运筹学试题及答案(武汉理工大学)
(NEW)武汉理工大学管理学院《881运筹学》历年考研真题汇编(含部分答案)
1.线性规划具有唯一最优解是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界
2.设线性规划的约束条件为
则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0)
3.
则
A.无可行解
B.有唯一最优解
C.有ห้องสมุดไป่ตู้重最优解
D.有无界解
4.互为对偶的两个线性规划
,
对任意可行解X 和Y,存在关系
A.Z > W
B.Z = W
C.Z≥W
D.Z≤W
5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束 B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量
8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解
9.有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量
一、判断题(10分,每题一分) 大致是前七章内容,记得动态规划只有一道
二、选择题20分,每题两分 大致是前七章内容,记得动态规划也只有一道
三、填空 比较简单……印象不深了……
《运筹学》课程考试试卷及答案
《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。
2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。
4、连通图的是指: 。
5、树图指 ,最小树是 。
6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。
二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。
(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。
(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。
在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。
若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。
请用匈牙利法求总费用最小的分配方案。
(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划:MaxZ=X1+X2X1+9/14X2≤51/14—2X1+X2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进行分枝,应该分为X1≤1和X1≥2。
5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。
6。
假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7。
已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10。
若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和Xi≤INT(bi) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题.11。
知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:)对偶问题的最优解: Y=(4,0,9,0,0,0)(2)写出B—1=二、计算题(60分)1、已知线性规划(20分)MaxZ=3X1+4X2+X2≤512X1+4X2≤123X1+2X2≤8,X2≥012)若C2从4变成5,最优解是否会发生改变,为什么?3)若b2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C2从4变成5时,=—9/8σ4σ=—1/45由于非基变量的检验数仍然都是小于0的,所以最优解不变。
大学考试试卷《运筹学》及参考答案3套.doc
2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。
A.边B.孤C.环D.路2.运筹学是一门()。
A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。
A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。
A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。
A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。
A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。
A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。
A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。
A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。
A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。
A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。
A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。
A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。
A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。
A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
《运筹学》期末考试试卷A-答案
《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。
答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。
答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。
答案:非线性4. 动态规划适用于解决________决策问题。
答案:多阶段5. 排队论中的基本参数包括________、________和________。
答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。
答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。
线性规划问题通常包括目标函数、约束条件和非负约束。
目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。
2. 请简要阐述整数规划的特点。
答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。
《运筹学》试题及参考答案
《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。
运筹学期末试题及答案
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。
最新(整理)《运筹学》期末考试试题及参考答案
(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。
do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。
运筹学试习题及答案
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。
运筹学试题及答案(武汉理工大学)
XX理工大学考试试题纸〔A卷〕课程名称运筹学专业班级XX题号一二三四五六七八九十总分题分10 15 10 50 15 100 备注:学生不得在试题纸上答题(含填空题、选择题、判断题等客观题),时间:120分钟一、单项选择题〔从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分〕1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解C.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题〔你认为下列命题是否正确,对正确的打“√〞;错误的打“×〞。
运筹学试题及答案(武汉理工大学)
运筹学试题及答案(武汉理工大学)武汉理工大学考试试题纸(A卷)课程名称运筹学专业班级姓名题号一二三四五六七八九十总分题分10 15 10 50 15 100 备注:学生不得在试题纸上答题(含填空题、选择题、判断题等客观题),时间:120分钟一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解C.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
武汉理工大学专升本运筹学题库
一、问答( 每题参考分值5分)1、求下列指派问题(min)的最优解C=正确答案:行列分别减去最小数后:C→→没有被直线覆盖的元素减“1”,直线交叉的元素加“1”,其余元素不变,得到最优分配方案:X=;Z=252、写出下列线性规划的对偶线性规划maxZ=5x1+4x2-6x3正确答案:对偶规划为minw=20y1+35y23、求下列指派问题(min)的最优解C=正确答案:行列分别减去最小数后:C→→,得到两个最优解:X1=及X2=,最优值Z=304、求解下列指派问题(min)C=正确答案:行列分别减去最小数或有两个最优解:X1=;X2=;Z=3+1+3+2+2=115、求下图v1到v8最短路及最短路长。
正确答案:最短路的标号计算如下图所示:最短路为P18={v1,v3,v7,v8},最短路长为19。
6、求下列运输问题(min)的最优解正确答案:用最小元素法得到初始解X=检验数,λ12 =0, λ21=4, λ23=7, λ23=2,所有检验数非负,初始解也是最优解:X=,最优值Z=21407、用图解法解下列目标规划minZ=p1(d+3+d+4)+P2d-1+P3d-2正确答案:图形为满意解:X=(30,20)8、写出下列线性规划的对偶线性规划minZ=2x1-x2+3x3正确答案:对偶规划为maxw=10y+8y29、已知世界八大城市之间的距离(千公里)如下表,试建立一个因特网使总距离最短。
正确答案:属于最小树问题,用加边法得到总长度为:8+7+8+7+3+5+6=4410、用对偶单纯形法求解下列线性规划minZ=3x1+4x2+5x3正确答案:将约束条件化为等式后两边同乘以(-1) minZ=3x1+4x2+5x3对偶单纯形表最优解X=(2,3);最优值Z=18二、单选( 每题参考分值2.5分)11、有6个产地4个销地的平衡运输问题模型具有特征()。
A. 有10个变量24个约束B. 有24个变量10个约束C. 有24个变量9约束D. 有9个基变量10个非基变量正确答案:【B】12、线性规划可行域的顶点一定是()。
武汉理工大学运筹学9-12章答案--雄伟
习题:第九章9.1某蛋糕店有一服务员,顾客到达服从λ=30人/小时的Poisson 分布,当店里只有一个顾客时,平均服务时间为1.5分钟,当店里有2个或2个以上顾客时,平均服务时间缩减至1分钟。
两种服务时间均服从负指数分布。
试求: (1)此排队系统的状态转移图; (2)稳态下的概率转移平衡方程组; (3)店内有2个顾客的概率; (4)该系统的其它数量指标。
【解】(1)此系统为]//[:]1//[FCFS M M ∞∞排队模型,该系统的状态转移图如下:(2)由转移图可得稳态下的差分方程组如下:⎪⎪⎩⎪⎪⎨⎧+=++=++=+=+-nn n P P P P P P P P P P P )()()(21212232111220110λμμλλμμλλμμλμλ 011P P μλ=∴ 02122P P μμλ= 022133P P μμλ= 0121P P n nn -=μμλ (3)已知小时)(人==小时)(人==小时)(人/606011/40605.11/3021μμλ= 由1i i P ∞==∑得011121102[1]111n n n P P λμμλμλμ∞-=-+=⎡⎤⎢⎥⎢⎥=+⎢⎥-⎢⎥⎣⎦∑令 1212303301,404602λλρρμμ======,有111021012011234[1][1]0.4112n n n n P p p p ρρλρρμμ----=+=+=--==则 2120310.40.1542P P ρρ==⨯⨯= (4)系统中的平均顾客数(队长期望值))(2.1)5.01(14.043)1(1...)321(222010320101210人=-⨯⨯=-=+++===∑∑∞=-∞=ρρρρρρρP P P n nP L n n n n在队列中等待的平均顾客数(队列长期望值))(4.02114.0432.11...)...1()1(2011222201111人=-⨯-=--=+++++-=-=-=-∞=∞=∞=∑∑∑ρρρρρρp L P L P nP P n L n n nn n n n q系统中顾客逗留时间1.20.04()30LW λ===小时 系统中顾客等待时间)(013.0304.0小时===λqq L W9.2某商店每天开10个小时,一天平均有90个顾客到达商店,商店的服务平均速度是每小时服务10个,若假定顾客到达的规律是服从Poisson 分布,商店服务时间服从负指数分布,试求:(1)在商店前等待服务的顾客平均数。
运筹学试题库(试卷3)
运筹学试题库(试卷3)一、填空题:(10分)1、在图论中,图的基本要素有两个,它们是 和 。
2、结点的最早开始时间和 时间是同一时间,最早开始是对结点的后接工序而言, 是对结点的紧前工序而言。
3、对需要量 供应量的运输问题,求最优解时要先 一个供应点。
4、关键路线是从起点到终点所有路中的最 路,它的线路时差为 。
5、在图论中,为了表示两个队比赛的胜负关系可以用一条带 的 来表示。
二、选择题(10分)1、若T 是图G 的最小支撑树,则( ) A .T 必唯一 B. G 不一定是连通图 C .T 中必不含圈 D.G 中不含圈3、在网络计划中,进行时间与成本优化时,随工期延长,间接费用将( )。
A .减少 B.增加 C.不变 D.不易估计4、若线性规划问题的最优解在可行域的两个顶点达到,则最优解( )。
A .有两个 B.有无穷多个 C.过这两点的直线 D.不可能发生5、在n 个产地,m 个销地的产销平衡运输问题中,( )是错误的。
A . 运输问题是线性规划问题 B . 基变量的个数是数字格的个数 C . 空格有mn-n-m+1个D . 每一格在运输图中均有一闭合回路 三、判断题(10分)1、用单纯形法求解标准型式的线性规划问题时,与σj>0对应的变量都可以被选作换入变量。
( )2、对偶问题的对偶一定是原问题。
( )3、如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化。
( )4、指派问题效率矩阵地每个元素都乘以同意常数k ,将不影响最优指派方案。
( )5、求网络最大流的问题可归结为求解一个线性规划模型。
( ) 四、规划问题(16分)已知线性规划问题⎪⎪⎩⎪⎪⎨⎧=≥-≤+-+≥++++++=-)4,3,2,1(032min 32326532432143214321j z x x x x x x x x x xxxx j(1) 写出其对偶问题;(2) 用图解法求对偶问题的解;(3) 利用(2)的结果及对偶性质求原问题解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学考试试题纸(A卷)备注:学生不得在试题纸上答题(含填空题、选择题、判断题等客观题),时间:120分钟一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解C.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D .m+n -1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A .原问题无可行解,对偶问题也无可行解 B .对偶问题有可行解,原问题可能无可行解 C .若最优解存在,则最优解相同D .一个问题无可行解,则另一个问题具有无界解 9.有m 个产地n 个销地的平衡运输问题模型具有特征 A .有mn 个变量m+n 个约束 B .有m+n 个变量mn 个约束 C .有mn 个变量m+n -1约束D .有m+n -1个基变量,mn -m -n -1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数是 A .)(min 22211+-+++=d d p d p Z B .)(min 22211+-+-+=d d p d p Z C .)(min 22211+---+=d d p d p Z D .)(min 22211+--++=d d p d p Z二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分) 11.若线性规划无最优解则其可行域无界 12.凡基本解一定是可行解13.线性规划的最优解一定是基本最优解14.可行解集非空时,则在极点上至少有一点达到最优值15.互为对偶问题,或者同时都有最优解,或者同时都无最优解 16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变17.要求不超过目标值的目标函数是18.求最小值问题的目标函数值是各分枝函数值的下界 19.基本解对应的基是可行基20.对偶问题有可行解,则原问题也有可行解 21.原问题具有无界解,则对偶问题不可行22.m+n -1个变量构成基变量组的充要条件是它们不包含闭回路 23.目标约束含有偏差变量24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到 25.匈牙利法是对指派问题求最小值的一种求解方法 三、填空题(每小题1分,共10分)26.有5个产地5个销地的平衡运输问题,则它的基变量有( )个 27.已知最优基,C B =(3,6),则对偶问题的最优解是( )28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件( )29.非基变量的系数c j 变化后,最优表中( )发生变化30.设运输问题求最大值,则当所有检验数( )时得到最优解。
31.线性规划的最优解是(0,6),它的第1、2个约束中松驰变量(S 1,S 2)= ( )32.在资源优化的线性规划问题中,某资源有剩余,则该资源影子价格等于( ) 33.将目标函数转化为求极小值是( )34.来源行551134663x x x +-=的高莫雷方程是( )35.运输问题的检验数λij 的经济含义是( ) 四、求解下列各题(共50分) 36.已知线性规划(15分) 123123123m ax 3452102351,2,3j Z x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围 37.求下列指派问题(min )的最优解(10分) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=656979109182015125865C38.求解下列目标规划(15分) 13421321211122213324412m in ()40603020,,,0(1,,4)i i z p d d P d P d x x d d x x d d x d d x d d x x d d i ++---+-+-+-+-+=+++⎧++-=⎪++-=⎪⎪+-=⎨⎪+-=⎪⎪≥=⎩39.求解下列运输问题(min )(10分) 601008011090401029131814458⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C五、应用题(15分)40现要求制定调运计划,且依次满足: (1)B 3的供应量不低于需要量; (2)其余销地的供应量不低于85%; (3)A 3给B 3的供应量不低于200; (4)A 2尽可能少给B 1;(5)销地B 2、B 3的供应量尽可能保持平衡。
(6)使总运费最小。
试建立该问题的目标规划数学模型。
试题参考答案课程名称 运筹学(A 卷)一、单选题(每小题1分,共10分)1.B2.C3. A4.D5.B6.C7.B8.B9.A 10.A 二、判断题(每小题1分,共15分)11. × 12. × 13. × 14.× 15.√ 16.× 17.√ 18. √ 19.× 20. × 21. √ 22. √ 23. √ 24. × 25. √ 三、填空题(每小题1分,共10分)26.(9) 27.(3,0) 28.(对偶问题可行) 29.(λj ) 30.(小于等于0) 31. (0,2) 32. (0) 33.12(m in 5)Z x x '=-+34.134134552(554)663s x x s x x --=---=-或35.x ij 增加一个单位总运费增加λij 四、计算题(共50分) 36.解:(1)化标准型 2分 12312341235m ax 3452102351,2,,5j Z x x x x x x x x x x x x j =++⎧+-+=⎪-++=⎨⎪≥=⎩ 0, (2)单纯形法5分(3)最优解X=(0,7,4);Z =48(2分) (4)对偶问题的最优解Y =(3.4,2.8)(2分)(5)Δc 1≤6,Δc 2≥-17/2,Δc 3≥-6,则1235(,9),,13c c c ∈-∞≥-≥-(4分)37.解:,(5分)(5分)38.(15分)作图如下:满意解X =(30,20)39五、应用题(15分)40.设x ij 为A i 到B j 的运量,数学模型为11223435465776813233311112131221222323314243444335531233m in ()()4802722085854323200..85B z P d P d d d P d P d P d d P d x x x d d x x x d d x B B B A x x d d x x x d d x d d s t -----+-++-+-+-+-+-+=+++++++++++-=+++-=+++-=+++-=+-=保证供应需求的%需求的%需求的%对2161121311222327734811111213142122232343121233233340222005604007500 (1,2,3; 1,2,3,4);,0(1,2,...,8);ij ij i j ijii B x d x x x x x x d d c x d x x x x x x x x x x x x x i j d d i A B B B +-++==-+⎧⎪-=++---+-=⎨-=+++≤+++≤+++≤≥==≥=∑∑对与的平衡运费最小⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩武汉理工大学考试试题纸(B卷)备注:学生不得在试题纸上答题(含填空题、选择题、判断题等客观题),时间:120分钟一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划最优解不唯一是指( )A.可行解集合无界B.存在某个检验数λk>0且C.可行解集合是空集D.最优表中存在非基变量的检验数非零2.则( )A.无可行解B.有唯一最优解C.有无界解D.有多重解3.原问题有5个变量3个约束,其对偶问题( )A.有3个变量5个约束B.有5个变量3个约束C.有5个变量5个约束D.有3个变量3个约束4.有3个产地4个销地的平衡运输问题模型具有特征( )A.有7个变量B.有12个约束C.有6约束D.有6个基变量5.线性规划可行域的顶点一定是( )A.基本可行解B.非基本解C.非可行解D.最优解6.X是线性规划的基本可行解则有( )A.X中的基变量非零,非基变量为零B.X不一定满足约束条件C.X中的基变量非负,非基变量为零D.X是最优解7.互为对偶的两个问题存在关系( )A .原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题也有可行解C .原问题有最优解解,对偶问题可能没有最优解D .原问题无界解,对偶问题无可行解8.线性规划的约束条件为则基本解为( )A.(0, 2, 3, 2) B.(3, 0, -1, 0)C.(0, 0, 6, 5) D.(2, 0, 1, 2)9.要求不低于目标值,其目标函数是( )A.B.C .D .10.μ是关于可行流f 的一条增广链,则在μ上有( ) A.对任意 B.对任意 C.对任意D . .对任意,),(≥∈-ij f j i 有μ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分)11.线性规划的最优解是基本解 12.可行解是基本解13.运输问题不一定存在最优解 14.一对正负偏差变量至少一个等于零 15.人工变量出基后还可能再进基16.将指派问题效率表中的每一元素同时减去一个数后最优解不变 17.求极大值的目标值是各分枝的上界18.若原问题具有m 个约束,则它的对偶问题具有m 个变量 19.原问题求最大值,第i 个约束是“≥”约束,则第i 个对偶变量y i ≤0 20.要求不低于目标值的目标函数是m in Z d -= 21.原问题无最优解,则对偶问题无可行解22.正偏差变量大于等于零,负偏差变量小于等于零 23.要求不超过目标值的目标函数是m in Z d += 24.可行流的流量等于发点流出的合流 25.割集中弧的容量之和称为割量。