2013秋8年级上册 第15章《分式》同步练习及答案(15.2)

合集下载

八年级数学上册15.2 分式的运算(有答案)

八年级数学上册15.2 分式的运算(有答案)

八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。

最简公式的定义:分子与分母没有公因式的分式。

分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。

注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。

八年级数学上册《第十五章 分式》同步练习题及答案(人教版)

八年级数学上册《第十五章 分式》同步练习题及答案(人教版)

八年级数学上册《第十五章分式》同步练习题及答案(人教版)姓名班级学号一、单选题1.已知ab =34,b−ab=()A.34B.−14C.14D.132.若分式x−2x+6的值是0,则x的值是()A.6B.−6C.2D.−23.把分式x 2x2+y2中的分子分母的x、y都同时扩大为原来的3倍,那么分式的值将是原分式值的()A.2倍B.4倍C.一半D.不变4.甲,乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同而行则b小时甲追上乙,那么甲的速度是乙的速度的()倍.A.a+bb B.ba+bC.b+ab−aD.b−ab+a5.下列计算正确的是( )A. =0 B. =C. = D. =6.分式mm+n ,−mn(m+n)2,nm−n的最简公分母是()A.(m+n)2(m﹣n)B.(m+n)3(m﹣n)C.(m+n)(m﹣n)D.(m2−n2)27.若分式x|x|−1无意义,则x的值是()A.0 B.1 C.-1 D.±18.对于分式x+a3x−1,当x=−a时,下列结论正确的是()A.分式无意义B.分式值为0C.当a≠−13时,分式的值为0 D.当a≠13时,分式的值为0二、填空题9.23x2(x−y)与12x−2y的公分母是.10.当x= 时,分式x2−9x−3的值为零.11.化简:2aba2b=.12.若2x﹣5y=0,且x≠0,则代数式6x+5y6x−5y的值是.三、解答题13.分式yx+1可以表示什么实际意义?14.约分:(1)a2−6a+9a2−9(2)3ax 3y−3x3y9xy2−9axy2.15.不改变分式的值,使分式的分子,分母中最高次项的系数是正数,并将分子分母按降幂排列:(1)b−11+2b−b2(2)a−a3+11−2a−a2.16.无论x取何实数,分式13x2−6x+m都有意义,求m的取值范围.17.若x:y:z=2:7:5,x﹣2y+3z=6,求x+yz2的值.18.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分到的药品让我们卖,可卖得7500元.”若设零售部所得的药品是a箱,则:(1)该药品的零售价是每箱多少元?(2)该药品的批发价是每箱多少元?19.一般情况下,一个分式通过适当的变形,可以化为整式与分式的和的形式,例如:①x+1x−1 = (x−1)+2x−1= x−1x−1 + 2x−1 =1+ 2x−1 ;②x 2x−2=x 2−4+4x−2=(x+2)(x−2)+4x−2=x+2+ 4x−2(1)试将分式 x−1x+2 化为一个整式与一个分式的和的形式; (2)如果分式 2x 2−1x−1的值为整数,求x 的整数值.参考答案1.C2.C3.D4.C5.D6.A7.D8.C9.6x2(x−y)10.-311.2a12.213.解:用y表示某班要发新作业本的数目,x表示该班级原有人数,则分式yx+1可以表示新转来一名同学后,每人能发新作业本的数目.14.(1)解:原式= a−3a+3(2)解:原式=﹣x 23y15.解:(1)b−11+2b−b2=−b+1b2−2b−1;( 2)a−a3+11−2a−a2=a3−a−1a2+2a−1.16.解:要使分式有意义,得3x2﹣6x+m≠0.△=(﹣6)2﹣3×4m<0解得m>3无论x取何实数,分式13x2−6x+m都有意义,m的取值范围是m>3.17.解:∵x:y:z=2:7:5∴设x=2k,y=7k,z=5k代入x﹣2y+3z=6得:2k﹣14k+15k=6解得:k=2∴x=4,y=14,z=10∴x+y z 2=4+14102=0.18.18.解:零售部所得到的药品是a 箱时,批发部所得到的药品是(300﹣a )箱.由题意,得(1)零售(300﹣a )箱药品,可得7500元,所以该药品的零售价是7500300−a 元. (2)批发a 箱药品,可得3500元,所以该药品的批发价是3500a 元.19.(1)解:原式= (x+2)−3x+2=1﹣ 3x+2(2)解:原式= 2x 2−2+1x−1=2(x+1)(x−1)+1x−1=2(x+1)+ 1x−1分式的值为整数,且x 为整数, x-1= ±1 x=2或0。

人教版-八年级数学上册《第十五章 分式》同步练习题及答案

人教版-八年级数学上册《第十五章 分式》同步练习题及答案

人教版-八年级数学上册《第十五章分式》同步练习题及答案学校班级姓名学号一、选择题:(本题共8小题,每小题5分,共40分.)1.要使分式有意义,则x的取值范围是()A.B.C.D.2.代数式的家中来了四位客人①;②;③;④,其中属于分式家族成员的有( )A.①②B.①③C.③④D.①②③④3.若把分式的x、y同时缩小12倍,则分式的值()A.扩大12倍B.缩小12倍C.不变D.缩小6倍4.若分式的值为0,则a的值是()A.2 B.-2 C.1 D.-15.对分式,与通分时,最简公分母是()A.B.C.D.6.化简分式,结果正确的是()A.B.C.D.4a7.下列分式中,最简分式是()A.B.C.D.8.从整式中任意选取两个分别作为分子和分母,则能构成分式的个数为()A.6个B.5个C.4个D.3个二、填空题:(本题共5小题,每小题3分,共15分.)9.分式的最简公分母是10.若分式的值为零,则x的值为.11.下列式子,,,中,是分式的有个12.化简:.13.不改变分式的值,把分子、分母中各项的系数都化为整数=三、解答题:(本题共5题,共45分)14.约分:(1)(2)15.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2) .16.已知a=2,b=5,求的值.17.已知y=,x取哪些值时:(1)y的值是正数;(2)y的值是负数;(3)y的值是零;(4)分式无意义.18.(1)不改变分式的值,使分式的分子与分母的各项的系数是整数. (2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数. (3)当x满足什么条件时,分式的值,①等于0?②小于0?参考答案:1.D 2.B 3.C 4.D 5.D 6.A 7.A 8.C9.12x3yz10.211.①③12.13.14.(1)解:(2)解:15.(1)解:(2)解:16.解:原式==当a=2,b=5时,原式= =﹣17.解:(1)当<x<1时,y为正数;(2)当x>1或x<时,y为负数;(3)当x=1时,y值为零;(4)当x=时,分式无意义.18.(1)解:原式=(2)解:原式=-(3)解:①由 =0,得解得x= .②由 <0,得2-3x<0,解得x>。

人教版八年级上册数学第十五章 分式含答案(附解析)

人教版八年级上册数学第十五章 分式含答案(附解析)

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、分式,,的最简公分母是()A.24B.24C.24D.242、甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天可完成,问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,则可列方程为()A. B.10+8+x=30 C. D.3、当x=1时,下列分式中值为0的是()A. B. C. D.4、纳米是非常小的长度单位,已知1纳米= 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是()A.10 2个B.10 4个C.10 5个D.10 8个5、方程的增根为()A.1B.1和-1C.-1D.06、是下列哪个分式方程的解()A. B. C. D.7、如果a2+2a-1=0,那么代数式的值是()A.-3B.-1C.1D.38、下列各式中,正确的是()A. B. C. D.9、化简:的结果是( )A. B. C. D.10、计算的结果是()A.0B.1C.-1D.x11、若,则的值是()A. B. C. D.12、已知,则满足为整数的所有整数的和是( ).A.-1B.0C.1D.213、若分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠-3D.x=314、化简的结果是()A.1B.C.D.-115、二次根式中x的取值范围是()A.x>3B.x≤3且x≠0C.x≤3D.x<3且x≠0二、填空题(共10题,共计30分)16、甲、乙两个工程队承包一项工程合作15天完成,若他们单独做,甲比乙少用3天,设甲单独做需x天完成,则所列方程式________.17、计算:________.18、使在实数范围内有意义,则实数x的取值范围是________.19、若分式的值为零,则x的值为________ .20、计算-2-4的结果是________.21、计算m÷n•= ;化简=________22、计算﹣的结果为________.23、方程﹣=3的解是________.24、化简x÷ 等于________。

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。

【最新】人教版八年级数学上册第15章 15.2《分式的运算》同步练习及(含答案)6.doc

【最新】人教版八年级数学上册第15章 15.2《分式的运算》同步练习及(含答案)6.doc

第15章——15.2《分式的运算》同步练习及(含答案)15.2.3 第1课时 整数指数幂一、选择题1.下列计算中,正确的是( )A .0a =1B .23-=-9C .5.6×210-=560D .21()5-=25 2.下列式子中与()2a -计算结果相同的是( )()()12224244. . . . A a B a a C a a D a a --÷---3.111()x y ---+=( ) A .x y = B .1x y + C .xy x y + D .x y xy+ 4.已知m a ,0≠是正整数,下列各式中,错误的是( ) A m m aa 1=- B m m a a )1(=- C m m a a -=- D 1)(--=m m a a 5.下列计算中,正确的是 ( )A .22112()2m n m m n n -----+=++B .212()m n m n --=C .339(2)8x x --=D .11(4)4x x --=6.在:①()110=-,②()111-=-,③22313aa =-, ④()()235x x x -=-÷-中,其中正确的式子有( )A 、1个B 、2个C 、3个D 、 4个7.将11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的结果是 ( ) A .0(2)-<11()6-<2(3)- B .11()6-<0(2)-<2(3)- C .2(3)-<0(2)-<11()6- D .0(2)-<2(3)-<11()6- 8.n 正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数二、填空题9.填空:=-25 ,=⎪⎭⎫ ⎝⎛--321 . 10.计算:3-a = ,21-⎪⎭⎫ ⎝⎛-a = . 11.()=-31322b a b a ,()=--2223x b a .12.计算(-3-2)2的结果是_________.13.计算2323()a b a b --÷= .14.将式子32213--yx b a 化为不含负整数指数的形式是 . 15.化简:))()((2211---+-+y x y x y x =______________.16.若63=-n x ,则=n x 6.17.已知:57,37==n m ,则=-n m 27________________.18.已知:9432278321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=____________. 三、解答题19.(2013曲靖)计算:12-+|﹣|+()0.20.计算 (1)()()22223y x yx -- (2)()()32121223---y x yz x(3)()()232212353z xy z y x --- (4)()()232232----n m n m21.已知2=x a ,求()()12233---++xx x x a a a a 的值.22.已知0)1(22=-++-b a b ,求32--b a 的值.23.拓展延伸【例题】阅读第(1)题的解题过程,再做第(2)题:(1)已知13x x -+=,求33x x -+的值.解:因为1222()29x x x x --+=++=所以227x x -+=所以332211()()()73318x x x x x x x x ----+=++-+=⨯-=;(2)已知13x x -+=,求55x x -+的值.15.2.3 整数指数幂 第1课时 整数指数幂一、选择题 1.D 2.D 3.C 4.C 5.D 6. B 7. A 8.B二、填空题 9.251、8- 10.31a 、2a 11.a b 68、464xa b 12.811 13.64b a 14.2323ax y b 15.441yx - 16.361 17.59 18.58 三、解答题 19.2 20.(1)102x y (2)2472zy x (3)848925y x z (4)244m n 21.()()()()[]()()[]()()34652222122331223312233=++=++=++---------x x x x x x x x a a a a a a a a 22.⎩⎨⎧=-+=-0102b a b 解得⎩⎨⎧=-=21b a 则 ()81213232=⨯-=----b a 23.()()()12337181223355=-⨯=+-++=+----x x x x x x x x15.3 分式方程第1课时 分式方程一、选择题 1.A 2.A 3.B 4.D 5.D 6. D 7. C 8.A 二、填空题9.2-=x 10.2=x 11.3=x 12.—3 13.5-=x 14.3=x 15.5 16.1- 17.1- 18.43+=+=n x n x 或三、解答题19.9=x 20.3=x21.把2=x 代入原分式方程得()5822-=+a a ,解得910-=a 22.根据题意可知321=--xx ,解得25=x 23.解原分式方程得k x 36-=,2,036,0><-<∴解得即原分式方程有负解,k x。

【最新】人教版八年级数学上册同步练习第15章分式复习题及答案解析.doc

【最新】人教版八年级数学上册同步练习第15章分式复习题及答案解析.doc

x﹣ 1)
5
∵原方程有增根, ∴最简公分母 x﹣ 1=0, 解得 x=1, 当 x=1 时, m=7,这是可能的,符合题意. 故选 A . 点评: 本题考查了分式方程的增根,关于增根问题可按如下步骤进行: ① 让最简公分母为 0 确定增根; ② 化分式方程为整式方程; ③ 把增根代入整式方程,检验是否符合题意.
点评: 此题考查了单项式乘单项式、合并同类项、负整数指数幂,解题的关键是熟练掌握运算法则,注意指数的 变化情况.
9.( 2013?温州)若分式 A . x=3
的值为 0,则 x 的值是(

B . x=0
C. x= ﹣ 3
考点: 分式的值为零的条件. 4387773 分析: 根据分式值为零的条件可得 x﹣ 3=0 ,且 x+4≠0,再解即可. 解答: 解:由题意得: x﹣ 3=0,且 x+4≠0,
点评: 此题考查了解分式方程,解分式方程的基本思想是 方程一定注意要验根.
“转化思想 ”,把分式方程转化为整式方程求解.解分式
14.( 2013?盐城)使分式
的值为零的条件是 x= ﹣1 .
考点: 分式的值为零的条件. 4387773 分析: 分式的值为零时,分子等于零,且分母不等于零. 解答: 解:由题意,得
7.( 2013?厦门)方程 A.3的解是()B2C. 1D.0
考点: 解分式方程. 4387773
专题: 计算题;压轴题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到
x 的值,经检验即可得到分式方程的解.
解答: 解:去分母得: 2x=3x ﹣ 3,
解得: x=3,
经检验 x=3 是分式方程的解.
故选 A
点评: 此题考查了解分式方程,解分式方程的基本思想是 方程一定注意要验根.

人教版八年级数学上册第十五章《分式》单元同步检测试题(含答案)

人教版八年级数学上册第十五章《分式》单元同步检测试题(含答案)

第十五章《分式》单元检测题一、选择题(共10小题,每小题3分,共30分) 1.下列各式,,,,,中,是分式的共有( )A.1个B.2个C.3个D.4个2.如果分式242--x x 的值等于0,那么( )A.2±=xB.2=xC.2-=xD.2≠x3.下列等式中不一定成立的是( )A 、 2x xy x y =B 、x y x y ππ=C 、xzyzx y = D 、()()2x x 2x y x y 22++= 4.计算a 1a 11a+--的结果为( ) A .﹣1B .1C .a 1a 1+- D .a 11a+-5.化简的结果是( ).A .B .aC .a -1D .6.化简·(x -3)的结果是( ).A .2B .C .D .7.分式除法计算:m 1m -÷2m 1m-的结果是( ) A .m B .1mC .m ﹣1D .1m 1-A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( ) A.m <-6 B.m >-6 C.m >-6且m≠-4 D.m≠-410.已知2x x -x+1=12,则2x +21x 的值为( ) A 、12 B 、14C 、7D 、4二、填空题(共6小题,每小题3分,共18分)11.当x ____________时,分式有意义.12.利用分式的基本性质填空:(1) (2)13.要使分式2x 93x 9-+的值为0,则x 可取___________14.(2014·山西)化简1x +3+6x 2-9的结果是________.15.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是________.16.数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(共8题,共72分)17.(9分)计算或化简:xx2121-+())0(,10 53≠=a axy xy a () 1422=-+a a(1)(-2016)0-2-2-⎝ ⎛⎭⎪⎫-12-3-(-3)2;(2)⎝ ⎛⎭⎪⎫1x 2-4+4x +2÷1x -2;(3)⎝ ⎛⎭⎪⎫a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2.18.(8分)解方程:(1)2x +1-1x =0; (2)x -2x +2-16x 2-4=1.19.(10分)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1+x 2-4x 2-4x +4÷x 2x -2,其中x =1;(2)⎝⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的值代入x 求值.20.(8分)以下是小明同学解方程1-x x -3=13-x -2的过程.解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步 解得x =4. ……………………………………第二步 检验:当x =4时,x -3=4-3=1≠0. ………第三步 所以,原分式方程的解为x =4. …………………第四步 (1)小明的解法从第______步开始出现错误; (2)写出解方程1-x x -3=13-x-2的正确过程.21.(10分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程的时间.22.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家的时间的2倍,那么小明家与图书馆之间的路程最多是多少米?23.(11分)观察下列方程的特征及其解的特点.①x +2x =-3的解为x 1=-1,x 2=-2;②x +6x =-5的解为x 1=-2,x 2=-3;③x +12x =-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程为____________,其解为____________; (2)根据这类方程的特征,写出第n 个方程为________________,其解为____________;(3)请利用(2)的结论,求关于x 的方程x +n 2+nx +3=-2(n +2)(n 为正整数)的解.参考答案一、选择题1. C2. C3. C4. B5. B6. B7.A8. B9. C 10. C 二、填空题11、21x 12、(1)26a 13. 3 14.1x -3 15.-32 16.2三、解答题(共8题,共72分)17.解:(1)原式=1-14+8-9=-14.(3分)(2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(6分)(3)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(9分)18.解:(1)方程两边同乘x (x +1),得2x -(x +1)=0,解得x =1.(3分)检验:当x =1时,x (x +1)≠0.所以原分式方程的解为x =1.(4分)(2)方程两边同乘(x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.(7分)检验:当x =-2时,(x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.(8分)19.解:(1)原式=⎝ ⎛⎭⎪⎫1+x +2x -2·x -2x 2=2x x -2·x -2x 2=2x .(3分)当x =1时,原式=2.(5分)(2)原式=⎝ ⎛⎭⎪⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1.(8分)∵x 从不大于4的正整数中选取,∴x =1,2,3,4.∵要使原式有意义,则x ≠±1,3,∴可取x =4,则原式=23.(10分)20.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以原分式方程的解为x =4.(8分)21.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2.由题意得3000x +50=3000x ·34,解得x =150.(5分)经检验,x =150是原分式方程的解.(6分)3000x =20(天),20×34=15(天).(9分)答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(10分)22.解:(1)设小明步行的速度是x 米/分.由题意得900x =9003x +10,解得x =60.(4分)经检验,x =60是原分式方程的解.(5分)答:小明步行的速度是60米/分.(6分) (2)设小明家与图书馆之间的路程是y 米.由(1)知小明骑自行车的速度为3×60=180(米/分),根据题意可得y 60≤900180×2,解得y ≤600.(9分)答:小明家与图书馆之间的路程最多是600米.(10分)23.解:(1)答案不唯一,如x +20x =-9 x 1=-4,x 2=-5(3分)(2)x +n 2+nx =-(2n +1) x 1=-n ,x 2=-n -1(6分)(3)∵x+n2+nx+3=-2(n+2),∴x+3+n2+nx+3=-2(n+2)+3,∴(x+3)+n2+nx+3=-(2n+1),∴x+3=-n或x+3=-n-1,即x1=-n-3,x2=-n-4.(10分)检验:当x=-n-3时,x+3=-n≠0,当x=-n-4时,x+3=-n-1≠0,∴原分式方程的解是x1=-n-3,x2=-n-4.(11分)。

人教版八年级数学上册第15章15.2《分式的运算》同步练习及(含答案)1.docx

人教版八年级数学上册第15章15.2《分式的运算》同步练习及(含答案)1.docx

初中数学试卷 桑水出品第15章——15.2《分式的运算》同步练习及(含答案)15.2.1 分式的乘除一、选择题1. x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( )克 A. a mx B. xam C. a x am + D. a x mx + 2. 桶中装有液状纯农药a 升,刚好一满桶,第一次倒出8升后用水加满,第二次又倒出混合药4升,则这4升混合药液中的含药量为( )升 A. a 32 B. a a )8(4- C.84-a D.2)8(4a a - 3 .大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖机的工作效率是小拖机的工作效率( )倍. A.b a B.m n C. bm an D. mnab 4.下列各式与x y x y-+相等的是( ) A .55x y x y -+++ B ..22x y x y-+ C .222()x y x y --(x ≠y ) D .2222x y x y -+ 5.如果把分式2x y x+中的x 和y 的值都扩大了3倍,那么分式的值( ) A .扩大3倍 B .扩大2倍 C .扩大6倍 D .不变6.下列公式中是最简分式的是( ) A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y-- 7.已知x 2-5x-1 997=0,则代数式32(2)(1)12x x x ---+-的值是( ) A .1999 B .2000 C .2001 D .20028.使代数式33x x +-÷24x x +-有意义的x 的值是( ) A .x ≠3且x ≠-2 B .x ≠3且x ≠4C .x ≠3且x ≠-3D .x ≠-2且x ≠3且x ≠4二、填空题9.-3xy ÷223y x的值为_________ 10.2234xy z·(-28z y )的值为_______11. 22ab cd ÷34ax cd -等于_______ 12.计算:(xy-x 2)·xy x y -=________. 13.(-3a b)÷6ab 的结果是( ) A .-8a 2 B .-2a b C .-218a b D .-212b14.将分式22x x x+化简得1x x +,则x 应满足的条件是________. 15.计算(1-11a -)(21a-1)的正确结果是_________ 16.若分式278||1x x x ---的值为0,则x 的值等于______ 17.若x 等于它的倒数,则263x x x ---÷2356x x x --+的值是_________ 18.计算:222242x y x xy y -++÷22x y x xy ++÷22x xy x y-+的值是________1 三、解答题19.已知1a b +=1a +1b ,求b a +a b 的值.20.已知a=-2,b=12,求代数(a-b-4ab b a -)·(a+b-4ab a b +)的值. 21.化简227101a a a a ++-+·32144a a a +++÷12a a ++; 22.225616x x x -+-·22544x x x ++-÷34x x --。

人教八年级数学上册第15章《分式的运算》同步练习及(含答案)3

人教八年级数学上册第15章《分式的运算》同步练习及(含答案)3

人教八年级数学上册第15章《分式的运算》同步练习及〖含答案〗315.2.2 第3课时 分式的加减一﹨选择题 1.已知x x 1-=3,则x x 232142+-的值为〖 〗 A . 1 B . C . D . 2.化简)121(1212-+÷+-+a a a a 的结果是〖 〗 A .11-a B .11+a C .112-a D . 112+a3.化简xyx x y y x -÷-)(的结果是〖 〗 A .y 1 B .y y x + C .yy x - D .y 4.化简)11()12(xx x x -÷--的结果是〖 〗 A .x 1 B .1-x C .x x 1- D .1-x x5.计算ab ba b a b a b a b a 2)(2222-⨯+---+的结果是〖 〗A .b a -1 B .b a +1C .b a -D .b a + 6.计算)111()111(2-+÷-+x x 的结果为〖 〗 A . 1 B .1+x C .x x 1+ D .11-x7.已知:1a =x +1〖x ≠0且x ≠﹣1〗,2a =1÷〖1﹣1a 〗,3a =1÷〖1﹣2a 〗,…,n a =1÷〖1﹣1-n a 〗,则2014a 等于〖 〗 A . x B . x +1 C .x 1-D .1+x x8.某商品因季节原因提价25%销售,为庆祝元旦,特让利销售,使销售价为原价的85%,则现应降价 〖 〗A . 20%B . 28%C . 32%D . 36% 二.填空题 9.化简:4)222(2-÷--+m mm m m m=___________. 10.若222222M xy y x y x y x y x y--=+--+ ,则M =___________.11.若代数式1324x x x x ++÷++有意义,则x 的取值范围是___________. 12.计算:8241681622+-÷++-a a a a a =___________.13.化简x x x x x x x 21121222++-•+--的结果是___________. 14.已知032≠=b a ,则代数式)2(42522b a ba b a -•--=___________. 15.化简:)14()22441(22-÷-+-+--a aa a a a a =___________.16.化简:22229631y xy x y x y x y x +--÷-+-=___________. 17.若,5321=++z y x ,7123=++z y x 则z y x 111++=___________. 18.已知0=++z y x ,则=-++-++-+222222222111z y x y x z x z y ___________. 三﹨解答题19.计算:(1)2112222+++--+÷+x x x x x x x x ;(2))11112()1(2+--+÷-+x x x x x .20.已知实数a ﹨b 满足式子|a ﹣2|+〖b ﹣〗2=0,求)2(2a b ab a a b a --÷-的值.21.先化简,再求值:444)212(2+--÷---+x x x x x x x ,其中x 是不等式3x +7>1的负整数解.22.先化简121)1(12222+--++÷-+a a a a a a ,然后a 在﹣1﹨1﹨2三个数中任选一个合适的数代入求值.23.A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为〖a ﹣1〗米的正方形,两块试验田的玉米都收获了500千克. 〖1〗哪种玉米的单位面积产量高?〖2〗高的单位面积产量是低的单位面积产量的多少倍?第3课时 分式的混合运算一.选择题1.D2.A3.B4.B5.B6.C7.B8.C 二﹨填空题9.6-m 10.2x 11.432-≠-≠-≠x x x 且且 12.-2 13.x 314.21 15.2)2(1-a 16.y x y -2 17.3 18.0. 三、解答题19.解:〖1〗原式=21)1)(2()1)(1()1(+++-+-+⨯+x x x x x x x x x=12121=++++x x x . 〖2〗原式=)11112()1(2+--+÷-+x x x x x=)1)(1(11)1(21223-++-++-÷-+-x x x x x x x x x=232)1)(1()1)(1(x x x x x x -+•-+=2x . 20.解:原式=,ab ab a a b a 222+-÷- =2)(b a a a b a -•-, =ba -1, ∵|a ﹣2|+〖b ﹣〗2=0, ∴a ﹣2=0,b ﹣=0, 解得a =2,b =,所以,原式==2+.21.原式=[)2()1()2()2)(2(-----+x x x x x x x x 〗×4)2(2--x x ,=4)2()2(4222--⨯-+--x x x x x x x , =4)2()2(42--⨯--x x x x x , =xx 2-, 73+x >1, x 3>﹣6, x >﹣2,∵x 是不等式73+x >1的负整数解, ∴x =﹣1把x =﹣1代入xx 2-中得:=3.22.解:原式=11111)1(2-+++⨯-+a a a a a =131112-+=-++-a a a a a , 当a =2时,原式==5.23.解:〖1〗A 玉米试验田面积是)1(2-a 米2,单位面积产量是15002-a 千克/米2; B 玉米试验田面积是2)1(-a 米2,单位面积产量是21500)(-a 千克/米2; ∵)1(2-a ﹣2)1(-a =2〖a ﹣1〗且a ﹣1>0, ∴0<2)1(-a <)1(2-a∴15002-a <21500)(-a ∴B 玉米的单位面积产量高;〖2〗21500)(-a ÷15002-a=21500)(-a ×50012-a =21)1)(1()(--+a a a=11-+a a . ∴高的单位面积产量是低的单位面积产量的11-+a a 倍.。

八年级数学上册《第十五章-分式》同步练习题含答案(人教版)

八年级数学上册《第十五章-分式》同步练习题含答案(人教版)

八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。

人教版八年级数学上《第15章分式》单元测试含答案解析

人教版八年级数学上《第15章分式》单元测试含答案解析

《第15章分式》一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣3.下列分式是最简分式的是()A.B.C.D.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=06.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1098.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1二、填空题11.若分式的值为零,则x=______.当x=______时,分式的值为0.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是______m.13.计算: =______.14.,,的最简公分母为______.15.已知3m=4n≠0,则=______.16.若解分式方程产生增根,则m=______.17.当x=______时,分式无意义;当x______时,分式有意义.18.将下列分式约分:(1)=______;(2)=______;(3)=______.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为______千米/时.20.要使分式有意义,则x应满足的条件是______.三、解答题21.计算(1)(2)(3)1﹣(4).22.解方程(1)(2)(3)(4).23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.《第15章分式》参考答案与试题解析一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】判断分式的依据是分式的定义,主要是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分式不含等号.【解答】解:,, x+y,的分母中均不含有字母,因此它们是整式,而不是分式.含有等号,不是分式.,﹣,分母中含有字母,因此是分式.故选C.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A 叫做分式的分子,B叫做分式的分母.注意分式不含等号,也不含不等号.2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,注意分式的分子分母都乘或都除以同一个整式(0除外),不能遗漏.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据已知得出=,求出后判断即可.【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选A.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.【考点】负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、合并同类项法则结合负整数指数幂的计算公式可得答案.【解答】解:A、2÷2﹣1=4,故此选项错误;B、2x﹣3÷4x﹣4=,故此选项错误;C、(﹣2x﹣2)﹣3=﹣x6,故此选项错误;D、3x﹣2+4x﹣2=,故此选项正确;故选:D.【点评】本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时间=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是: =25.故选B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1【考点】解分式方程.【专题】方程思想.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),x2﹣x=x2﹣2x﹣3,解得x=﹣3.检验:把x=﹣3代入(x﹣3)(x﹣1)=24≠0.∴原方程的解为:x=﹣3.故选B.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二、填空题11.若分式的值为零,则x= ﹣3 .当x= ﹣3 时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣3=0且x﹣3≠0,解得x=﹣3.由题意可得x2﹣9=0且x﹣3≠0,解得x=﹣3.故答案为:﹣3;﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算: = .【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15.已知3m=4n≠0,则= .【考点】分式的化简求值.【分析】首先化简分式,再进一步用n表示m,代入求得数值即可.【解答】解:∵3m=4n≠0,∴,∴原式======.故答案为:.【点评】此题考查分式的化简求值,注意先化简,再代入求值.16.若解分式方程产生增根,则m= ﹣5 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.【点评】此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.当x= 1 时,分式无意义;当x ≠±3 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解;根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1=0,解得x=1;x2﹣9≠0,解得x≠±3.故答案为:1;≠±3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.将下列分式约分:(1)= ;(2)= ;(3)= 1 .【考点】约分.【分析】根据约分的定义,把分子分母同时约去它们的公因式,即可得出答案.【解答】解:(1)=;(2)=﹣;(3)==1;故答案为:,﹣,1.【点评】此题主要考查了分式的约分,关键是正确的找出分子分母的公因式.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为40 千米/时.【考点】分式方程的应用.【专题】行程问题.【分析】设该冲锋舟在静水中的最大航速为x千米/时.等量关系:洪水顺流以最大速度航行2千米所用时间与以最大速度逆流航行1.2千米所用时间相等,根据等量关系列式.【解答】解:设该冲锋舟在静水中的最大航速为x千米/时.根据题意,得,即2(x﹣10)=1.2(x+10),解得x=40.经检验,x=40是原方程的根.所以该冲锋舟在静水中的最大航速为40千米/时.故答案为:40.【点评】此题中用到的公式有:路程=速度×时间,顺流速=静水速+水流速,逆流速=静水速﹣水流速.20.要使分式有意义,则x应满足的条件是x≠﹣1,x≠2 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,(x+1)(x﹣2)≠0,解得x≠﹣1,x≠2.故答案为:x≠﹣1,x≠2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题21.计算(1)(2)(3)1﹣(4).【考点】分式的混合运算.【专题】计算题.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(3)原式第二项利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式==;(2)原式=÷=•=;(3)原式=1﹣•=1﹣==﹣;(4)原式=﹣÷=﹣•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)(2)(3)(4).【考点】解分式方程.【专题】计算题.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;(3)去分母得:x(x+2)+2=x2﹣4,去括号得:x2+2x+2=x2﹣4,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(4)去分母得:7(x﹣1)+x+1=6x,去括号得:7x﹣7+x+1=6x,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=﹣3与x=3代入进行计算即可.【解答】解:原式=(+)•(x+2)(x﹣2)=•(x+2)(x﹣2)=x2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【考点】分式方程的应用.【专题】应用题.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.【考点】分式方程的应用.【分析】用到的关系式为:路程=速度×时间.由题意可知:加速后用的时间+40分钟+1小时=原计划用的时间.注意加速后行驶的路程为180千米﹣前一小时按原计划行驶的路程.【解答】解:设前一个小时的平均行驶速度为x千米/时.依题意得:1++=,3x+2(180﹣x)+2x=3×180,3x+360﹣2x+2x=540,3x=180,x=60.经检验:x=60是分式方程的解.答:前一个小时的平均行驶速度为60千米/时.【点评】本题考查了列分式方程解应用题,与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【考点】分式方程的应用.【专题】方案型.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。

初中数学 人教版八年级上册15章 分式练习题(含答案)

初中数学 人教版八年级上册15章 分式练习题(含答案)

人教版八上第15章分式练习题(含答案)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

人教版八年级数学上册第15章15.1《分式》同步练习及(含答案)2

人教版八年级数学上册第15章15.1《分式》同步练习及(含答案)2

初中数学试卷灿若寒星整理制作第15章——15.1《分式》同步练习及(含答案)15.1.2分式的基本性质一、选择题1.不改变分式的值,使分式115101139x yx y-+的各项系数化为整数,分子、分母应乘以(• )A.10 B.9 C.45 D.902.下列等式:①()a bc--=-a bc-;②x yx-+-=x yx-;③a bc-+=-a bc+;④m nm--=-m nm-中,成立的是()A.①② B.③④ C.①③ D.②④3.不改变分式2323523x xx x-+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A.2332523x xx x+++-B.2332523x xx x-++-C.2332523x xx x+--+D.2332523x xx x---+4.下列各式中,可能取值为零的是()A.2211mm+-B.211mm-+C.211mm+-D.211mm++5.根据分式的基本性质,分式aa b--可变形为()A.aa b--B.aa b+C.-aa b-D.aa b+6.下列各式中,正确的是()A.x yx y-+--=x yx y-+; B.x yx y-+-=x yx y---; C.x yx y-+--=x yx y+-; D.x yx y-+-=x yx y-+7.下列各式中,正确的是()A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 8.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零;D .若a ≠13时,分式的值为零二、填空题9.当x_______时,分式2212x x x -+-的值为零. 10.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有__________________11.若a=23,则2223712a a a a ---+的值等于_______. 12.计算222a ab a b+-=_________. 13.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 14. 有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的是____________. 15. 公式22(1)x x --,323(1)x x --,51x -的最简公分母为____________. 16. 使分式||1x x -无意义,x 的取值是____________. 三、解答题17.约分:(1)22699x x x ++-; (2)2232m m m m-+-.18.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.19.已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.20.已知x 2+3x+1=0,求x 2+21x 的值.21.已知x+1x =3,求2421x x x ++的值.15.1.2分式的基本性质一、选择题 1.D 2.A 3.D 4.B 5.C 6.A 7.D 8.C二、填空题9.-110. 434y x a +,22x xy y x y-++,2222a ab ab b +- 11.-1212.a a b - 13.(x-1)2,x ≠114.①③15. (x-1)316. .±1三、解答题17.(1)33x x +- (2)2m m- 18.(1)22318acx a b c ,22218by a b c(2)22(1)(1)(1)a a a -+-,26(1)(1)(1)a a a ++- 19.31220.721.18。

【最新】人教版八年级数学上册 第15章《分式》同步练习及答案(15.3).doc

【最新】人教版八年级数学上册 第15章《分式》同步练习及答案(15.3).doc

第15章《分 式》同步练习(§15.3 分式方程)班级 学号 姓名 得分一、选择题1.方程132+=x x 的解为( ). (A)2(B)1 (C)-2 (D)-1 2.解分式方程12112-=-x x ,可得结果( ). (A)x =1(B)x =-1 (C)x =3 (D)无解 3.要使54--x x 的值和xx --424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21 (D)1 4.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2 (C)310x y -= (D)y =-7x -25.若关于x 的方程x k x --=-1113有增根,则k 的值为( ). (A)3(B)1 (C)0 (D)-1 6.若关于x 的方程323-=--x m x x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54b a +小时 (C))(54b a ab +小时 (D)b a ab +小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ). (A)c a 2(B)2a c (C)a c 2 (D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b x a 的解为______.11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a 的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为 v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.三、解方程15..32121=-+--xx x 16.⋅+=+--1211422x x x x x17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总额的....13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a 12.x =1. 13.a <1且a ≠0. 14.20+v s 小时. 15.无解. 16.⋅-=21x 17.无解. 18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时. 182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时.20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯; (2)冰箱、电视机分别购买20台、10台.。

8年级上册 第15章《分式》同步练习及答案 改好

8年级上册 第15章《分式》同步练习及答案       改好

初中数学同步练习八年级第15章《分 式》同步练习(§15.1 分式)班级 学号 姓名 得分一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)ba bx ax = (D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+- (B)y x yx y x y x ---=--+- (C)yx yx y x y x -+=--+- (D)yx yx y x y x ++-=--+- 5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______.10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______.11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(222;(2)xxx x 2122)(2--=-;(3)a b b b a-=-+)(11; (4))(22xyxy =.三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b --.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22;(2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.参考答案1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1. 11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bc a a bc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b13.(1);2152510+-x x (2)⋅-+b a ba 6491214.(1);22xy yx -- (2)⋅-+b a b a 2 15.化简原式后为1,结果与x 的取值无关. 16.⋅53 17.x =0或2或3或-1. 18.⋅23第15章《分 式》同步练习(§15.2 分式的运算)班级 学号 姓名 得分一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1(C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ). (A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acb c b a b 2=+ (C)aa c a c 11=+- (D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a 2-(B)a4(C)b a b --2(D)ab-8.化简22)11(yx xyy x -⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______.三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2.20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?参考答案1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y 11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba 16.⋅+y x x 22提示:分步通分. 17.2x .18.选择一:yx y x N M -+=+,当x ∶y =5∶2时,原式37=选择二:yx x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高; (2)11-+a a 倍.第15章《分 式》同步练习(§15.3 分式方程)班级 学号 姓名 得分一、选择题 1.方程132+=x x 的解为( ). (A)2 (B)1(C)-2(D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1(C)x =3(D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2(C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54b a +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2ca 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b x a 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a 的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.三、解方程15..32121=-+--xx x 16.⋅+=+--1211422x x x x x17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的..13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a 12.x =1. 13.a <1且a ≠0. 14.20+v s 小时. 15.无解. 16.⋅-=21x 17.无解. 18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时. 182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时.20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯; (2)冰箱、电视机分别购买20台、10台.。

8年级上册 第15章《分式》同步练习及答案(15.2)

8年级上册 第15章《分式》同步练习及答案(15.2)

第15章《分 式》同步练习(§15.2 分式的运算)班级 学号 姓名 得分一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1(C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ).(A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acbc b a b 2=+ (C)aa c a c 11=+- (D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a 2-(B)a4(C)ba b --2(D)ab-8.化简22)11(yx xy y x -⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______.三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2.20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?参考答案1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y 11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高;(2)11-+a a 倍.。

人教八年级数学上册第15章《分式的运算》同步练习及(含答案)5

人教八年级数学上册第15章《分式的运算》同步练习及(含答案)5

人教八年级数学上册第15章《分式的运算》同步练习及〖含答案〗515.2.2第2课时 分式的加减一﹨选择题1.分式)1(111+++a a a 的计算结果是〖 〗 A .11+a B .1+a a C .a 1 D .aa 1+ 2.下列计算正确的是〖 〗 A .)(818181y x y x +=+ B .xzy z y x y 2=+ C .y y x y x 21212=++ D .011=-+-x y y x 3.已知a ,b 为实数,且ab =1,a ≠1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是〖 〗A .M >NB .M=NC .M <ND .无法确定4.化简abb a a b b a 22+--的结果是〖 〗 A .0 B .-b a 2 C .-a b 2 D .ab 2 5.若1111x y y x=+=+,,则y 等于〖 〗 A.1x -B .1x +C .x - D.x6.若x > y > 0,则11y y x x+-+的值为〖 〗 A.正数 B.负数 C.零 D.无法确定 7.已知公式21111R R R +=〖R 1≠R 2〗,则表示R 1的公式是〖 〗 A .R 1=22RR R R - B .R 1=22R R RR - C .R 1=221)(R R R R + D .R 1=R R RR -22 8.甲﹨乙两人3次都同时到某个体米店买米,甲每次买m 〖m 为正整数〗千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元﹨2.2元﹨2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是〖 〗A .甲比乙便宜B .乙比甲便宜C .甲与乙相同D .由m 的值确定二﹨填空题9.分式225a b c ﹨2710c a b ﹨252b ac -的最简公分母是 . 10.计算:329122---m m = . 11.化简11-+x x 的结果是 . 12.计算:211+-x x = . 13.计算22122x x x -=-- . 14.若ab =2,1-=+b a ,则b a 11+的值为 . 15.若113x y -=,则232x xy y x xy y+---= . 16.若nm n m +=+711,则n m m n +的值为 . 17.如果a a 1+=3,则221aa += . 18.观察下列各式:)311(21311-=⨯,)51-31(21531=⨯,)71-51(21751=⨯,…,根据观察计算:=+⨯-++⨯+⨯+⨯)12()12(1751531311n n 〖n 为正整数〗. 三﹨解答题19.计算:〖1〗1112-+-a a . 〖2〗1211112--++-a a a a20.当a =,b=2时,求代数式222222ba ab b b ab a b a ---+++的值.21.已知2-2x =0,求代数式11)1(222++--x x x x 的值.22.已知两个分式:A=442-x ,B=x x -++2121,其中x ≠±2.下面有三个结论: ①A=B ;②A ﹨B 互为倒数;③A ﹨B 互为相反数.请问哪个正确?为什么?23.描述证明:小明在研究数学问题时发现了一个有趣的现象:〖1〗请你用数学表达式补充完整小明发现的这个有趣的现象;〖2〗请你证明小明发现的这个有趣现象.第2课时 分式的加减一.选择题 1.C 2.D 3.B 4.C 5.D 6.A 7.D 8.B二﹨填空题9.22210a b c 10.32-+m 11.11-+x 12.)2(2+x x 13.1x - 14.21- 15.43 16.5 17.7 18.12+n n . 三、解答题19.解:〖1〗原式=11111)12++-+-++a a a a a a ( =1)1(1)12++--+a a a a ( =11123+---+a a a a =1223+--+a a a a . 〖2〗 解:原式=)1)(1(211+---++a a a a a =)((1)10+-a a =0.20. 解:原式=))(()()(2b a b a b a b b a b a -+-+++ =ba b b a b b a ++=+++11, 当a=3,b=2时,原式=2321++=3〖2﹣3〗=6﹣33.21. 解:原式=1)1(1)1(22+++--x x x x x )( =1112+++-x x x x =112+-+x x x ; ∵22-x =0,∴2x =2;∴原式=112+-+x x =1. 22.解:∵ B=444442221212121222--=--=----=--+=-++x x x x x x x x x , 又∵A=442-x , ∴A ﹨B 互为相反数,③正确.23. 解:〖1〗如果ab ab b a =++2,那么ab b a =+; 〖2〗证明:∵ab ab b a =++2, ∴ab abab b a =++222,〖3分〗 ∴2222)(ab ab b a =++,∴22)()(ab b a =+; ∴ab b a =+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章《分 式》
同步练习
(§15.2 分式的运算)
班级 学号 姓名 得分
一、选择题
1.下列各式计算结果是分式的是( ).
(A)b a m n ÷
(B)n m m n 23.
(C)x
x 53÷
(D)3
223473y x y x ÷
2.下列计算中正确的是( ).
(A)(-1)0=-1 (B)(-1)-
1=1
(C)3
3
21
2a
a
=
-
(D)47
31)()(a
a a =
-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m
(B)m n
n m =⋅
÷1
(C)
11
=⋅÷m m m
(D)n ÷m ·m =n
4.计算5
4)()(a
b a a b a -⋅-的结果是( ). (A)-1
(B)1
(C)
a
1
(D)b
a a
--
5.下列分式中,最简分式是( ).
(A)2
1521y xy
(B)y x y x +-2
2
(C)y
x y xy x -+-.222
(D)y x y x -+22
6.下列运算中,计算正确的是( ). (A)
)
(21
2121b a b a +=
+ (B)
ac
b c b a b 2=+ (C)
a
a c a c 11=+- (D)
01
1=-+-a
b b α 7.a
b a b a -++2
的结果是( ).
(A)a 2-
(B)a
4
(C)
b a b --2
(D)
a
b
-
8.化简2
2
)11(y
x xy
y x -⋅-
的结果是( ). (A)
y x +1
(B)y
x +-
1
(C)x -y (D)y -x
二、填空题
9.2
232)()(y
x y x -÷=______.
10.2
32])[(x y -=______.
11.a 、b 为实数,且ab =1,设1
1
11,11++
+=+++=
b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.
a
a a -+-21
422
=______. 13.若x <0,则
|
3|1
||31---x x =______.
14.若ab =2,a +b =3,则b
a 1
1+=______.
三、解答题
15.计算:)()()(4
32
b a b
a b
a -÷-⋅-.
16.计算:⋅-+-++2
22244242x y y
x y x y y x
17.计算:⋅-÷+--+1
1
)1211(2
2x x x x
18.已知222
2222y x y x N y
x xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:
M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.
19.先化简,再求值:1
112
+---x x
x x ,其中x =2.
20.已知x 2
-2=0,求代数式11
)1(2
22++--x x x x 的值.
21.等式
⋅-++=-++2
36982
x B
x A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.
22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验
田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?
(2)高的单位面积产量是低的单位面积产量的多少倍?
参考答案
1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .
9.x 4
y . 10.⋅612x y 11.=. 12.
⋅+21a 13.⋅-922x x 14.⋅2
3
15.⋅6b
a 16.
⋅+y x x 22
提示:分步通分. 17.2x .
18.选择一:y
x y x N M -+=
+,当x ∶y =5∶2时,原式37
=
选择二:y
x x y N M +-=
-,当x ∶y =5∶2时,原式⋅-=73
选择三:y x y
x M N +-=
-,当x ∶y =5∶2时,原式7
3=. 注:只写一种即可. 19.化简得
1)
1(+--x x ,把x =2代入得3
1-.
20.原式1
1
2+-+=x x x
∵x 2-2=0,∴x 2=2,∴原式1
1
2+-+=x x ,∴原式=1
21.A =3,B =5.
22.(1)A 面积(a 2-1)米2,单位产量
1
500
2
-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2
,2
2)1(5001500-<
-a a ,B 玉米的单位面积产量高; (2)
1
1
-+a a 倍.。

相关文档
最新文档