松第四章统计学习题

合集下载

《统计学》第四章课后作业题

《统计学》第四章课后作业题

5 122.25%
= *
2.73 100% 第四章作业:
1 、 某工业企业某年资料如下:
要求计算:第一季度月平均劳动生产率。

答: 第一季度月平均劳动生产率=(180+160+200) ÷(600÷2+580+620+600÷2) =30%
2 、已知某工厂产值 2009 年比 2008 年增长 20% , 2010 年比 2009 年增长 50% , 2011 年比 2010 年增长 25% , 2012年比 2008年增长 110% , 2013年比 2012 年增长 30% 。

试根据以上资料编制 2008 — 2013年的环比增长速度数列和定基增长速度数列,并求平均发展速度。

答:2011年定基发展速度=1.73+1=2.73
平均发展速度 =
3 、某化肥厂 2005 年化肥产量为 2 万吨,“十一五”期间(2006年-2010年)每年平均增长 8% ,以后每年平均增长 15% ,问 2015 年化肥产量将达到多少万吨?如果规定 2015 年产量比 2005 年翻两番,问每年需要增长百分之多少才能达到预定产量?
答:
2×1.085×1.155=5.91万吨 设每年的增长百分比为X ,
(X+1)10=4 解出X=14.87%
答:2015年化肥产量将达到5.91万吨,每年需要增长14.87%。

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书

故当
时,

成立,进一步由
可得
,所以又有
1 / 42
圣才电子书

成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得

成立.
3.如果
3 / 42
圣才电子书

十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则

故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.

统计学第四章课后习题答案

统计学第四章课后习题答案

第四章一.思考题1、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

2、怎样理解平均数在统计学中的地位?答:平均数在统计学中具有重要的地位,它是进行统计分析和统计推断的基础。

从统计学思想上看,平均数是一组数据的重心所在,是数据误差相互抵消后的必然结果。

3、简述四分位数的计算方法。

答:四分位数是一组数据排序后处于25%和75%位子上的值。

四分位数是通过3个点将全部数据等分成4分,其中每部分包含25%的数据。

中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值和处在75%位置上的数值。

它是根据为分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数据就是四分位数。

4、对于比率数据的平均数为什么采用几何平均?答:几何平均数是适用于特殊数据的一种平均数,主要适用于计算平均比率。

当所掌握的变量值本身是比率的形式时,采用几何平均法计算平均比率更为合理。

5、简述众数、中位数、平均数的特点和应用场合。

答:众数是数据中出现次数次数最多的变量值。

主要应用于分类数据。

中位数是一组数据排序后处于中间位置的变量值,其适用于顺序数据。

平均数也称均值,它是一组数据相加后除以数据个数的结果,是集中去世的主要测量值,它适用于数值型数据。

6、简述异众比率、四分位差、方差、标准差的使用场合。

答:异众比率主要适合测度分类数据的离散程度,对于顺序数据以及数值型数据也可以计算异众比率。

四分位差主要用于测度顺序数据的离散程度。

方差和标准差适用于测度数值型数据的离散程度。

7、标准分数有哪些用途?答:首先是比较不同单位和不同质数据的位置。

其次是和正态分布结合起来,求得概率和标准分值之间的对应关系。

还有就是在假设检验和估计中应用。

茆诗松《概率论与数理统计教程》(第版)-章节题库-第4~8章【圣才出品】

茆诗松《概率论与数理统计教程》(第版)-章节题库-第4~8章【圣才出品】

A.有相同的数学期望
B.服从同一离散型分布
2 / 87
圣才电子书

C.服从同一泊松分布
十万种考研考证电子书、题库视频学习平台
D.服从同一连续型分布
【答案】C
【解析】直接应用辛钦大数定律的条件进行判断,C 项正确。事实上,应用辛钦大数定
律,随机变量序列{Xn,n≥l}必须是“独立同分布且数学期望存在”,A 项缺少同分布条件,
ε=1,有
lim
P
n
n i 1
Xi
<n
=1,又
n i 1
Xi
<n
n i1
X
i<n

所以
lim
n
P
n i 1
X
i<n
=1。
3.设 Xn 表示将一硬币随意投掷 n 次“正面”出现的次数,则( )。
A. lim P{ Xn n x} (x)
n
n
B. lim P{ Xn 2n x} (x)
6 / 87
圣才电子书 十万种考研考证电子书、题库视频学习平台

解:设同时使用紫外线的分机数为 , 设此单定安装的外线共有 条,则应用中心极限定理 又查表知
【答案】
【解析】题目要求我们计算
为此我们需要应用大数定律或依概率收
敛的定义与性质来计算。由题设知 X1,…,Xn 独立同分布:

,根据辛钦大数定律
4.设随机变量列 X1,X2,…,Xn…相互独立且同分布,则 X1,X2,…,Xn,…服从辛 钦大数定律,只要随机变量 X1______。
【答案】期望存在 【解析】辛钦大数定律的条件是 Xi 独立同分布,且期望存在,而切比雪夫大数定律的 条件是 不相关且方差有界。

统计学第四章课后习题2

统计学第四章课后习题2

二、单项选择题1.加权算术平均数的大小( D )A受各组次数f的影响最大B受各组标志值X的影响最大C只受各组标志值X的影响D受各组次数f和各组标志值X的共同影响2,平均数反映了( B )A总体分布的集中趋势B总体中总体单位分布的集中趋势C总体分布的离散趋势D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( B )A接近于标志值大的一方B接近于标志值小的一方C不受权数的影响D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( C ) A各组次数递增B各组次数大致相等C各组次数相等D各组次数不相等(未做)5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( A)A简单算术平均法B加权算术平均法C加权调和平均法D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( C) A简单算术平均法B加权算术平均法C加权调和平均法D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是(B )A大量的B同质的C差异的D少量的8,某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( B )A计划产值B实际产值C工人数D企业数9.中位数和众数是一种( A)A代表值B常见值C典型值D实际值10.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( C )A各组的次数必须相等B各组标志值必须相等C各组标志值在本组内呈均匀分布D各组必须是封闭组11.四分位数实际上是一种( C )A算术平均数B几何平均数C位置平均数D数值平均数12.离散趋势指标中,最容易受极端值影响的是( A )A极差B平均差C标准差D标准差系数13.平均差与标准差的主要区别在于( D )A指标意义不同B计算条件不同C计算结果不同D数学处理方法不同A 7万元B 1万元C 12 万元D 3万元15.已知某班40名学生,其中男、女学生各占一半,则该班学生性别成数方差为( A )A25% B 30% C 40% D 50%17.方差是数据中各变量值与其算术平均数的( B)A离差绝对值的平均数B离差平方的平均数C离差平均数的平方D离差平均数的绝对值18.一组数据的偏态系数为1.3,表明该组数据的分布是( D )AlE态分布B平顶分布C左偏分布D右偏分布19.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大D众数在右边、平均数在左边20.四分位差排除了数列两端各( C )单位标志值的影响。

统计学第四章经典习题.docx

统计学第四章经典习题.docx

一、单选题1、下列指标中,不属于序时平均数的是()A.某地区最近五年人口自然增长率B.某地区最近五年年均人口递增率C.某地区最近五年年均人口增量D.某地区最近五年年均人口死亡率2、某银行平均存款余额1月1日至1月8日为102万元,1月9日至1月21日为108万元,1月22日至1月31日平均为119万元,则1月份平均存款余额为()A.(102/2+108+119/2) 4-2B.(102/2+108+119/2) 4-3C.(102*8+108*13+119*10) 4-31D.(102+108+119) 4-33、某产品单位成本从基年到报告年的平均发展速度为101.5%,说明该产品单位成本()A.平均每年增长1.5%B.平均每年降低1.5%C.报告年比增长1.5%D.报告年比基年降低1.5%4、某地区基年生产总值为60亿元,至报告年达到240亿元,则生产总值报告年在基年的基础上()A.翻了四番B.翻了三番C.增长了四倍D.增长了三倍5、己知某地粮食产量的环比发展速度2009年为103.5%, 2010年为104%, 2012 年为105%, 2012年对于2008年的定基发展速度为116.4%,则2011年的环比发展速度为()A.113%B.101%C.104.5%D.102.99%6、某企业利税总额2012年比2007年增长1.5倍,2007年又比2004年增长1.1 倍,则该企业利税总额这几年间增长()A.(1.5+1.1) -1C.(1.5*l.l)-1D. 2.5*2.1-l7、对于固定资产投资额这种现象,求平均发展速度宜采用()A.几何平均法B.水平法C.方程式法D.以上方法均可8、用最小平方法拟合直线趋势方程允R+bt,若b为负数,则该现象趋势为()A.上升趋势B.下降趋势C.水平趋势D.不定9、某市近五年各年T恤杉销量大体持平,年平均1200万件,7月份的季节比率为220%, 9月份月平均销量比7月份低45%,那么,正常情况下9月份的销售量应该是()A.100万件B.220万件C.121万件D.99万件10、在年度时间序列中,不可能存在()A.趋势因素B.季节因素C.循环因素D.不规则因素二、多项选择题1、平均增减量是()A.各期累计增减量的平均B.各期逐期增减量的平均C.累计增减量4■逐期增减量个数D.各期累计增减量之和4■逐期增减量个数E.累计增减量一(时间数列项数-1)2、相对数数列或平均数数列计算平均发展水平()A.应当依据该相对数或平均数本身的计算公式,分子分母分别平均再对比B.应当根据该相对数或平均数加起来除以其项数C.如果权数相同,可以用简单平均的方法D.即便权数相同,也不能用简单平均的方法E.只能用加权算术平均法3、研究长期趋势的目的在于()A.分析趋势产生的原因B.为趋势预测提供必要条件C.研究趋势变动的经济效果D.认识现象随时间演变的趋势和规律E.剔除趋势影响以分析数列中的其他因素4、对于季度时间序列资料,季节指数必须满足的条件是()A.各季节指数之和为1B.各季节指数之和为4C.各季节指数之和为12D.各季节指数平均为0E.各季节指数平均为15、指数平滑法的特点是()A.包含最近k个时期的数据信息B.包含全部数据信息C.对所有数据给予同样权数D.对近期数据给予较大权数E.对远期数据给予较大权数三、计算题二销售额一平均库存额;商品流通费用率二流通费用额一销售额)4、某企业产量第2年比第1年增加2.5%,第3年比第2年下降5%,第4年是第1年的1.2倍,第5年产量为25万吨,比第4年多10%,第6年产量为30万吨,第7年预计达到37万吨,试计算:(1)各年环比发展速度(2)以第1年为基期的定基发展速度(3)各年产量(4)这段期间的年平均发展速度5、填写下表空栏数据并计算平均发展水平(平均产值)、平均增长量及平均发。

统计学第四章测试答案

统计学第四章测试答案

第四章1、一组数据中出现频数最多的变量值称为()A。

众数 B.中位数 C。

四分位数 D。

平均数2、下列关于众数的叙述,不正确的是()A。

一组数据可能存在多个众数 B.众数主要适用于分类数据C.一组数据的众数是唯一的 D。

众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A。

众数 B。

中位数 C。

四分位数 D。

平均数4、一组数据排序后处于25%和75%位置上的值称为( )A。

众数 B.中位数 C。

四分位数 D。

平均数5、非众数组的频数占总频数的比例称为()A。

异众比率 B。

离散系数 C。

平均差 D.标准差6、四分位差是()A。

上四分位数减下四分位数的结果B.下四分位数减下四分位数的结果C。

下四分位数加上四分位数D。

下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A。

平均差 B.标准差 C.极差 D。

四分位差8、各变量值与其平均数离差平方的平均数称为( )A.极差B.平均差C。

方差 D.标准差9、变量值与其平均数的离差除以标准差后的值称为( )A。

标准分数 B.离散系数 C.方差 D.标准差10、如果一个数据的标准分数是—2,表明该数据( )A。

比平均数高出2个平均差B。

比平均数低2个标准差C.等于2倍的平均数 D。

等于2倍的标准差11-15AABCA11、如果一个数据的标准分数是3,表明该数据( )A。

比平均数高出3个标准差 B。

比平均数低3个标准差C.等于3倍的平均数D.等于3倍的标准差12、经验法则表明,当一组数据对称分布时,在平均数加减1个标准差的范围内大约有( )A。

68%的数据 B。

95%的数据 C.99%的数据 D.100%的数据13、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围内大约有( )A.68%的数据B.95%的数据C.99%的数据 D。

100%的数据14、经验法则表明,当一组数据对称分布时,在平均数加减3个标准差的范围内大约有()A。

统计学4章练习题+答案

统计学4章练习题+答案

第4章练习题1、一组数据中出现频数最多的变量值称为(A)A.众数B.中位数C.四分位数D.平均数2、下列关于众数的叙述,不正确的是(C)A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为(B)A.众数B.中位数C.四分位数D.平均数4、一组数据排序后处于25%和75%位置上的值称为(C)A.众数B.中位数C.四分位数D.平均数5、非众数组的频数占总频数的比例称为(A)A.异众比率B.离散系数C.平均差D.标准差6、四分位差是(A)A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为(C)A.平均差B.标准差C.极差D.四分位差8、各变量值与其平均数离差平方的平均数称为(C)A.极差B.平均差C.方差D.标准差9、变量值与其平均数的离差除以标准差后的值称为(A)A.标准分数B.离散系数C.方差D.标准差10、如果一个数据的标准分数-2,表明该数据(B)A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有(B)A.68%的数据B.95%的数据C.99%的数据D.100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是(C)A.至少有75%的数据落在平均数加减4个标准差的范围之内B. 至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D. 至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是(C)A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是(D)A.极差B.平均差C.标准差D.离散系数15、偏态系数测度了数据分布的非对称性程度。

松第四章统计学习题

松第四章统计学习题

第四章习题一、单项选择题1、最基本的时间数列是()。

A、时点数列 B 、相对数时间数列C、绝对数时间数列D、平均数时间数列2、时间数列中,各个指标数值可以相加的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列3、时间数列中,指标数值是经过连续不断登记的是()。

A、平均数时间数列B、时点数列C、相对数时间数列D、时期数列4、时间数列中,指标数值的大小与其时间长短有关的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列5、编制时间数列的基本原则是保证数列中各个指标值具有()。

A、可加性B、可比性C、连续性D、一致性6、若某车间一月份平均人数80人,二月份平均人数75人,三月份平均人数82人,四月份平均人数85人,则一季度月平均人数为()。

A、(80+75+82+85)/4B、(80+75+82)/3C、(80/2+75+82+85/2)/4-1D、(80/2+75+82+85/2)/47、基期为某一固定时期水平的增长量是()。

A、累计增长量B、逐期增长量C、平均增长量D、年距增长量8、基期均为前一期水平的发展速度是()。

A、定基发展速度B、环比发展速度C、年距发展速度D、平均发展速度9、累计增长量除以最初水平的是()。

A、环比增长速度B、定基增长速度C、平均增长速度D、年距增长速度10、已知某市工业总产值92年比91年增长8%,93年比92年增长5%,94年比93年增长10%,则94年比91年增长()。

A 、8%+5%+10%B 、 8%*5%*10%C 、108%*105%*110%D 、108%*105%*110%-100%11、1949年为最初水平,1995年为最末水平,计算国民生产总值的年平均发展速度时需要( )。

A 、开44次方B 、开45次方C 、开46次方D 、开47次方 12、某地区八五时期按年排列的每人分摊的粮食产量的时间数列是( )。

A 、时期数列 B 、 相对数数列 C 、时点数列 D 、平均数数列13、已知某地区人均国民生产总值的环比发展速度1993年为105%,1994年为108%,又知1995年的定基发展速度130.41%,则1995年环比发展速度为( )。

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。

统计学第四章习题答案

统计学第四章习题答案

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:Statistics10Missing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.0075单位:周岁19152925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。

Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。

(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。

为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1、由反映总体单位某一数量特征的标志值汇总得到的指标就是( )A、总体单位总量B、质量指标C、总体标志总量D、相对指标2、各部分所占比重之与等于1或100%的相对数( )A.比例相对数B.比较相对数C.结构相对数D.动态相对数3、某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为( )A、104、76%B、95、45%C、200%D、4、76%4、某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14、5%,则产品成本计划完成程度( )A、14、5%B、95%C、5%D、114、5%5、在一个特定总体内,下列说法正确的就是( )A、只存在一个单位总量,但可以同时存在多个标志总量B、可以存在多个单位总量,但必须只有一个标志总量C、只能存在一个单位总量与一个标志总量D、可以存在多个单位总量与多个标志总量6、计算平均指标的基本要求就是所要计算的平均指标的总体单位应就是( )A、大量的B、同质的C、有差异的D、不同总体的7、几何平均数的计算适用于求( )A、平均速度与平均比率B、平均增长水平C、平均发展水平D、序时平均数8、一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数就是( )A、3B、13C、7、1D、79、某班学生的统计学平均成绩就是70分,最高分就是96分,最低分就是62分,根据这些信息,可以计算的测度离散程度的统计量就是( )A、方差B、极差C、标准差D、变异系数10、用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件就是( )A、两个总体的标准差应相等B、两个总体的平均数应相等C、两个总体的单位数应相等D、两个总体的离差之与应相等11、已知4个水果商店苹果的单价与销售额,要求计算4个商店苹果的平均单价,应采用( )A、简单算术平均数B、加权算术平均数C、加权调与平均数D、几何平均数12、算术平均数、众数与中位数之间的数量关系决定于总体次数的分布状况。

《统计学》第四章课后作业题

《统计学》第四章课后作业题

5
% 100%
第四章作业:
1 、某工业企业某年资料如下:
要求计算:第一季度月平均劳动生产率。

答: 第一季度月平均劳动生产率=(180+160+200) ÷(600÷2+580+620+600÷2) =30%
2 、已知某工厂产值 2009 年比 2008 年增长 20% , 2010 年比 2009 年增长 50% , 2011 年比 2010 年增长 25% , 2012年比 2008年增长 110% , 2013年比 2012 年增长 30% 。

试根据以上资料编制 2008 — 2013年的环比增长速度数列和定基增长速度数列,并求平均发展速度。

答:2011年定基发展速度=+1=
平均发展速度 =
3 、某化肥厂 2005 年化肥产量为 2 万吨,“十一五”期间(2006年-2010年)每年平均增长 8% ,以后每年平均增长 15% ,问 2015 年化肥产量将达到多少万吨如果规定 2015 年产量比 2005 年翻两番,问每年需要增长百分之多少才能达到预定产量
答:
2××=万吨
设每年的增长百分比为X,
(X+1)10=4 解出X=%
答:2015年化肥产量将达到万吨,每年需要增长%。

《统计学原理》第四章习题及答案

《统计学原理》第四章习题及答案

11:计算平均指标最常用的方法和最基本 的形式是( C)。 A、中位数 B、众数 C、算术平均数 D、调和平均数
12: 在什么条件下,简单算术平均数和加 权算术平均数计算结果相同(B )。 A、权数不等 B、权数相等 C、变量值相同 D、变量值不同
13:某公司下属五个企业,共有2000名工 人。已知每个企业某月产值计划完成百分 比和实际产值,要计算该公司月平均产值 计划完成程度,采用加权调和平均数的方 法计算,其权数是(B )。 A、计划产值 B、实际产值 C、工人数 D、企业数
10、时点指标的特点有(BE)。 A、可以连续计数 B、只能间断计数 C、数值的大小与时期长短有关 D、数值可以直接相加 E、数值不能直接相加
11、相对指标的计量单位有(ABCDE)。 A、有名数 B、百分数 C值影响的平均 指标是(CE)。 A、算术平均数 B、调和平均数 C、中位数 D、几何平均数 E、众数 13、以下指标中属于强度相对指标的有 (ABCD)。 A、人口密度 B、平均每人占有粮食产量 C、人口自然增长率 D、人均国内生产总值 E、生产工人劳动生产率
22:甲、乙两数列的平均数分别为100和 14.5,它们的标准差为12.8和3.7,则 (A ) A、甲数列平均数的代表性高于乙数列 B、乙数列平均数的代表性高于甲数列 C、两数列平均数的代表性相同 D、两数列平均数的代表性无法比较
23、不同时点的指标数值(B)。 A、具有可加性 B、不具有可加性 C、可加或可减 D、都不对
14.相对指标都是用无名数形式表现出来的。 (×)
15.众数是总体中出现最多的次数。(× )
16.国民收入中积累额与消费额之比为1:3, 这是一个比较相对指标。( × ) 17.总量指标和平均指标反映了现象总体 的规模和一般水平。但掩盖了总体各单 位的差异情况,因此通过这两个指标不 能全面认识总体的特征。( √ )

统计学第四章练习题 答案

统计学第四章练习题 答案

统计学第四章练习题一、 选择题(一个或一个以上答案)(不用做)1、 研究某超市的经营情况,则销售额是 ABCEA 总量指标B 时期指标C 数量指标D 时点指标E 绝对指标 2、 劳动生产率是 CA 两个时期指标之比B 两个时点指标之比C 一个时期指标和一个时点指标之比D 一个时点指标和一个时期指标之比3、 下面属于时间数列基本分析的方法有 BCA 移动平均法B 水平分析法C 速度分析法D 长期趋势外推法E 季节分析4、 下列属于时点数列的是 ABDA 库存B 人数C 死亡人口D 资产E 销售量5、 下列属于时期数列的有 ABCDEA 存款增长量B 收入C 收入增加额D 产值E 现金流量 6、 下列说法不正确的是 ABCE A 环比增长量之和等于累计增长量B 环比增长速度的连乘机等于定基增长速度C 定基发展速度的连乘机等于环比发展速度D 逐期增长量之和等于累计增长量E 环比发展速度之和等于定基发展速度 7、 月度资料的季节比率之和等于 BA 400B 1200C 100D 2400E 无法计算二、 计算题1、某家具厂木材仓库2008年7月记录显示,7月初木材库存为100立方,7月3日入库20立方,7月10日出库34立方,7月24日入库15立方,计算该月木材的平均库存。

(保留1位小数)2、某超市2004-2007年营业额的增长速度分别为10%,8%,15%,20%,计算2004-2007年的年平均增长速度。

(保留1位小数)%.%%%%%213100201151811014=-++++=∆))()()((δ(立方))()(平均库存98.5 8147281534-120143412071202100 =+++⨯++⨯-+⨯+⨯==∑∑f af3、进入21世纪以来,中国经济发展迅速。

根据名义GDP 资料(《中国统计年鉴2008》)年份 2000 2001 2002 2003 2004 2005 2006 2007 GDP (亿元)980011)计算逐期和累计增长量 2)计算环比和定基发展速度 3)计算环比和定基增长速度4)计算平均增长量、平均增长速度4、已知某种产品产量有关资料(产量取整数,其他保留1位小数): 年份 2001 2002 2003 2004 2005 2006 产量(吨)20 增长量(吨) 逐期 — 5 累计 10 发展速度(%) 定基 180 环比 — 150 增长速度(%)定基12514.3%1254.621647181515297=-==-=%平均增长速度(亿元)平均增长量环比—1)根据已知资料填空2)计算平均增长量、平均发展速度和平均增长速度。

松第四章统计习题答案

松第四章统计习题答案
解:(1)第一季度平均每月总产值 =(400+430+460)/3=430(万元)
第二季度平均每月总产值 =(450+470+490)/3=470(万元)
第三季度平均每月总产值 =(510+500+520)/3=510(万元)
第四季度平均每月总产值 =(470+420+400)/3=430(万元)
(2)全年平均每月总产值为:
01年
02年
03年
04年
05年
粮食产量
134
435
415
672
1028
逐期增长量

301
-20
257
356
累积增长量

301
281
538
894
平均增长量=
(2)平均发展速度
9、某企业2000年至2004年连续5年对产值资料如下表:
年份
2000
2001
2002
2003
2004
产值(百万)
10
12
15
20
=(400+430+460+450+470+490+510+500+520+470+420+400)/12=460(万元)
(3)根据各季平均每月销售额资料及全年平均销售额资料可知,第三季度为企业商品的销售旺季,而第一、四季度为企业商品的销售淡季。
5.某企业2005年各月月初产品库存数资料如下:
月份
1
第三季度平均每月总产值 =(51+50+52)/3=51(万元)
第四季度平均每月总产值 =(47+42+40)/3=43(万元)
(2)全年平均每月总产值为:
=(40+43+46+45+47+49+51+50+52+47+42+40)/12=46(万元)

松第四章统计学习题

松第四章统计学习题

松第四章统计学习题第四章习题一、单项选择题1、最基本的时间数列是()。

A、时点数列B、相对数时间数列C、绝对数时间数列D、平均数时间数列2、时间数列中,各个指标数值可以相加的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列3、时间数列中,指标数值是经过连续不断登记的是()。

A、平均数时间数列B、时点数列C、相对数时间数列D、时期数列4、时间数列中,指标数值的大小与其时间长短有关的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列5、编制时间数列的基本原则是保证数列中各个指标值具有()。

A、可加性B、可比性C、连续性D、一致性6、若某车间一月份平均人数80人,二月份平均人数75人,三月份平均人数82人,四月份平均人数85人,则一季度月平均人数为()。

A、(80+75+82+85)/4B、(80+75+82)/3C、(80/2+75+82+85/2)/4-1D、(80/2+75+82+85/2)/47、基期为某一固定时期水平的增长量是()。

A、累计增长量B、逐期增长量C、平均增长量D、年距增长量8、基期均为前一期水平的发展速度是()。

A、定基发展速度B、环比发展速度C、年距发展速度D、平均发展速度9、累计增长量除以最初水平的是()。

A、环比增长速度B、定基增长速度C、平均增长速度D、年距增长速度10、已知某市工业总产值92年比91年增长8%,93年比92年增长5%,94年比93年增长10%,则94年比91年增长()。

A、8%+5%+10%B、8%某5%某10%C、108%某105%某110%D、108%某105%某110%-100%11、1949年为最初水平,1995年为最末水平,计算国民生产总值的年平均发展速度时需要()。

A、开44次方B、开45次方C、开46次方D、开47次方12、某地区八五时期按年排列的每人分摊的粮食产量的时间数列是()。

A、时期数列B、相对数数列C、时点数列D、平均数数列13、已知某地区人均国民生产总值的环比发展速度1993年为105%,1994年为108%,又知1995年的定基发展速度130.41%,则1995年环比发展速度为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题一、单项选择题1、最基本的时间数列是()。

A、时点数列 B 、相对数时间数列C、绝对数时间数列D、平均数时间数列2、时间数列中,各个指标数值可以相加的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列3、时间数列中,指标数值是经过连续不断登记的是()。

A、平均数时间数列B、时点数列C、相对数时间数列D、时期数列4、时间数列中,指标数值的大小与其时间长短有关的是()。

A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列5、编制时间数列的基本原则是保证数列中各个指标值具有()。

A、可加性B、可比性C、连续性D、一致性6、若某车间一月份平均人数80人,二月份平均人数75人,三月份平均人数82人,四月份平均人数85人,则一季度月平均人数为()。

A、(80+75+82+85)/4B、(80+75+82)/3C、(80/2+75+82+85/2)/4-1D、(80/2+75+82+85/2)/47、基期为某一固定时期水平的增长量是()。

A、累计增长量B、逐期增长量C、平均增长量D、年距增长量8、基期均为前一期水平的发展速度是()。

A、定基发展速度B、环比发展速度C、年距发展速度D、平均发展速度9、累计增长量除以最初水平的是()。

A、环比增长速度B、定基增长速度C、平均增长速度D、年距增长速度10、已知某市工业总产值92年比91年增长8%,93年比92年增长5%,94年比93年增长10%,则94年比91年增长()。

A 、8%+5%+10%B 、 8%*5%*10%C 、108%*105%*110%D 、108%*105%*110%-100%11、1949年为最初水平,1995年为最末水平,计算国民生产总值的年平均发展速度时需要( )。

A 、开44次方B 、开45次方C 、开46次方D 、开47次方 12、某地区八五时期按年排列的每人分摊的粮食产量的时间数列是( )。

A 、时期数列 B 、 相对数数列 C 、时点数列 D 、平均数数列13、已知某地区人均国民生产总值的环比发展速度1993年为105%,1994年为108%,又知1995年的定基发展速度130.41%,则1995年环比发展速度为( )。

A 、 112% B 、118% C 、 120% D 、 115%14.由间隔不等的时点数列计算序时平均数,用以加权的权数为( ) A .时期长度 B.时点长度 C .时点间隔长度 D.指标值项数15.由间隔相等的间断时点数列计算序时平均数的公式是( )A .a =n a ∑B .a =122321-+++n a a a a n +Λ C .a =∑∑faf D .a =∑--++++++f f a a f a a f a a n n n 1123221222Λ16.由相对数或平均数时间数列计算序时平均数的基本公式是( ) A .c =∑∑b a B.c =b a C.c =n c ∑ D.c =∑∑bbc17.时间数列可以分为( )A .时期数列和时点数列两种 B.绝对数,相对数和平均数时间数列三种 C .绝对数和平均数时间数列两种 D.分配数列和变量数列两种 18. 某商场每月的商品库存额时间数列是( ) A .时期数列 B.时点数列C .平均数时间数列 D.相对数时间数列19.已知近年的环比增长速度为7.5%,9.5%,6.2%,4.9%,则定基增长速度为( ) A .7.5%⨯9.5%⨯6.2%⨯4.9%B .(7.5%⨯9.5%⨯6.2%⨯4.9%)—100%C .(107.5%⨯109.5%⨯106.2%⨯104.9%)—100%D .107.5%⨯109.5%⨯106.2%⨯104.9%20.某地区连续五年的经济增长率为9%,7.8%,8.6%,9.4%和8.5%,则该地区经济的年平均增长率为( )A .5085.1094.1086.1078.109.1⨯⨯⨯⨯-1B .5085.0094.0086.0078.009.0⨯⨯⨯⨯ C.5085.1094.1086.1078.109.1⨯⨯⨯⨯ D .(9%+7.8%+8.6%+9.4%+8.5%)5÷二、多项选择题1、构成时间数列的两个基本要素是( )。

A 、主词 B 、宾词 C 、次数D 、现象所属的时间E 、统计指标数值 2、时间数列的种类是( )。

A 、绝对数时间数列B 、相对数时间数列C 、平均数时间数列D 、时期数列E 、时点数列3、某企业1995年的总产值为50万元,2005年为100万元,则2005年的总产值比1995年( )A .增长了50% B.增长了100%C.增加了50万元D.翻了一番E.翻了两番4、编制时间数列的原则有( )。

A 、时期长短应该相等B 、总体范围应该一致C 、指标经济内容相同D 、各指标具有可比性E 、指标的计算方法等应该一致5、将不同时间的发展水平加以平均而得到平均数称为( )。

A 、平均发展水平 B 、序时平均数 C 、一般平均数 D 、动态平均数 E 、静态平均数6、环比速度与定基速度的关系有( )。

A 、各个环比发展速度连乘积等于定基发展速度 B 、各个环比增长速度连乘积等于定基增长速度C、两个相邻的定基发展速度之商等于环比发展速度D、两个相邻的定基增长速度之商等于环比增长速度E、定基发展速度和环比发展速度的基期一致7、平均发展速度的计算方法有()。

A、几何平均法B、算术平均法C、调和平均法D、方程式法E、简单平均法8、按采用的基期不同,增长量可以分为()。

A、平均增长量B、逐期增长量C、定期增长量D、环比增长量E、累计增长量9、发展速度由于采用的基期不同,可分为()。

A、平均速度B、环比速度C、定基速度D、几何速度E、方程速度10、长期趋势测定的方法有()。

A、时距扩大法B、移动平均数C、分段平均法D、最小平方法E、序时平均法三、判断题1、时期数列中各个指标数值是不能相加的。

()2、环比增长速度的连乘积等于定基增长速度。

()3、发展水平可以是总量指标,也可以时相对指标或平均指标。

()4、平均增长速度是环比增长速度的平均值,它是根据环比增长速度直接计算的。

()5、.环比发展速度和定基发展速度是按对比的基期不同来划分的。

()6、由时点数列计算序时平均数,其假定前提是:现象在各个时点上是均匀变动的。

()7、分段平均法与最小平方法不同,但对同一资料求出参数b的值是相同的。

()8、若某时间数列共有n项,用水平法计算该时期平均发展速度时应开n-1次方。

()9、平均增长量等于累积增长量除以数列的项数。

()10、累积增长量等于逐期增长量之和。

()11、环比发展速度和定基发展速度是按对比的基期不同来划分的。

()12、增长1%的绝对值表示的是:速度指标增长1%而增加的水平值。

()13、发展水平可以是总量指标,也可以时相对指标或平均指标。

()14、动态数列中各期发展水平的算术和就是该现象在该时期内发展水平的总量。

()15、根据月度时间数列资料,各月季节比率之和应为12%。

()四、填空题1、时间数列一般由两个基本要素所构成:一个是(),另一个是()。

2、时间数列可分为()时间数列、()时间数列和()时间数列三种。

其中()时间数列是基本数列、其余两种是派生数列。

3、编制时间数列应遵守的基本原则是()。

4、根据间断时点数列计算序时平均数,是假定研究现象在相邻两个时点之间的变动是()。

5、累计增长量等于相应的()之和。

6、各个环比发展速度的连乘积等于()。

7、两个相邻的定基发展速度(),等于相应的环比发展速度。

8、平均发展速度是()的序时平均数。

9、通常把数列中的第一个指标数值叫(),最后一个指标数值叫(),其中各指标数值叫()。

10、如果时间数列逐期增长量大体相同,可拟合()五、简答题1、时间数列有哪些作用?2、编制时间数列的原则有哪些?3.按月(季)平均法计算季节比率的步骤是什么?4、计算和应用平均发展速度应注意哪些问题?5、何谓长期趋势?测定长期趋势的主要目的是什么?其方法有几种?六、计算题1.2006年上半年某公司职工人数资料如下表所示:2006年上半年某公司职工人数资料试计算该公司第一季度、第二季度及上半年平均职工人数。

2.某企业2006年钢材库存量如下表所示。

某企业2006年钢材库存量资料试求2006年平均钢材库存量.3.某企业2006年第一季度各月产量计划完成程度如下表所示.某企业2006年第一季度产量计划完成程度 试计算该企业2006年第一季度产量平均计划完成程度. 4.某企业2005年各月销售额资料如下:要求:(1)计算各季平均每月销售额。

(2)计算全年平均每月销售额。

(3)简要分析哪一季度是企业的销售旺季?哪季度是销售淡季?请计算该企业2005年各季平均每月商品库存数和全年平均每月产品库存数。

6、某企业2004上半年各月总产值资料如下:要求:(1)计算各季平均每月总产值。

(2)计算全年年平均每月总产值。

7、某企业2004上半年各月总产值资料如下:要求:(1)计算一、二季度各季平均每月总产值。

(2)计算上半年平均每月总产值。

8、某地区历年粮食产量如下: 01年 02年 03年 04年 05年 粮食产量(万斤) 134 435 415 672 1028(2)平均发展速度。

9、某企业2000年至2004年连续5年对产值资料如下表:年份 2000 2001 2002 2003 2004 产值(百万)1012152025要求:(1)试用最小平方法配合一直线趋势方程; (2)根据趋势方程,预测该企业2005年产值。

10、某地区2000~2006年的人均年收入资料如下表所示. 某地区2000~2006年的人均年收入资料 年份2000 2001 2002 2003 2004 2005 2006 人均年收入(百元)647078859196100试用最小平方法配合人均年收入数列的直线趋势方程,并预测该地区2007年的人均年收入.月 份 1 2 3 4 5 6 总产值(万元) 420044004600482048504900。

相关文档
最新文档