什么是爬距和泄漏比距文档 (2)
10kv电缆终端头外绝缘泄露比距
10kv电缆终端头外绝缘泄露比距分析一、概述10kv电缆是电力系统中常见的电力传输装置,其终端头外绝缘泄露比距是评估其绝缘性能的重要指标。
在实际运行中,正确分析和评估终端头外绝缘泄露比距对于保障电力系统的安全稳定运行具有重要意义。
二、10kv电缆终端头外绝缘泄露比距的定义与意义1. 定义:10kv电缆终端头外绝缘泄露比距是指在规定条件下终端头外绝缘表面可能出现漏电情况时,终端头外绝缘表面在相同条件下能够承受的最大电压与漏电电流的比值,通常用来衡量终端头外绝缘的绝缘性能。
2. 意义:终端头外绝缘泄露比距的合格与否直接影响着电缆系统的安全操作和电力传输的可靠性,通过对其进行分析可以及早发现潜在的安全隐患,从而采取相应的措施进行维护和修复,确保系统的稳定运行。
三、10kv电缆终端头外绝缘泄露比距的测试方法1. 10kv电缆终端头外绝缘泄露比距的测试仪器:常用的测试仪器包括介损测试仪、绝缘电阻测试仪等。
2. 测试方法:通常采用交流高压法进行测试,通过施加一定的交流高压,并对泄露电流进行监测,从而计算出终端头外绝缘泄露比距。
四、10kv电缆终端头外绝缘泄露比距的影响因素1. 环境因素:包括温度、湿度、污秽度等环境因素会对终端头外绝缘的性能产生影响。
2. 材料因素:终端头外绝缘采用的材料的种类和质量对泄露比距也具有一定的影响。
3. 加工工艺:终端头的加工工艺会直接影响其表面的光滑度和均匀度,进而影响泄露比距的大小。
五、如何提高10kv电缆终端头外绝缘泄露比距1. 选择合适的终端头外绝缘材料,保证其质量和性能达标。
2. 严格控制终端头的加工工艺,保证其表面的平整度和光滑度。
3. 加强设备的维护和管理,及时进行绝缘泄露比距测试,并根据测试结果进行维护和修复。
六、结语10kv电缆终端头外绝缘泄露比距是衡量终端头外绝缘性能的重要指标,正确分析和评估其对于保障电力系统的安全稳定运行至关重要。
通过对10kv电缆终端头外绝缘泄露比距的测试和分析,可以及早发现潜在的安全隐患,并采取相应的措施进行维护和修复,从而确保系统的稳定运行。
绝缘子基础知识问答
1. 绝缘子的结构如何 ? 它的作用是什么 ?答 :绝缘子 ( 俗称瓷瓶 ) 由瓷质部分和金具两部分组成 , 中间用水泥粘合剂胶合。
瓷质部分是保证绝缘子有良好的电气绝缘强度 , 金具是固定绝缘子用的。
绝缘子的作用有两个方面 : 一是牢固地支持和固定载流导体 , 二是将载流导体与地之间形成良好的绝缘。
它应具有足够的绝缘强度和机械强度 , 同时对化学杂质的侵蚀具有足够的抗御能力 , 并能适应周围大气条的变化 , 如温度和湿度变化对它本身的影响等。
变电站及架空线路上所使用的绝缘子有针式绝缘子、支柱绝缘子、瓷横担绝缘子以及高压穿墙套管。
2. 什么叫爬距 ? 什么叫泄露比距 ?答 :爬距和泄露比距都是外绝缘特有的参数。
沿外绝缘表面放电的距离即为电的泄露距离 , 也称爬电距离 , 简称爬距。
泄露距离乘以有效系数再除以线电压即为泄露比距 , 即λ=KL/U式中 : λ为泄露比距 ;K 为有效系数 ;L 为泄露距离 ;U 为线电压。
3. 什么是沿面放电 ?答 :电力系统中有很多悬式和针式绝缘子、变压器套管和穿墙套管等 , 他们很多是处在空气中 , 当这些设备的电压达到一定值时 , 这些瓷质设备表面的空气发生放电 , 叫做沿固体介质表面放电 , 简称沿面放电。
当沿面放电贯穿两极间时 , 形成沿面闪络。
沿面放电比空气中的放电电压低。
沿面放电电压和电场的均匀程度、固体介质的表面状态及气象条件有关。
4. 什么叫闪络 ? 引起污闪的原因是什么 ?答 :固体绝缘周围的气体或液体电介质被击穿时 , 沿固体绝缘表面放电的现象 , 称为闪络。
在脏污地区的瓷质绝缘子表面落有很多工业污秽颗粒 , 这些污秽颗粒遇潮湿会在瓷表面形成导电液膜 , 使瓷质绝缘的耐压显著下降 , 闪络电压变得很低 , 这是瓷质绝缘在污湿条件下极易闪络的原因。
污和潮是污闪的必要条件 , 瓷绝缘只脏不湿不会引起闪络。
5. 如何防止变电站的绝缘子污闪 ?答 :(1) 增加基本绝缘。
避雷器的作用和分类各有哪些
若不满足会出现的后果:
(1)联接组标号(联接组别)不同,则二次电压之间的相位差会很大,在二次回路中产生很大的循环电流,相位差越大,循环电流越大,肯定会烧坏变压器。
(2)一、二次侧额定电压分别不相等,即变比不相等,在二次回路中也会产生循环电流,占据变压器容量,增加损耗。
(2)远后备——在每个被保护元件配置的一套保护中有分别起主保护、后备保护作用的两部分。作为后备保护的部分既可作为该元件主保护拒动的后备,更主要是作为相邻下一元件的断路器或保护拒动的后备。
(3)近后备——在每个被保护元件上都装设分别起主保护和后备保护作用的两套独立保护,近后备作用实现的特点为:首先是“就近”实现,不依靠相邻上一元件处的保护;其次是主保护拒动,由本处的后备保护起作用。断路器拒动则由本站装设的断路器失灵保护(属近后备)动作切除连接在该段母线上的其它断路器。
B、因温度下降或漏油致使油面缓慢低落。
C、因变压器轻微故障而产生少量气体。
D、由于外部穿越性短路电流的影响。
引起重瓦斯保护动作跳闸的原因,可能是由于变压器内部发生严重故障,油面剧烈下降或保护装置二次回路故障,在某种情况下,如检修后油中空气分离得太快,也可能使重瓦斯保护动作于跳闸。
轻瓦斯保护动作时,首先应解除音响信号,并检查瓦斯继电器动作的原因,根据气体分析,进行处理,若是由于带电滤油,加油而引起的,则主变可继续运行。
消弧线圈的作用是什么?
答:是一个具有铁芯(带有间隙)的可调电感线圈。接于变压器中性点与大地之间。其主要作用是当系统发生单相接地时,产生一个与接地(电容)电流方向相反的电感电流,将接地电流补偿成较小的数值或接近于零,以防止电弧重燃,从二有效地降低过电压值。
(2)缺点是:不能实现全线速动,装置本身元件多可靠性较低、接线复杂维护较难。
安全距离包括电气间隙
安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。
一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。
爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。
(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。
爬距、电气间隙
安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。
一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm(一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。
爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5m m,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。
(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。
什么是爬电、爬距(泄漏距离)、爬电比距
什么是爬电、爬距(泄漏距离)、爬电比距
爬电、爬距(泄漏距离)、爬电比距
为了防止浮尘等污秽在绝缘子表面附着,形成通路被绝缘子两端电压击穿,即爬电.
沿绝缘表面放电的距离即泄漏距离也称爬电距离,简称爬距。
爬距=表面距离/系统较高电压.根据污秽程度不同,
重污秽地区一般采用爬距为31毫米/每千伏.
举例:本公司生产的126KV断路器,绝缘瓷瓶总长3150,爬距既3150/126等于25mm/KV
爬电比距
电力设备外绝缘的爬电距离与设备较高电压之比,单位为mm/kV。
外绝缘污秽等级
外绝缘按公称爬电比距和人工污秽耐受值分为0、Ⅰ、Ⅱ、Ⅲ和Ⅳ五级。
0 级适用于无明显污秽地区,不需进行人工污秽试验。
安全距离及其相关安全要求以及漏电流相关知识
安全距离及其相关安全要求以及漏电流相关知识安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离.2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离.电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源.一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm(一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定.爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源.(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽.(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm.如果所提供的绝缘是用在设备保护外壳内,而且在操作人员维护时不会受到磕碰或擦伤,并且属于如下任一种情况,则上述要求不适用于不论其厚度如何的薄层绝缘材料;——对附加绝缘,至少使用两层材料,其中的每一层材料能通过对附加绝缘的抗电强度试验;或者: ——由三层材料构成的附加绝缘,其中任意两层材料的组合都能通过附加绝缘的抗电强度试验;或者:——对加强绝缘,至少使用两层材料,其中的每一层材料能通过对加强绝缘的抗电强度试验;或者: ——由三层绝缘材料构成的加强绝缘,其中任意两层材料的组合都能通过加强绝缘的抗电强度试验.4、有关于布线工艺注意点:如电容等平贴元件,必须平贴,不用点胶如两导体在施以10N力可使距离缩短,小于安规距离要求时,可点胶固定此零件,保证其电气间隙. 有的外壳设备内铺PVC胶片时,应注意保证安规距离(注意加工工艺)零件点胶固定注意不可使PCB板上有胶丝等异物.在加工零件时,应不引起绝缘破坏.5、有关于防燃材料要求:热缩套管V—1或VTM—2以上;PVC套管 V—1或VTM—2以上铁氟龙套管V—1或VTM—2以上;塑胶材质如硅胶片,绝缘胶带V—1或VTM—2以上PCB板 94V—1以上6、有关于绝缘等级(1)、工作绝缘:设备正常工作所需的绝缘(2)、基本绝缘:对防电击提供基本保护的绝缘(3)、附加绝缘:除基本绝缘以外另施加的独立绝缘,用以保护在基本绝缘一旦失效时仍能防止电击(4)、双重绝缘:由基本绝缘加上附加绝缘构成的绝缘(5)、加强绝缘:一种单一的绝缘结构,在本标准规定的条件下,其所提供的防电击的保护等级相当于双重绝缘各种绝缘的适用情形如下:A、操作绝缘oprational insulationa、介于两不同电压之零件间b、介于ELV电路(或SELV电路)及接地的导电零件间.B、基本绝缘basic insulationa、介于具危险电压零件及接地的导电零件之间;b、介于具危险电压及依赖接地的SELV电路之间;c、介于一次侧的电源导体及接地屏蔽物或主电源变压器的铁心之间;d、做为双重绝缘的一部分.C、补充绝缘 supplementary insulationa、一般而言,介于可触及的导体零件及在基本绝缘损坏后有可能带有危险电压的零件之间,如: Ⅰ、介于把手、旋钮,提柄或类似物的外表及其未接地的轴心之间.Ⅱ、介于第二类设备的金属外壳与穿过此外壳的电源线外皮之间.Ⅲ、介于ELV电路及未接地的金属外壳之间.b、做为双重绝缘的一部分D、双重绝缘Double insulation Reinforced insulation一般而言,介于一次侧电路及a、可触及的未接地导电零件之间,或b、浮接(floating)的SELV的电路之间或c、TNV电路之间双重绝缘=基本绝缘+补充绝缘注:ELV线路:特低电压电路在正常工作条件下,在导体之间或任一导体之间的交流峰值不超过42.4V或直流值不超过60V 的二次电路.SELV电路:安全特低电压电路.作了适当的设计和保护的二次电路,使得在正常条件下或单一故障条件下,任意两个可触及的零部件之间,以及任意的可触及零部件和设备的保护接地端子(仅对I类设备)之间的电压,均不会超过安全值.TNV:通讯网络电压电路在正常工作条件下,携带通信信号的电路.1. 何谓漏电流?当电流经过绝缘阻抗後溢出,称之为漏电流(Leakage current),当漏电流经由人体接触,使电流经过人体後流向Earth,即造成电气伤害.漏电流测试与耐压测试丶接地保护测试的不同处,在於设备是在运作状态下做测试.漏电流测试中会加上一个人体模拟阻抗电路,可模拟在真实情况下漏电流经过人体的大小.2. 何谓患者附属电流?当产品运作时,电流从一个applied part测试点经过MD後至另一个applied part测试点再流向地端.3. 何谓对地漏电流?产品运作时,电流从电源端经过待测物流向电源E端,人体接触到产品E端时会导致感电,称之为对地漏电流.4. 为何医疗设备安规标准这麽重视漏电流测试?医疗设备的定义为与病患(大多法规指为人类,欧规则指人类及动物)有物理或电气上的接触,用於诊断丶治疗丶监控之设备.医疗设备的漏电流测试注重在Applied part-在一般使用情况下,以物理方式接触病患或病患须碰触的配件或设施,如探针丶心电图丶血压棒丶手术台等.漏电流皆会对病患及相关人员产生危害.5. 何谓接触漏电流?产品运作时,电流从二种电源端经过待测物流向外壳丶接点丶镙丝等产品可接触部位(Accessible part),人体接触时产生感电,称之为接触漏电流.6. 漏电流共分为哪几种?漏电流依不同安规而有不同的测试模式,也依不同的测试点而有不同的漏电流标准.最常见的为电流从经过待测物流向电源E端,人体接触到产品E端时会导致感电,称之为对地漏电流(Earth Leakage Current).对地漏电流测试时电源端输入110%额定电压,加上人体模拟电路,并判断经过人体模拟电路之电流值是否超过漏电流限制值.另外还有病患漏电流丶病患从属漏电流等不同漏电流测试.7. 产品的绝缘类型有哪些?不论是国家标准法规或地区标准法规,漏电流的标准依产品之绝缘类型而有所不同.“CLASSI, II ,III” 主要是考虑产品的绝缘系统,源自IEC体系,简单解释如下:CLASS I 是指产品的防触电保护不仅依靠基本绝缘,而且还包括接地方式.CLASS II是指产品的防触电保护不仅依靠基本绝缘,而且还包括附加的安全措施,例如双重绝缘或加强绝缘,但没有接地或依赖安装条件的保护措施.CLASS III是指产品的防触电保护依靠电源电压为安全特低电压(SELV),并且其中不会产生危险电压.8. 何谓患者漏电流?患者漏电流共有三种测试.第一种是当产品运作时,电流从电源端经过applied part後流向地端;另一种测试为将电力来源以110%最高使用电压施加於MD上,让电流经过applied part丶accessible part後流向地端;第三种测试,将电力来源以110%最高使用电压施加於SOP/SIP 上,当产品运作时,电流从二个电源端经过applied part丶MD後流向地端.。
爬电比距的单位是
爬电比距的单位是
爬电比距,即爬升电压与爬升距离的比值,是衡量电力线路安全性和稳定性的重要指标。
在电力工程中,为了确保电力系统的正常运行,我们需要对爬电比距进行精确计算和评估。
爬电比距的单位是伏/米(V/m)。
它表示的是电线在单位距离上所能承受的最大电压。
该指标的大小直接关系到电线是否能够承受电压的增加而不会发生击穿或漏电等事故。
为了更好地理解爬电比距的意义,我们可以通过一个具体的例子来说明。
假设一条电线的爬电比距为10kV/m,意味着在电力系统中,这条电线每增加1米的距离,其电压将增加10kV。
如果该电线的长度为100米,那么其总电压将增加1000kV,即1MV。
如果电压超过了电线所能承受的最大电压,就会发生爬电现象,导致电线击穿,引发电力事故。
爬电比距的计算需要考虑多种因素,如电线的材料、形状、环境条件等。
一般来说,电线的直径越大,导线间的间距越小,爬电比距就越大,电线的安全性就越高。
此外,环境条件也会对爬电比距产生影响,比如湿度、温度等因素都会使电线的绝缘能力降低,从而降低爬电比距。
为了保证电力系统的安全运行,我们需要根据实际情况对电线的爬电比距进行合理的选择和设计。
在工程实践中,我们通常会采用一
些措施来提高电线的爬电比距,比如增大导线的直径、增加绝缘层的厚度等。
爬电比距是电力系统中重要的指标,它反映了电线的绝缘能力和安全性。
通过合理的设计和措施,我们可以提高电线的爬电比距,确保电力系统的正常运行,保障人们生活和生产的安全。
简析输电线路绝缘子污闪原因及防范措施
简析输电线路绝缘子污闪原因及防范措施发表时间:2017-10-12T11:40:01.293Z 来源:《电力设备》2017年第16期作者:郭宝源[导读] 摘要:电网防污闪是一个古老而现实的问题。
随着经济的高速发展,大气污染日趋严重,同时电网的不断扩大和运行电压的提高,也使污闪范围增大,电网运行承受着大面积污闪的风险。
运行经验表明,电网面临的两大威胁是系统稳定性的破坏和大面积污闪的发生。
(南方电网超高压输电公司柳州局广西柳州 545006)摘要:电网防污闪是一个古老而现实的问题。
随着经济的高速发展,大气污染日趋严重,同时电网的不断扩大和运行电压的提高,也使污闪范围增大,电网运行承受着大面积污闪的风险。
运行经验表明,电网面临的两大威胁是系统稳定性的破坏和大面积污闪的发生。
关键词:输电线路;绝缘子;污闪原因;防范措施绝缘子作为输电线路中的重要构件,其运行的安全性与电网运行的可靠性息息相关。
一旦绝缘子污秽闪络发生,则会严重危及电网运行的安全,所以做好输电线路绝缘子防污闪工作具有极为重要的意义。
绝缘子安全稳定的运行不仅有利于确保电网安全运营,而且能够确保供电的可靠性及持续性。
近年来我国工业取得了发展,环境更加恶劣,这就导致线路所在区域的大气污秽程度越来越严重,给输电线路绝缘子防污闪工作带来了较大的难度,所以需要科学地对污秽区进行划分,并采取切实可行的措施对其进行处理,有效的控制污闪的跳闸率,确保电力系统运行的安全性和稳定性。
一、输电线路绝缘子污闪的故障原因分析绝缘子污闪的具体过程如下:附着在绝缘子表面污秽层中有非导体成分和导体成分,在周围环境潮湿的条件下,污秽层中的非导体部分吸收水分,电解质成分开始分解成阴阳离子。
随着离子运动的加强,电场强度增强,在电场力的作用下,电子导体中的电子挣脱原子核的束缚成为自由电子,又促使电场强度增强,最终加大了泄露电流。
当泄露电流大到一定程度时,绝缘就会被击穿,从而发生闪络接地故障。
电气间隙:爬电距离
电气间隙是电气工程中一个重要的概念,它指的是两个导体之间的最小距离,可以承受特定电压而不会产生放电或漏电。
在电气系统设计和安全保护中,了解和合理选择电气间隙非常重要。
本文将从不同角度深入探讨电气间隙的概念、相关原理和其在电气工程中的应用。
1. 电气间隙的定义和重要性在电气工程中,电气间隙被定义为两个导体之间的最小距离,单位通常以毫米(mm)或英寸(inch)表示。
这个距离是导体能够承受特定电压应力而不发生电弧放电或漏电的最小值。
电气间隙的大小直接影响了电气设备和系统的安全性能。
合理选择电气间隙的大小是确保电气系统正常运行和避免电气事故的基本要求。
如果电气间隙过小,电弧放电或漏电可能会导致设备损坏、火灾甚至人身安全的威胁。
而电气间隙过大,则可能导致设备体积增大、造价提高和能效下降。
2. 电气间隙的决定因素电气间隙的大小受多个因素的影响,下面列举了一些常见的因素:2.1 周围介质的特性:周围介质的介电强度和介电常数会影响到电气间隙的大小。
介电强度越高、介电常数越大的介质,能够承受更高的电压应力,从而允许较小的电气间隙。
2.2 温度和湿度:温度和湿度的变化会影响周围介质的介电强度和漏电特性。
通常情况下,高温和高湿度会导致介电强度下降,需要适当增大电气间隙以确保安全。
2.3 工频电压和过电压:工频电压和过电压是电气间隙设计的重要考虑因素。
过电压是指由于雷击、操作失误或系统故障等原因导致瞬时电压超过额定电压的状况。
合理选择电气间隙可以使设备在正常工作电压和过电压下都能够安全运行。
2.4 材料的选择和形状:导体和绝缘材料的选择和形状对电气间隙有直接影响。
一些导体和绝缘材料具有较好的抗电弧和耐压特性,可以允许较小的间隙。
3. 电气间隙在电气工程中的应用电气间隙在电气工程中广泛应用于电气设备和系统的设计、制造和安装中。
以下是一些常见的应用场景:3.1 绝缘子:在输电和变电系统中,绝缘子用于将高电压导线或设备与支架或结构物隔离。
电气间隙及 爬电距离
电气间隙及爬电距离
电气间隙是指导电体与遮断电体之间的最小距离,用于防止电击或漏电等安全问题。
例如,在绝缘破损的情况下,导电体与遮断电体之间的电气间隙就起到了阻隔电流的作用。
爬电距离是指两个相邻导体之间在最坏情况下,电气间隙不能保持安全距离的情况下沿表面逐渐增长的距离。
通常情况下,爬电距离指的是两个不同电位的导体之间的安全电气间隙,用来防止绝缘破坏、电弧击穿和火灾等危险。
在电气设备设计和安装中,爬电距离需要根据具体的电压等级进行计算和确定,以确保设备的安全运行。
安全距及其相安全要求
安全距离及其相关安全要求安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。
一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。
爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,但通常:保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。
(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求; ——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。
什么叫爬距什么是电气爬电距离
什么叫爬距?什么是电气爬电距离?两个导电部件之间,或一个导电部件与设备及易接触表面之间沿绝缘材料表面测量的最短空间距离.沿绝缘表面放电的距离即泄漏距离也称爬电距离,简称爬距。
爬距=表面距离/系统最高电压.根据污秽程度不同,爬的意思,可以看做一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。
电气间隙,是一个带翅膀的蚂蚁,飞的最短距离。
国标里有具体规定,不同形状的绝缘,爬电距离的计算方法是不一样的。
在GB/T 2900.18-1992 电工术语低压电器标准中对爬电距离有这样的定义:爬电距离具有电位差的两导电部件之间沿绝缘材料表面的最短距离。
在电气上,对最小爬电距离的要求,和两导电部件间的电压有关,和绝缘材料的耐泄痕指数有关,和电器所处环境的污染等级有关。
对最小爬电距离做出限制,是为了防止在两导电体之间,通过绝缘材料表面可能出现的污染物出现爬电现象。
爬电距离在运用中,所要安装的带电两导体之间的最短绝缘距离要大于允许的最小爬电距离.在确定电气间隙和爬电距离时,应考虑额定电压、污染状况、绝缘材料、表面形状、位置方向、承受电压时间长短等多种使用条件和环境因素,在先进的设备与产品标准中均有此规定值。
具体来说就是在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象,此带电区(导体为圆形时,带电区为环形)的半径即爬电距离。
爬电距离的大小和工作电压、绝缘材料等直接相关,同时注意不同的使用环境也会有所影响,如气压、污染等.爬电距离和电气间隙,是两个概念,在进行判断时必须同时满足,不可以相互替代.电气间隙的大小取决于工作电压的峰值,电网的过电压等级对其影响较大,爬电距离取决于工作电压的有效值,绝缘材料的CTI值对其影响较大.两个条件必须同时满足,所以根据定义,爬电距离任何时候不可以小于电气间隙.当然对于两个带电体,是无法设计出爬电距离小于电气间隙来的。
爬电距指沿绝缘表面测得的两个导电器件之间或导电器件与设备界面之间的最短距离。
什么是爬距和泄漏比距文档 (2)
什么是爬距和泄漏比距?答:爬距和泄漏比距都是外绝缘特有的参数。
沿外绝缘表面放电的距离称为泄漏距离,也称爬电距离,简称爬距。
泄漏距离乘以有效系数再除以线电压即为泄漏比距。
爬电比距中文名称:爬电比距英文名称:specific creepage distance定义:设备外绝缘的爬距与其两端承受的最高运行电压(对于交流系统,为最高线电压)之比,单位为mm/kV。
一、爬电1、爬电现象在绝缘材料的性能降低时受天气等外界因素如空气湿度大,接连阴天霉雨季节,潮湿环境等使得带电金属部位与绝缘材料产生象水纹样电弧沿着外皮爬的现象,也有点象闪电一样.2、爬电原理两极之间的绝缘体表面有轻微的放电现象,造成绝缘体的表面(一般)呈树枝状或是树叶的经络状放电痕迹,一般这种放电痕迹不是连通两极的,放电一般不是连续的,只是在特定条件下发生,如天气潮湿、绝缘体表面有污秽、灰尘等,时间长了会导致绝缘损坏。
3、引起爬电现象的原因绝缘部分表面附着污秽,使绝缘部分绝缘强度下降,在空气潮湿发生爬电。
4、爬电的本质绝缘表面电压分布不均匀,造成局部放电。
5、发生爬电的环境发生爬电时电弧的长度受污秽的面积大小、空气湿度、电压高低因素影响。
在电缆的绝缘部分,绝缘材料的绝缘强度、防污秽附着、加长绝缘“距离”等性能会对爬电现象有影响6、材料的抗爬电性能:绝缘强度、高密度分子等。
二、爬电距离Creepage Distance1、定义两个导电部件之间,或一个导电部件与设备及易接触表面之间沿绝缘材料表面测量的最短空间距离.沿绝缘表面放电的距离即泄漏距离也称爬电距离,简称爬距。
爬距=表面距离/系统最高电压.根据污秽程度不同,爬的意思,可以看做一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。
电气间隙,是一个带翅膀的蚂蚁,飞的最短距离。
国标里有具体规定,不同形状的绝缘,爬电距离的计算方法是不一样的。
在 GB/T 2900.18-1992 电工术语低压电器标准中对爬电距离有这样的定义:爬电距离具有电位差的两导电部件之间沿绝缘材料表面的最短距离。
安全距离
安全距离及其相关安全要求安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装臵之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。
一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。
爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。
(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。
安全距离及其相关安全要求
安全距离及其相关安全要求安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。
一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件 二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。
爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。
(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。
电气实验工题库
$开始$简答电流的方向是如何规定的?答案:习惯规定以正电荷运动的方向作为电流的方向。
在什么情况下应用戴维南定理?什么是开路电压?什么是输入电阻?答案:在计算复杂电路时,只计算电路中某一支路的电流时,应用戴维南定理。
将要计算的某一支路断开,断开的有源网络两端之间的电压称为开路电压,即等效电压源的电动势,以U 0表示。
将有源二端网络内部的电压源全部短路,其等效电阻为等效电压源的内阻,又称为输入电阻,以r 0或R i 表示。
导线切割磁力线产生感应电动势的大小和哪些因素有关?答案:感应电动势的大小与下面一些因素有关:1)导线的有效长度L ;2)导线的运动速度V ;3)磁感应强度B ;4)导线的运动方向与磁力线方向的夹角ϕ。
什么叫电磁感应定律?答案:线圈中感应电动势的大小和线圈内磁通变化的速度成正比。
感应电动势所产生感应电流反抗磁通的变化,对于单匝线圈则有:te ∆∆-=φ。
什么叫自感电动势?什么叫互感电动势?答案:由于线圈中通过的电流发生变化而在线圈本身所产生的感应电动势叫做自感电动势。
由于一个线圈中的电流变化而在邻近另一个线圈中产生的感应电动势叫互感电动势。
写出正弦交流电的电压瞬时值的三角函数式,并说明什么是交流电的周期、频率和角频率?答案:正弦交流电的瞬时值函数式为:)sin(ϕω+=t U u m交流电变化一周所需要的时间称为周期(用T 表示),单位时间内交流电重复变化的次数叫做频率(用字母f 表示)频率的单位用每秒弧度数表示时就是角频率ω。
说明什么是相位,初相角和相位差?答案:在一个正弦量,例如)sin(ϕω+=t U u m 中,)(ϕω+t 是一个表示正弦量变化进程的量,称为相位。
t=O 时正弦量的相角称为初相角或初相位,简称初相。
相位差就是两个同频率正弦量的相位之差。
什么叫视在功率、有功功率、无功功率?答案:电路中电压与电流有效值的乘积称视在功率(用符号S 表示)。
有功功率又叫平均功率,即瞬时功率在一个周期内的平均值,它是指电路中阻性元件消耗的功率(用符号P 表示)。
爬电比距
爬电比距科技名词定义中文名称:爬电比距英文名称:specific creepage distance定义:设备外绝缘的爬距与其两端承受的最高运行电压(对于交流系统,为最高线电压)之比,单位为mm/kV。
所属学科:电力(一级学科);高电压技术(二级学科)本内容由全国科学技术名词审定委员会审定公布目录一、爬电二、爬电距离Creepage Distance三、爬电比距一、爬电二、爬电距离Creepage Distance三、爬电比距展开编辑本段一、爬电1、爬电现象在绝缘材料的性能降低时受天气等外界因素如空气湿度大,接连阴天霉雨季节,潮湿环境等使得带电金属部位与绝缘材料产生象水纹样电弧沿着外皮爬的现象,也有点象闪电一样.2、爬电原理两极之间的绝缘体表面有轻微的放电现象,造成绝缘体的表面(一般)呈树枝状或是树叶的经络状放电痕迹,一般这种放电痕迹不是连通两极的,放电一般不是连续的,只是在特定条件下发生,如天气潮湿、绝缘体表面有污秽、灰尘等,时间长了会导致绝缘损坏。
3、引起爬电现象的原因绝缘部分表面附着污秽,使绝缘部分绝缘强度下降,在空气潮湿发生爬电。
4、爬电的本质绝缘表面电压分布不均匀,造成局部放电。
5、发生爬电的环境发生爬电时电弧的长度受污秽的面积大小、空气湿度、电压高低因素影响。
在电缆的绝缘部分,绝缘材料的绝缘强度、防污秽附着、加长绝缘“距离”等性能会对爬电现象有影响6、材料的抗爬电性能:绝缘强度、高密度分子等。
编辑本段二、爬电距离Creepage Distance1、定义两个导电部件之间,或一个导电部件与设备及易接触表面之间沿绝缘材料表面测量的最短空间距离.沿绝缘表面放电的距离即泄漏距离也称爬电距离,简称爬距。
爬距=表面距离/系统最高电压.根据污秽程度不同,爬的意思,可以看做一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。
电气间隙,是一个带翅膀的蚂蚁,飞的最短距离。
国标里有具体规定,不同形状的绝缘,爬电距离的计算方法是不一样的。
电气爬电距离
电气爬电距离电气爬电距离,顾名思义,指的是电气设备在机械结构上爬电现象的距离。
爬电是电气设备中的一种较为危险的现象,也是电气设备设计和安装中需要特别注意的一个问题。
本文将以以下几个方面进行详细介绍:什么是电气爬电、爬电距离的影响因素、如何计算爬电距离以及如何避免爬电现象。
首先,我们来明确一下什么是电气爬电。
电气爬电是指当电气设备之间的电压差超过一定值时,电流会在机械结构上产生漏电现象。
这种漏电现象不仅会影响设备的正常工作,还会带来很大的安全隐患。
影响电气爬电距离的因素有很多,主要包括以下几个方面:1.电压差:电压差越大,漏电现象越容易发生,因此,在设计电气装置时需要合理控制电压差。
2.环境湿度:环境湿度越大,电气爬电距离越小,因为湿度会导致电介质的绝缘性能下降。
3.表面污秽:机械结构表面的污秽会在一定程度上降低绝缘性能,增加电气爬电的风险。
4.材料选择:机械结构所选用的材料也会对爬电距离产生影响,应选择绝缘性能较好的材料。
然后,我们来了解一下如何计算电气爬电距离。
根据国际电工委员会(IEC)的规定,爬电距离的计算可以使用工频耐压试验方法。
具体来说,可以按照以下步骤进行计算:1.根据设备的使用环境确定环境类别,如干燥环境、湿润环境等。
2.根据环境类别选择合适的标准电压试验电压。
不同的环境类别对应不同的标准试验电压。
3.根据试验电压和环境类别查表,找出相应的爬电距离要求。
4.根据所选材料和机械结构的尺寸,计算出实际的爬电距离。
5.比较实际爬电距离与爬电距离要求,确保设备的安全性。
最后,我们来探讨一下如何避免电气爬电现象。
为避免电气爬电现象,可以采取以下几个方法:1.确保设备的电压差在安全范围内。
合理设计电气线路,减小电压差。
2.保持设备的干燥清洁。
定期清洗机械结构表面,防止灰尘和污物附着。
3.选用绝缘性能良好的材料。
在设计和制造中选择绝缘性能较好的材料,提高设备的绝缘等级。
4.加强绝缘检测和维护工作。
安全距离
安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离.2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离.电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源.一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定.爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源.(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽.(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm.如果所提供的绝缘是用在设备保护外壳内,而且在操作人员维护时不会受到磕碰或擦伤,并且属于如下任一种情况,则上述要求不适用于不论其厚度如何的薄层绝缘材料;——对附加绝缘,至少使用两层材料,其中的每一层材料能通过对附加绝缘的抗电强度试验;或者:——由三层材料构成的附加绝缘,其中任意两层材料的组合都能通过附加绝缘的抗电强度试验;或者:——对加强绝缘,至少使用两层材料,其中的每一层材料能通过对加强绝缘的抗电强度试验;或者:——由三层绝缘材料构成的加强绝缘,其中任意两层材料的组合都能通过加强绝缘的抗电强度试验.4、有关于布线工艺注意点:如电容等平贴元件,必须平贴,不用点胶如两导体在施以10N力可使距离缩短,小于安规距离要求时,可点胶固定此零件,保证其电气间隙.有的外壳设备内铺PVC胶片时,应注意保证安规距离(注意加工工艺)零件点胶固定注意不可使PCB板上有胶丝等异物.在加工零件时,应不引起绝缘破坏.5、有关于防燃材料要求:热缩套管 V—1或VTM—2以上;PVC套管 V—1或VTM—2以上铁氟龙套管 V—1或VTM—2以上;塑胶材质如硅胶片,绝缘胶带V—1或VTM—2以上PCB板 94V—1以上6、有关于绝缘等级(1)、工作绝缘:设备正常工作所需的绝缘(2)、基本绝缘:对防电击提供基本保护的绝缘(3)、附加绝缘:除基本绝缘以外另施加的独立绝缘,用以保护在基本绝缘一旦失效时仍能防止电击(4)、双重绝缘:由基本绝缘加上附加绝缘构成的绝缘(5)、加强绝缘:一种单一的绝缘结构,在本标准规定的条件下,其所提供的防电击的保护等级相当于双重绝缘各种绝缘的适用情形如下:A、操作绝缘oprational insulationa、介于两不同电压之零件间b、介于ELV电路(或SELV电路)及接地的导电零件间.B、基本绝缘 basic insulationa、介于具危险电压零件及接地的导电零件之间;b、介于具危险电压及依赖接地的SELV电路之间;c、介于一次侧的电源导体及接地屏蔽物或主电源变压器的铁心之间;d、做为双重绝缘的一部分.C、补充绝缘 supplementary insulationa、一般而言,介于可触及的导体零件及在基本绝缘损坏后有可能带有危险电压的零件之间,如:Ⅰ、介于把手、旋钮,提柄或类似物的外表及其未接地的轴心之间.Ⅱ、介于第二类设备的金属外壳与穿过此外壳的电源线外皮之间.Ⅲ、介于ELV电路及未接地的金属外壳之间.b、做为双重绝缘的一部分D、双重绝缘Double insulation Reinforced insulation一般而言,介于一次侧电路及a、可触及的未接地导电零件之间,或b、浮接(floating)的SELV的电路之间或c、TNV电路之间双重绝缘=基本绝缘+补充绝缘注:ELV线路:特低电压电路在正常工作条件下,在导体之间或任一导体之间的交流峰值不超过42.4V或直流值不超过60V的二次电路. SELV电路:安全特低电压电路.作了适当的设计和保护的二次电路,使得在正常条件下或单一故障条件下,任意两个可触及的零部件之间,以及任意的可触及零部件和设备的保护接地端子(仅对I类设备)之间的电压,均不会超过安全值.TNV:通讯网络电压电路在正常工作条件下,携带通信信号的电路.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是爬距和泄漏比距?
答:爬距和泄漏比距都是外绝缘特有的参数。
沿外绝缘表面放电的距离称为泄漏距离,也称爬电距离,简称爬距。
泄漏距离乘以有效系数再除以线电压即为泄漏比距。
爬电比距
中文名称:爬电比距
英文名称:specific creepage distance
定义:设备外绝缘的爬距与其两端承受的最高运行电压(对于交流系统,为最高线电压)之比,单位为mm/kV。
一、爬电
1、爬电现象
在绝缘材料的性能降低时受天气等外界因素如空气湿度大,接连阴天霉雨季节,潮湿环境等使得带电金属部位与绝缘材料产生象水纹样电弧沿着外皮爬的现象,也有点象闪电一样.
2、爬电原理
两极之间的绝缘体表面有轻微的放电现象,造成绝缘体的表面(一般)呈树枝状或是树叶的经络状放电痕迹,一般这种放电痕迹不是连通两极的,放电一般不是连续的,只是在特定条件下发生,如天气潮湿、绝缘体表面有污秽、灰尘等,时间长了会导致绝缘损坏。
3、引起爬电现象的原因
绝缘部分表面附着污秽,使绝缘部分绝缘强度下降,在空气潮湿发生爬电。
4、爬电的本质
绝缘表面电压分布不均匀,造成局部放电。
5、发生爬电的环境
发生爬电时电弧的长度受污秽的面积大小、空气湿度、电压高低因
素影响。
在电缆的绝缘部分,绝缘材料的绝缘强度、防污秽附着、加长绝缘“距离”等性能会对爬电现象有影响
6、材料的抗爬电性能:
绝缘强度、高密度分子等。
二、爬电距离Creepage Distance
1、定义
两个导电部件之间,或一个导电部件与设备及易接触表面之间沿绝缘材料表面测量的最短空间距离.沿绝缘表面放电的距离即泄漏距离也称爬电距离,简称爬距。
爬距=表面距离/系统最高电压.根据污秽程度不同,
爬的意思,可以看做一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。
电气间隙,是一个带翅膀的蚂蚁,飞的最短距离。
国标里有具体规定,不同形状的绝缘,爬电距离的计算方法是不一样的。
在 GB/T 2900.18-1992 电工术语低压电器标准中对爬电距离有这样的定义:爬电距离具有电位差的两导电部件之间沿绝缘材料表面的最短距离。
2、实际应用
在电气上,对最小爬电距离的要求,和两导电部件间的电压有关,和绝缘材料的耐泄痕指数有关,和电器所处环境的污染等级有关。
对最小爬电距离做出限制,是为了防止在两导电体之间,通过绝缘材料表面可能出现的污染物出现爬电现象。
爬电距离在运用中,所要安装的带电两导体之间的最短绝缘距离要大于允许的最小爬电距离.
在确定电气间隙和爬电距离时,应考虑额定电压、污染状况、绝缘材料、表面形状、位置方向、承受电压时间长短等多种使用条件和环境因素,在先进的设备与产品标准中均有此规定值。
具体来说就是在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象,此带电区(导体为圆形时,带电区为环形)的半径即爬电距离。
爬电距离的大小和工作电压、绝缘材料等直接相关,同时注意不同的使用环境也会有所影响,如气压、污染等.
爬电距离和电气间隙,是两个概念,在进行判断时必须同时满足,不可以相互替代.
电气间隙的大小取决于工作电压的峰值,电网的过电压等级对其影响较大,
爬电距离取决于工作电压的有效值,绝缘材料的CTI值对其影响较大.
两个条件必须同时满足,所以根据定义,爬电距离任何时候不可以小于电气间隙.当然对于两个带电体,是无法设计出爬电距离小于电气间隙来的。
4、例子
测量爬电距离
测量爬电距离
输入150V-300V电源最小空气间隙及爬电距离
输入150V-300V电源最小空气间隙及爬电距离
相邻端子间爬电距离:11.35mm 端子和导轨间爬电距离:10.11mm
相邻端子间爬电距离
编辑本段三、爬电比距
1、爬电比距的定义:
电力设备外绝缘的爬电距离与设备最高工作电压有效值之比,单位为mm/kV。
现行的有关行业标准规定了高压开关设备外绝缘公称爬电比距应用系数,其中相间爬电比距应用系数为(√3).
2、爬电比距地分类:
外绝缘按公称爬电比距分为0、Ⅰ、Ⅱ、Ⅲ、Ⅳ五级。
0级适用于无明显污秽地区,不需进行人工污秽试验。
0级的公称爬电比距为线路14.5,电站设备15.5;
Ⅰ级的公称爬电比距为线路16,电站设备16;
Ⅱ级的公称爬电比距为线路20,电站设备20;
Ⅲ级的公称爬电比距为线路25,电站设备25;
Ⅳ级的公称爬电比距为线路31,电站设备31。
用于中性点绝缘和经消弧线圈接地的系统的3~63kV级电力设备,其外绝缘的污秽等级一般可按Ⅱ、Ⅲ和Ⅳ级选取。
3、各污秽等级下的爬电比距分级数值
污秽等级爬电比距(cm/kV)线路发电厂、变电所220kV及以下330kV 及以上220kV及以下330kV及以上01.391.45——Ⅰ1.39~1.741.45~
1.821.601.60Ⅱ1.74~
2.171.82~2.272.002.00Ⅲ2.17~2.782.27~
2.912.502.50Ⅳ2.78~
3.302.91~3.453.103.10
注:线路和发电厂、变电所爬电比距计算时取系统最高工作电压。
4、注
重污秽地区一般采用爬距为31毫米/每千伏.
举例:本公司生产的126KV断路器,绝缘瓷瓶爬电距离3150mm,爬电比即3150/126等于25mm/KV。