,a与b垂直.
α )α
人教版 七年级数学下册 5.1.2 垂线(一) 精品课时作业习题(含解析)
作业2 §5.1.2 垂线(一)典型例题【例1】 ①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;②两条直线相交,若有一组对顶角互补,则这条直线互相垂直;③两条直线相交,若所成的四个角相等,则这两条直线垂直;④两条直线相交,若有一组邻补角相等,则这两条直线垂直.其中说法正确的有( )A.1个B.2个C. 3个D. 4个【解析】 题中的4个说法,都是关于两条直线垂直的判定问题.根据垂直定义,只要推出两条直线相交所成的四个角中有一个角是直角,就可以判断两条直线互相垂直.①是垂直的定义,所以正确;②有一组对顶角互补,因为对顶角相等,所以这两个角都是90°,所以正确;③两条直线相交,所成的四个角相等,都是90°,所以正确;④有一组邻补角相等,而邻补是互补的,所以这两个角都是90°,所以正确.【答案】 D【例2】 如图5-16,过点A 、B 分别画OB 、OA 的垂线.图5-16 图5-17【解析】 画线段或射线的垂线,就是画这条线段或射线所在直线的垂线,本例中的垂足分别在OB 的反向延长线上和OA 的延长线上.【答案】如图5-17所示,直线AE 为过点A 与OB 垂直的直线,垂足为E;直线BD 为过点B 与OA 垂直的直线,垂足为D.【例3】 如图5-18,点O 为直线AB 上一点,OC 为一射线,OE 平分∠AOC ,OF 平分∠BOC(1)若∠BOC=50°,试探究OE 、OF 的位置关系;(2)若∠BOC=α(0°<x <180°),(1)中OE 、OF 的位置关系是否仍成立?请说明理由,由此你发现了什么规律?图5-18【解析】 要探究OE 、OF 的位置关系,可先用三角尺或量角器检测∠EOF 的大小来判断OE 、OF 的关系,再通过计算加以说明;第(2)问用代数代表示∠EOF ,再归纳出结论.【答案】 (1)由量角器测得∠EOF=90°,因此OE ⊥OF.由邻补角的定义,可得∠AOC=180°-∠BOC=130°.由OE 平分∠AOC ,OF 平分∠BOC 可得∠COF=21∠BOC=25°, ∠COE=21∠AOC=65°. 所以∠EOF=∠COF+∠COE=90°.因此OE ⊥OF.(2)OE ⊥OF 仍成立.因为∠AOC=180°-α,∠COF=21α,∠COE=21(180°-α)=90°-21α. 所以∠EOF=∠COF+∠COE=21α+(90°-21α)=90°. 由此发现:无论∠BOC 度数是多少,∠EOF 总等于90°.即邻补角的平分线互相垂直.总分100分 时间40分钟 成绩评定___________一、填空题(每题5分,共50分)课前热身1.两条直线互相垂直时,所得的四个角中有__________个直角.答案:42.过一点________条直线与已知直线垂直.答案:有且只有课上作业3.如图5-19,OA ⊥OB 于O ,直线CD 经过点O ,∠AOD=35°,则∠BOC=________.答案:125°4.如图5-20,直线AB 与CD 相交于点O ,EO ⊥AB 于O ,则∠1与∠2的关系是________.图5-19 图5-20答案:互为余角5.如图5-21,O 是直线AB 上一点OC ⊥OD ,有以下两个结论:①∠AOC 与∠BOD 互为余角;②∠AOC 、∠COD 、∠BOD 互为邻补角.其中说法正确的是________(填序号).图5-21 图5-22答案:①6.如图5-22,已知OC ⊥AB ,OE ⊥OD ,则图中互余的角共有________对.答案:4课下作业7.如果CD ⊥AB 于D ,自CD 上任一点向AB 作垂线,那么所画垂线均与CD 重合,这是因为________. 答案:过一点有且只有一条直线与已知直线垂直8.如图5-23,直线AB 、CD 、EF 交于一点O ,CO ⊥EF 且∠GOB=30°,∠AOC=40°,则∠COE=________. 答案:20°9.从钝角∠AOB 的顶点O 引射线OC ⊥OA ,若∠ACO ∶∠COB=3∶1,则∠AOB=________.答案:120°10.如图5-24,直线AB 、CD 相交于O ,EO ⊥AB ,OB 平分∠DOF ,若∠EOC=115°,则∠BOF=________.∠COF=________.图5-23 图5-24答案:25°;130°二、选择题(每题5分,共10分)模拟在线11.(辽宁)如图5-25,∠PQR 等于138°,SQ ⊥QR ,TQ ⊥PQ 则∠SQT 等于( )A.42°B.64°C.48°D.24°图5-25答案:A12.(四川)如图5-26所示,AB 、CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A.∠AOC 与∠COE 互为余角E.∠BOD 与∠COE 互为余角C.∠COE 与∠BOE 互为补角D.∠AOC 与∠BOD 是对顶角图5-26答案:C三、解答题(每题20分,共40分)13.OC 把∠AOB 分成两部分且有下列两个等式成立:①∠AOC=31直角+31∠BOC ;②∠BOC=31平角-21∠AOC ,问∶ (1)OA 与OB 的位置关系怎样?(2)OC 是否为∠AOB 的平分线?并写出判断的理由.答案:(1)OA ⊥OB (2)O(C 为∠AOB 的平分线,因为∠BOC=∠AOC=45°.14.如图5-27,已知AB 、C D 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线.图5-27(1)若∠AOC∶∠COG=4∶7,求∠DOF的大小;(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.答案:(1)∠DOF=110°(2)∠COH=107.5°。
人教版七年级数学下册 5-1-2 垂线(第一课时) 教案
5.1 相交线5.1.2 垂线(第一课时)教学反思教学目标1.理解垂线的概念.2.理解垂线的性质——在同一平面内,过一点有且只有一条直线垂直于已知直线.3.会用三角尺或量角器过一点画一条直线的垂线.教学重难点重点:两条直线互相垂直的概念、性质和画法.难点:过一点作已知直线的垂线.课前准备相交线模型、多媒体课件教学过程导入新课导入一:教师:在前面我们学习了两条直线相交形成了四个角,这四个角会产生4对邻补角和2对对顶角.你们还记得它们的定义吗?学生回答,老师纠正.教师:如果两条直线相交,形成的四个角中有一个角是直角时,这两条直线有怎样的特殊关系?日常生活中有没有这方面的实例呢?今天我们就来研究这个问题.(板书课题:5.1.2垂线(第一课时))导入二:教师:同学们观察教室里的课桌面相邻的两边,黑板面相邻的两边,方格纸的横线和竖线……这些给大家什么印象?学生回答,教师指出:“垂直”这两个字对大家并不陌生,在小学,我们已经学习过“垂直”,对于“垂直”的知识我们已经了解了一些.今天,我们就在原有知识的基础上,继续探究“垂直”.(板书课题:5.1.2垂线(第一课时))设计意图通过生活中我们经常见到的现象引出垂直,通过新问题来激发学生的学习兴趣.探究新知探究点一:认识垂线和垂直教师:拿出相交线模型,如图1,演示模型,提问学生:固定木条a,转动木条b,当b的位置发生变化时,什么量随之发生变化?学生:当b 的位置变化时,a,b 所形成的四个夹角的度数随之发生变化. 教师:在b 转动的过程中,当a ,b 所形成的夹角∠α=90°时(如图2所示),木条a 与b 所形成的其他三个角的度数是多少?为什么?图2学生:另外三个角也是90°.教师:这种特殊的位置关系,即∠α=90°时,我们就说a 与b 互相垂直.我们身边存在大量的形如两条直线相互垂直的实例,请同学们举一些例子.学生发言,教师肯定.教师追问:根据前面的活动,你们能说出什么样的两条直线互相垂直吗? 师生活动鼓励学生大胆发表自己的见解,学生可能会说两条直线相交所构成的四个角都是直角时,两条直线互相垂直,这时可以引导学生认识到:两直线相交所构成的四个角中,只要有一个角是直角,就可以得出其他三个角也是直角.教师总结并板书垂直的概念:两条直线相交所构成的角中有一个角是直角时,我们就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.教师强调:“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果两条直线“互相垂直”,那么其中一条直线必定是另一条直线的“垂线”;如果一条直线是另一条直线的“垂线”,那么它们必定“互相垂直”.设计意图垂直是两条直线相交的特殊情形,两条直线垂直所形成的四个角之间的关系,需要由“邻补角和为180°”“对顶角相等”得出.相交线模型的演示与有关问题的引导,使学生对垂直的认识由感性上升到理性,从而加深学生对垂直的理解.教师:许多几何图形都可以用符号来表示,例如,角用“∠”表示,三角形用“△”表示等等,垂直也有它自己的符号.教师:垂直用符号“⊥”表示,如图3所示,直线AB 垂直于直线CD ,垂足为O ,就可记为“AB ⊥CD ,垂足为O ”.(教师板书)图3教师:根据垂直的定义,结合图3,当AB⊥CD时,∠AOD是多少度?学生:∠AOD=90°.教师:我们如何用几何推理语言来描述这个结论.学生大胆发言,教师引导并板书:因为AB⊥CD,所以∠AOC=90°(垂直的定义).教师:把这个推理倒过来,当∠AOC=90°,直线AB,CD具备什么特殊的位置关系?学生:垂直.教师:如何用几何推理语言描述这个结论.学生发言,教师板书:因为∠AOC =90°,所以AB⊥CD(垂直的定义).设计意图教学中在明确给出垂直的定义后,借助图形用符号语言来表示,让学生从文字语言、图形语言、符号语言等不同角度来认识垂直,实现了三种语言之间的转化,在此过程中,培养了学生用几何语言表达问题的能力,增强了学生的符号感.探究点二:垂线的画法及性质教师:根据垂直的定义,我们知道要想画垂线,必须有直角,我们的学习用具中有存在直角的吗?学生:三角尺、量角器中存在直角.教师:现在我们就开始研究用三角尺和直尺或者量角器画垂线的方法,出示课本探究.如图4所示.(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?(1) (2)图4学生独立尝试,小组合作交流,完成下面填空和思考:1.垂线的画法:第一步:靠,即三角尺的一条直角边紧靠;第二步:过,即三角尺的另一条直角边过;第三步:画,即画出垂线.2.(1)与直线l垂直的直线能画条.(2)经过直线上一点能画条直线与已知直线垂直.(3)经过直线外一点能画条直线与已知直线垂直.教师在学生合作交流的基础上组织两名学生用三角尺演示第(2)(3)问,并展示上述填空.教师:如果把(2)(3)两条结论合并在一起,你们认为应该怎样表达.学生发言,教师引导得出垂线的性质并板书.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.设计意图在本环节的教学中有两个重要的任务,除了让学生掌握垂线的性质外,还应让学生在探究性质的过程中,掌握过一点作已知直线的垂线的方法,它是几何作图中的一种常用的基本作图,需要学生熟练掌握.虽然学生在小学已经接触过垂线的作法,但要在各种情境中熟练作图,对学生来说也是一个难点,尤其是过已知点作线段的垂线.因此在这一环节的教学中应给予学生充分的机会来感受、体会、总结、训练垂线的作法,教师也可以在此基础上演示总结用三角尺过一点画已知直线的垂线的方法:一靠,即三角尺的一条直角边紧靠已知直线也就是与已知直线重合;二过,即三角尺的另一条直角边过已知点;三画,即画出垂线.使学生能够顺利突破难点.新知应用例1 判断下列语句是否正确?(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )(2)若两条直线相交构成的四个角相等,则这两条直线互相垂直.( )(3)一条直线的垂线只能画一条.( )(4)过一点可以任意画已知直线的垂线.( )答案:(1)正确(2)正确(3)错误(4)错误师生活动教师读题,学生抢答.设计意图考查学生由角的关系来判断两直线的位置关系,强化对垂直概念的理解..或线段AB的垂线.图5师生活动找三位同学在黑板上板演,其他同学自己动手画图,画完之后请同学们点评.(1) (2) (3)图6教师引导学生归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.设计意图训练学生在各种情境中熟练作图,通过此练习,给学生充分的机会来感受、体会、总结、训练在各种条件下垂线的作法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.D4.B5.C6.D7. 垂直 AB ⊥CD DOB BOC COA 8.30° 9.解:OD ⊥OE.理由:∵ OD 平分∠BOC ,∴ ∠COD =12∠BOC.∵ OE 平分∠AOC ,∴ ∠COE =12∠AOC. ∴ ∠EOD =∠COD+∠COE=12(∠BOC+∠AOC)=12×180°=90°,即OD ⊥OE.10.解:(1)∠AOD =120°.(2)∠AOD =110°.(3)猜想∠AOD 与∠BOC 互补.理由如下:如题图①,∵ ∠AOD =∠AOC+∠COD =∠AOC+90°,∠BOC =∠AOB-∠AOC =90°-∠AOC ,所以∠AOD+∠BOC =180°,即∠AOD 与∠BOC 互补.(见导学案“课后提升”)参考答案1.解:∵ OE 平分∠BOD ,∴ ∠DOE =∠BOE. ∵ ∠AOD ∶∠DOE =4∶1,∴ ∠AOD ∶∠DOE ∶∠BOE =4∶1∶1.又∵ ∠AOB =180°,∴ ∠DOE =∠BOE =180°×16=30°,∴ ∠COB =∠COD-∠DOE-∠BOE =180°-30°-30°=120°. 又∵ OF 平分∠COB ,∴ ∠COF =∠BOF =12∠COB =60°,∴ ∠AOF =∠AOB-∠BOF =180°-60°=120°. (此题解法多种,只提供一种)2.解:有可能有三个或两个或一个.如图7所示.课堂小结1.本节课主要学习了两条直线互相垂直、垂线以及垂足的概念和垂线的一条性质.2.会用三角尺或量角器过一点画已知直线、射线、线段的垂线.3.要关注三种语言,即文字语言、图形语言、符号语言之间的转化.布置作业教材第8页习题5.1第3,4,5题板书设计。
2019春七年级数学下册第4章《相交线与平行线》4.5垂线第1课时垂线习题课件(新版)湘教版
知识点 垂直的定义 1. 在 如 图 所 示的 方格 纸 上,互 相 垂直 的 直线 有 (B )
A.6 对 C.4 对
第 1 题图
B.5 对 D.3 对
2. 将两块相同的直角三角尺的直角顶点重合为如 图所示的位置,若∠AOD=120°,则∠BOC=__6_0_°__.
第 2 题图
3. 如图,CD⊥EF,∠1=∠2,则 AB⊥EF.请说明 理由(补全解题过程).
16. (2018·株洲)如图,直线 l1,l2 被直线 l3 所截,且 l1∥l2,过 l1 上的点 A 作 AB⊥l3 交 l3 于点 B,其中∠1< 30°,则下列一定正确的是60° D.2∠3>∠4
【解析】因为 AB⊥l3,所以∠ABC=90°,因为∠1 <30°,所以∠ACB=90°-∠1>60°,所以∠2<120°, 因为直线 l1∥l2,所以∠3=∠ACB>60°,所以∠4-∠3 =180°-∠3-∠3=180°-2∠3<60°,因为∠4=∠2< 120°,所以 2∠3>∠4.
解:(1)①因为∠A=60°, ∠ACB=40°, 所以∠ABC=80°, 因为 BM 平分∠ABC, 所以∠ABE=12∠ABC=40°, 因为 CE∥AB,所以∠BEC=∠ABE=40°;
②因为∠A=60°,∠ACB=40°,所以∠ABC=80°, ∠ACD=180°-∠ACB=140°.因为 BM 平分∠ABC,CE 平分∠ACD,所以∠CBE=12∠ABC=40°,∠ECD=12 ∠ACD=70°,所以∠BCE=110°,所以∠BEC=180°- 40°-110°=30°;
(2)(ⅰ)如图①,当 CE⊥BC 时,因为∠CBE=40°, 所以∠BEC=50°;
(ⅱ)如图②,当 CE⊥AB 于点 F 时,因为∠ABE= 40°,所以∠BEF=180°-90°-40°=50°,所以∠BEC =130°.
5.1.2垂线(课时1)课件(新人教版七年级数学下)
课中探究
【问题2】
1.如图,已知直线l,用三角尺或量角器画直线l的垂线, 这样的垂线能画出几条?你能得出什么结论?
课中探究
【问题2】
2.经过直线l上一点A画l的垂线,这样的垂线能画出几条?
课中探究
【问题2】
3.经过直线l外一点B画l的垂线,这样的垂线能画出几条? 通过2.3两题你又能得出什么结论?
尝试应用
3.如图根据下列语句画图: (1)过点P画射线AM的垂线,Q为垂足;
(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;
(3)过点P画线段AB的垂线,交线段AB的延长线于Q点
学习体会
1.本节课你有哪些收获?
2.预习时的疑难问题解决了吗?你还有哪些疑惑?
3.你认为本节还有哪些需要注意的地方?
人教版初中数学七年级下册Biblioteka 第五章相交线与平行线 垂线
5.1.2
第1课时
创设情景
情境引入
观察教室里的课桌面,黑板面相邻的两条
边, 方格纸的横线和竖线……,这些线有什么位
置关系呢?
课中探究
【问题1】
演示模型 , 观察思考 : 固定木条 a, 转
动木条b, 当b的位置变化时,a.b所
成的角 α 是如何变化的 ? 其中会有 特殊情况出现吗?
当b的位置变化时,角α从锐角变为钝角,其中∠α是
______是特殊情况.其特殊之处还在于,它的邻补角,对顶
角都是________,即a.b相交所成的四个角都是_______.
课中探究
【结论】
垂直的定义_______________________________ 如图:用几何语言表示为 ∵AB⊥CD ∴∠AOC=∠COB=∠BOD=∠AOD=_____°(垂直的定义) 反之∵∠AOD=______° ∴AB⊥CD(垂直的定义)
商都县第七中学七年级数学下册第4章相交线与平行线4.5垂线第1课时垂线教案新版湘教版2
)。
16.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:
(1)猴园和鹿场分别位于水族馆的什么方向?
(2)与水族馆距离相同的地方有哪些场地?
(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?
,
5
答案 1.D 2.A 3.D 4.B 5.B 6.C 7.D
教学内容 有理数的除法
序号
教学时间
教具
知识与技能:1.使学生理解有理数倒数的意义;
教 内 2.使学生掌握有理数的除法法则,能够熟练地进行除法运算; 学容 目 要 3.培养学生观察、归纳、概括及运算能力. 标 求 过程与方法:学生自主学习,小组合作,探究,教师指导
情感态度与价值观:培养学生转化的数学思维能力
A.(7,8)
B.(1,1)
C.(1,2)
6.如图,如果☆的位置为(1,2),则※的位置是(
)
D.(2,1)
2
A.(1,1)
B.(1,3)
C.(3,1)
D.(3,3)
7.某同学的座位号为(2,4)那么该同学的位置是( )
A.第 2 排第 4 列 B.第 4 排第 2 列 C.第 2 列第 4 排 D.不好确定
两条直线相交不成直角时 , 其中一条直线叫做另一条直线的斜线 , 它们的交点叫做 斜足 , 如以下列图 , 直线 CD 是 AB 的斜线 , 同样 , 直线 AB 也是 CD 的斜线 , 点 O 是斜 足.
2.如以下列图 , 在同一平面内 , 直线 a⊥l,b⊥l,那么 a∥b 吗 ?
因为 a⊥l , 所以∠1=90°(垂直定义). 因为 b⊥l , 所以∠2=90°(垂直定义) , 所以∠1=∠2 ,
(新课标)湘教版七年级数学下册《垂线》同步练习题及答案解析
新课标 2017-2018学年湘教版七年级数学下册4.5.2 垂线的基本事实及垂线段核心笔记:1.垂线的基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直.2.垂线段的性质:直线外一点与直线上各点连接的所有线段中,垂线段最短,简单地说成垂线段最短.3.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.基础训练1.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长2.下列说法中,正确的有( )①同一平面内,互相垂直的两条直线形成的四个角一定是直角;②过平面内任意一点有且仅有一条直线与已知直线垂直;③两条直线相交,所成的角中有两个角相等,则这两条直线互相垂直;④垂线段就是点到直线的距离.A.1个B.2个C.3个D.4个3.同一平面内,过点P作直线AB的垂线可以作( )A.1条B.2条C.无数条D.不能确定4.A为直线l外一点,B为直线l上一点,点A到l的距离为5cm,则AB___________5cm,其根据是___________.5.如图,一小孩想牵牛到河边饮水,那么小孩应该如何走才能保证走的路程最短?请你在图中画出他走的路线.6.如图,在三角形ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,若AC=4,BC=6,BE=5.求:(1)点B到直线AC的距离;(2)点A到直线BC的距离.7.如图,AOB为一条在O处拐弯的河道,要修一条从村庄P通向这条河的道路,现在有两种设计方案:一是沿PM修路,二是沿PO修路,哪种方案更经济?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.培优提升1.下列说法正确的有( )①两条直线相交构成的四个角中,如果有两个角相等,那么这两条直线互相垂直;②两条直线相交构成的四个角中,如果有一个角是直角,那么这两条直线互相垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A.1个B.2个C.3个D.4个2.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是( )A.两点确定一条直线B.垂线段最短C.已知直线的垂线只有一条D.同一平面内,过一点有且只有一条直线与已知直线垂直3.直线l外一点P与直线l上三点所连线段的长度分别为4cm,5cm,6cm,则点P到直线l的距离( )A.是4cmB.是5cmC.不超过4cmD.大于6cm4.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条B.3条C.4条D.5条5.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连接的所有线段中,垂线段最短”.在此基础上,人们定义了两点间的距离、点到直线的距离等,类似地,若点P是圆O外一点(如图所示),则点P与圆O的距离应定义为( )A.线段PO的长度B.线段PA的长度C.线段PB的长度D.线段PC的长度6.如图,在三角形ABC中,AC⊥BC,CD⊥AB,则AB CD.(填“>”“<”或“=”)7.说出日常生活现象中的数学原理:8.按题目要求画图,并回答相关问题.如图,点P是∠AOB内一点,过点P作PM⊥OA,垂足为点M,作PN ⊥OB,垂足为点N,通过测量∠MPN和∠O的度数,你能得出什么结论?9.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N为位于公路两侧的村庄.(1)设汽车行驶到公路AB上点P的位置时,距离村庄M最近,行驶到点Q的位置时,距离村庄N最近,请在图中分别画出点P和点Q 的位置;(2)当汽车由A向B行驶时,在公路的哪一段上距离M,N两村庄都越来越近?在哪一段上距离村庄N越来越近,而距离村庄M越来越远?(分别用文字表述你的结论)参考答案【基础训练】1.【答案】B2.【答案】B解:正确的是①②,共2个.3.【答案】A4.【答案】≥;垂线段最短5.解:如图所示,从小孩所在的点向河边作垂线段即可.6.解:(1)因为BE⊥AC,垂足为点E,所以线段BE即为点B到直线AC 的垂线段,因为BE=5,所以点B到直线AC的距离为5.(2)因为AD⊥BC,垂足为点D,所以线段AD的长度即为点A到直线BC的距离,因为BC·AD=AC·BE,所以AD=·==,所以点A到直线BC的距离为.7.解:沿PO修路比沿PM修路更经济些,因为P到AO上各点连接的所有线段中,PO是垂线段,垂线段最短.它不是最佳方案,过P作PN⊥OB于N,PN是P到OB的最短路线. 因为OP>PN,所以PN是P到河道AOB的最短路线,所以沿PN修路是最佳方案.【培优提升】1.【答案】C2.【答案】D3.【答案】C4.【答案】D解:能表示点到直线的距离的线段有:线段AD,BA,CA,BD,CD,共5条.5.【答案】B6.【答案】>7.8.解:画图如图所示.结论:∠MPN+∠O=180°.9.解:(1)过点M作MP⊥AB,垂足为点P,过点N作NQ⊥AB,垂足为点Q,则点P,Q就是所要求作的两个点,如图所示.(2)当汽车由A向B行驶时,在AP这段公路上距离两村庄都越来越近,在PQ这段公路上距离村庄N越来越近,距离村庄M越来越远. 解:要求距离最近,可视村庄为一定点,笔直的公路为一条直线,当汽车行驶到“垂足”的位置时,根据垂线段最短知,此时,距离最近.。
人教版初中数学七年级下册5.1.2《垂线》教案(1)
5.1.2 垂线教学设计(第一课时)一、设计理念在平面几何的教学中教师应该根据认知规律,设计符合学生认知水平的教学活动,通过学生的感知、思考、归纳和抽象,形成对几何图形的认识。
由于本节课的内容在理解上较为容易,因此在本教案的内容安排上,尝试利用“发现法”教学,引导学生自己观察,分析特征猜想结论,通过和同学们一起讨论探究得出垂线和垂线段的有关性质。
二、教材分析《垂线》是人教版七年级数学第五章《相交线与平行线》中的内容,包括垂直概念、垂线概念、用数学符号表示垂直、垂线的两个性质和点到直线距离等知识。
它是在学生对基本图形点、线、角有了初步认识的基础上学习的一种特殊位置关系,初步向学生参透由一般到特殊的思想。
其学习方式和研究方法,对今后认识图形、形成空间观念起到奠基的作用,特别是对今后要学习的三角形、平行四边形和圆都有举足轻重的作用,在物理的领域也不缺少垂线性质的应用。
也是培养学生观察、动手、分析、归纳能力的重要内容,对学生的探究精神、学习兴趣的培养都具有重要意义。
三、学情分析学生在小学四年级学习过垂线,对垂线图形有了最基本的认识,也了解了垂直的一些简单性质,但对垂线并没有深入的研究,没对垂线给出严格的几何定义,也没对垂线的性质作深入的探讨。
学生在七年级第三章学习了基本的图形点、线、角,这使学生学习垂线有了基础。
但是由于学生的年龄较小,学习几何的时间太短,理论性的证明往往使他们觉得枯燥无味,因此根据教材的特点,创设问题情境,让他们自己去发现事物的特性,尝试数学家发现问题的思维过程,会使学生充满极大的乐趣去参与教学活动,课堂的效果将会很好。
四、重点和难点重点:垂线的定义,用三角尺或量角器过一点画已知直线垂线。
难点:过一点画已知直线的垂线。
五、教学目标知识与技能:知道垂直是相交的特殊情况,理解垂线的概念,会用三角尺或量角器过一点画已知直线的垂线。
过程与方法︰通过操作﹑探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识。
【数学】垂线第1课时垂线的定义、画法课件-2023-2024学年人教版数学七年级下册
二移:沿直线移动三角板,使其另一条直 角边经过所给的点;
三画:沿此直角边画直线,则这条直线就是 已知直线的垂线。
三、探究垂线的画法
A
垂线的性质: 在 平面 内,过一点 与已知直线垂直。
C
B
O
D
有且只有一条 直线
三、探究垂线的画法
C
A
(3)垂直是相交的一种特殊情况,垂直属于相交,但 又不同于一般的相交,只有两条直线相交成直角时,它 们的位置关系才能称作互相垂直.
五、课堂小结
(4)垂直与垂线不同,垂直是指两条直线的位置关系,而 垂线是指两条直线互相垂直时,其中的一条叫做另一条的垂 线.两者也有联系,只有在垂直的情况下,才会有垂线.
4
1
32
D
解: B
二、探究垂线的概念
选中中间绿点旋转b, 使角阿尔法变化
a
b
a
O
二、探究垂线的概念
C
如图,两条直线相交,当它们的
A
B 交角有一个角是90°时,叫做这两条直
O
线互相垂直,它是直线相交的一种特
直线AB与直线CD的 D
殊情形,其交点叫垂足。
交点叫做垂足
C
二、ቤተ መጻሕፍቲ ባይዱ究垂线的概念
A
B
O
D
垂直的定义:当两条直线相交所成的四个角中有一个角是
直
()
四、课堂巩固练习 2、画一条线段的垂线,垂足在
()
A、线段上 C、线段的延长线上
B、线段的端点 D、以上都有可能
四、课堂巩固练习
3、过点P分别画射线、直线、线段的垂线
解:如图所示
5.1.2 垂 线 (第1课时)
知识拓展
(1)垂直是相交线中一种特殊形式,当垂直时,这个公 共点即为垂足. (2)线段与线段、线段与射线、射线与射线、线段 与直线或射线与直线垂直,特指它们所在的直线互相垂 直. (3)根据两条直线互相垂直的定义可知:若两条直线 互相垂直,则所成的四个角都为直角;反之,若两条直线 相交所成的四个角中的任意一个角等于90°,则这两条 直线互相垂直.
【思考】
生活中有许多垂直的例子,你能举出一些例子吗?
例:如图所示,三条直线相交于点O.若
CO⊥AB,∠1=56°,则∠2等于 B
A.30° C.45° B.34° D.56°
(
)
〔解析〕∠1和∠2既不是对顶角也不是邻补角,这就需要根据给出的 ∠1的度数和相关位置进行思考.根据已知条件,把CO⊥AB转化为 ∠AOC=∠COB=90°是关键.发现∠AOD,∠DOB分别是∠2的邻补角 和对顶角后,问题即可解决.方法1:因为CO⊥AB,所以∠COB=90°,所 以∠DOB=90°-∠1=90°-56°=34°.所以∠2=∠DOB=34°(对顶角 相等).方法2:因为CO⊥AB,所以∠COB=90°,所以 ∠AOD=90°+∠1=90°+56°=146°.所以∠2=180°-146°=34°(邻 补角互补).
(3)画垂线时是实线,此时如需延长线段或反向延长射 线,要用虚线延长或反向延长.
课堂小结
1.垂线的概念: 当两条直线相交所成的四个角中,有一个角是直 角时,就说这两条直线互相垂直,其中一条直线 叫做另一条直线的垂线,它们的交点叫做垂足.
课堂小结
2.垂线的性质:
(1)在同一平面内,过一点有且只有一条直线与 已知直线垂直.
七年级数学· 下 新课标[人]
第五章
七年级数学4.5_第1课时_垂线
第1课时垂线1.理解垂线、垂直的概念;(重点、难点)2.掌握垂线的两条性质,并会运用.(重点、难点)一、情境导入如图是我们教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?二、合作探究探究点一:垂线【类型一】垂直与方程综合求角的度数如图,MO⊥NO,OG平分∠MOP,∠PON=3∠MOG,求∠GOP的度数.解析:由于∠PON=3∠MOG,若设∠MOG=x°,则∠PON=3x°.OG平分∠MOP可得∠POG=x°.又由于MO⊥NO,利用∠MON+∠MOG+∠GOP+∠PON=360°可列出关于x的方程,从而求得x的值,进而解决问题.解:设∠MOG=x°,则∠PON=3∠MOG=3x°.因为MO⊥NO,所以∠MON=90°.因为OG平分∠MOP,所以∠GOP=∠MOG=x°.因为∠MON+∠MOG+∠GOP+∠PON=360°,所以90+x+x+3x =360,解得x=54.所以∠GOP=54°.方法总结:当题目中出现形如“∠α=k∠β”,“∠α∶∠β=k∶1”这类等式的时候,常考虑设未知数,然后设法找出一个相等关系列出关于未知数的方程,从而解决问题.【类型二】利用垂线的概念判断直线垂直=∠COD,试判断OB和OD的位置关系,并说明理由.解析:由于OA⊥OC,根据垂直的定义,可知∠AOC=90°,即∠AOB+∠BOC=90°.又∵∠AOB=∠COD,则∠COD+∠BOC=90°,即∠BOD=90°,再根据垂直的定义,得出OB⊥OD.解:OB⊥OD.理由如下:因为OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.因为∠AOB=∠COD,所以∠COD+∠BOC=90°,所以∠BOD=90°,所以OB⊥OD.方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90°.探究点二:垂线的性质【类型一】利用垂线的性质判断两直线平行边上的任意一点,EF⊥AB于F,且∠1=∠2,那么BC与DG平行吗?请说明理由.解析:要说明BC∥DG,可说明∠2=∠BCD,而∠1=∠2,故只需说明∠1=∠BCD,这可由EF与CD都与AB垂直,从而得出EF与CD平行而得到.解:BC∥DG.理由如下:因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠1=∠BCD(两直线平行,同位角相等).又因为∠1=∠2(已知),所以∠2=∠BCD,所以BC∥DG(内错角相等,两直线平行).方法总结:要说明两直线平行,除可根据同位角、内错角、同旁内角判定外,还可由垂线的性质得到平行.【类型二】利用垂线的性质判断两直线垂直AB,∠1=∠2,试说明:CD⊥AB.解析:由DG⊥BC,AC⊥BC可得DG∥AC,再结合已知条件可得出EF∥DC,而EF⊥AB,从而有CD⊥AB.解:∵DG⊥BC,AC⊥BC,∴DG∥AC,∴∠2=∠3.∵∠1=∠2,∴∠1=∠3,∴EF∥DC.∵EF⊥AB,∴DC⊥AB.方法总结:判断两条直线垂直的方法有两种:①根据垂直的定义,说明相交所成四个角中有一个角为直角;②利用垂线的性质“在同一平面,如果一条直线垂直于两条平行线中的一条,那么这条直线垂直于另一条”.三、板书设计垂线⎩⎪⎨⎪⎧垂线的定义垂线的性质⎩⎪⎨⎪⎧在同一平面内,垂直于同一条直线的两条直线平行在同一平面内,如果一条直线垂直于两条平行线中的一条,那么这条直线垂直于另一条本节课学习了垂线的概念和垂线的性质,垂直是相交的一种特殊情况,要说明两条相交线的位置关系,一般都是垂直(如本节课的例2).垂线的两条性质中,不要遗漏条件“在同一平面内”,以保证定理的精确性.对于垂线的概念和性质,要让学生理解记忆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.垂直的表示:
a
用“⊥”和直线字母表示垂直
αb
O
例如、如图,a、b互相垂直, 垂足为O,则记为:
a⊥b或b⊥a,
若要强调垂足,则记为:a⊥b, 垂足为O.
3.垂直的书写形式:
如图,当直线AB与CD相交于O点, A
D
∠AOD=90°时,AB⊥CD,垂足为O。
书写形式:
O
∵∠AOD=90°(已知) ∴ AB⊥CD( 垂直的定义
∴ ∠EOD=∠EOB+∠BOD
=90°+55°=145°
(2)如图,直线AB、CD相交于点O,OE⊥AB,且
∠DOE=3∠COE,求∠AOD的度数.
E
C
A
O
B
D
例2 如图,直线AB、CD相交于点O,OE⊥AB于O,OB平
分∠ DOF,∠DOE=50°,求∠AOC、 ∠ EOF、 ∠
COF的度数.
垂直
。
解:
C A 1OB
2D E
∵∠1=35°,∠2=55°(已知)
∴ ∠AOE=180°-∠1-∠2 = 180°-35°-55° =90°
∴OE⊥AB (垂直的定义)
例2:如图 ,已知AB. CD相交于O, OE⊥CD 于O,∠AOC=36°,则∠BOE= D 。
(A)36°
(B) 64°
(C)144°
5.1.2垂线
活动1
观察: 两条直线相交形成4个角,若固定木条a,
旋转木条b,当b的位置发生变化时,a、b所成 的角也会随之变化,其中有一个特殊的位置: α=90° .
1.垂直定义:当两条直线相交所成的四个角中,有
一个角是直角时,这两条直线互相垂直,其中一条
直线叫另一条直线的垂线,它们的交点叫垂足。
)C
B
反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。
书写形式: ∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义 )
应用垂直的定义: ∠AOC=∠BOC=∠BOD=90°
例1、如图,已知直线AB、CD都经过O点,OE为射线,
若∠1=35° ∠2=55°,则OE与AB的位置关系是
E
解: ∵ AB⊥OE (已知)
D
∴ ∠EOB=90°(垂直的定义)
∵ ∠DOE= 50° (已知)
A
O
B
∴ ∠DOB=40°(互余的定义)
C
F
∴ ∠AOC= ∠DOB=40°(对顶角相等)
又∵OB平分∠DOF ∴ ∠BOF= ∠DOB=40°(角平分线定义)
∴ ∠EOF= ∠EOB+ ∠BOF=90°+40°=130°
(D) 54° D
A
O
B
C
E
活动2
(1)现有一条已知直线AB,分别过直线外一
点C和直线上一点D,画AB的垂线,你有几种一画放法?
C
二靠
三推
D 四划
A
B
(2)通过上述方法画出的垂线有几条? 从中你能发现什么结论?
在同一平面内,过一点有且只有一条直线与 已知直线垂直.
(1)如何画一条线段或一条射线的垂线?
∴∠COF=∠COD-∠DOF=180°-80°=100°
(邻补角定义)
活动5 归纳小结、布置作业
小结 1.垂线的定义; 2.在同一平面内,经过一点有且只有一条直线与 已知直线垂直;
作业: 习题5.1 第3、4、5、6、9、10、11、12 .
C
C
C
A
AA
B
BB
课堂练习 1.选择题
过点 P 向线段AB所在直线引垂线,正确的是( C).
A
B
C
D
例1 如图,直线AB、CD相交于点O,OE⊥AB,
∠1=55°,求∠EOD的度数.
CE
解: ∵ AB⊥OE (已知)
∴ ∠EOB=90°(垂直的定义)
1
A
Байду номын сангаас
O
B
∵∠BOD=∠1=55(对顶角相等)
D