江苏省苏州市2018-2019学年七年级数学上册期中考试题1

合集下载

2018-2019学年江苏海安紫石中学七年级(上)期中数学试卷含答案解析

2018-2019学年江苏海安紫石中学七年级(上)期中数学试卷含答案解析

2018-2019学年江苏海安紫石中学七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.若存入2500元记做“+2500”,则支出3000元记做()A.﹣2500B.﹣3000C.+2500D.+30002.地球的表面积约为511000000km2,511000000用科学记数法表示正确的是()A.0.511×109B.5.11×108C.51.1×107D.511×1063.单项式πr2h的系数和次数分别是()A.π,1B.π,2C.π,3D.π,44.已知月球表面的最高温度是127℃,最低温度是﹣183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃5.如图所示,数轴上的点P、Q分别表示有理数()A.﹣,B.,C.﹣,﹣D.,﹣6.汛期的某一天,某水库上午8时的水位是45m,随后水位以每小时0.6m的速度上涨,中午12时开始开闸泄洪,之后水位以每小时0.3m的速度下降,则当天下午6时,该水库的水位是()A.45.4m B.45.6m C.45.8m D.46m7.计算(﹣8)×(﹣2)÷(﹣)的结果为()A.16B.﹣16C.32D.﹣328.一辆汽车行驶akm后,又以vkm/h的速度行驶了th,则这辆汽车行驶的全部路程是()km.A.vt B.a+vt C.a﹣vt D.2a﹣vt9.下列各组数的大小关系正确的是()A.﹣<﹣B.﹣>﹣C.<﹣1000D.﹣3.5>﹣3.610.某种濒危动物的数量每年以10%的速度减少,n年后该动物数量p与现有数量m之间的关系是p=m(1﹣10%)n,已知该动物现有数量为8000只,则3年后该动物还有()A.5832B.5823C.4000D.5000二、填空题(每小题3分,共15分)11.已知|a|=,则a的值为12.已知x=5,y=3,则的值为13.7筐西红柿,每筐以12kg为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg):﹣1,+1.5,2,﹣0.5,﹣1.5,1.5,1.则这7筐西红柿的总质量为.14.已知A=x2+3y2﹣5xy,B=2xy+2x2﹣y2,则A﹣3B的值为.15.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降约6℃.已知甲地现在地面气温为21℃,则甲地上空9km处的气温大约是.三、解答题(共55分)16.(5分)计算:(﹣34)÷×+(﹣16)17.(5分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g,则这批样品的总质量是多少?18.(7分)已知﹣0.5m x n3与5m4n y是同类项,求(﹣5x2y﹣4y3﹣2x2y+3x3)﹣(2x3﹣5x2y ﹣3y3﹣2x2y)的值.19.(7分)某体育用品店用400元购进了8套运动服,准备以一定价格出售如果该店卖出每套运动服的价格以60元为标准,超出部分记做正数,不足部分记做负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣1,﹣2,0,2.则该店卖出这8套运动服后是赢利还是亏损?赢利(亏损)多少?20.(7分)在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.(8分)据有关资料统计,两个城市之间每天的电话通话次数T与这两个城市的人口数x,y(单位:万人)以及两城市间的距离l(单位:km)之间有下列关系式:T=(k为常数).已知A,B,C三个城市的人口数及它们之间的距离如图所示.如果A,B两个城市间每天的电话通话次数为n,求B,C两个城市间每天的电话通话次数(用含n的代数式表示)22.(8分)燕尾槽的截面如图所示.(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积.23.(8分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km 为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,﹣2,+8,﹣7,+2.5,﹣4,+5,﹣3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程;(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升8.04元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用.2018-2019学年江苏海安紫石中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若存入2500元记做“+2500”,则支出3000元记做()A.﹣2500B.﹣3000C.+2500D.+3000解:∵存入2500元记做“+2500”,∴支出3000元记做“﹣3000”,故选:B.2.地球的表面积约为511000000km2,511000000用科学记数法表示正确的是()A.0.511×109B.5.11×108C.51.1×107D.511×106解:511 000 000=5.11×108,故选:B.3.单项式πr2h的系数和次数分别是()A.π,1B.π,2C.π,3D.π,4解:单项式πr2h的系数和次数分别是,3;故选:C.4.已知月球表面的最高温度是127℃,最低温度是﹣183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃解:∵月球表面的最高温度是127℃,最低温度是﹣183℃,∴月球表面的温差是:127﹣(﹣183)=310(℃).故选:D.5.如图所示,数轴上的点P、Q分别表示有理数()A.﹣,B.,C.﹣,﹣D.,﹣解:数轴上的点P、Q分别表示有理数:﹣,,故选:A.6.汛期的某一天,某水库上午8时的水位是45m,随后水位以每小时0.6m的速度上涨,中午12时开始开闸泄洪,之后水位以每小时0.3m的速度下降,则当天下午6时,该水库的水位是()A.45.4m B.45.6m C.45.8m D.46m解:45+(12﹣8)×0.6+6×(﹣0.3)=45+4×0.6+(﹣1.8)=45+2.4+(﹣1.8)=45.6m故选:B.7.计算(﹣8)×(﹣2)÷(﹣)的结果为()A.16B.﹣16C.32D.﹣32解:原式=﹣8×2×2=﹣32,故选:D.8.一辆汽车行驶akm后,又以vkm/h的速度行驶了th,则这辆汽车行驶的全部路程是()km.A.vt B.a+vt C.a﹣vt D.2a﹣vt解:根据题意知这辆汽车行驶的全部路程是(a+vt)km,故选:B.9.下列各组数的大小关系正确的是()A.﹣<﹣B.﹣>﹣C.<﹣1000D.﹣3.5>﹣3.6解:A、﹣,错误;B、﹣,错误;C、,错误;D、﹣3.5>﹣3.6,正确;故选:D.10.某种濒危动物的数量每年以10%的速度减少,n年后该动物数量p与现有数量m之间的关系是p=m(1﹣10%)n,已知该动物现有数量为8000只,则3年后该动物还有()A.5832B.5823C.4000D.5000解:当m=8000,n=3时,p=m(1﹣10%)n=8000×(1﹣10%)3=8000×0.729=5832.故选:A.二、填空题(每小题3分,共15分)11.已知|a|=,则a的值为±解:由|a|=,可得a的值=,故答案为:.12.已知x=5,y=3,则的值为解:当x=5,y=3时,==;故答案为:.13.7筐西红柿,每筐以12kg为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg):﹣1,+1.5,2,﹣0.5,﹣1.5,1.5,1.则这7筐西红柿的总质量为87kg.解:﹣1+1.5+2﹣0.5﹣1.5+1.5+1=3(kg),3+12×7=87(kg).即这7筐西红柿的总质量为87kg.故答案为:87kg.14.已知A=x2+3y2﹣5xy,B=2xy+2x2﹣y2,则A﹣3B的值为﹣5x2+6y2﹣11xy.解:A﹣3B=(x2+3y2﹣5xy)﹣3(2xy+2x2﹣y2)=x2+3y2﹣5xy﹣6xy﹣6x2+3y2=﹣5x2+6y2﹣11xy.故答案为:﹣5x2+6y2﹣11xy15.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降约6℃.已知甲地现在地面气温为21℃,则甲地上空9km处的气温大约是﹣33℃.解:由题意可得,甲地上空9km处的气温大约是:21+(﹣6)×9=21+(﹣54)=﹣33(℃),故答案为:﹣33℃.三、解答题(共55分)16.(5分)计算:(﹣34)÷×+(﹣16)解:原式=﹣81××﹣16=﹣16﹣16=﹣32.17.(5分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g,则这批样品的总质量是多少?解:依题意,得﹣3×1﹣2×4+1×4+1.5×5+2.5×3=8g,450×1+4+3+4+5+3=9000g,9000+8=9008g,答:这批样品的总质量是9008 g.18.(7分)已知﹣0.5m x n3与5m4n y是同类项,求(﹣5x2y﹣4y3﹣2x2y+3x3)﹣(2x3﹣5x2y ﹣3y3﹣2x2y)的值.解:由﹣0.5m x n3与5m4n y是同类项,可得x=4,y=3,原式=﹣5x2y﹣4y3﹣2x2y+3x3﹣2x3+5x2y+3y3+2x2y=﹣y3+x3,当x=4,y=3时,原式=﹣33+43=﹣27+64=37.19.(7分)某体育用品店用400元购进了8套运动服,准备以一定价格出售如果该店卖出每套运动服的价格以60元为标准,超出部分记做正数,不足部分记做负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣1,﹣2,0,2.则该店卖出这8套运动服后是赢利还是亏损?赢利(亏损)多少?解:依题意,得2﹣3+2+1﹣1﹣2+0+2+8×60=481(元),481﹣400=81(元).答:该店卖出这8套运动服后赢利了,赢利81元.20.(7分)在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.解:在数轴上2.5,﹣2处标出点A,B如图所示,AB=2.5﹣2=4.5.21.(8分)据有关资料统计,两个城市之间每天的电话通话次数T与这两个城市的人口数x,y(单位:万人)以及两城市间的距离l(单位:km)之间有下列关系式:T=(k 为常数).已知A,B,C三个城市的人口数及它们之间的距离如图所示.如果A,B两个城市间每天的电话通话次数为n,求B,C两个城市间每天的电话通话次数(用含n的代数式表示)解:A,B两个城市间每天的电话通话次数:n=,得k=,则B,C两个城市间每天的电话通话次数为:T===,即B,C两个城市间每天的电话通话次数为.22.(8分)燕尾槽的截面如图所示.(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积.解:(1)图中阴影部分的面积为:×y×(x﹣y)×2=xy﹣y2;(2)把x=5,y=2代入得xy﹣y2=5×2﹣22=10﹣4=6.23.(8分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km 为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,﹣2,+8,﹣7,+2.5,﹣4,+5,﹣3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程;(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升8.04元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用.解:(1)依题意,得3+1﹣2+8﹣7+2.5﹣4+5﹣3+2+10×40=405.5(km);∴30×(405.5÷10)=1216.5(km).故小华家的小车一个月(按30天算)行驶的路程是1216.5km;(2)12×1216.5÷100×7×8.04=8215.7544(元).答:估计小华家的小车一年(按12个月算)的汽油费用是8215.7544元.。

2018—2019学年第二学期七年级数学期末检测试题1江苏版苏科版七下含答案解析

2018—2019学年第二学期七年级数学期末检测试题1江苏版苏科版七下含答案解析

2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x83.如图,与是同位角的为A.B.C.D.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣106.下列各式能用平方差公式计算的是A.B.C.D.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.88.已知不等式组有解,则的取值范围是()A.B.C.D.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.12直接写出计算结果:______;________.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.14如图,,,则=____°.15已知代数式与是同类项,则_______,________.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个17已知,,则2x3y+4x2y2+2xy3=_________.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).三、解答题(本大题共8小题,共96分)19计算:;.20解不等式:,并把解集表示在数轴上.21因式分解:(1);(2)25(a+b)2-9(a-b)2 .22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().23解方程组:(1);(2)24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】根据不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等式的方向不变;不等式的两边都乘以(或除以)同一个负数,不等式的方向改变,可得答案.【详解】、不等式的两边同时减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以再减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以,不等式的符号方向改变,即,故本选项正确;、不等式的两边同时除以,不等式仍成立,即,故本选项错误.故选:.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等式的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【来源】江苏省常州市2016-2017学年期末【答案】D【解析】A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.3.如图,与是同位角的为A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的定义得与是同位角,故选:D.【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣10【来源】江苏省常州市2016-2017学年期末【答案】B【解析】根据科学记数法的书写规则,,a只含有一位整数,易得:0.000 0000 76=7.6×10﹣8,故选:B.6.下列各式能用平方差公式计算的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】B【解析】【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;中是相同的项,互为相反项是与,符合平方差公式的要求,故本选项正确;中不存在相反的项,不能用平方差公式计算,故本选项错误;中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:.【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.8【来源】江苏省淮安市淮安区2017-2018学年期末【答案】D【解析】【分析】多边形的内角和可以表示成,依次列方程可求解.设这个多边形边数为,则,解得.故选:.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要回根据公式进行正确运算、变形和数据处理.8.已知不等式组有解,则的取值范围是()A.B.C.D.【来源】江苏省盐城市射阳县2016年期末【答案】C【解析】∵不等式组有解,∴,故选:C点睛:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,把不等式的解集在数轴上表示出来,利用数轴可以直观地表示不等式组的解集.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.【来源】江苏省泗阳县2016-2017学年期末考试【答案】D【解析】试题分析:根据方程组解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案:∵是方程组的解,∵.两个方程相减,得a﹣b=4.考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】C【解析】分析:由、、、、……可知3n的个位数分别是3,9,7,1,…,四个数依次循环,用的指数2019除以4得到的余数是几就与第几个数字的个位数字相同,由此解答即可.详解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2019÷4=504…3,∵的末位数字与33的末位数字相同是7.故选C..点睛:此题考查了尾数特征及规律探究:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】x>-1 ,【解析】分析:不等式移项合并,将x系数化为1,即可求出解集.【解答】解:不等式1-x<2,移项合并得:-x<1,解得:x>-1.故答案为:x>-1点睛:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.请在此填写本题解析!12直接写出计算结果:______;________.【来源】江苏省南京玄武区2016年期末考试【答案】【解析】,.故答案为:,.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.【来源】江苏省南京玄武区2016年期末考试【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【解析】试题分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.考点:命题的改写点评:任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14如图,,,则=____°.【来源】江苏省扬州市江都区2016-2017学年期末【答案】【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.连接AC并延长,标注点E,∵∠DCE=∠D+∠DAC, ∠BCE=∠B+∠BAC, ∠BCE+∠DCE=106°,∠A+∠B=47°, ∴∠BCE+∠DCE=∠D+∠DAB+∠B=106°,∴∠D=106°-47°-47°=12°.故答案为:12.15已知代数式与是同类项,则_______,________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】3 1【解析】分析:根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个【来源】江苏省淮安市淮安区2017-2018学年期末【答案】3【解析】【分析】根据已知边长求第三边的取值范围为:,进而解答即可.【详解】设第三边长为,则,,故取、、.故答案为:.【点睛】本题考查了三角形三边关系定理:三角形两边之和大于第三边,两边之差小于第三边.17已知,,则2x3y+4x2y2+2xy3=_________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】-25【解析】分析:先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.详解:∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2×() ×52=-25.故答案为:-25.点睛:此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图∵和∵列出方程组得,解得,∵的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.三、解答题(本大题共8小题,共96分)19计算:;.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】;.【解析】分析:(1)先根据零指数幂、绝对值的意义、负整数指数幂的意义逐项化简,然后合并同类项即可;(2)第一项根据完全平方公式计算,第二项根据平方差公式计算,然后合并同类项即可. 详解:原式;原式.点睛:本题考查了实数的运算和整式的运算,熟练掌握完全平方公式和平方差公式是解答本题的关键.20解不等式:,并把解集表示在数轴上.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】x≤﹣2【解析】【试题分析】不等式的两边同时乘以6,去分母得:;去括号得:移项得:系数化为1得:解集在数轴上表示见解析.【试题解析】去分母得:;去括号得:移项及合并得:系数化为1得:不等式的解集为x≥-2,在数轴上表示如图所示:21因式分解:(1);(2)25(a+b)2-9(a-b)2 .【来源】江苏省兴化市2017-2018学年期末【答案】(1) 6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab·2bc-6ab·1=6ab(2bc-1);(2)原式=[5(a+b)]2-[3(a-b)]2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().【来源】江苏省盐城市射阳县2016年期末【答案】已知,2,ECD ,角平分线的性质或定义,已知,∠1=∠ ECD ,两直线平行,内错角相等,等量代换【解析】试题分析:由角平分线定义和平行线的性质及等量代换即可证明.试题解析:证明:∵CE平分∠ACD (已知),∴∠2 =∠ECD (角平分线的性质或定义),∵AB∥CD(已知),∴∠1= ∠ECD (两直线平行,内错角相等),∴∠1=∠2(等量代换).23解方程组:(1);(2)【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2)【解析】试题分析:(1)方程组利用加减消元法求出解即可(2)先①+③得x与y的方程④,然后将②④联立求出x和y的值,最后将x和y的值代入①中求出z即可;试题解析:(1),①7得,③②2得,④③④得,,∴,将代入方程①,解得.∴原方程组的解为.(2)①+③得,,②2得,⑤,+⑤得,将代入方程②,解得,将,代入方程①,解得,∴原方程组的解为.24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位【来源】江苏省扬州市高邮市2017-2018学年期末【答案】(1)作图见解析,(2)平行;相等;(3)15【解析】【分析】直接利用平移的性质分别得出对应点位置进而得出答案;利用平移的性质得出线段、的位置与数量关系;利用三角形面积求法进而得出答案.【详解】解:如图所示:,即为所求;线段、的位置关系为平行,线段、的数量关系为:相等.故答案为:平行,相等;平移过程中,线段AB扫过部分的面积为:.故答案为:15.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.【来源】江苏省南京玄武区2016年期末考试【答案】火车速度20m/s, 长度200m【解析】试题分析: 设火车的车身长为x米,速度是ym/s,根据行程问题的数量关系路程=速度×时间建立方程组求出其解即可.试题解析:设火车的车身长为x米,速度是ym/s,根据题意可得:,解得,答:火车的车身长为200米,速度是20m/s.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2),过程见解析;(3)【解析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出+,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可(3)试题分析:试题解析:(1),∵、分别是和的角平分线,∴∴.(2)在△中,+,,(3)点睛:本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。

2018-2019学年【区级联考】江苏省苏州市工业园区第二学期七年级数学期中教学调研卷

2018-2019学年【区级联考】江苏省苏州市工业园区第二学期七年级数学期中教学调研卷

2018-2019学年【区级联考】江苏省苏州市工业园区第二学期七年级数学期中教学调研卷1.在下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.下列各式中计算正确的是()B. (x 4 ) 3 = x 7C. b 5 ·b 5 = b 25D. a 6 ÷a 2 =a 3 A. (-a 2 ) 5 =-a103.下列各式从左边到右边的变形是因式分解的是()A.( a+1)( a-1)=a2-1 B.a2-6 a+9=( a-3) 2C.x2+2 x+1=x ( x+2)+1 D.=-6 x2y2 ·3 x2y4.如图,七年级(下)教材第6页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFEC.∠ABC=∠DEF D.∠BCD=∠EFG5.在中作边上的高,下列画法正确的是()A.B.C.D.6.若,,,,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 7.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2 cm2,则S△ABC为 ( )A.4 cm 2B.6 cm 2C.8 cm 2D.10 cm 28.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为 ( )A.75°B.76°C.77°D.78°9.将数0.000000076用科学记数法表示为_____.10.已知,则________.11.一个多边形的每一个外角都等于36°,则这个多边形的边数为____________.12.如果要使的乘积中不含x2,则a=_.13.如果是一个完全平方式,那么m的值为________.14.如图,等于 ________15.已知:,则________.16.若(x-3)x=1,则满足条件的x的值是 _____________.17.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若S四边形AEOH=4,S四边形BFOE=5,S四边形CGOF=6,则S四边形DHOG=_____.18.如图,长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,那么当x=____时,△APE的面积等于10cm2.19.计算或化简:(1)(2)(3)(2a﹣3b)2﹣4a(a﹣3b)(4) (3﹣2x)(3+2x) + 4 (2﹣x)2 ,本题先化简,再求值,其中x=﹣0.25.20.因式分解:(2)+6+921.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)22.填写证明的理由:已知,如图AB∥CD,EF、CG分别是∠ABC、∠ECD的角平分线.求证:EF∥CG证明:∵AB∥CD(已知)∴∠AEC=∠ECD()又EF平分∠AEC、CG平分∠ECD(已知)∴∠1=∠,∠2=∠(角平分线的定义)∴∠1=∠2()∴EF∥CG()23.(1)已知=2,,求①的值;②的值.(2)若x、y满足,求下列各式的值.①(x+y)2②x4+y424.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,则∠EAD=_______°;(2)若∠B=a°,∠C=b°(b>a),试通过计算,用a、b的代数式表示∠EAD的度数;(3)特别地,当△ABC为等腰三角形(即∠B=∠C)时,请用一句话概括此时AD和AE的位置关系:______________________________.26.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a-b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长;(3)已知x+y=2,xy-z2-4z=5,求xyz的值.27.如图,直线m与直线n相交于点O,A、B两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动.(1)若运动1s时,点B比点A多运动1个单位;运动2s时,点B与点A运动的路程和为6个单位,则x=_________,y=___________.(2)如图,当直线m与直线n垂直时,设∠BAO和∠ABO的角平分线相交于点P.在点A、B在运动的过程中,∠A PB的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由.(3)如图,将(2)中的直线n不动,直线m绕点O按顺时针方向旋转α(0<ɑ<90),其他条件不变.ⅰ)用含有α的式子表示∠APB的度数____________.ⅱ)如果再分别作△ABO的两个外角∠BAC,∠ABD的角平分线相交于点Q,并延长BP、QA交于点M.则下列结论正确的是___________(填序号) .①APB与∠Q互补;②∠Q与∠M互余;③∠APB-∠M为定值;④∠M-∠Q为定值.。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.-13的相反数是()A. 13B. 3 C. −13D. −32.下列计算正确的是()A. 3a+2b=5abB. 5a2−2a2=3C. 7a+a=7a2D. 2a2b−4a2b=−2a2b3.如果3a7x b y+7和-7a2-4y b2x是同类项,则x,y的值是()A. x=−3,y=2B. x=2,y=−3C. x=−2,y=3D. x=3,y=−24.下列关于多项式2a2b+ab-1的说法中,正确的是()A. 次数是5B. 二次项系数是0C. 最高次项是2a2bD. 常数项是15.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.6.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为()A. 3B. −3C. −4D. 47.实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A. a−bB. a+bC. −a+bD. −a−b8.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A. B. C. D.9.下列说法中正确的是()A. 过一点有且仅有一条直线与已知直线平行B. 若AC=BC,则点C是线段AB的中点C. 相等的角是对顶角D. 两点之间的所有连线中,线段最短10.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针沿正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针沿正方形运动,则第2019次相遇在()A. 点AB. 点BC. 点CD. 点D二、填空题(本大题共8小题,共24.0分)11. 比较大小:-23______-34.12. 单项式-7a 3b 2c 的次数是______.13. 已知方程ax +by =10的两个解是{y =0x=−1,{y =5x=1,则a =______,b =______.14. 如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x -y 的值为______.15. 已知x -3y =-3,则5-x +3y 的值是______.16. 如图,已知∠AOB =64°36′,OC 平分∠AOB ,则∠AOC =______°.17. 下午3点30分时,钟面上时针与分针所成的角等于______°.18. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,x 的值为______.三、计算题(本大题共2小题,共15.0分)19. 计算:(1)-20+(-14)-(-18)-13(2)(-2)4+(-4)×(12)2-(-1)3(3)(-1)4-16×[(-2)3-32]20. 先化简,再求值:5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a 、b 满足|a -12|+(b +3)2=0.四、解答题(本大题共8小题,共61.0分)21. 解下列方程(组):(1)x+12−2−3x3=1(2){5x +3y =252x +7y −3z =193x +2y −z =1822. 已知:已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1.(1)求2A -3B ;(2)若A +2B 的值与a 的取值无关,求b 的值.23. 在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A 、B 、C都在格点上.(1)按下列要求画图:过点B 和一格点D 画AC的平行线BD ,过点C 和一格点E 画BC 的垂线CE ,并在图中标出格点D 和E ;(2)求三角形ABC 的面积.24.已知,点C是线段AB的中点,AC=6.点D在直线BD.请画出相应的示意图,并求线AB上,且AD=12段CD的长.25.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?26.直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF=54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.27.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=______;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON 在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______(直接写出结果).28.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米,甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.请解答下面问题:(1)B、C两点之间的距离是______米.(2)求甲机器人前3分钟的速度为多少米/分?(3)若前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示).答案和解析1.【答案】A【解析】解:-的相反数是,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确.故选:D.直接利用合并同类项法则分别分析得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.3.【答案】B【解析】解:由同类项的定义,得,解这个方程组,得.故选:B.本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.根据同类项的定义列出方程组,是解本题的关键.4.【答案】C【解析】解:A、多项式2a2b+ab-1的次数是3,故此选项错误;B、多项式2a2b+ab-1的二次项系数是1,故此选项错误;C、多项式2a2b+ab-1的最高次项是2a2b,故此选项正确;D、多项式2a2b+ab-1的常数项是-1,故此选项错误.故选:C.直接利用多项式的相关定义进而分析得出答案.此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.【答案】D【解析】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.根据点到直线的距离是指垂线段的长度,即可解答.本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.6.【答案】D【解析】解:解得:,代入y=kx-9得:-1=2k-9,解得:k=4.故选:D.由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx-9中,求得k的值.本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.7.【答案】C【解析】解:由图可知,a<0,b>0,所以,|a|+|b|=-a+b.故选:C.根据数轴判断出a、b的正负情况,然后去掉绝对值号即可.本题考查了实数与数轴,准确识图判断出a、b的正负情况是解题的关键.8.【答案】A【解析】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面;故选:A.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.9.【答案】D【解析】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可判断A的正误;根据中点的性质判断B的正误;根据对顶角的性质判断C的正误;根据线段的性质判断D的正误.此题主要考查了平行公理、对顶的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.10.【答案】B【解析】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2019÷4=504…3,∴第2019次相遇在点B,故选:B.根据题意可以得到前几次相遇的地点,从而可以发现其中的规律,进而求得第2019次相遇的地点,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,找出题目中的变化规律.11.【答案】>【解析】解:∵|-|==,|-|==,而<,∴->-.故答案为:>.先计算|-|==,|-|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.【答案】6【解析】解:单项式-7a3b2c的次数是6,故答案为:6.根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式次数的计算方法.13.【答案】-10 4【解析】解:把和分别代入方程ax+by=10,得,解得.知道了方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程组,从而可以求出a,b的值.主要考查了方程的解的定义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.14.【答案】-3【解析】解:∵“5”与“2x-3”是对面,“x”与“y”是对面,∴2x-3=-5,y=-x,解得x=-1,y=1,∴2x-y=-2-1=-3.故答案为:-3.根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.15.【答案】8【解析】解:∵x-3y=-3,∴-x+3y=3,∴5-x+3y=5+3=8.故填:8.由已知x-3y=-3,则-x+3y=3,代入所求式子中即得到.本题考查了代数式求值,根据已知求得代数的部分值,代入到所求代数式求值.16.【答案】32.3【解析】解:∵∠AOB=64°36′,OC平分∠AOB,∴∠AOC=64°36′÷2=32°18′=32.3°;故答案为:32.3.根据角平分线的定义求出∠AOC的度数,再根据度分秒之间的换算即可得出答案.此题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线;本题也考查了度分秒的换算.17.【答案】75【解析】解;3点30分时,它的时针和分针所成的角是30°×2.5=75°,故答案是:75.根据钟面平均分成12份,可得每份的度数,根据每份的度数成时针与分针相距的份数,可得答案.本题考查了钟面角,每份的度数成时针与分针相距的份数是解题关键.18.【答案】390【解析】解:由题意知,b=19+1=20,a==10,所以x=19×20+10=390,故答案为:390.由题意知右上数字=左下数字+1,左上数字=(左下数字+1)÷2,右下数字=左下数字×右上数字+左上数字,据此解答可得.本题主要考查数字的变化规律,解题的关键是根据题意得出右上数字=左下数字+1,左上数字=(左下数字+1)÷2,右下数字=左下数字×右上数字+左上数字.19.【答案】解:(1)原式=-20-14+18-13=-47+18=-29;(2)原式=16+(-4)×14-(-1) =16-1+1=16;(3)原式=1-16×(-8-9)=1-16×(-17) =1+176=236.【解析】(1)将减法转化为加法,再根据加法法则计算可得;(2)先计算乘方,再计算乘法,并将减法转化为加法,最后计算加减可得; (3)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.20.【答案】解:原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2,∵|a -12|+(b +3)2=0,∴a =12,b =-3,则原式=-94-92=-274.【解析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)x+12−2−3x 3=1方程两边同乘以6,得3(x +1)-2(2-3x )=6,去括号,得3x +3-4+6x =6,移项及合并同类项,得9x =7,系数化为1,得x =79;(2){5x +3y =25①2x +7y −3z =19②3x +2y −z =18③③×3-②,得 7x -y =35④①+④×3,得 26x =130,解得,x =5,将x =5代入①,得y =0,将x =5,y =0代入③,得z =-3,∴原方程组的解是{x =5y =0z =−3.【解析】(1)根据解一元一次方程组的方法可以解答此方程;(2)根据解三元一次方程组的方法可以解答此方程.本题考查解一元一次方程、解三元一次方程组,熟练掌握加减消元法是解答本题的关键.22.【答案】解:(1)∵A =2a 2+3ab -2a -1,B =-a 2+ab -1,∴2A -3B =2(2a 2+3ab -2a -1)-3(-a 2+ab -1)=4a 2+6ab -4a -2+3a 2-3ab +3=7a 2+3ab -4a +1; (2)∵A =2a 2+3ab -2a -1,B =-a 2+ab -1,∴A +2B =2a 2+3ab -2a -1-2a 2+2ab -2=5ab -2a -3=(5b -2)a -3,由结果与a 的取值无关,得到5b -2=0,解得:b =25.【解析】(1)把A 与B 代入原式,去括号合并即可得到结果;(2)由A+2B 的结果与a 的取值无关确定出b 的值即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图,点D ,点E 即为所求;(2)S △ABC =3×4-12×1×3-12×1×3-12×2×4=5. 【解析】(1)根据要求画出线段BD ,线段CE 即可;(2)利用分割法求出△ABC 的面积即可;本题考查作图-应用与设计,平行线的判定和性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:∵点C 是线段AB 的中点,AC =6,∴AB =2AC =12,①如图,若点D 在线段AC 上,∵AD =12BD ,∴AD =13AB =4,∴CD =AC -AD =6-4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD =12BD ,∴AD =AB =12,∴CD =AC +AD =6+12=18.综上所述,CD 的长为2或18.【解析】由点C是线段AB的中点,AC=6,可得AB=2AC=12,分两种情况进行讨论:点D在线段AC上,点D在线段AC的反向延长线上,依据线段的和差关系进行计算即可.本题考查了两点间的距离,分类讨论是解题关键,以防遗漏.25.【答案】解:设先安排整理的人员有x人,依题意得:x60+2(x+15)60=1.解得:x=10.答:先安排整理的人员有10人.【解析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.26.【答案】解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°-54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°-90°-36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°-36°=144°,又∵∠GOE=90°,∴∠AOG=360°-90°-144°=126°.综上所述,∠AOG的度数为54°或126°.【解析】(1)依据垂线的定义,即可得到∠DOE的度数,再根据角平分线的定义,即可得到∠BOD的度数,进而得出结论;(2)分两种情况讨论,依据垂线的定义以及角平分线的定义,即可得到∠AOG 的度数.本题主要考查了角平分线的定义以及对顶角的性质,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.27.【答案】90° 4.5秒或40.5秒【解析】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°-90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°-∠AON,∵∠AOC=45°,∴∠NOC=45°-∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t 的值.本题考查了角的计算:熟练掌握角平分线的定义和旋转的性质.28.【答案】450【解析】解:(1)由题意可得,B、C两点之间的距离是:50×9=450(米),故答案为:450;(2)设甲机器人前3分钟的速度为a米/分,3a=90+3×50,解得,a=80,答:机器人前3分钟的速度为80米/分;(3)∵前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,∴前4分钟甲机器人的速度为80米/分,在4≤t≤6分钟时,甲的速度为50米/分,设甲乙相遇前相距28米时出发的时间为b分钟,80b+28=90+50b,解得,b=,设甲乙相遇后相距28米时出发的时间为c分钟,80c-28=90+50c,解得,c=,答:两机器人前6分钟内出发分或分时相距28米;(4)∵6分钟后甲机器人的速度又恢复为原来出发时的速度,∴6分钟后甲机器人的速度是80米/分,当t=6时,甲乙两机器人的距离为:[80×4+50×(6-2)]-(90+50×6)=60(米),当甲到达终点C时,t={(90+450)-[80×4+50×(6-2)]}÷80+6=7.5(分),当乙到达终点C时,t=450÷50=9(分),∴当6<t≤7.5时,S=60+(80-50)×(t-6)=30t-120,当7.5<t≤9时,S=450-50×7.5-50(t-7.5)=-50t+450,由上可得,当t>6时,甲、乙两机器人之间的距离S=.(1)根据题目中的数据可以求得B、C两点之间的距离;(2)根据题意,可以得到甲机器人前3分钟的速度;(3)根据题意可知前4分钟甲机器人的速度,在4≤t≤6分钟时,甲的速度,从而可以求得两机器人前6分钟内出发多长时间相距28米;(4)根据题意可以得到当t>6时,甲、乙两机器人之间的距离S.本题考查一次函数的应用、两点间的距离,解答本题的关键是明确题意,利用一次函数的性质解答.。

江苏省苏州市高新区七年级上期中考试数学试题(有答案)

江苏省苏州市高新区七年级上期中考试数学试题(有答案)
A.M或NB.M或R C.N或P D.P或R
二、填空题(本大题共8小题.每小题2分,共16分.)
11.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为千克
12. 的倒数是.
13.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高℃.
26.(本题满分7分)在学习代数式的值时,介绍了计算框图:用“ ”表示数据输入、输出框;用“”表示数据处理和运算框;用“ ”表示数据判断框(根据条件决定执行两条路径中的某一条)
(1)①如图1,当输入数=-2时,输出数y=_________;
②如图2,第一个运算框“”内,应填______;第二个运算框“”内,应填______;
(2)4⊗(﹣2)=4×(﹣2)﹣4﹣(﹣2)﹣2=﹣8﹣4+2﹣2=﹣12,
(﹣2)⊗4=(﹣2)×4﹣(﹣2)﹣4﹣2=﹣8+2﹣4﹣2=﹣12,
所以,4⊗(﹣2)=(﹣2)⊗4.
22、解:原式=72y-3y+2y-72y+2- y=- y+2;
当=6,y=- 时,原式=- ×6×(- )+2= +2= .
27.(本题满分7分)根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,﹣ ,﹣3观察数轴,B,C两点之间的距离为;
与点A的距离为3的点表示的数是;
(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;
若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M:,N:;
23、解:(1)+10+(﹣7)+(+3)+(﹣8)+(+2)=0,这位司机最后回到出车地点;

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

2018-2019学年江苏省苏州市高二(上)期中数学试卷一、填空题(本大题共14小题,共70.0分)1.直线x+y+√3=0的倾斜角为______.2.在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.3.已知A(-1,-3),B(5,3),则以线段AB为直径的圆的方程为______.(写成标准方程)4.直线l经过点(1,1),且在两坐标轴上的截距相反,则直线l的方程是______.5.若直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,则m的值为______.6.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是______.7.圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的方程是______.8.正三棱锥P-ABC中,若底面边长为a,侧棱长为√2a,则该正三棱锥的高为______.9.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列命题:①若m⊂β,α∥β,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥α,β⊥α,m∥n,则n∥β;④若m⊥α,n⊥β,α∥β,则m∥n.其中正确的结论有______.(请将所有正确结论的序号都填上)10.设点A(-2,3),B(3,2)若直线ax+y+2=0与线段AB有公共点,则a的取值范围是______.11.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为______(结果用π表示).12.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为______.13.△ABC的一个顶点是A(3,-1),∠B,∠C的平分线分别是x=0,y=x,则直线BC的方程是______.14.已知定点M(0,2),N(-2,0),直线l:kx-y-3k+2=0(k为常数),对l上任意一点P,都有∠MPN为锐角,则k的取值范围是______.二、解答题(本大题共6小题,共80.0分)15.如图:在正方体ABCD-A1B1C1D1中,E为棱DD1的中点(1)求证:BD1∥平面AEC(2)求证:AC⊥BD1.16.设△ABC顶点坐标A(0,a),B(-√3a,0),C(√3a,0),其中a>0,圆M为△ABC的外接圆.(1)求圆M的方程(2)当a变化时,圆M是否过某一定点,请说明理由.17.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,BC⊥BC1,AB=BC1,E,F分别为线段AC1,A1C1的中点.(1)求证:EF∥面BCC1B1;(2)求证:BE⊥平面AB1C1.18.已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;√5的圆的方程.(2)以O为圆心且被l截得的弦长为8519.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=√2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V多面体PDCMA:V三棱锥M-ACB=2:1?(3)在M满足(2)的条件下,判断PD是否平行于平面AMC.20.如图,在平面直角坐标系xOy中,已知点A(0,3)和直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线.①求圆C的方程;②求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答案和解析1.【答案】135°【解析】解:直线x+y+=0的斜率为-1;所以直线的倾斜角为135°.故答案为135°.求出直线的斜率,即可得到直线的倾斜角.本题考查直线的有关概念,直线的斜率与直线的倾斜角的关系,考查计算能力.2.【答案】45°【解析】解:∵正方体ABCD-A1B1C1D1中,∴D1D⊥平面ABCD,∴直线AD是直线AD1在平面ABCD内的射影,∴∠D1AD=α,就是直线AD1平面ABCD所成角,在直角三角形AD1AD中,AD1=D1D,∴∠D1AD=45°故答案为:45°在正方体ABCD-A1B1C1D1中,证明D1D⊥平面ABCD,则∠D1AD=α,就是直线AD1平面ABCD所成角,解直角三角形D1AD即可.考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题3.【答案】(x-2)2+y2=18【解析】解:∵A(-1,-3),B(5,3),则以线段AB为直径的圆的圆心C(2,0),半径为AC==3,故圆的方程为(x-2)2+y2=18,故答案为:为(x-2)2+y2=18.先根据条件求出圆心坐标和半径,可得线段AB为直径的圆的方程.本题主要考查求圆的方程的方法,关键是求出圆心坐标和半径,属于基础题.4.【答案】x-y=0【解析】解:当直线l经过原点时,直线l在两坐标轴上截距均等于0,故直线l的斜率为1,∴所求直线方程为y=x,即x-y=0.当直线l不过原点时,设其方程+=1,又l经过点(1,1),则可得-=0≠1,此时不存在,故所求直线l的方程为x-y=0.故答案为x-y=0当直线l经过原点时,直线l在两坐标轴上截距均等于0,所求直线方程为y=x,当直线l不过原点时,此时a不存在.本题主要考查用点斜式、截距式求直线的方程,体现了分类讨论的数学思想,属于基础题.5.【答案】-7【解析】解:∵直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,∴,解得m=-7.∴m的值为-7.故答案为:-7.由直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,能求出m的值.本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】x-y+1=0【解析】解:易知点C为(-1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x-y+1=0.故答案为:x-y+1=0.先求圆心,再求斜率,可求直线方程.明确直线垂直的判定,会求圆心坐标,再求方程,是一般解题思路.7.【答案】(x+2)2+(y+1)2=1【解析】解:(x-2)2+(y-3)2=1的圆心为(2,3),半径为1点(2,3)关于直线x+y-1=0对称的点为(-2,-1)∴圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的圆心为(-2,-1),半径为1 即圆的方程为(x+2)2+(y+1)2=1故答案为:(x+2)2+(y+1)2=1先求出圆心和半径,然后根据对称性求出圆心关于直线x+y-1=0对称的圆的圆心,而圆对称形状不变,从而半径不变,即可求得圆的方程.本题主要考查了关于直线对称的圆的方程,同时考查了对称点的求解,属于基础题.8.【答案】√15a3【解析】解:如图,取BC中点D,连接AD,并取底面中心O,则O为AD的三等分点,且OA=,PA=,在Rt△POA中,求得OP=a,即该正三棱锥的高为,故答案为:.作出底面中心O,利用直角三角形POA容易求出高.此题考查了三棱锥高的求法,属容易题.9.【答案】①④【解析】解:①是正确命题,因为两个平面平行时,一个平面中的线与另一个平面一定没有公共点,故有线面平行;②不正确,因为一条直线平行于两个平行平面中的一个平面,则它与另一个平面的位置关系是平行或者在面内,故不正确;③不正确,因为由m⊥α,m∥n可得出n⊥α,再由β⊥α,可得n∥β或n⊂β,故不正确;④是正确命题,因为两个直线分别垂直于两个互相平行的平面,一定可以得出两线平行.综上,①④是正确命题故答案为①④本题研究空间中线面平行与线线平行的问题,根据相关的定理对四个命题进行探究,得出正误,即可得到答案,①②③由线面平行的条件判断,④由线线平行的条件判断,易得答案本题考查空间中直线与平面之间的位置关系,熟练掌握线面平行的方法与线线平行的方法是准确判断正误的关键,几何的学习,要先记牢定义与定理,再对应其几何特征进行理解培养出空间形象感知能力,方便做此类题 10.【答案】(-∞,-43]∪[52,+∞)【解析】解:∵直线ax+y+2=0恒过定点(0,-2),斜率为-a , 如图,,,∴若直线ax+y+2=0与线段AB 有交点, 则-a≥或-a≤-.即a≤-或a≥. 故答案为:(-∞,-]∪[,+∞). 由题意画出图形,数形结合得答案.本题考查了直线系方程的应用,考查了数形结合的解题思想方法,是基础题. 11.【答案】5π【解析】解:∵圆柱型铁管的高为3π,底面半径为1,又∵铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形如下图示:其中每一个小矩形的宽为圆柱的周长2πcm,高为圆柱的高3π,则大矩形的对称线即为铁丝的长度最小值.此时铁丝的长度最小值为:=5π故答案为:5π.本题考查的知识点是圆柱的结构特征,数形结合思想、转化思想在空间问题中的应用,由圆柱型铁管的高为3π,底面半径为1,铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形,然后根据平面上求两点间距离最小值的办法,即可求解.解答本题的关键是要把空间问题转化为平面问题,另外使用数形结合的思想用图形将满足题目的几何体表示出来,能更加直观的分析问题,进而得到答案.12.【答案】2√65【解析】解:如图,直线3x+4y+8=0与圆x2+y2-2x+2y+1=0相离,化圆x2+y2-2x+2y+1=0为(x-1)2+(y+1)2=1,圆心坐标为C(1,-1),半径为1.连接CA,CB,则CA⊥PA,CB⊥PB,则四边形PACB的面积等于两个全等直角三角形PAC与PBC的面积和.∵AC 是半径,为定值1,要使三角形PAC 的面积最小,则PC 最小, |PC|=,∴|PA|=.∴四边形PACB 面积的最小值为2×.故答案为:.由题意画出图形,可知要使四边形PACB 面积最小,则P 为过圆心作直线3x+4y+8=0的垂线得垂足,由点到直线的距离公式求得PC ,再由勾股定理得弦长,代入三角形面积公式得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.13.【答案】2x -y +5=0【解析】解:∵∠B 、∠C 的平分线分别是x=0,y=x ,∴AB 与BC 对于x=0对称,AC 与BC 对于y=x 对称. ∴A (3,-1)关于x=0的对称点A'(-3,-1)在直线BC 上, A 关于y=x 的对称点A''(-1,3)也在直线BC 上. 代入两点式方程可得,故所求直线BC 的方程:2x-y+5=0. 故答案为:2x-y+5=0分析题意,求出A 关于x=0,y=x ,的对称点的坐标,都在直线BC 上,利用两点式方程求解即可.本题考查点关于直线对称点的求法,直线方程的求法,属中档题.14.【答案】(-∞,4−√3014)∪(4+√3014,+∞) 【解析】解:由于对于l 上任意一点P ,∠MPN 恒为锐角,故以MN 为直径的圆与直线l :kx-y-3k+2=0相离.而MN的中点,即圆心为H(-1,1),则点H到直线l:kx-y-3k+2=0的距离大于半径MN=,即>,即(1-4k)2>2(1+k2),解得k<,或 k>,故答案为:(-∞,)∪(,+∞)由题意可得,以MN为直径的圆与直线l:kx-y-2k+2=0相离,故圆心H(-1,1)到直线l:kx-y-3k+2=0的距离大于半径,即>,由此解得k 的范围.本题主要考查点到直线的距离公式,直线和圆的位置关系,绝对值不等式的解法,体现了转化的数学思想,属于中档题.15.【答案】证明:(1)连接BD交AC于F,连EF.因为F为正方形ABCD对角线的交点,所长F为AC、BD的中点.在DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面EAC,所以BD1∥平面EAC.(2)由正方形的性质可得AC⊥BD又由正方体的几何特征可得:D1D⊥平面ABCD又∵AC⊂平面ABCD∴AC⊥D1D又∵D1D∩BD=D∴AC⊥平面D1DB∵BD1⊂平面D1DB∴AC⊥BD1【解析】(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;(2)根据正方形的性质及正方体的几何特征,结合线面垂直的性质,可得AC⊥BD,AC⊥D1D,由线面垂直的判定定理可得AC⊥平面D1DB,再由线面垂直的性质即可得到AC⊥BD1本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面垂直的性质,熟练掌握空间线线,线面垂直及平行的判定定理,性质定理及几何特征是解答此类问题的关键.16.【答案】解:(1)△ABC是等腰三角形,对称轴为x=0.外接圆的圆心肯定在x=0上.作AC的中垂线,垂足为D,交y轴于M,M即为外接圆的圆心.AC=a.因为A(0,a),C(√3a,0),故∠MAC=60°,AD=12△AMD又是一个∠MAD=60°的直角三角形.故AM=2a.所以,点M的坐标为(0,-a),圆的半径r=MA=MB=MC=2a.故圆M的方程为:x2+(y+a)2=4a2(a>0).(2)假设圆M过某一定点(x,y).那么当a变化时,圆M仍然过点(x,y),此点不会随着a的变化而变化.那么,现在令a变成了b,即a≠b.有x2+(y+b)2=4b2,两式相减化简得:(2y+a+b)(a-b)=4(a+b)(a-b).因为a≠b,即a-b≠0,所以,2y+a+b=4(a+b).得:y=3(a+b).2得出,y是一个根据a和b取值而变化的量.与我们之前假设的y是一个不随a变化而变化的定量矛盾,所以,圆M不过定点.【解析】(1)确定圆心与半径,即可求圆M的方程(2)利用反证法进行判断.本题考查圆的方程,考查反证法,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)∵E,F分别为线段AC1,A1C1的中点.∴EF是三角形AA1C1的中位线,∴EF∥AA1,又AA1∥BB1,∴EF∥BB1,∵EF⊄面BCC1B1,BB1⊂面BCC1B1,∴EF∥面BCC1B1.(2)∵AB⊥BC,BC⊥BC1,∴BC⊥面ABC1,∴BC⊥BE,同时BC∥B1C1,∵AB=BC1,E是线段AC1的中点.∴BC⊥AC1,∵AC1∩B1C1=C1,∴BE⊥平面AB1C1【解析】(1)根据线面平行的判定定理,证明EF∥BB1;从而证明EF∥面BCC1B1;(2)根据线面垂直的判定定理证明BE⊥平面AB1C1.本题主要考查空间直线和平面平行和垂直的判定,要求熟练掌握线面平行和垂直的判定定理.并能灵活应用.18.【答案】解:(1)依题意可设A (m ,n )、B (2-m ,2-n ),则{2(2−m)+(2−n)−6=0m−n+3=0,即{2m +n =0m−n=−3,解得m =-1,n =2.即A (-1,2),又l 过点P (1,1),用两点式求得AB 方程为y−12−1=x−1−1−1,即:x +2y -3=0. (2)圆心(0,0)到直线l 的距离d =|0+0−3|√1+4=3√5,设圆的半径为R ,则由R 2=d 2+(4√55)2, 求得R 2=5,故所求圆的方程为x 2+y 2=5.【解析】(1)依题意可设A (m ,n )、B (2-m ,2-n ),分别代入直线l 1 和l 2的方程,求出m=-1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l 的距离d ,设圆的半径为R ,则由,求得R 的值,即可求出圆的方程.本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.19.【答案】解:(1)因为PDCB 为等腰梯形,PB =3,DC =1,PA =1,则PA ⊥AD ,CD ⊥AD .又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD =AD ,CD ⊂面ABCD ,故CD ⊥面PAD .又因为CD ⊂面PCD ,所以平面PAD ⊥平面PCD . (2)所求的点M 即为线段PB 的中点,证明如下: 设三棱锥M -ACB 的高为h 1,四棱锥P -ABCD 的高为h 2当M 为线段PB 的中点时,ℎ1ℎ2=MB PB =12.所以V M−ACBVp−ABCD=13S MCB ℎ113S ABCD ℎ2=13所以截面AMC 把几何体分成的两部分V PDCMA :V M -ACB =2:1.(3)当M 为线段PB 的中点时,直线PD 与面AMC 不平行.证明如下:(反证法)假设PD ∥面AMC ,连接DB 交AC 于点O ,连接MO . 因为PD ⊂面PDB ,且面AMC ∩面PBD =MO ,所以PD ∥MO . 因为M 为线段PB 的中点时,则O 为线段BD 的中点,即DOOB =11. 面AB ∥DC ,故DOOB =DCAB =12,故矛盾.所以假设不成立,故当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 【解析】(1)证明平面与平面垂直是要证明CD ⊥面PAD ;(2)已知V 多面体PDCMA :V 三棱锥M-ACB 体积之比为2:1,求出V M-ACB :V P-ABCD 体积之比,从而得出两多面体高之比,从而确定M 点位置.(3)利用反证法证明当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 本题主要考查面面垂直的判定定理、多面体体积、线面平行判定以及反证法的应用,属于中等难度题.20.【答案】解:(1)由{y =x −1y=2x−4得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x -3)2+(y -2)2=1,显然切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx -y +3=0, ∴√k 2+1=1∴|3k +1|=√k 2+1,∴2k (4k +3)=0∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3.即y =3或者3x +4y -12=0.(2)∵圆C 的圆心在在直线l :y =2x -4上, 所以,设圆心C 为(a ,2a -4),则圆C 的方程为:(x -a )2+[y -(2a -4)]2=1, 又∵MA =2MO ,∴设M 为(x ,y )则√x 2+(y −3)2=2√x 2+y 2整理得:x 2+(y +1)2=4设为圆D , ∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点,∴1≤CD ≤3,∴|2−1|≤√a 2+[(2a −4)−(−1)]2≤|2+1|, 由5a 2-12a +8≥0得a ∈R , 由5a 2-12a ≤0得0≤a ≤125,综上所述,a 的取值范围为:[0,125]. 【解析】(1)求出圆心C 为(3,2),圆C 的半径为1,得到圆的方程,切线的斜率一定存在,设所求圆C 的切线方程为y=kx+3,即kx-y+3=0,利用圆心到直线的距离等于半径,求解k 即可得到切线方程.(2)设圆心C 为(a ,2a-4),圆C 的方程为:(x-a )2+[y-(2a-4)]2=1,设M 为(x ,y )列出方程得到圆D的方程,通过圆C和圆D有交点,得到1≤CD≤3,转化求解a的取值范围.本题考查直线与圆的方程的综合应用,圆心切线方程的求法,考查转化思想以及计算能力.。

江苏省苏州市高新区七年级上期中考试数学试题(有答案)

江苏省苏州市高新区七年级上期中考试数学试题(有答案)

班级____ 学号____ 姓名_______ 考场号____ 座位号____ 考试号________密封线内不要答题苏州市高新区第一学期期中测试卷七 年 级 数 学(满分:100分 考试时间:100分钟)一、选择题(本大题共10小题.每小题2分,共20分,请将正确的选项填在下面表格里.)1A .-3 B .-1 C .1 D .02.下列各数:3π,0, 4.2121121112,237,其中无理数的个数是(▲).A 、4个B 、3个C 、2个D 、1个 3.下列各组数中,结果相等的是(▲).A .21-与()21- B .323 与332⎪⎭⎫ ⎝⎛ C .2-- 与()2-- D .()33-与33-4.下列关于单项式-352xy的说法中,正确的是(▲).A .系数是-52,次数是4 B .系数是-52,次数是3 C .系数是-5,次数是4 D .系数是-5,次数是3 5.下列计算正确的是(▲).A 、2+3y =5yB 、42243a a a =+C 、022=-ba b aD 、15422-=-a a6.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、y 组成一个四位数,且把 x 放在y 的右.边.,你认为下列表达式中正确的是(▲). A .yx B .y x + C .y x +010 D .x y +1007.实数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系正确的是(▲).A .1a a <-<B .1a a -<<C .1a a <-<D .1a a <<- 8.下列说法中,正确的是(▲).A .0是最小的数B .任何有理数的绝对值都是正数C .最大的负有理数是1-D .如果两个数互为相反数,那么它们的绝对值相等9.按如图所示的程序运算:当输入的数据为1时,则输出的数据是(▲).A 、2B 、4C 、6D 、810.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP =PR =1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若a +b =3,则原点是(▲).A .M 或NB .M 或RC .N 或PD .P 或R 二、填空题(本大题共8小题.每小题2分,共16分.)11.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 千克 12. 112-的倒数是 .13.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高 ℃.14.“x 的2倍与y 的31的和”用代数式表示为 . 15.若24,y x y x =||=3,-且x+y<0,则的值为 .16.已知210a ab -=,215ab b -=-,则22a b -= .17.有理数a b c 、、在数轴上的对应点如图所示,化简:=-++-a b b c b .18.有一列数1a ,2a ,3a ,4a ,…n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:13a =,则212133a =-=,331122a =-=-…,请你计算当12a =时,2016a 的值是 . 三、解答题(本大题共9小题,共64分.解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(每小题4分,共16分)计算:(1)()53221---+-+ (2)(3)2711123659126⎡⎤⎛⎫---+⨯÷⎪⎢⎥⎝⎭⎣⎦(420.(每小题4分,共8分)计算:(1))3(4)3(52222b a ab ab b a +--- (2)()⎪⎭⎫⎝⎛+---+321422722x x x x21.(本题满分4分)对于有理数a 、b ,定义运算:“⊗”,a ⊗b=ab ﹣a ﹣b ﹣2. (1)计算:(﹣2)⊗3的值; (2)比较4⊗(﹣2)与(﹣2)⊗4的大小.22.(本题满分5分)先化简,再求值:2271732(1)22x y xy xy x y xy ⎡⎤---++⎢⎥⎣⎦,其中16,6x y ==-.23.(本题满分6分)一位出租车司机某日中午的营运全在市区的环城公路上进行.如果规定:顺时针方向为正,逆时针方向为负,那天中午他拉了五位乘客所行车的里程如下:(单位:千米)+10,﹣7,+3,﹣8,+2(1)将最后一名乘客送到目的地时,这位司机距离出车地点的位置如何? (2)若汽车耗油为a 升/千米,那么这天中午这辆出租车的油耗多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米2元,问:这个司机这天中午的收入是多少?24.(本题满分5分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1 (1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值.25.(本题满分6分)某自行车厂计划每天平均生产n 辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n=100时,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.26.(本题满分7分)在学习代数式的值时,介绍了计算框图:用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条) (1)①如图1,当输入数=-2时,输出数y =_________;②如图2,第一个运算框“”内,应填______;第二个运算框“”内,应填______; (2)①如图3,当输入数=-1时,输出数y =_____;②如图4,当输出..的值y =37,则输入..的值 =___________; (3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量,输出数为水费y .27.(本题满分7分)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M:,N:;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P:,Q:(用含m,n的式子表示这两个数).七年级数学期中考试答案一、选择题A D D A C ;D D D B B 二、填空题11、10105⨯千克;12、23-;13、7℃;1415、5或1;16、-5;17、-b+c+a ;18、﹣1三、解答题19、(1)原式=1+(-2)+0=-1; (2)原式=2×××4=16;(3)原式=(-4-28+33-6)÷5=-5÷5=-1; (4)原式=-1×[-32-9+25]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36. 20、(1)原式=223ab b a -,(2)原式124242722-+--+=x x x x 1611-=x -21、(1)(﹣2)⊗3=(﹣2)×3﹣(﹣2)﹣3﹣2=﹣6+2﹣3﹣2=﹣9; (2)4⊗(﹣2)=4×(﹣2)﹣4﹣(﹣2)﹣2=﹣8﹣4+2﹣2=﹣12, (﹣2)⊗4=(﹣2)×4﹣(﹣2)﹣4﹣2=﹣8+2﹣4﹣2=﹣12, 所以,4⊗(﹣2)=(﹣2)⊗4. 22、解:原式=72y-3y+2y-72y+2-12y=-32y+2; 当=6,y=-16时,原式=-32×6×(-16)+2=32+2=72. 23、解:(1)+10+(﹣7)+(+3)+(﹣8)+(+2)=0,这位司机最后回到出车地点; (2)|10|+|﹣7|+|+3|+|﹣8|+|+2|=30,30×a=30a (升);(3)(10﹣3)×2+10+(7﹣3)×2+10+10+(8﹣3)×2+10+10=82(元),答:这个司机这天中午的收入是82元.24、(1)36A B +=3(22321a ab a +--)+6(21a ab -+-)=15ab-6a-9 (2)由题意可知15b-6=0,因此b=25. 25(1)(n+5)+(n ﹣2)+(n ﹣4)=3n ﹣1(辆);(2)按日计件的工资为(n+5+n ﹣2+n ﹣4+n+13+n ﹣3)×60+18×15﹣9×20=300n+630=300×100+630=30630(元);(3)按周计工资更多.∵按周计件的工资为:(5n+5﹣2﹣4+13﹣3)×60+(5﹣2﹣4+13﹣3)×15=300n+675=300×100+675=30675>30630,∴按周计工资更多.26解:(1)①y=﹣9 ;②第一个运算框“”内,应填×5 ;第二个运算框“”内,应填﹣3 ;(2)①y=﹣43 ;②= 42或﹣6 ;(3)因为当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费,所以水费收缴分两种情况,≤15和>15,分别计算,所以可以设计如框图如图.27解:(1)B,C两点之间的距离为﹣﹣(﹣3)=;点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,;,﹣1008.5,1006.5;n﹣,n+.。

人教版2018-2019学年七年级上册期中数学考试题及答案

人教版2018-2019学年七年级上册期中数学考试题及答案

2019-2019学年七年级上册期中数学试卷一、选择题:1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7 D.83.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式-3a2b+7a2b2-2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个4.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对5.明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A.1.25×105B.1.25×106C.1.25×107D.1.25×1086.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零9.下列运算中结果正确的是()A.3a+2b=5abB.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1D.3x2+2x=5x310.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:。

江苏省常州市2018-2019学年最新七年级上学期数学期中质量调研试题及答案

江苏省常州市2018-2019学年最新七年级上学期数学期中质量调研试题及答案

江苏省常州市2018-2019学年七年级数学上学期期中阶段性质量调研试题一、选择题(每题2分,共16分)1.2-的相反数是-------------------------------------------------------- 【 】A .+2B .2-C .12-D .122.下列运算正确的是 ----------------------------------------------------- 【 】A .325-+=-B .3(2)1⨯-=-C .112--=-D .239-=3.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为 --------------------------------------------------- 【 】A .60.6510⨯B .56.510⨯C .46510⨯D .46.510⨯4.下列五个数中: ① 3.14;② 227;③ 3.33333…;④ π;⑤ 3.030030003…(每两个3之间依次增加一个0),无理数有 ------------------------------- 【 】 A .1个 B .2个 C .3个D .4个 5.如果0a >,则a ----------------------------------------------------- 【 】 A .一定是正数 B .一定是负数 C .一定不是负数D .不等于06.有理数a 、b 在数轴上的位置如图所示,则下列各式符号的判断正确的是 ------ 【 】A .02>-b a B .0a b +>C .02>+b aD .02>+b a7.某超市8月份营业额为m 万元,9月份比8月份增长了20%,则该超市9月份的营业额为 ----------------------------------------------------------- 【 】 A .(1+20%m )万元 B .(m +20%)万元 C .65m 万元D . 20 % m 万元8.如图是一个计算程序,当输出值y =16时,输入值x 为 ---------------------- 【 】 A .4± B .5C .-3D .-3或5二、填空题(每小题2分,共20分) 9.3-的倒数是 ;52-的绝对值是 . 10.单项式 y x -5232的系数与次数的乘积为 .11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“-8”表示___________________________________. 12.比较大小:π-错误!未找到引用源。

2018-2019学年江苏省无锡市江阴市南菁实验学校七年级(上)期中数学试卷(解析版)

2018-2019学年江苏省无锡市江阴市南菁实验学校七年级(上)期中数学试卷(解析版)

2018-2019学年江苏省无锡市江阴市南菁实验学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在:0、1、2-、 3.5-这四个数中,是负整数的是( )A .0B .1C .2-D . 3.5-2.一种面粉包装袋上的质量标识为“250.5kg ±”,则下列四袋面粉中不合格的是( )A .24.5kgB .25.5kgC .24.8kgD .26.1kg3.方程538x -=的解是( )A .1x =B .1x =-C .133x =D .133x =- 4.如果单项式22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )A .2m =,2n =B .1m =-,2n =C .2m =-,2n =D .2m =,1n =-5.无论x 取何值,下列代数式的值一定是正数的是( )A .2(1)x +B .|1|x +C .21x +D .21x -+6.在下列式子12ab ,2a b +,21ab b ++,32x y +,236x x +-中,多项式有( ) A .2个 B .3个 C .4个 D .5个7.下列方程变形,正确的是( )A .由2(3)2x -=-,得226x =--B .由1132x x --=,得2133x x -=- C .由232124x x ---=,得24324x x --+= D .由0.40.1 1.50.3x -=,得411532x x --= 8.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( )A .甲或乙或丙B .乙C .丙D .乙或丙9.桌子上有8只杯口朝上的茶杯,每次翻转3只,经过n 次翻转可使这8只杯子的杯口全部朝下,则n 的最小值为( )A .3B .4C .5D .610.按下面的程序计算:如果n 值为非负整数,最后输出的结果为2343,则开始输入的n 值可能有( )A .2种B .3种C .4种D .5种二、填空题(本大题共8小题,每小题2分,共16分.)11.据统计,全球每小时约有510 000 000吨污水排入江河湖海,用科学记数法表示为 吨. 12.数轴上表示有理数3-与4的这两个点之间的距离是 .13.若关于x 的多项式3(2)2m x n x --+为三次二项式,则m n += .14.已知方程||1(2)40a a x --+=是一元一次方程,则a = ,x = .15.代数式21a +与13a -互为相反数,则a = .16.已知关于x 的方程490bx a +-=的解是2x =,则2a b --的值是 .17.某种出租车的收费标准为:起步价为9元,即行驶不超过3km ,需付9元车费;超过3km 后,按每千米2.5元收费(不足1km 按1km 计).若小亮乘坐这种出租车从甲地到乙地共支付车费39元,设小亮从甲地到乙地经过的路程为xkm ,则x 的最大值是 .18.88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,⋯,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了.请问:电梯在运行的过程中,最多还有 个楼层的数字显示是正确的.【说明】数字0、1、2、3、4、5、6、7、8、9显示方式如图所示.三、解答题(本大题共8小题,共54分.)19.计算:(1)12(8)(7)15--+--;(2)32412(2)3|1(2)|5---÷+⨯--. 20.解下列方程: (1)13(2)5x x --=-;(2)213136x x ---=-. 21.先化简,再求值:22211[3(159)]2()23a a ab a ab --+-,其中a 、b 满足2|2|(3)0a b -++=. 22.已知231A ax x by =-+-,2332B y x x =--+且无论x ,y 为何值时,2A B -的值始终不变.(1)分别求a 、b 的值;(2)求a b 的值. 23.已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-++-.24.如果方程34217123x x -+-=-的解与关于x 的方程4(31)621x a x a -+=+-的解相同,求代数式21a a +-的值.25.一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;⋯;若在第n 次操作后,剩下的长方形为正方形,则称原长方形为n 阶奇异长方形.如图1,长方形ABCD 中,若2AB =,6BC =,则称长方形ABCD 为2阶奇异长方形.判断与操作:如图2,长方形ABCD 长为10,宽为6,它是奇异长方形,请写出它是 阶奇异长方形,并在图中画出裁剪线;探究与计算:已知长方形ABCD 的一边长为24,另一边长为(24)a a <,且它是3阶奇异长方形,请画出所有可能的长方形ABCD及裁剪线的示意图,并求出相应的a值.26.问题一:如图1,已知A,C两点之间的距离为16cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8/x s,cm s,乙的速度为6/cm s,设乙运动时间为()甲乙两点之间距离为()y cm.(1)当甲追上乙时,x=.(2)请用含x的代数式表示y.当甲追上乙前,y=;当甲追上乙后,甲到达C之前,y=;当甲到达C之后,乙到达C之前,y=.问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧(1AB小时的间隔),易知30∠=︒.AOB(1)分针OD指向圆周上的点的速度为每分钟转动cm;时针OE指向圆周上的点的速度为每分钟转动cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.2018-2019学年江苏省无锡市江阴市南菁实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在:0、1、2-、 3.5-这四个数中,是负整数的是( )A .0B .1C .2-D . 3.5-【解答】解:在:0、1、2-、 3.5-这四个数中负数有2-和 3.5-,但 3.5-是小数而不是整数,所以只有2-是负整数.故选:C .2.一种面粉包装袋上的质量标识为“250.5kg ±”,则下列四袋面粉中不合格的是( )A .24.5kgB .25.5kgC .24.8kgD .26.1kg【解答】解:250.524.5()kg -=,250.525.5()kg +=,合格范围24.525.5----, 26.1不在合格范围中,故选:D .3.方程538x -=的解是( )A .1x =B .1x =-C .133x =D .133x =- 【解答】解:移项得,385x -=-,合并同类项得,33x -=,系数化为1得,1x =-.故选:B .4.如果单项式22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )A .2m =,2n =B .1m =-,2n =C .2m =-,2n =D .2m =,1n =-【解答】解:由同类项的定义,可知2n =,21m +=,解得1m =-,2n =.故选:B .5.无论x 取何值,下列代数式的值一定是正数的是( )A .2(1)x +B .|1|x +C .21x +D .21x -+【解答】解:A .2(1)0x +,此选项不符合题意;B .|1|0x +,此选项不符合题意;C .211x +,此选项符合题意;D .211x -+,此选项不符合题意;故选:C .6.在下列式子12ab ,2a b +,21ab b ++,32x y +,236x x +-中,多项式有( ) A .2个B .3个C .4个D .5个 【解答】解:2a b +,21ab b ++,236x x +-是多项式, 故选:B . 7.下列方程变形,正确的是( )A .由2(3)2x -=-,得226x =--B .由1132x x --=,得2133x x -=- C .由232124x x ---=,得24324x x --+= D .由0.40.1 1.50.3x -=,得411532x x --= 【解答】解:A 、由2(3)2x -=-,得226x =-+,错误;B 、由1132x x --=,得2633x x -=-,错误; C 、由232124x x ---=,得24324x x --+=,正确; D 、由0.40.1 1.50.3x -=,得41 1.53x -=,错误; 故选:C .8.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( )A .甲或乙或丙B .乙C .丙D .乙或丙【解答】解:甲超市的实际售价为0.80.80.64m m ⨯⨯=元;乙超市的实际售价为0.60.6m m ⨯=元;丙超市的实际售价为0.70.90.63m m ⨯⨯=元,∴最划算应到的超市是乙,故选:B .9.桌子上有8只杯口朝上的茶杯,每次翻转3只,经过n 次翻转可使这8只杯子的杯口全部朝下,则n 的最小值为( )A .3B .4C .5D .6【解答】解:原来:上,上,上,上,上,上,上,上;第一次翻转结束后:下,下,下,上,上,上,上,上;第二次翻转结束后:下,下,上,下,下,上,上,上;第三次翻转结束后:下,下,上,下,上,下,下,上;第四次翻转结束后:下,下,下,下,下,下,下,下;即:最少经过4次翻转可使这8只杯子的杯口全部朝下,所以,4n =最小,故选:B .10.按下面的程序计算:如果n 值为非负整数,最后输出的结果为2343,则开始输入的n 值可能有( )A .2种B .3种C .4种D .5种【解答】解:当最后的结果是2343,列出方程:532343n +=,解得1468n =再由:53468n +=,解得293n =5393n +=,解得318n =53418n +==,解得43n =533n +=,解得50n =有:0,3,18,93,468共5种.故选:D .二、填空题(本大题共8小题,每小题2分,共16分.)11.据统计,全球每小时约有510 000 000吨污水排入江河湖海,用科学记数法表示为85.110⨯ 吨.【解答】解:510 000 000吨用科学记数法表示为85.110⨯吨.12.数轴上表示有理数3-与4的这两个点之间的距离是 7 .【解答】解:数轴上表示3-与4这两个点之间的距离是|34|7--=.故答案是:7.13.若关于x 的多项式3(2)2m x n x --+为三次二项式,则m n += 5 .【解答】解:根据题意得:3m =,20n -=,解得:2n =,则325m n +=+=.故答案为:5.14.已知方程||1(2)40a a x --+=是一元一次方程,则a = 2- ,x = .【解答】解:由一元一次方程的特点得1120a a ⎧-=⎨-≠⎩,解得:2a =-, 故把2a =-代入原方程得|2|1(22)40x ----+=,解得:1x =.故填:2-、1.15.代数式21a +与13a -互为相反数,则a = 2 .【解答】解:根据题意得:21130a a ++-=,解得:2a =,故答案为:216.已知关于x 的方程490bx a +-=的解是2x =,则2a b --的值是 【解答】解:把2x =代入方程490bx a +-=得:2490b a +-=,等式两边同时加上9得:249b a +=,等式两边同时乘以12-得:922a b --=-, 故答案为:92-. 17.某种出租车的收费标准为:起步价为9元,即行驶不超过3km ,需付9元车费;超过3km 后,按每千米2.5元收费(不足1km 按1km 计).若小亮乘坐这种出租车从甲地到乙地共支付车费39元,设小亮从甲地到乙地经过的路程为xkm,则x的最大值是15km.【解答】解:设此人从甲地到乙地的路程的最大值为xkm,由题意,得+-⨯=,9(3) 2.539x解得:15x=.答:x的最大值是15,故答案为:15km.18.88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,⋯,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了.请问:电梯在运行的过程中,最多还有10个楼层的数字显示是正确的.【说明】数字0、1、2、3、4、5、6、7、8、9显示方式如图所示.【解答】解:根据题意及分析可得:显示左边数字的7根线段中有1根不能亮了,最多能显示是正确的数字6个,少了最左下边的一根,分别是:1,3,4,5,7,9;显示右边数字的7根线段中有3根不能亮了,只有1,4,7三个数的组成小于等于4根,∴最多能显示是正确的数字2个,分别是:1,7或1,4;∴左右两边可以组成11、17、31、37、41、47、51、57、71、77、或11、14、31、43、41、44、51、54、71、74,∴最多还有10个楼层的数字显示是正确,故答案为:10.三、解答题(本大题共8小题,共54分.)19.计算:(1)12(8)(7)15--+--;(2)32412(2)3|1(2)|5---÷+⨯--. 【解答】解:(1)12(8)(7)15128715(128)(715)20222--+--=+--=++--=-=-(2)324512(2)3|1(2)|12(8)3|14|12103|3|12109754---÷+⨯--=---⨯+⨯-=-++⨯-=-++= 20.解下列方程:(1)13(2)5x x --=-;(2)213136x x ---=-. 【解答】解:(1)去括号,得:1365x x -+=-,移项,得:3516x x --=---,合并同类项,得:412x -=-,系数化为1,得:3x =;(2)去分母,得:2(21)(3)6x x ---=-,去括号,得:4236x x --+=-,移项,得:4623x x +=-++,合并同类项,得:51x =-,系数化为1,得:15x =-. 21.先化简,再求值:22211[3(159)]2()23a a ab a ab --+-,其中a 、b 满足2|2|(3)0a b -++=. 【解答】解:原式2221(353)222a a ab a ab =-++- 223222a ab a ab =-++- 212a ab =-, 2|2|(3)0a b -++=,2a ∴=,3b =-, 则原式2122(3)2=-⨯⨯- 43=+7=.22.已知231A ax x by =-+-,2332B y x x =--+且无论x ,y 为何值时,2A B -的值始终不变.(1)分别求a 、b 的值;(2)求a b 的值.【解答】解:(1)2A B -223312(3)2ax x by y x x =-+----+ 22316232ax x by y x x =-+--++-2(2)(2)7a x b y =-++-,2A B -的值始终不变,20a ∴-=,20b +=,2a ∴=,2b =-;(2)2(2)4a b =-=.23.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-++-.【解答】解:由数轴上点的位置可得(1)0a b +<;0a c +<;0b c ->故答案为<;<;>(2)由(1)知,0a b +<;0a c +<;0b c ->,∴先去绝对值,再去括号得||2||||a b a c b c +-++-()2[()]()a b a c b c =-+--++-22a b a c b c =--+++-a c =+故答案为:a c +24.如果方程34217123x x -+-=-的解与关于x 的方程4(31)621x a x a -+=+-的解相同,求代数式21a a +-的值.【解答】解:解方程34217123x x -+-=-得10x =, 将10x =代入4(31)621x a x a -+=+-得:40316021a a --=+-,解得:4a =-,则原式2(4)41=---11=,25.一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;⋯;若在第n 次操作后,剩下的长方形为正方形,则称原长方形为n 阶奇异长方形.如图1,长方形ABCD 中,若2AB =,6BC =,则称长方形ABCD 为2阶奇异长方形.判断与操作:如图2,长方形ABCD 长为10,宽为6,它是奇异长方形,请写出它是 3 阶奇异长方形,并在图中画出裁剪线;探究与计算:已知长方形ABCD 的一边长为24,另一边长为(24)a a <,且它是3阶奇异长方形,请画出所有可能的长方形ABCD 及裁剪线的示意图,并求出相应的a 值.【解答】解:如图2中,观察图象可知,这个长方形是3阶奇异长方形,故答案为3.①当6a=时,是3阶奇异长方形,如下图所示②当485a=时,是3阶奇异长方形,如下图所示③当725a=时,是3阶奇异长方形,如下图所示④当18a=时,是3阶奇异长方形,如下图所示综上所述,满足条件的a的值为6或485或725或18.26.问题一:如图1,已知A,C两点之间的距离为16cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8/cm s,乙的速度为6/cm s,设乙运动时间为()x s,甲乙两点之间距离为()y cm.(1)当甲追上乙时,x 32.(2)请用含x的代数式表示y.当甲追上乙前,y=;当甲追上乙后,甲到达C之前,y=;当甲到达C之后,乙到达C之前,y=.问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧(1AB小时的间隔),易知30AOB∠=︒.(1)分针OD指向圆周上的点的速度为每分钟转动cm;时针OE指向圆周上的点的速度为每分钟转动cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【解答】问题一、(1)当甲追上乙时,甲的路程=乙的路程3+,863x x∴=+解得32 x=故答案为3 2(2)当甲追上乙前,路程差=乙所行驶的路程3+-甲所行驶的路程,63832y x x x∴=+-=-.当甲追上乙后,甲到达C之前,路程差=总路程3--乙所行驶的路程,83623y x x x∴=--=-.当甲到达C之后,乙到达C之前,路程差=总路程3--乙所行驶的路程,1636136y x x∴=--=-.故答案为32x-;23x-;136x-.问题二:(1)由题意AB为钟表的外围的一部分,且30AOB∠=︒,可知,钟表外围的长度为31236⨯=,分针OD的速度为3 36605÷=,时针OE的速度为1 36020÷=,故答案为35;120.(2)4点钟时时针与分针的路程差为4312cm⨯=,设x分钟后分针与时针第一次重合.由题意得,3112 520x x=+解得24011x=.答:从4:00起计时,24011分钟后分针与时针第一次重合.。

2018-2019学年江苏省南京市七年级(上)期中数学试卷含答案解析

2018-2019学年江苏省南京市七年级(上)期中数学试卷含答案解析

2018-2019学年江苏省南京市七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.的倒数是()A.2018B.﹣2018C.﹣D.2.如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣203.下列各组数中,互为相反数的是()A.与﹣0.8B.与﹣0.33C.﹣2与﹣D.0与0 4.下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3)a+1;(4)a2﹣;(5)﹣(x+y)A.1B.2C.3D.45.在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x6.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=37.下列方程中是一元一次方程的是()A.2x﹣4=y+2B.5x﹣3=6x+1C.xy=2D.x+=2 8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,系数化为1,得t=1D.方程=,去分母,得5(x﹣1)=2x9.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017 10.已知x m﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1B.﹣1C.﹣2D.211.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>012.代数式mx﹣2x+y+8的值与x的取值无关,那么m的值是()A.﹣8B.0C.2D.8二、填空题(本题共6个小题,每小题3分,共18分)13.单项式﹣2ab2的系数是.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.15.将数1.4920精确到十分位为.16.如果|m﹣1|+(n﹣2018)2=0,那么mn的值为.17.某商品每件的售价是192元,销售利润是60%,则该商品每件的进价元,18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=﹣2×1+3×5=13,则方程x⊕4=0的解为.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.(8分)计算:(1)(﹣10)÷(﹣)×5(2)(﹣1)10×2+(﹣2)3÷420.(8分)解方程:(1)5(x﹣8)=10;(2).21.(8分)先化简,再求值:(x2﹣2x3+1)﹣(﹣1﹣2x3+2x2),其中x=2.22.(8分)已知:x﹣2y﹣2=0.(1)x﹣2y=.(2)求:+(5+4x﹣6y)+2(y﹣x+1)的值.23.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).24.(8分)(1)一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做多少天完成?(2)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做A种零件,多少天做B种零件,才能使得所有零件都刚好配套?25.(9分)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.26.(9分)数轴上两点A、B,其中A、B对应的数分别是a、b(b>0).(1)若A点表示数﹣4,点B表示数7,求线段AB的长;(2)若A点表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3)若P、Q点分别同时从点A、B向右运动,点P速度为x个单位秒,点Q速度为b 个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a、b取何值,才使得P、Q两点对应的数m、n始终满足.2018-2019学年江苏省南京市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.的倒数是()A.2018B.﹣2018C.﹣D.解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.2.如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣20解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选:D.3.下列各组数中,互为相反数的是()A.与﹣0.8B.与﹣0.33C.﹣2与﹣D.0与0解:A、与﹣0.8不是相反数,错误;B、与﹣0.33不是相反数,错误;D、﹣2与﹣不是相反数,是倒数,错误;D、0与0是相反数,正确;故选:D.4.下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3)a+1;(4)a2﹣;(5)﹣(x+y)A.1B.2C.3D.4解:(1)单独一个字母a是单项式,故错误;(2)2x2+2xy+y2;(3)a+1;(5)﹣(x+y)都是多项式.故选:C.5.在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x解:与2xy是同类项的是xy.故选:C.6.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=3解:A、在等式a=b的两边应该加上同一个数该等式才成立,故本选项错误;B、在等式a=b的两边同时乘以c,该等式仍然成立,故本选项正确;C、当c=0时,该等式不成立,故本选项错误;D、如果a2=3a,那么a=0或a=3,故本选项错误;故选:B.7.下列方程中是一元一次方程的是()A.2x﹣4=y+2B.5x﹣3=6x+1C.xy=2D.x+=2解:A、2x﹣4=y+2,含有2个未知数,不是一元一次方程,选项不符合题意;B、5x﹣3=6x+1是一元一次方程,故选项符合题意;C、xy=2,含有2个未知数,且次数是2次,不是一元一次方程,不符合题意;D、x+=2不是整式方程,不是一元一次方程,选项不符合题意.故选:B.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,系数化为1,得t=1D.方程=,去分母,得5(x﹣1)=2x解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,错误;C、方程t=,系数化为1,得t=,错误;D、方程=,去分母,得5(x﹣1)=2x,正确,故选:D.9.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017解:(﹣1)2017=﹣1.故选:B.10.已知x m﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1B.﹣1C.﹣2D.2解:根据题意得:m﹣1=1,解得:m=2,故选:D.11.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.12.代数式mx﹣2x+y+8的值与x的取值无关,那么m的值是()A.﹣8B.0C.2D.8解:∵mx﹣2x+y+8=(m﹣2)x+y+8,∴当代数式mx﹣2x+y+8的值与字母x的取值无关时,m﹣2=0.解得:m=2,故选:C.二、填空题(本题共6个小题,每小题3分,共18分)13.单项式﹣2ab2的系数是﹣2.解:单项式﹣2ab2的系数是﹣2,故答案为﹣2.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为 5.4×106万元.解:5 400 000=5.4×106万元.故答案为5.4×106.15.将数1.4920精确到十分位为 1.5.解:数1.4920精确到十分位为1.5.故答案为1.5.16.如果|m﹣1|+(n﹣2018)2=0,那么mn的值为2018.解:∵|m﹣1|+(n﹣2018)2=0,∴m﹣1=0,n﹣2018=0,解得:m=1,n=2018,故mn=2018.故答案为:2018.17.某商品每件的售价是192元,销售利润是60%,则该商品每件的进价120元,解:设该商品每件的进价为x元,根据题意可得:(1+60%)x=192,解得:x=120,故答案为:120.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=﹣2×1+3×5=13,则方程x⊕4=0的解为x=6.解:∵x⊕4=﹣2x+3×4=﹣2x+12,∴方程x⊕4=0可化为:﹣2x+12=0,解得x=6.故答案为:x=6.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.(8分)计算:(1)(﹣10)÷(﹣)×5(2)(﹣1)10×2+(﹣2)3÷4解:(1)(﹣10)÷(﹣)×5=10×5×5=250;(2)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2+(﹣2)=0.20.(8分)解方程:(1)5(x﹣8)=10;(2).解:(1)去括号得:5x﹣40=10,移项得:5x=40+10,合并同类项得:5x=50,系数化为1得:x=10,(2)去分母得:4(2x﹣1)﹣3(2x﹣6)=12,去括号得:8x﹣4﹣6x+18=12,移项得:8x﹣6x=12﹣18+4,合并同类项得:2x=﹣2,系数化为1得:x=﹣1.21.(8分)先化简,再求值:(x2﹣2x3+1)﹣(﹣1﹣2x3+2x2),其中x=2.解:原式=x2﹣2x3+1+1+2x3﹣2x2=﹣x2+2,当x=2时,原式=﹣4+2=﹣2.22.(8分)已知:x﹣2y﹣2=0.(1)x﹣2y=2.(2)求:+(5+4x﹣6y)+2(y﹣x+1)的值.解:(1)∵x﹣2y﹣2=0,∴x﹣2y=2.故答案为2;(2)∵x﹣2y=2,∴原式=5+4x﹣6y+2y﹣2x+2=7+2x﹣4y=7+2(x﹣2y)=7+2×2=11.23.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).解:(1)广场空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,代入(1)得到的式子,得400×100﹣π×102=40000﹣100π(米2).答:广场面积为(40000﹣100π)米2.24.(8分)(1)一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做多少天完成?(2)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做A种零件,多少天做B种零件,才能使得所有零件都刚好配套?解:(1)设余下的工作再由甲独做x天完成,根据题意可得:,解得:x=4,答:余下的工作再由甲独做4天完成;(2)设x天制作A种零件,可得方程:2×50x=20(30﹣x),解得:x=5,30﹣5=25,答:甲30天时间安排5天做A种零件,25天做B种零件,才能使得所有零件都刚好配套.25.(9分)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.解:(1)解方程2x=4得x=2,把x=2代入mx=m+1得2m=m+1,解得m=1;(2)关于x的两个方程2x=a+1与3x﹣a=﹣2得x=,x=,∵关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,∴=,解得a=﹣7;(3)解关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)得x=,x=,∵关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,∴=,∴mn﹣3m﹣3=0,mn=3(m+1),∵m,n是正整数,∴m=3,n=4或m=1,n=6.26.(9分)数轴上两点A、B,其中A、B对应的数分别是a、b(b>0).(1)若A点表示数﹣4,点B表示数7,求线段AB的长;(2)若A点表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3)若P、Q点分别同时从点A、B向右运动,点P速度为x个单位秒,点Q速度为b 个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a、b取何值,才使得P、Q两点对应的数m、n 始终满足.解:(1)AB=|﹣4﹣7|=11;(2)设出发t秒后,P与Q第二次相遇,根据题意得,8t﹣t=AB,即8t﹣t=31﹣(﹣4),解得,t=5,∴第二次相遇点表示的数为:31﹣5=26;(3)设运动时间为t秒,由题意得,m=a+4t,n=b+bt,∵数m、n 始终满足,∴数m、n 始终满足,即2a﹣b+(8﹣b)t=6对于任意的t值都成立,∴,解得,.第11页(共11页)。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

第二中学2018-2019学年七年级上学期期中考试数学试卷

第二中学2018-2019学年七年级上学期期中考试数学试卷

张家港市第二中学2018-2019学年第一学期期中试卷初一数学(满分:130分 时间:120分钟)(本大题共10小题,每小题3分,共30分.请将选择题的答案填在答题纸相....) ( ▲ )12B .2C .-2D .12▲ )B .负数C .0D .不能确定正负361000000km 2,用科学记数法可表示为( ▲ )106 km 2 B .36.1×107 km 2 C .0.361×109 km 2 D .3.61×108 km 2( ▲ )0 B .立方是本身的数是0、1 D .倒数是本身的数是±1 x +y ,0,-a ,-3x 2y ,13x +,1x中,单项式的个数为( ▲ ) B .4 C .5 D .6▲ ) 8x 2+3y 2=11x 2y 2 B .4x 2-9x 2=-5x 2 5a 2b -5ba 2=0 D .3m -(-2m)=5m▲ )1-;②数轴上表示数4和-4的点到原点的距离相等;③当0≤a 时,a -成立;④a 的倒数是a1;⑤3)2(-和32-相等。

个 B 、3个 C 、4个 D 、5个 7)4(21+--x m x m是关于x 的四次三项式,则m 的值是( ▲ ) .2- C .4- D .4或4-2271x ab b kab -++-不含ab 项,则k 的值为 ( ▲ )A. 0 B. 7 C. 1 D.不能确定10.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为…………………………( ▲ )A .2a-3bB .4a-8bC .2a-4bD .4a-10b二、填空题:本大题共10小题,每小题3分,共30分.把答案直接填在答题纸相对应的位........置上.... 11. 在227-,0,π,010010001.0 -四个数中,有理数有 ▲ 个 12.-2xy 2的次数为 ▲ .13.一台电脑原价a 元,现降价20%,则现售价为 ▲ 元. 14.比较大小:23-▲ 34-.(填“>”“<”“=”) 15.如图所示是计算机某计算程序,若开始输入2-=x ,则最后输出的结果是▲ .16.已知,m 、n 互为相反数,则n m ++3=__▲____.17.长方形的长为acm ,宽为bcm ,若长增加了2cm 后,面积比原来增加了 ▲ 2cm 18.已知计算规则bc ad db c a -=,则=--1231___▲____.19.已知:x -2y =-9,则代数式2x -4y -1的值为 ▲ .20. 若有理数在数轴上的位置如图所示,则化简:a c ++a b --c b += ▲ .注意:此卷不交,考试结束后自己保存,请将答案填写在答案卷上。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吴中区初中办学联盟2018-2019学年第一学期期中统一测试初一数学试卷一、选择题:(本大题共10小题,每小题2分,共20分) 1.下列运算正确的是( )A .5xy -4xy =1B .3x 2+2x 3=5x 5C .x 2-x =xD .3x 2+2x 2=5x 22.下列各数:-6,-3.14,-π,13,0.307,4,0.21212l ……中,有理数的个数有( ) A .4个 B .5个 C .6个 D .0个 3.下列说法中,正确的是( )A .正数和负数统称为有理数B .互为相反数的两个数之和为零C .如果两个数的绝对值相等,那么这两个数一定相等D .0是最小的有理数 4.观察下列算式:a =-3-, b =+(-0.5),c =45---,那么数a ,b ,c 的大小关系是( ) A .b>c>aB .a>c>bC .a>b>cD .c>b>a5.在式子x +y ,0,-a ,-3x 2y ,13x +,1x 中,单项式的个数为 ( ) A .3B .4C .5D .66.下列各组数中,结果相等的是 ( )A .21-与()21- B .323 与332⎪⎭⎫ ⎝⎛ C .2-- 与()2-- D .()33-与33-.7.设a>0,b<0,a +b<0,则下列各式中正确的是 ( )A .-a<-b<b<aB .b<-a<a<-bC .-a<b<a<-bD .-a<b<-b<a8.已知a -b =3,c +d =2,则(b +c)-(a -d)的值是 ( ) A .-1 B .1 C .-5 D . 159.多项式7)4(21+--x m x m是关于x 的四次三项式,则m 的值是 ( )A .4B .2-C .4-D .4或4- 10.设计一个商标图案如图中阴影部分,在长方形ABCD 中,AB =8cm ,BC =4cm ,以 点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( )A .(4π+8)cm 2B .(4π+16)cm 2C .(3π+8)cm 2D .(3π+16)cm 2ABF二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上)11.已知太阳的半径约为696000000m ,696000000这个数用科学记数法可表示为 . 12.-12的倒数是_______;-(-5)的绝对值是_______.13.在数轴上把表示-3的对应点沿数轴移动5个单位后,所得的对应点表示的数是_______.14.若单项式2m xy -与137n x y +是同类项,则m n += . 15.若(a -2)2+|b +3|=0,则(a +b )2018的值是 16.20112010a b a b c d cd+-若和互为相反数,和互为倒数,则的值是17.当x=2时,多项式535-++cx bx ax 的值为7,则当x=-2时,这个多项式的值为 ;18.有理数a 、b 、c 在数轴上的位置如图所示, 则2a b a c ---=____ ___.三、解答题:(本大题共10小题,共64分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.计算题(每题3分,共12分)(1)24+(-14)+(-16)+6(2))10()30(211-÷--⨯-(3)()157362912⎛⎫-+⨯- ⎪⎝⎭ (4) ⎪⎭⎫ ⎝⎛-÷⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯4158.03132142220.计算题(本题第一题3分,第二题4分,共7分) (1) ()()2222323y x x y x y -+--+.(2)先化简,再求值:()[]()x x x x x x x 43276323233----+-,其中1-=x21.(本题满分4分)已知:a =3,b 2=4,ab<0,求a -b 的值.22.(本题满分6分)已知1322--=x x A ,532--=x x B ,(1)计算B A 32+;(2)通过计算比较A 与B 的大小.23.(本题6分)如果代数式())1532(6222-+--+-+y x bx y ax x 的值与字母x 所取的值无关,试求代数式b a 2-的值.24.(本题6分)有这样一道计算题:()()22222222232525x y x y x y y x y y x y ⎡⎤+---+-⎣⎦的值,其中x =12,y =-1.小明同学把“x =12”错看成“x =-12”,但计算结果仍正确;小华同学把“y =-1”错看成“y =1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.25.(本题5分)某市煤气公司按以下规定收取煤气费:每户每月用煤气不超过60立方米,按每立方米0.8元收费:如果每月超过60立方米,超过部分按每立方米1.2元收费.(1)设甲用户某月用煤气x 立方米,用含x 的代数式表示甲用户该月所缴的煤气费.若x ≤60时,则费用表示为_______元;若x>60时,则费用表示为_______元。

(2)若甲用户10月份缴纳的煤气费是84元,求甲用户10月份用去煤气多少立方米?26.(本题共7分)定义一种新运算:观察下列式:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;5⊙4=5×4+4=24; 4⊙(-3)=4×4-3=13;…… (1)根据上面的规律,请你想一想:a ⊙b = ; (2)若a ≠b ,那么a ⊙b b ⊙a (填入“=”或“≠”) (3)若a ⊙(-2b )=4,请计算 (a -b )⊙(2a +b )的值.27.(本题5分)同学们都知道,()42--表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理3x -也可理解为x 与3两数在数轴上所对应的两点之间的距离。

试探索: (1)求()42--= . (2)若5|2|=-x ,则x =(3)同理426x x -++=表示数轴上有理数x 所对应的点到4和-2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得426x x -++=,这样的整数是 _ ____ . 28.(本题6分)(1)观察一列数⋅⋅⋅====,81,27,9,34321a a a a L 发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么6a =__________,n a =__________;(可用幂的形式表示) (2)如果想要求103222221+⋅⋅⋅++++的值,可令10321022221+⋅⋅⋅++++=S ① 将①式两边同乘以2,得_________________________②,由②减去①式,得10S =_______.(3)若(1)中数列共有20项,设2020812793a S +⋅⋅⋅++++=,请利用上述规律和方法计算20S 的值.20S =__________。

吴中区初中办学联盟2018-2019学年第一学期期中统一测试初一数学答题卷2018年11月11、 12、 13、 14、15、 16、 17、 18、 三、解答题(共64分)19.计算题(每题3分,共12分) (1) 24+(-14)+(-16)+6(2))10()30(211-÷--⨯-(3) ()157362912⎛⎫-+⨯- ⎪⎝⎭ (4) ⎪⎭⎫ ⎝⎛-÷⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯4158.03132142220.计算题(第一题3分,第二题4分,共7分)(1)()()2222323y x x y x y -+--+(2)先化简,再求值:()[]()x x x x x x x 43276323233----+-,其中1-=x21.(本题满分4分) 22.(本题满分6分)(1) (2)23.(本题6分)24.(本题6分)25.(本题5分)(1) _______元 ; _______元 (2)26.(本题共7分)(1)a ⊙b = ;(2)a ⊙b b ⊙a (填入“=”或“≠”) (3)27.(本题5分)(1)求()42--= . (2)若5|2|=-x ,则x =(3)同理426x x -++=表示数轴上有理数x 所对应的点到4和-2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得426x x -++=,这样的整数是 _ ____ .28.(本题6分)(1)观察一列数12343,9,27,81,,a a a a ====发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么6a =__________, n a =__________;(可用幂的形式表示) (2)如果想要求231012222+++++的值,可令23101012222S =+++++①将①式两边同乘以2,得_________________________②,由②减去①式,得10S =_______.(3)若(1)中数列共有20项,设2020392781S a =+++++,请利用上述规律和方法计算20S 的值.20S =__________。

相关文档
最新文档