大学生物化学课件 机体内的糖代谢途径
生物化学第八章糖代谢
§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。
生物化学 糖代谢
生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。
糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。
糖代谢主要包括两大路径:糖酵解和糖异生。
本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。
糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。
糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。
其中主要以糖原泛素和琥珀酸途径为代表。
糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。
它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。
糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。
糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。
接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。
随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。
草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。
草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。
琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。
琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。
琥珀酸途径的关键酶有异构酶、羧酸还原酶等。
糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。
糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。
糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。
丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。
糖化学和糖代谢(共149张PPT)
葡萄糖的主要分解代谢途径
葡萄糖
糖酵解
(有氧或无氧)
6-磷酸葡萄糖
(无氧) 丙酮酸
(有氧)
乙酰 CoA
乳酸 乙醇
磷酸戊糖途 径
三羧酸 循环
55
细胞定位
动物细胞
磷酸戊糖途径
糖酵解
丙酮酸氧化三
羧酸循环
胞饮 中心体
细胞膜 细胞质 线粒体 高尔基体
细胞核
吞噬 分泌物
内质网 溶酶体 细胞膜
植物细胞
细胞壁 叶绿体
右旋糖苷 2) 生化分离--交联葡聚糖
41
五、糖蛋白和蛋白聚糖 (一)糖蛋白:糖含量<蛋白含量
1.糖蛋白的结构 O连接 和含-OH的氨基酸以糖苷形式结合
N连接 与天冬酰胺的酰胺基连接
42
(二)蛋白聚糖 蛋白含量<糖含量
糖胺聚糖链共价连接于核心蛋白组成
糖胺聚糖是不分枝的、呈酸性的、阴离子多糖长 链聚合物,以氨基己糖和糖醛酸组成的二糖单位 为基本单元构成, 旧称粘多糖、氨基多糖、酸性 多糖。它是动、植物,特别是高等动物结缔组织
糖原是人和动物餐间以及肌肉剧烈运动时最易动用的葡 萄糖贮库。
35
36
糖原结构与支链淀粉很相似,糖原分支程度更
高,分支链更短,平均8-12个残基发生一次分支。 高度分支可增加分子的溶解度,还可使更多的非 还原末端同时受到降解酶(糖原磷酸化酶、 -淀 粉酶)的作用,加速聚合物转化为单体,有利于即时
动用葡萄糖贮库以供代谢的急需。
一个还原端。
32
33
淀粉
淀粉水解
(酸或淀粉酶)
直链淀粉 支链淀粉
红色糊精
无色糊精 麦芽糖 葡萄糖
遇碘显色
《生化》第六章糖代谢
P
ATP ADP
ADP
ATP
COOH C OH
C
OH
磷酸甘油酸激酶
F-1,6-2P
CH2 O
磷酸二 羟丙酮
NAD+ NADH+H+
P
CH2 O
P
3-磷酸 甘油醛
1,3-二磷酸 甘油酸
3-磷酸甘油酸
磷酸甘油酸激酶(phosphoglycerate kinase)
ATP
1,3-二磷酸甘油酸
ADP
G-1-P
二、单糖的氧化分解 主要指G,经多糖降解后生成的G,吸收进 入细胞进行氧化分解,从而为机体提供能量。机 体几乎所有的组织的细胞中,都能进行糖的分解 以获能。
G进行氧化分解供能的途径主要有三条
糖的无氧分解(酵解)
糖的有氧分解 糖的磷酸戊糖支路分解
1.糖酵解的反应过程
(1)糖酵解(glycolysis)的定义
第二阶段
由丙酮酸转变成乳酸。
Glu
ATP ADP
(一)葡萄糖分解成丙酮酸
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
G-6-P F-6-P
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
HO CH2 H HO O H OH H H H OH
P O CH2
ATP ADP
H HO O H OH H H H OH
门静脉
肝脏
GLUT
各种组织细胞
体循环
三、糖代谢的概况
糖原
糖原合成 肝糖原分解
酵解途径
ATP
有氧
核糖 磷酸戊糖途径 +
NADPH+H+
生物化学 --糖代谢(共32张PPT)
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O
生物化学糖的各种代谢途径
生物化学糖的各种代谢途径糖是生物体内重要的能量来源,它经过一系列代谢途径转化成为能够供给细胞进行生命活动所需能量的物质。
本文将从不同角度介绍糖的代谢途径。
1. 糖的消化与吸收糖的消化与吸收是糖的代谢的第一步。
在消化道中,碳水化合物被酶水解成单糖,如葡萄糖、果糖和半乳糖等。
这些单糖通过细胞膜上的特定转运蛋白进入肠细胞,并进一步转运到血液中。
2. 糖的糖酵解糖酵解是糖的代谢重要途径之一,其主要发生在细胞质中。
在糖酵解过程中,葡萄糖分子通过一系列酶的催化,最终转化为丙酮酸和乳酸。
这个过程产生了少量的ATP,同时还释放出能量。
3. 糖的糖异生糖异生是一种逆向的糖代谢途径,它发生在肝脏、肾脏和肌肉等组织中。
在糖异生过程中,非糖物质如乳酸、氨基酸和甘油等被转化为葡萄糖。
这个过程在低血糖状态下起到维持血糖平衡的作用。
4. 糖的糖原代谢糖原是一种多糖,是动物体内储存能量的主要形式。
糖原代谢包括糖原的合成和降解两个过程。
在糖原合成中,多个葡萄糖分子通过糖原合成酶连接成为长链状的糖原分子。
而在糖原降解中,糖原酶将糖原分子逐步分解成为葡萄糖分子,供给机体能量需求。
5. 糖的糖酮体代谢当机体处于长时间低血糖状态或长期饥饿状态时,脂肪组织会分解脂肪生成酮体,其中乙酰酮酸和羟基丁酸是两种主要的酮体。
在饥饿状态下,脑细胞主要利用酮体供能。
6. 糖的糖醇代谢糖醇是一种糖的衍生物,如甘露醇和山梨醇等。
糖醇可以通过酶的催化作用与糖酮体和糖酵解产物相互转化。
糖醇在机体中具有调节渗透压和抗氧化等功能。
7. 糖的糖基转移糖基转移是一种重要的糖代谢途径,它参与了糖的合成、降解以及信号传导等过程。
糖基转移酶可以将糖基从一种底物转移到另一种底物上,形成新的糖分子。
总结起来,糖的代谢途径涵盖了糖的消化与吸收、糖酵解、糖异生、糖原代谢、糖酮体代谢、糖醇代谢和糖基转移等多个方面。
糖作为生物体内重要的能量来源,其代谢途径的研究不仅有助于理解生命活动的基本过程,还为糖代谢相关疾病的治疗提供了理论依据。
生物化学第四章糖代谢ppt课件
吸收机制
单糖主要通过小肠黏膜上皮细胞以 主动转运方式吸收进入血液。
影响因素
糖的消化吸收受多种因素影响,如 食物中糖的
吸收后的单糖主要通过门 静脉进入肝脏,再经血液 循环运输到全身各组织器 官。
淋巴运输
少量单糖和寡糖也可通过 淋巴管运输到血液循环中 。
06 糖原的合成与分 解
糖原的合成
合成部位
肝和肌肉是合成糖原的主要器官,其中肝糖原占总量10% ,肌糖原占90%。
合成原料
主要有葡萄糖、果糖和半乳糖等单糖。
合成过程
包括活化、缩合、分支和交联等步骤,最终形成具有高度 分支结构的糖原分子。
糖原的分解
01
分解部位
主要在肝脏和肌肉中进行。
02 03
分解过程
柠檬酸循环
在线粒体中,丙酮酸经过一系列反应生成CO2、 H2O和大量ATP。
糖有氧氧化的生理意义
1 2
能量供应
糖有氧氧化是体内主要的能量供应途径,为细胞 活动提供ATP。
物质代谢枢纽
糖有氧氧化连接糖、脂肪和蛋白质三大物质代谢 ,实现能量转换和物质转化。
3
维持血糖水平
通过糖有氧氧化,可以维持血糖水平在正常范围 内。
糖有氧氧化的调节
激素调节
胰岛素促进糖有氧氧化,而胰高血糖素和肾上腺素则抑制该过程 。
底物水平调节
细胞内糖浓度升高时,可促进糖有氧氧化;反之,则抑制该过程。
酶活性调节
关键酶的活性受到磷酸化和去磷酸化的共价修饰调节,从而控制糖 有氧氧化的速率。
05 磷酸戊糖途径
磷酸戊糖途径的过程
磷酸戊糖的形成
在磷酸戊糖途径中,葡萄糖首先经过磷酸化反应生成葡萄糖6-磷酸,随后经过异构化反应生成果糖-6-磷酸。果糖-6-磷 酸再经过磷酸化反应生成果糖-1,6-二磷酸,最终裂解成两个 磷酸丙糖分子。
生物化学-糖代谢PPT课件
特点:不可逆反应。需ATP提供磷酸基和能量 磷酸果糖激酶-1 是糖酵解最重要的限速酶之一
(4) 1,6-二磷酸果糖裂解成2个磷酸丙糖
(5) 3-磷酸甘油醛氧化为1,3-二磷酸酸甘 油酸
3-磷酸甘油醛脱氢酶催化,该途径唯一的氧 化步骤
(6)1,3-二磷酸甘油酸转变成3-磷酸甘油酸
5-磷酸核酮糖
NADP+
NADPH + H+ +CO2
2. 5-磷酸核酮糖的基团转移反应过程:
在此阶段,经由5-磷酸核酮糖的异构可生成 5-磷酸核糖 5-磷酸核酮糖经一系列基团转移及差向异构 反应生成3-磷酸甘油醛和6-磷酸果糖。 基团转移阶段的所有反应均为可逆反应。
5-磷酸核酮糖(C5) ×3
三羧酸循环的特点
②循环反应在线粒体(mitochondrion)中进行,是 单向反应体系,为不可逆反应。 ③三羧酸循环中有两次脱羧反应,生成两分子CO2; 有四次脱氢反应,生成三分子NADH和一分子FADH2。 有一次底物水平磷酸化,生成一分子GTP。
⑤三羧酸循环是机体主要的产能方式,每完成一次 循环,氧化分解掉一分子乙酰基,可生成10分子 ATP。
糖代谢
Metabolism of Carbohydrates
第一节 概 述
Section 1 Introduction
生物化学
➢糖的概念
糖(carbohydrates)即碳水化合物,其化 学本质为多羟醛或多羟酮及其衍生物。如葡 萄糖、蔗糖、淀粉、糖原、糖复合物等。
食物中的糖主要是淀粉,经消化为葡萄 糖吸收入血后进行代谢,故糖代谢主要指葡 萄糖代谢。
5.红细胞中的糖酵解存在2,3-二磷酸甘
油酸支路
中国药科大学生物化学课件基地班糖代谢(ppt)
活性中心外变构调节部位(亲和力小) 抑制
Pi
Gn-1 ATP
6-磷酸果糖
糖原(Gn)
ADP 1,6-二磷酸果糖
过
2×乳酸
程
磷酸二羟丙酮 3-磷酸甘油醛
2×丙酮酸 2×NADH+ 2H+ 2×NAD+
2×Pi
2×烯醇式丙酮酸 2×ATP
2×ADP
2×磷酸烯醇式丙酮酸
2× 2-磷酸甘油酸
2×H2O
2×1,3-二磷酸甘油酸 2×ADP
2×ATP 2× 3-磷酸甘油酸
H
丙酮酸
乳酸
O
NADH+H+
OPO32-
C
O-
NAD + Pi O
CH
HC OH HO
H 2 C O P O 3-磷酸甘油醛脱氢酶
HC OH HO
OH
(1,3-BPG) 1,3-二磷酸甘油酸
H 2C O P O OH
3-磷酸甘油醛
反应部位:胞液
1-磷酸葡萄糖
糖
酵
ATP ADP
解 葡萄糖
6-磷酸葡萄糖
CH 2 OPO 3 H 2
H H
OH
OH H
HO
OH
HO
H
Mg2+ H
H
OH
磷酸己糖异构酶
(G-6-P)
H 2C O H
CO
H
HO CH
H
C OH H
C OH HO
H 2C O P O OH
(F-6-P)
1CHO 2C O H 3C H 4C O H 5C O H
6CH 2 OH
6-磷酸葡萄糖
6-磷酸果糖
生物化学 食品 第六章 糖代谢(共112张PPT)
(一)淀粉
(4)淀粉的水解
常用方法有酸法和双酶法。 淀粉在水解过程中常用DE值来表示淀粉的水解程度。
葡萄糖值(DE值)
试样中还原糖总量占干物质总量的质量分数。 DE值越 高,说明水解程度越大,还原糖含量越高,剩余的糊精越少 。
淀粉的水解反应
淀粉 糊精 寡糖 麦芽糖 葡萄糖 水解进程用碘呈色反应表现 蓝糊精→紫糊精→红糊精→浅红糊精→无色糊精→葡糖
在发酵工业领域中,发酵泛指通过微生物及其他生物材料的工 业培养,达到积累发酵产品的种种生产过程。
反应部位:细胞胞液
它是动物、植物和微生物细胞中 葡萄糖分解的共同代谢途径。共10 步,前5步是准备阶段,葡萄糖分解 为三碳糖,消耗2分子ATP;后5步 是放能阶段,酵解过程中所有的中 间物都是磷酸化的,可防止从细胞 膜漏出、保存能量,并有利于与酶 结合。根据底物分子的变化情况可分三
直链淀粉与碘呈蓝色;支链淀粉与碘呈紫红色。
(二)纤维素
由β-D-葡萄糖通过β-1,4糖苷键结合而成的线性大 分子。它无螺旋构象,也无分支结构。但在植物组织中 ,纤维素分子平行排列,糖链之间有氢键联结,构成微 纤维;每一个微纤维由60个纤维素分子组成,有的区域 分子排布非常整齐称为结晶区;有的区域分子排列不整 齐称为非结晶区。
多糖又分为: 均质多糖: 如淀粉、纤维素。
非均质多糖:如果胶、透明质酸等。
糖复合物: 糖和非糖物质共价形成的复合物,如脂多糖、 蛋白聚糖和糖蛋白等。
三、单糖
H
三、单糖
根据羰基在分子中的位置,单糖可分为醛糖和酮糖
单糖具有旋光异构现象(+)右、(—)左,以及对映体D、L型。
三、单糖 对映体(L型、D型的规定)
大学生物化学课件 机体内的糖代谢途径24页PPT
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
大学生物化学课件 机体内的糖代谢途径共24页
大学生物化学课件 机体内的糖代谢途 径
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。—尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH2O P
6-磷酸葡萄糖酸内酯
6-磷酸葡萄糖酸脱氢酶
NADP+
CO2
H
CH2OH C =O C OH
NADPH+H+ ⑵
H C OH
CH2O P 5-磷酸核酮糖
CO O— H C OH HO C H H C OH H C OH
CH2O P 6-磷酸葡萄糖酸
5-磷酸核糖
+ 每3分子6-磷酸葡萄糖同时参与反应,在一 系列反应中,通过3C、4C、6C、7C等演变 阶段,最终生成3-磷酸甘油醛和6-磷酸果糖。
NADH+H+
③
⑧苹果酸脱氢酶
NAD+
GDP+Pi GTP
CO2
NADH+H+
④
延胡索酸
⑤ 琥珀酸 CoASH
α- 酮戊二酸
CO2 CoASH
琥珀酰CoA
+ 反应部位:胞液及线粒体
+ 关键酶: ① 酵解途径:
己糖激酶 丙酮酸激酶 6-磷酸果糖激酶-1
②丙酮酸的氧化脱羧:
丙酮酸脱氢酶复合体 ③ 三羧酸循环:
甘油酸
磷酸丙糖异构酶
ADP ATP COOH
COOH
磷酸甘油 酸激酶
C OH 磷酸甘油酸 C O P 烯醇化酶
CH2 O P 变位酶
CH2 OH
3-磷酸甘油酸
2-磷酸甘油酸
COOH
H2O+ C O P
CH2
磷酸烯醇式丙酮酸
ADP
ATP COOH
K+ Mg2+
C=O
丙酮酸激酶
CH3
丙酮酸
+ 反应部位:胞浆 + 关键酶: ① 己糖激酶
+ 分为二个阶段:
氧化反应 生成磷酸戊糖,NADPH+H+及CO2
非氧化反应 包括一系列基团转移。
H C OH 6-磷酸葡萄糖脱氢酶 C=O
H C OH
NADP+
H C OH H2O
HO C H O
HO C H O
H C OH HC
NADPH+H+ ⑴
H C OH HC
CH2O P
6-磷酸葡萄糖
1分子GTP。
乙酰 CoA
NADH+H+
H2O
①
CoASH
NAD+
⑧ 草酰乙酸
柠檬酸
①柠檬酸合酶 ②顺乌头酸酶
H2O
②
H2O
② 顺乌头酸
③异柠檬酸脱氢酶
异柠檬酸
GTP
GDP
苹核果苷酸 二磷酸激酶
⑦
ADPH2O
FADHA2 TP
⑥ FAD
④α-酮戊二酸脱氢酶复合体
NAD+
⑤琥珀酰CoA合成酶 ⑥琥珀酸脱氢酶 ⑦延胡索酸酶
② 6-磷酸果糖激酶-1
③ 丙酮酸激酶
+ 生理意义: 不利用氧气迅速供能
是机体在缺氧情况下获取能量的有效方式。 是某些细胞在氧供应正常情况下的重要供能途径。
(无线粒体的细胞,如:红细胞;代谢活跃的细胞, 如:白细胞)
+ 糖的有氧氧化指在机体氧供充足时,葡萄 糖彻底氧化成 H2O和CO2,并释放出能量 的过程。是机体主要供能方式。
+ 3-磷酸甘油醛和6-磷酸果糖,可进入酵解途 径。
5-磷酸木酮糖 C5
3-磷酸甘油 醛 C3
5-磷酸核酮糖(C5)×3
5-磷酸核糖 C5
7-磷酸景天糖 C7
4-磷酸赤藓糖 C4
6-磷酸果糖 C6
5-磷酸木酮糖 C5
3-磷酸甘油醛 C3
6-磷酸果糖 C6
+ 反应部位:胞浆 + 关键酶: 6-磷酸葡萄糖脱氢酶 + 生理意义:
为核酸的生物合成提供核糖 磷酸核糖用于DNA、RNA的合成; 提供NADPH作为供氢体参与多种代谢反应 – 体内多种合成代谢的供氢体 – 参与体内羟化反应 – 维持谷胱甘肽(GSH)的还原状态
+ 糖异生是指从非糖化合物转变为葡萄糖或 糖原的过程。
+ 与酵解途径的异同: – 糖异生途径与酵解途径大多数反应是共 有的、可逆的; – 酵解途径中有3个由关键酶催化的不可逆 反应。在糖异生时,须由另外的反应和 酶代替。
柠檬酸合酶 α-酮戊二酸脱氢酶复合体 异柠檬酸脱氢酶
+ (三羧酸循环)生理意义:
是三大营养物质(糖、脂肪、氨基酸)氧化分解 的共同途径;
是三大营养物质代谢联系的枢纽; 为其它物质代谢提供小分子前体; 为呼吸链提供H++ e 。
+ 磷酸戊糖途径是指由葡萄糖生成磷酸戊糖 及NADPH+H+,前者再进一步转变成3-磷 酸甘油醛和6-磷酸果糖的反应过程。
+ 反应部位: 肝、肾细胞的胞浆及线粒体 + 关键酶:
– 丙酮酸羧化酶 – 磷酸烯醇型丙酮酸羧激酶 – 果糖双磷酸酶ቤተ መጻሕፍቲ ባይዱ1 – 葡萄糖-6-磷酸酶
+ 生理意义 – 维持血糖浓度恒定 – 补充肝糖原 – 调节酸碱平衡(乳酸异生为糖)
~完结~
H OH
H OH
ATP
ADP
6-磷酸果糖激 酶-1
葡萄糖
6-磷酸葡萄糖
6-磷酸果糖
CH2 O P
CHO
Pi、NAD+NADH+H+ O=C O P
醛缩酶
CO CH2OH
1,6-双磷酸果糖
磷酸二羟丙酮
+ CH OH
CH2 O P
3-磷酸甘油醛
3-磷酸甘油 醛脱氢酶
HC OH
CH2 O P 1,3-二磷酸
PEP
GDP + CO2
磷酸烯醇型丙酮酸羧激酶
GTP
胞
液
天冬氨酸
草酰乙酸
苹果酸
天冬氨酸
α-酮戊二酸
谷氨酸
草酰乙酸
ADP + Pi
丙酮酸羧化酶
线
ATP + CO2
粒
丙酮酸
体
丙酮酸
苹果酸
NAD+ NADH + H+
1,6-双磷酸果糖
Pi
6-磷酸果糖 果糖双磷酸酶-1
Pi
6-磷酸葡萄糖
葡萄糖
葡萄糖-6-磷酸酶
+ 无氧氧化(糖酵解、乳酸发酵) + 有氧氧化 + 磷酸戊糖途径 + 糖异生
+ 一分子葡萄糖在胞质中裂解成两分子丙酮 酸,并产生能量的过程称之为糖酵解。
+ 糖酵解在糖的无氧氧化和有氧氧化均会发 生。
HO CH2
ATP
H
OH
H
ADP P O CH2
H
OH
H
OH HO
H OH
己糖激酶
OH HO
H OH 己糖异构酶
+ 分四阶段: --糖酵解 --丙酮酸的氧化脱羧 --三羧酸循环 --氧化磷酸化
+ 丙酮酸进入线粒体,氧化脱羧为乙酰CoA
总反应式:
NAD+, HSCoA
CO2,NADH + H+
丙酮酸
丙酮酸脱氢酶复合体
乙酰CoA
经过一次三羧酸循环,
– 消耗一分子乙酰CoA, – 经四次脱氢,二次脱羧,一次底物水平磷酸化。 – 生成1分子FADH2,3分子NADH+H+,2分子CO2,