四年级下 第十三讲 应用题

合集下载

第十三讲用方程解决问题(5升6)

第十三讲用方程解决问题(5升6)

第十三讲用方程解决问题教学目标:(1)用方程解“和倍”,“差倍”的应用题,解形如:ax bx=c的方程。

(2) )用方程解答“相遇问题”。

(3) 用方程解答“鸡兔同笼”问题。

(4)掌握列方程解应用题的一般步骤。

教学过程一、复习导入1.列出等量关系。

(1)男生人数是女生人数的2倍(2)鸡比鸭多8只(3)两根同样长的铁丝围成长方形和正方形(4)买8千克梨和7千克苹果共用49元(5)梨树比苹果树的3倍少15棵让学生列出等量关系,教师统一订正。

2.列方程解答(1)比x的2倍多10的数是70.(3)20乘4的积,减去x得11。

3.提问:列方程解应用题的思路是什么?(学生先说,教师总结)列方程解题过程:(1)审题、找准等量关系式。

(2)设未知数。

(3)列方程、解方程。

(4)检验、答语。

教师提问:在这个步骤中,你认为哪一步是最关键?(第一步)4.导入:今天我们继续学习用方程来解决问题。

二、新课探究(一)解形如:ax bx=c的方程。

1. 出示例1:小华的邮票数是小芳的5倍,比小芳120张。

小芳、小华各有邮票多少张?(用方程解答)(1)学生读题,找出未知数(小芳的邮票数,小华的邮票数),画出线段图。

(2)让学生列出数量关系式。

(①小芳的邮票数×5=小华的邮票数;②小华的邮票数—小芳的邮票数=120)(3)教师解析(此题为差倍应用题,有两个未知数,两个数量关系式,设未知数时,设1倍量(1份量)为x,此题应设小芳的邮票数x 张,根据数量关系式,①小芳的邮票数×5=小华的邮票数,小华的邮票数为5x张。

再根据数量关系式②小华的邮票数—小芳的邮票数=120,列出方程。

)(4)让学生设出未知数,列方程并解答,教师统一订正,出示答案。

解:设小芳的邮票数x张,则小华的邮票数为5x张。

5x-x=120(5-1)x=1204x=120x=120 4x=305x=5×30=150(5) 让学生检验x=30,5x=150是否符合题意.(看看小华的邮票数是否是小芳的邮票数的5倍;小华的邮票数减去小芳的邮票数是否等于120. 即15030=5;150-30=120符合题意。

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。

第十三讲鸡兔同笼问题

第十三讲鸡兔同笼问题

第十三讲鸡兔同笼问题“鸡兔同笼〞是一类有名的中国古算题.最早出现在?孙子算经?中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法〞来求解.因此很有必要学会它的解法和思路.方法:①假设法(即可以从头的角度假设也可以从脚的角度假设)②画线段图③画实物简图④注意恰当分组〖经典例题〗例1、一只鸡有一个头2只脚,一只兔有一个头4只脚.如果一个笼子里关着的鸡和兔共有10个头和26只脚,你知道笼子里有几只鸡、有几只兔吗?分析:假设10只全是鸡.一共有21020-=条腿,⨯=条腿,比实际少了26206每把一只鸡换成一只兔子,腿的总数增加422-=条,要增加6条腿就应该把-=只鸡.623÷=只鸡换成兔子.那么有3只兔,有1037例2、一次口算比赛,规定:不能不答,答对一题得8分,答错一题扣5分.小华答了18道题,得92分,小华在此比赛中答错了多少道题?分析:此题是一个实际问题,我们先找到“鸡〞和“兔子〞,我们假设答对题为“兔子〞,答错题为“鸡〞。

那么“兔子〞有8只脚,“鸡〞有“扣5〞只脚。

假设18道题全部做对了,即18只都是“兔子〞,那么小华应得188144⨯=分,比实际多了1449252-=分,我们每把一道对的题换成错的,那么分数应减少-=道题。

÷=道题,所以做对18414+=分,要减少52分就要错:521348513〖方法总结〗此类问题属于鸡兔同笼类的根本问题---“头和、腿和〞解决此类问题所用到的方法为假设法,运用假设法需要注意以下几点:1.如果假设全是兔子,那么先求出来的是鸡的只数;2.如果假设全是鸡,那么先求出来的是兔子的只数.3.如果遇到实际问题,关键是找到“鸡〞和“兔子〞分别代表什么,他们的脚有几只。

例2属于“不得分倒扣分〞、“不得运费倒赔损失费〞问题,解决此类问题我们仍然可以采用假设法,但是运用此法是一定要注意,这里面“倒扣〞这一词的含义,灵活运用。

〖稳固练习〗练习1.一辆自行车有2个轮子,一辆三轮车有3个轮子.车棚里放着自行车和三轮车共10辆,数数车轮共有26个.问自行车有多少辆,三轮车多少辆?练习2.有2分和5分硬币共28枚,总值为1元零7分,问2分硬币有多少枚?练习3.松鼠采松子,晴天每天采20个,雨天每天采12个,共采了112个,平均每天采14个.问有多少天是雨天?练习4.一辆卡车运粮食,每次可运粮食5吨.晴天每天可运9次,雨天每天只能运5次,它一连10天共运粮食370吨,问这几天中有几天是雨天,几天是晴天?练习5.在一次数学考试中规定:做对一道题得5分,做错一道题倒扣3分,不能不答.小红做了10道题共得了34分,请问他做对了多少道题?练习6.张明、李强两人进行射击比赛,规定每中一发得20分,脱靶一发扣12分,两人各打了10发,共得208分,其中张明比李强多64分.那么张明射中多少发,李强射中多少发?〖经典例题〗例3、鸡兔同笼,共24只,兔子腿总数比鸡腿多54条,求鸡、兔各几只?分析1:用假设法.假设24只全是兔子,那么兔子腿总数比鸡腿总数多了24496⨯=条,根据假设做出来的差比实际的差多了965442-=条.每把一只兔子换成一只鸡,兔子腿总数减少4,鸡腿总数增加2,之间的差距就减小6,那么应该将4267÷=只兔子换成鸡,那么有7只鸡,17只兔子.方法2:画图,根据图列算式.注意分组的思想.--÷+=组,所以有兔子31417(24141)(12)3⨯+=只.+=只,有鸡2317例4、鸡兔同笼,鸡比兔子多30只,兔子和鸡的腿数总和为90,求鸡、兔各几只?分析1:假设法。

小升初数学无忧衔接第13讲用一元一次方程解决实际问题(原卷版)

小升初数学无忧衔接第13讲用一元一次方程解决实际问题(原卷版)

第十三讲用一元一次方程解决实际问题【课程解读】————小学初中课程解读————【知识衔接】————小学知识回顾————1、方程和等式等式:表示相等关系的式子叫做等式。

方程:含有未知数的等式叫做方程。

2、解方程。

解方程:求方程中未知数的值的过程叫做解方程。

解方程的依据:等式的性质。

①等式两边同时加上或减去同一个数,所得结果仍然是等式。

②等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

3.列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。

————初中知识链接————1.解方程的步骤:(1)去分母(2)去括号(3)移项;(4)合并同类项;(5)未知数的系数化1.2.列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.3.会列出一元一次方程解简单商品销售、积分问题、行程问题等应用题。

【经典题型】小学经典题型1.小朋友们带了一些水果去敬老院慰问老人,苹果的数量是芒果的2倍,如果给每位老人4个苹果和3个芒果,最后多出1个芒果和28个苹果。

敬老院有多少位老人?2.有一场球赛,售出50元、80元、100元的门票共800张,共收入56000元。

其中80元的门票和100元的门票售出的张数正好相同,售出三种门票各多少张?3.王兵参加五年级数学竞赛,一共有25道题,竞赛组委会规定:每做对一题得4分,做错一题倒扣2分。

王兵共得了58分,他做错了几道题?4.时代物流公司的李师傅运送1000只玻璃花瓶,双方商定:每只花瓶的运费是3元,如果打碎一只,不但没有运费,还得倒赔5元。

第十三讲_归一归总问题的应用题

第十三讲_归一归总问题的应用题

想一想、做一做
1.采购员小李买了5支钢笔用去40元钱采购员 小王准备买同样的钢笔12支,需要带多少钱? 5支钢笔 12支钢笔 40÷5=8(元) 8×12=96 (元) 答:需要带96元钱. 40元 ?元
想一想、做一做
2.红红的妈妈早晨在菜场买了4斤青菜用了8角 钱,食堂的王阿姨想买12斤同样的青菜,需要多 少钱? 4斤青菜 8角 12斤青菜 8÷4=2(角) 2×12=24 (角) 答:需要带24角钱. ?角
拓展
星期天,强强观察蜗牛的活动,他测 得一只小蜗牛2分钟爬行了30厘米。 照这样的速度,小蜗牛1小时可以爬 多少厘米?
• 【例题5】一辆汽车从甲地开往乙地,每小 时行60千米,5时到达。若要2时到达,则 每小时需要多行多少千米?
【方法提示】:从甲地到乙地的路程是一定 的,以路程为总量。 (1)从甲地到乙地的路程是多少千米? 60×5=300(千米)。 (2)4时到达,每小时需要行多少千 米? 300÷2=150(千米)。 (3)每小时多行多少千米? 150-60=90(千米)。
想一想、做一做
1.工厂有150吨煤,前5天烧了30吨,照这样计 算,剩下的煤还可以烧多少天? 5天 ?天 30÷5=6(吨) (150-30)÷6=20(天) 答:剩下的煤还可以烧20天. 30吨 剩下的煤
想一想、做一做
2.一辆大卡车5天可以拉100吨沙子,现在有 2700吨沙子,这辆大卡车多少天可以拉完? 5天 ?天 100÷5=20(吨) 2700÷20=135(天) 答:这辆大卡车135天可以拉完. 100吨 2700吨
150 . . 5 8 150 (8 5)
或 150 . . 5
练 4:只列式 学校组织学生去秋游,原打算租8辆车,每辆210元, 实际每辆需多花70元。如果钱数不变,只能租几辆? 210 8 . . (210 + 70)

四年级下册数学奥数练习第十三讲运用对应法解决问题全国通用(无答案)

四年级下册数学奥数练习第十三讲运用对应法解决问题全国通用(无答案)

第十三讲运用对应法解决问题知识要点:用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。

例题讲解:【例1】某校新收一批住校生,学校启用15间宿舍还有34人没住处,启用21间宿舍后学生不但都住进去了,有一间宿舍还能再住进2人,这批学生共有多少人?分析与解答:为了更清楚地看懂题意,我们把题目中给出的两组对应关系排列在一起:用15间宿舍----- 还有34人没住,用21间宿舍------还能再住进2人。

要想求这批学生共有多少人,应先求每间宿舍能住多少人。

要抓住21间宿舍和15间宿舍的差与多少人对应。

解:(1) (34 + 2 )-( 21-15 )=36 - 6=6 (间)(2) 6X 15 + 34或6X 21 - 2=90 + 341/6 =126 - 2=124(人)答:这批学生共有124 人。

【例2】为了测量一口井的深度,同学们想用长绳吊一重物的方法,将绳子3 折时,绳子比井深还长出6 米,当他们将绳子4 折时,则绳子比井深长出2 米,你能算出井深与绳子的长度吗?分析与解答:在题目的条件中,“将绳子3 折时,绳子比井深还长出6 米”,实际上是指绳子的长度比井深的3倍还多6X 3=18米。

而“当他们将绳子4折时,则绳子比井深长出2米”指的是绳子长度比井深的4倍还多2X 4=8(米)排出题设中给出的条件:绳子3折------ 井深的3倍------ 多出6X 3=18(米)绳子4折------ 井深的4倍------ 多出2X4=8 (米)这样就可以求出井深与绳长。

解:(1)(6X 3 - 2 X 4)-(4 - 3 )=(18 - 8 )- 1=10(米)(2)10X 3 + 6 X 3=30 + 18=48(米)答:井深10 米,绳长48 米。

基础巩固一、填空1、小芳去买圆珠笔,身上带的钱如果买5 支余3 元,如果买9 支余2 角,每支圆珠笔价格为______________ 角。

四年级下册奥数知识点专讲第13课《数字综合题选讲》试题附答案

四年级下册奥数知识点专讲第13课《数字综合题选讲》试题附答案
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人为一眼而愁肠百转为一见而不远千里晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句
幸遇只因这一次
四年级下册奥数知识点专讲第13课《数字综合题选讲》试题附答案
答案
四年级奥数下册:第十二讲数字综合题选讲习题解答
---------------------赠予---------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世
---------------------谢谢喜欢--------------------

四年级数学-暑假第十三讲-经典应用题(二)

四年级数学-暑假第十三讲-经典应用题(二)

第十三讲经典应用题(二)题型一:和倍与和差问题(1)武汉长江大桥全长1670米,其中正桥比引桥长642米,那么武汉长江大桥的正桥长多少米?引桥长多少米?(2)甲、乙两个油桶中共有100千克油,将乙筒中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍。

那么,原来甲桶中的油比乙桶中的油多_______千克。

少年宫开展读书日活动,天天和萌萌兄弟两人共同出资500元买书,后来萌萌又拿出20元,这时,天天拿出的钱恰好是萌萌拿出的3倍,则天天拿出了________钱。

.题型一:差倍问题甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?李师傅某天生产了一批零件,他把它们分成了甲、乙两堆。

如果从甲堆中拿出15个放到乙堆中,则两堆零件的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍。

问:甲堆原有零件多少个?A、B、C三名同学共叠了1000只纸鹤,已知A叠的比B叠的3倍少100只,C叠的比A叠的少67只,问A叠了多少只纸鹤?一筐苹果、一筐梨、一筐香蕉共重112千克.已知苹果的重量是梨的3倍,香蕉的重量比梨少3千克.一筐苹果、一筐梨、一筐香蕉各重多少千克?题型四:年龄问题—年龄差不变小明现在5岁,妈妈27岁,问小明多少岁的时候,妈妈年龄是小明年龄的2倍?小白现在5岁,妈妈25岁,当小明多少岁的时候,妈妈的年龄是小明年龄的3倍?题型四:年龄问题—年龄增量相同李文今年9岁,爸爸妈妈的年龄和是81岁,问:多少年后他们仨的平均年龄是40岁?小华今年8岁,他和爸爸、妈妈三人年龄之和为81岁。

若干年后,三人平均年龄是34岁。

到那时,小华的年龄多少岁?题型四:年龄问题—“过去”、“现在”、“将来”今年,父亲年龄是儿子年龄的5倍;15年后,父亲年龄是儿子年龄的2倍。

问:现在父子的年龄各是多少?岁?。

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4

下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?

第13讲 比例解行程问题-教师版

第13讲 比例解行程问题-教师版

第十三讲 比例解行程问题教学目标1. 会解一些简单的方程.2. 掌握寻找等量关系的方法来构建方程.知识精讲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

模块一:比例初步——利用简单倍比关系进行解题【例 1】 (难度等级 ※※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【解析】 画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。

小学数学奥数解题技巧-三到六年级 比较法

小学数学奥数解题技巧-三到六年级 比较法
第十三讲 比较法
通过对应用题条件之间的比较,或难解题与易解题 的比较,找出它们的联系与区别,研究产生联系与 区别的原因,从而发现解题思路的解题方法叫做比 较法。 在用比较法解应用题时,有些条件可直接比较,有 些条件不能直接比较。在条件不能直接比较时,可 借助画图、列表等方法比较,也可适当变换题目的 陈述方式及数量的大小,创造条件比较。 (一)在同一道题内比较 在同一道题内比较,就是在同一道题的条件与条件、 数量与数量之间的比较,不涉及其他题目。 1.直接比较
3.列表比较 有些应用题适于借助列表的方法比较条件。在用列 表的方法比较条件时,要把题中的条件摘录下来, 尽量按“同事横对,同名竖对”的格式排列成表。 这就是说,要尽量使同一件事情的数量横着对齐, 使单位名称相同的数量竖着对齐。
3.列表比较 有些应用题适于借助列表的方法比较条件。在用列 表的方法比较条件时,要把题中的条件摘录下来, 尽量按“同事横对,同名竖对”的格式排列成表。 这就是说,要尽量使同一件事情的数量横着对齐, 使单位名称相同的数量竖着对齐。
【例题】 甲、乙两人共需做140个零件,甲做了自己任务的80%, 乙做了自己任务的75%,这时甲、乙共剩下32个零件未完成。求甲、 乙两人各需做多少个零件?
【点拔】 已知“甲做了自己任务的80%,乙做了自己任务的75%”后共剩下 32个零件,甲、乙两人所做零件个数不相等,因此,甲所做零件的80% 与乙所做零件的75%不可直接比较。此时就要创造条件比较了。 已知甲做自己任务的80%,假设乙也做自己任务的80%,那么甲乙 就共剩下零件:140×(1-80%)=28(个) 这比原来已知的“甲、乙共剩下32个零件”少:32-28=4(个) 这4个所对应的分率是:80%-75%=5% 所以,乙需做的零件是:4÷5%=80(个) 甲需做的零件是:140-80=60(个)

部编人教版四年级数学下册《13练习十三》详细答案解析版PPT课件

部编人教版四年级数学下册《13练习十三》详细答案解析版PPT课件
√ ×
7.2013年我国在校小学生93605487人, 改写成用“万人”作单位的数(保留一 位小数)。
93605487人≈9360.5万人
6.65
25 86
4.64




(1)3.60,3.61,3.62,3.63,3.64 (2)4.95,4.96,4.97,4.98,4.99
课堂作业
同学们下次见!
练习十三
R·四年级下册
10
10.0
9.96
1
0.9
0.91
51
51.5
51.46
2
2.0
2.00
近似于5
5
6
45Βιβλιοθήκη 近似于5近似于13
12
13
7
8
近似于7
18.6亿
327.9亿
2.4亿
2.9亿
3.60万
33900
3.39万
(1)3.5 0.2
4.1
(2)5.34 6.27 0.40
×
√ √
1.请同学们做课后“做一做”,并相互交流; 2、利用自习时间在“课后练习”中选择 与本节课有关的内容,写在作业本上;
3.利用晚上时间完成“长江”练习册1个课时内容。
学习体会
1、从本节课中你学到了哪些基本知识? 2、从本节课中你学到了哪些基本技巧? 3、在这节课中你还有哪些疑虑与困惑?
感谢同学们积极配合!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥学——四年级
第十三讲应用题
姓名
例1、菜市场运来1520千克蔬菜,分别装在24个大筐和40个小框中,已知2个大筐装的蔬菜和3个小筐装的一样多。

每个大筐和每个小筐分别装多少千克?
【试一试】
某蔬菜店进了一批西红柿,如果用大筐装,8筐可以装完;如果用小筐装,16筐可以装完。

现在用大筐已经装了5筐,剩下的用小筐装,还需多少个小筐?
例2、一瓶油,连瓶共重46千克。

把油加到原来的3倍,连瓶共重86千克。

运来瓶中有油多少千克?瓶重多少千克?
【试一试】
一筐鲜鱼,连筐共重120千克,先卖出鲜鱼的一半,再卖出余下的一半,剩下的鱼连筐共重39千克。

原来筐里有鱼多少千克?
例3、有8盒糖果,如果从每盒中取出200千克,那么8盒剩下的糖果正好等于原来4盒的糖果的重量。

原来每盒糖果多少千克?
【试一试】
某超市有5筐大米,如果从每筐中取出60千克,那么5筐剩下的大米正好是原来的3筐。

原来每筐有大米多少千克?
例4、夏丽写毛笔字,计划每天写15个,实际每天多写5个,结果提前2天完成书写任务。

夏丽一共要写多少个毛笔字?
【试一试】
做一批玩具,原计划每天生产80个,实际每天比原计划多生产20个,结果提前3天完成任务。

原计划生产多少个玩具?
【练一练】
1、师徒俩分别要完成288个玩具的加工任务,两人同时开工,师傅每天加工36个,完成任务时,徒弟还要加工4天才能完工。

徒弟每天加工多少个玩具?
2、一辆汽车运一堆黄沙,计划每天运16吨,9天运完,实际每天比计划多运2吨。

这样实际可以提前几天运完?
3、小红、小君和小华分别有4
4、16、51张卡片,小红和小华分别给小君多少张卡片,他们三人的卡片才一样多?
4、学校让王老师买回15个篮球和30个小皮球共 2310元,已知3个篮球的钱等于5个小皮球的钱。

每个小皮球多少元?
5、从甲地到乙地,坐汽车行完全程需4小时,骑自行车行完全程需16小时。

小杰从甲地出发,先骑4小时自行车,再坐汽车到乙地。

他从甲地到乙地共需多少小时?
6、王阿姨进了一筐草莓卖,连筐共重24千克,先卖了一半,后来又卖了剩下的一半,现在还剩下5.5千克草莓。

筐重多少千克?
7、有6筐梨,每筐梨的个数相等。

如果从每筐中取出30个,那么6筐剩下的个数的总和正好等于原来2筐的个数。

原来每筐有多少个?
8、淘气在假期做口算题,原计划每天做120道,实际每天做了160道,结果比计划时间少用2天。

淘气计划做多少道口算题?
探索一下
1、粮库运一批大米,计划25天可以运完。

实际每天比计划多运20吨,结果15天就完成了任务。

这批大米有多少吨?
2、甲、乙两个修路队共修一条路。

甲队每天修18米,乙队每天比甲队少修6
米。

两队同时开始修路,甲队修完路的一半后有事离开,又过了8天,乙队才修完另一半。

这条路共长多少米?。

相关文档
最新文档