中国民航大学概率论与数理统计期末试题(2)
《概率论与数理统计》期末测试卷(二)(答案解析版)
《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。
第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。
(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。
(2)若已知他第二次已经及格,求他第一次及格的概率。
解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
2020-2021大学《概率论与数理统计》期末课程考试试卷A2(含答案)
2020-2021《概率论与数理统计》期末课程考试试卷A2适用专业: 考试日期:试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题: (4小题,每空2分,共10分)1、袋中有20个球,其中12只红球,8只黑球,今有2人依次随机地从袋中各取一球,取后不放回。
则第2人取得红球的概率为 。
2、若1,2,3,4,5号运动员随机的排成一排,则1号运动员站在中间的概率为 .3、 设随机变量X 与Y 互相独立,且()()2~,2/1~Exp Y Exp X 则随机变量Y 的概率密度函数为()f x = ;(232)E X Y --= .4、设随机变量()()22~,~m n Y X χχ,且X ,Y 相互独立,则随机变量mY nX F //=服从 分布.二、单项选择题:(5小题,每题2分,共10分)1、同时抛掷2枚匀称的硬币,则恰好有两枚正面向上的概率( ). A 0.5 B 0.25 C 0.125 D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()0x dx ϕ+∞-∞=⎰ D ()0x ϕ≥3、 已知~()X x ϕ,21x x ϕπ-()=[(1+)],则2Y X = 概率密度为( ). A 21(1)y π+ B 22(4)y π+ C 21(1/4)y π+ D 21(14)y π+ 4、随机变量X 与Y 满足()()()D X Y D X D Y +=-,则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=5、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率D 原假设0H 不成立,经检验不能拒绝的概率.三、(14分)20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为多少?四、(14分)设随机变量X 与Y 相互独立,且X 与Y 的分布律为试求:(1)二维随机变量(,)X Y 的分布律;(2)随机变量Y X Z +=的分布律.专业班级: 姓名: 学号:装 订 线五、(14分)设二维随机向量(,)X Y 的概率密度为21,01,0(,)20ye x yf x y -⎧≤≤>⎪=⎨⎪⎩,其它 (1)求(X,Y)关于X 和关于Y 的边缘概率密度;(2)问X 是Y 否相互独立,为什么?六、(14分)设随机变量X 的概率密度为,02()20,xx f x ⎧≤≤⎪=⎨⎪⎩其它试求:(1)E(X),D(2X-3) ;(3)P{0<X<1.5}七、(14分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =2020-2021《概率论与数理统计》期末课程考试试卷A2答案一、填空题1)3/5; 2)1/5; 3)()()21,020,xe xf xelse-⎧≥⎪=⎨⎪⎩;-7; 4)自由度为m,n的F分布.二、选择题1)B; 2)C; 3)D; 4)B; 5)A.三解、18171829142019201910p=⨯+⨯=分五、解()()1211,01,0;720,0,xX Yxe xf x f yelseelse-⎧<<⎧≤⎪==⎨⎨⎩⎪⎩分独立,因为()()(),14X Yf x f y f x y=分六、解()()()4294;2310;0 1.5143916E X D X P x=-=<<=分分分七解、22122131322E X分;所以()332分,E Xθ-=又()^453分;E X X==所以的矩估计为566=分θ.由521L,则ln5ln ln2ln17L分;令lnd Ld,得596分θ=,所以的最大似然估计为5106=分θ八解、由题可得0010:10;:102H H分;0.05,20,119,10.24n n x分;;原假设的拒绝域为016/xt nn分;0 1.7541/0.5099/20n0.05(19)1,7291t=,所以在显著性水平为0.05的情况下拒绝原假设10分.。
中国民航大学概率论与数理统计试题库及答案
<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
《概率论与数理统计》期末考试题(附答案)
《概率论与数理统计》期末考试题一.填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ,则)B -A (p 0.4 、)B A (p 0.7 、)B A (p 1/3 ,)(B A P = 0.3。
2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:8/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为:4/9 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为:13/21 . 3、设随机变量X 服从参数为6的泊松分布,则1X p 1- 6e4、设随机变量X 服从B (2,0. 6)的二项分布,则2Xp 0.36 , Y服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X 服从B (10,0. 6)分布,)(Y XE 6 。
5、设二维随机向量),(Y X 的分布律是有则a_0.3_,X的数学期望)(X E ___0.5_______,Y X 与的相关系数xy___0.1_______。
第1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p ;7、(1)若随机变量X )3,1(~U ,则20〈〈X p 0.5;)(2X E _13/3,)12(XD 3/4 .X Y0 1 0 10.30.2 0.2a(2)若随机变量X ~)4,1(N 且8413.0)1(则}31{X P 0.6826 ,(~,12N Y XY则 3 ,16 )。
8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:)2(Y XE 5 ,)2(Y XD 17 。
2020-2021大学《概率论与数理统计》期末课程考试试卷B2(含答案)
2020-2021《概率统与数理统计》课程考试试卷B2适用专业 ,考试日期. 答题时间2小时,闭卷,总分100分附表:0.025 1.96z = 0.975 1.96z =- 0.05 1.65z = 0.95 1.65z =-一、 填空题(每空2分,共28分)1、设C B A ,,是三事件,用C B A ,,的运算关系表示下列各事件. (1)C B A ,,至少有两个发生 (2)A 发生且B 与C 至少有一个发生 (3)C B A ,,只有一个发生2、若()()41,31==B P A P .则(1)若B A ,相互独立,则()=⋃B A P (2)若B A ,互斥,则()=⋃B A P3、设X 在(0,6)服从均匀分布,则方程22540x Xx X ++-=有实根的概 率为4、将n 只球(n ~1号)随机地放进n 个盒子(n ~1号)中去,一个盒子装一 只球,若一只球放入与球同号的盒子中,称为一个配对.设为总的配对数为X , 则()=X E5、设总体()p B X ,1~,n X X X ,,,21 是来自总体X 的样本.则),,,(21n X X X 的 分布为 ,()=X E ,()=X D ,()=2S E 6、设n X X X ,,,21 是来自分布()2,σμN 的样本,μ已知,2σ未知.则()~122∑=-ni i X σμ7、从一批零件中,抽取9个零件,测得其直径(mm )为:19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3,设零件的直径服从正态分布()2,σμN ,且21.0=σ(mm ).则这批零件的均值μ的置信水平为0.95的置信区间为8、设n X X X ,,,21 是来自总体X 的样本,且()()2,σμ==X D X E ,若()22cSX -是2μ的无偏估计,则=c二、选择题(共4题,每题3分,共12分)9.设B A ,是任意两个概率不为0的互斥事件,则下列结论肯定正确的是( ) A )B A 与互斥 B )B A 与相容 C )()()()B P A P AB P = D )()()A P B A P =-10.设()2,1,412141101=⎪⎪⎭⎫⎝⎛-=i X i 且()1021==X X P ,则()==21X X P ( )A )0B )1C )21D )4111.设随机变量Y X 与的联合概率密度函数为()⎪⎩⎪⎨⎧≤+=,01,1,22其他y x y x f π,则( )A )Y X 与相关,但不独立B )Y X 与不相关,但不独立C )Y X 与不相关,但独立D )Y X 与既相关,又独立12.设()12,1,0~+=X Y U X ,则 ( ) A )()1,0~U Y B )()110=≤≤Y P C )()3,1~U Y D )()010=≤≤Y P 三、解答题(共5题,每题12分,共60分)13、试卷中有一道题,共有四个答案,其中只有一个答案正确.任一考生如果会解这道题,则一定能选出答案.如果他不会这道题,则不妨任选一答案.设考生会解这道题的概率为0.8,试求考生选出正确答案的概率.14.设随机变量ξ的概率密度函数为()()()0 ,010,>⎩⎨⎧<<=k x kx x f ,,其他αα且95.0=ξE ,试求α,k .15.设随机变量(,)X Y 的联合概率密度函数为212, 01(,)0, y y x f x y ⎧≤≤≤=⎨⎩其他试求边际密度函数()X f x 和()E XY .16.设总体X 具有分布律其中()10<<θθ为未知参数.已知取得了样本值1,2,1321===x x x ,试求θ的 矩估计值和最大似然估计值.17.假定考生成绩服从正态分布()2,σμN ,1.5分,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,问在显著性水平0.05下,是否可以人为这次考试全体考生的平均成绩为70分.2020-2021《概率统与数理统计》课程考试试卷B2答案一、填空题(每空2分,共28分)1、BC AC AB ⋃⋃,()C B A ⋃,C B A C B A C B A ⋃⋃;2、127,125;3、21;4、1;5、())1(,)1(,,1)(11p p np p p p pni i ni ix n x --∑-∑==-; 6、2)(n χ; 7、20.111; 8、n1. 二、选择题(共4小题,每题3分,共12分).12 11 10 9C B A D 、,、,、,、三、解答题13、0.8⨯1+0.25⨯0.2=0.80514、解 由110160.95f x dx xf x dx分;得191218k分;15、解 ()()230124,015分xX f x y dy x x ==≤≤⎰;()130011(,)1212.2分xy x E XY xyf x y dxdy dx xy dy ≤≤≤===⎰⎰⎰⎰16、解 22122131322E X 分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 18L分;令ln 0d L d,得5106分θ=,所以的最大似然估计为5126=分θ17、解 本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:01:70 vs :70H H μμ=≠拒绝域{}1/2z z α->,当显著性水平为0.05时,0.975 1.96z =-.由已知条件,66.5, 1.5,x σ==故检验统计量的值为()666.570141.5z ⨯-==-因为14 1.96z =>,故拒绝原假设,可以认为这次考试全体考生的平均成绩不为70分.。
概率论与数理统计期末考试卷附答案
概率论与数理统计期末考试卷课程名称:概率论与数理统计考试时间1。
设,相互独立,则(1)至少出现一个的概率为_ __;(2)恰好出现一个的概率为_ _ _.2。
设,,,则__ ____。
3.设是相互独立的两个随机变量,它们的分布函数分别为,则的分布函数是。
4.若随机变量服从正态分布,是来自的一个样本,令,则服从分布。
则关于的回归函数 .二、单项选择题(每小题2分,共10分)1. 设函数在区间上等于,而在此区间外等于0,若可以做为某连续型随机变量的密度函数,则区间为()。
(A) ; (B) ;(C) ;(D)。
2. 假设随机变量的概率密度为,即,期望与方差都存在,样本取自,是样本均值,则有( )(A) ; (B) ;(C) ;(D) 。
3. 总体,已知,()时,才能使总体均值的置信度为的置信区间长不大于。
()(A);(B);(C); (D)。
4. 对回归方程的显著性的检验,通常采用3种方法,即相关系数检验法,检验法和检验法,下列说法正确的()。
(A)检验法最有效;(B)检验法最有效;(C) 3种方法是相通的,检验效果是相同的;(D) 检验法和检验法,可以代替相关系数的检验法。
5.设来自正态总体的样本(已知),令,并且满足(),则在检验水平下, 检验时,第一类和第二类错误的概率分别是()和( ).(A)当成立} ;(B)|当不成立};(C)当成立};(D) |当不成立}。
三、计算题(每小题10分,共20分)1。
设有甲、乙、丙三门炮,同时独立地向某目标射击命中率分别处为0.2、0.3、0。
5,目标被命中一发而被击毁的概率为0.2,被命中两发而被击毁的概率为0.6,被命中三发而被击毁的概率为0。
9,求:(1)三门火炮在一次射击中击毁目标的概率;(2)在目标被击毁的条件下,只由甲火炮击中的概率。
解:设事件分别表示甲、乙、丙三门炮击中目标,表示目标被击毁,表示有门炮同时击中目标(),由题设知事件相互独立,故,,;,,,(1)由全概率公式,得(2)由贝叶斯公式,得2.随机变量在区间上服从均匀分布,随机变量,。
概率论与数理统计期末考试题及答案
模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
大学概率论与数理统计期末考试试卷
大学概率论与数理统计期末考试试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为(A) A. B.BCC.ABC D.2.设随机事件A与B相互独立,且P(A)=,P(B)=,则P(A B)=(B) A. B.C. D.3.设随机变量X~B(3,0.4),则P{X≥1}=(C)A.0.352B.0.432C.0.784D.0.936A.0.2B.0.35C.0.55D.0.85.设随机变量X的概率密度为f(x)=,则E(X),D(X)分别为(B)A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=(A)A.B.C.2 D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~(B )A.N(-3,-5)B.N(-3,13)C.N(1,)D.N(1,13)8.设X,Y 为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY =(D ) A. B. C. D.9.设随机变量X~2(2),Y~2(3),且X 与Y 相互独立,则(C )A.2(5)B.t(5)C.F(2,3) D.F(3,2)10.在假设检验中,H 0为原假设,则显著性水平的意义是(A ) A.P{拒绝H 0|H 0为真}B.P{接受H 0|H 0为真}C.P{接受H 0|H 0不真} D.P{拒绝H 0|H 0不真}二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,P(A)=0.6,P(B|A)=0.3,则P(AB)=_0.18_____. 12.设随机事件A 与B 互不相容,P()=0.6,P(A B)=0.8,则P(B)=_0.4_____.13.设随机变量X 服从参数为3的泊松分布,则P{X=2}=_____.14.设随机变量X~N(0,42),且P{X>1}=0.4013,(x)为标准正态分布函数,则(0.25)=_0.5987____. 15.设二维随机变量(X,Y)的分布律为392e则P{X=0,Y=1}=_0.1_____.16.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y>1}=____0.5__.17.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=__13/16____.18.设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=__5____. 19.设随机变量X 1,X 2,…,X n ,…相互独立同分布,且E (X i )=则___0.5_______. 20.设随机变量X-2(n),(n)是自由度为n 的2分布的分位数,则P{x}=_1-a_____. 21.设总体X~N(),x 1,x 2,…,x 8为来自总体X 的一个样本,为样本均值,则D ()=__8____. 22.设总体X~N(),x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,s 2为样本方差,则~__t(n-1)___.23.设总体X 的概率密度为f(x;),其中(X)=,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值.若c 为的无偏估计,则常数c=__0.5____. 24.设总体X~N(),已知,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,则参数的置信度为1-的置信区间为__=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→0lim 1σμn n X P n i i n 22(a ax x nn-+____. 25.设总体X~N(,x 1,x 2,…,x 16为来自总体X 的一个样本,为样本均值,则检验假设H 0:时应采用的检验统计量为______.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A 表示“第二次取到的全是新球”,求P(A).解:27.设总体X 的概率密度为,其中未知参数x 1,x 2,…,x n 为来自总体X 的一个样本.求的极大似然估计.解:四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机变量x 的概率密度为求:(1)常数a,b ;(2)X 的分布函数F(x);(3)E(X).(0,1)416x u N =22322244311()444C C p A C C =+=2121111111(,,;)2(2)ln ln 2(21)ln ln 2ln 02ln nnnn iii i nii ni i nii L X X xx L n x Lnx n x θθθθθθθθθθ--========+-∂=+=∂∴=-∏∏∑∑∑解:(1)(2)(3) 29.设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)分别关于X,Y 的边缘分布律;(2)D(X),D(Y),Cov(X ,Y). 解:(1)2021()1()1ax b dx ax b dx ⎧+=⎪⎨+=⎪⎩⎰⎰121a b ⎧=-⎪⇒⎨⎪=⎩1102()20x x f x ⎧-+<<⎪=⎨⎪⎩其他20212F x x x x x ⎧⎪⎪+≤<⎨⎪≥⎪⎩0x<01()=-4212()(1)23E X x x dx =-+=⎰(2)XY 的分布列为五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.解:由于xy 相互独立得:2222()()03.6()()() 3.6(,)()()()E X E Y EX EY D X D Y EX EX Cov x y E XY E X E Y ======-==-()0(,)0E XY Cov x y ==110001200010()1000010()20000x x e x f x e y f y --⎧>⎪=⎨⎪⎩⎧>⎪=⎨⎪⎩x<0y<011100020001191000200051200120010,0(,)()()20000000()1000()200011{1200,1200}10002000x y x y e x y f x y f x f y E x E y p x y e dxe dy e -----+∞+∞⎧>>⎪==⎨⎪⎩==>>==⎰⎰其他。
中国民航大学《概率论与数理统计》期末复习题及解答
中国民航大学《概率论与数理统计》期末复习题一、填空题1.设A 与B 是相互独立的随机事件,满足P(A)=0.3, P(B A )=0.7 ,则P(B)= .2. 随机变量X )4,1(~N ,随机变量Y 服从参数2=θ的指数分布, 其概率密度为⎪⎩⎪⎨⎧≤>=-0 , 00, 21)(21y y e y f yY 而且X 与Y 的相关系数为21=XY ρ, 则),cov(Y X = .3.设离散型随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≤<≤--<=x x x F 3 ,13x 2 , 522 , 0)(则随机变量X 的分布律为 。
4. 设随机变量X )1,0(~N , 随机变量Y )(~2n χ, 且X 与Y 是相互独立,令nYX T =,则~2T 分布.5.设总体X 服从参数为λ的泊松分布, 0>λ为未知参数。
),,,(21n X X X 是总体X中抽取的一个样本,则参数λ的矩估计量λˆ= . 二 、选择题1. 在某大学任意选出一名学生。
令:A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是数学系的学生},则当 时,ABC=C 成立。
(A )数学系的学生都是三年级的男生 (B )三年级的学生都是数学系的男生 (C )该学校的男生都是数学系三年级的学生(D )三年级的男生都是数学系的学生2. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出白球的概率为( )(A )22)(b a b +(B ))1)(()1(-++-b a b a b b (C )11-+-b a b (D )b a b+3.设离散型随机变量X 的分布律为),2,1(!}{ ===k k ck X P kλ其中0>λ为常数,则c=( )(A )λe - (B )λe (C ) 11--λe (D )11-λe4. 设随机变量921,,,X X X 相互独立的且同分布,而且),9,2,1(1,1 ===i DX EX i i 令∑==91i iX X ,则对任意给定的0>ε,由切比雪夫不等式直接可得( )(A )211}1{εε-≥<-X P (B )211}9{εε-≥<-X P(C )291}9{εε-≥<-X P (D )211}191{εε-≥<-X P5.设总体X),0(~2σN ,),,,(21n X X X 是从中抽取的一个简单随机样本,则2σ的无偏估计量为( )(A )∑=-=n i iX n 12211ˆσ (B )∑==ni i X n 1221ˆσ(C )∑=+=n i iX n 12211ˆσ(D )∑=+=ni iXn n 1222)1(ˆσ三、设有两箱同种类零件,第一箱装有50件,其中10件为一等品;第二箱装有30件,其中18件为一等品,今从两箱中随意取出一箱,然从该箱取零件2次,每次任取一只,作不放回抽样.求:(1) 第一次取出的零件为一等品的概率;(2) 在第一次取出的零件为一等品的条件下,第二次取出的也是一等品的概率.四、甲,乙两人进行比赛,规定若某人先赢得4局比赛的胜利得整场比赛的胜利. 设在每局比赛中,甲,乙两人获胜的概率都是21,令X 表示所需比赛的局数,求: (1) X 的可能取值; (2)X 的分布律; (3)E(X).五、向平面区域}0,40:),{(2≥-≤≤=x x y y x D 内随机地投掷一点,即二维随机变量(X,Y)服从平面区域D 上的均匀分布.(1) 试求二维随机变量(X,Y)的联合密度函数;(2) 点(X,Y)到y 轴距离的概率密度函数;(3) 设(X,Y)∈D,过点(X,Y)作y 轴的平行线,设S 为此平行线与x 轴、y 轴以及曲线24x y -=所围成的曲边梯形的面积,求E(S).六、设随机变量X 与Y 的分布律分别为X 0 1 Y 0 1 p 1-1p 1p p 1-2p 2p 其中,101<<p ,102<<p 证明:如果X 与Y 不相关,则X 与Y 相互独立.七、假设一条自动生产线生产的产品的合格率为0.8,试用中心极限定理计算,要使一批产品的合格率在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件? (已知,9015.0)29.1(=Φ,95.0)65.1(Φ=其中)(x Φ是正态分布)1,0(N 的分布函数)八、设总体X 服从区间),0(θ上的均匀分布,其中0>θ为未知参数. ),,,(21n X X X 是从该总体中抽取的一个样本.(1)求未知参数θ的极大似然估计θˆ (2)求θˆ的概率密度函数; (3)判断θˆ是否为未知参数θ的无偏估计.九、某厂在所生产的汽车蓄电池的说明书上写明:使用寿命的标准差不超过0.9年,现随机地抽取了10只蓄电池, 测得样本的标准差为1.2年,假定使用寿命服从正态分布),(2σμN ,取显著性水平05.0=α,试检验 81.0::81.0:2120<≥σσH H概率论与数理统计期末复习题三(答案)一、填空题1) 742) 2 3)4) ),1(n F5) X =λˆ 二、选择题1) A 2) D 3) D 4) C 5) B三、解 : (1) 设 21}{,,次取到一等品第==i i A i {}2,1==i i B i ,箱被挑出的是第由全概率公式 )|()()|()()(2121111B A P B P B A P B P A P +=52301821501021=⨯+⨯=(2) 由条件概率定义及全概率公式得)()|()()|()()()()|(12212121112112A P B A A P B P B A A P B P A P A A P A A P +==48557.0522930171821495091021≈⨯⨯⨯+⨯⨯⨯=四、解 : (1) 由题意知,X 的可能取值为 4,5,6,7 (2) 分布律为41221⎪⎭⎫ ⎝⎛C 5341221⎪⎭⎫ ⎝⎛C C 6351221⎪⎭⎫ ⎝⎛C C 7361221⎪⎭⎫ ⎝⎛C C即(3) ()169316571656415814=⨯+⨯+⨯+⨯=X E五、解 : (1) 平面区域D 的面积为⎰⎰-==2402316x dy dx A所以(X ,Y )的概率密度为⎪⎩⎪⎨⎧∉∈=D y x D y x y x f ),(,0),(,163),( (2) 点()Y X ,到y 轴的距离的概率密度函数,即是分量X 的边缘密度函数,当20≤≤x 时())4(163163),(2402⎰⎰∞+∞---===x X x dy dy y x f x f所以,分量X 的边缘密度函数为⎪⎩⎪⎨⎧≤≤-=其它,020,)4(163)(2x x x f X(3) 曲边梯形的面积为⎰⎰--==Xx X X dy dx S 04032314而 ()⎰∞+∞--=⎪⎭⎫⎝⎛-=dxx f x x X X E S E X )()314(31433()dx x x x ⎰-⋅-=2234163)314(38=六、证明 : 令}1{==X A }1{==Y B 则}0{==X A }0{==Y B 由于X 与Y 是不相关的,所以()()()0=-Y E X E XY E 由题知 ()()1}1{p X P A P X E ==== ()()2}1{p Y P B P Y E ====所以 ()21p p XY E = 而XY 的取值只有0和1当1=XY 时 ())(}1,1{}1{AB P Y X P XY P XY E ======)()(21B P A P p p ==所以A 与B 是相互独立的.由此可知A 与B ,A 与B ,A 与B 也是相互独立的. 综上可知,X 与Y 是相互独立的.七、解 : 设这批产品至少要生产n 件 令∑==ni iX X 1且 n X X X ,,,21 独立同服从)8.0,1(b .所求为 9.0}84.076.0{≥<<n XP所以}84.076.0{}84.076.0{n X n P n XP <<=<<})8.01(8.08.084.0)8.01(8.08.0)8.01(8.08.076.0{-⨯⨯-<-⨯⨯-<-⨯⨯-=n n n n n X n n n P 9.01)1.0(2)1.0()1.0(≥-Φ=-Φ-Φ=n n n即 95.0)1.0(≥Φn 则65.01.0≥n 解得 25.2725.162=≥n所以 273min =n则这批产品至少要生产273件.八 解 : (1) 记()),,,min(211n x x x x =,),,,max(21)(n n x x x x =由题意知,总体X 的概率函数为 ⎪⎩⎪⎨⎧≤≤=其它,00,1)(θθx x f由于θ≤≤n x x x ,,,021 ,等价于 )1(0x ≤ ,θ≤)(n x .则似然函数为()()θθθθ≤≤===∏∏==n n ni ni i x x x f L ,0,11)()(111于是对于满足条件θ≤)(n x 的任意θ有n n nx L )(11)(≤=θθ即)(θL 在)(n x =θ时取到最大值n n x )(1,故θ的最大似然估计值为())(max ˆ1ini n x x ≤≤==θθ最大似然估计量为)(max ˆ1)(ini n X X ≤≤==θ(2) X 的密度函数为⎪⎩⎪⎨⎧≤≤=其它,00,1)(θθx x f则分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥<<≤=θθθx x x x x F ,10,0,0)(因此)(max ˆ1)(in i n X X ≤≤==θ的概率密度函数为[]⎪⎩⎪⎨⎧<<==--其它,00,)()()(11ˆθθθx nx x f x F n x f n n(3) 由于θθθθθθ≠+===⎰⎰∞+∞-1)()ˆ(0ˆn ndx nxdx x xf E n故θˆ不是θ的无偏估计. 九、 解 : 检验假设81.0:81.0:2120<≥σσH H则有题意知拒绝域为())1(1212022-≤-=-n S n αχσχ这里: 05.0=α 10=n 查表得 325.3)9(295.0=χ 且 222.1=s81.020=σ则 ()()325.31681.02.1110122022>=⨯-=-=σχs n 所以2χ不在拒绝域内,故接受0H注:若本题目中没有给出检验假设,通常我们给的假设是:.81.0:;81.0:2120>≤σσH H 然后再进行检验.。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
中国民航大学《概率论与数理统计》期末考试试题及答案B[1]
《概率论与数理统计》期末考试试题一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭.2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】 (A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
《概率论与数理统计》期末考试试题及答案
)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
概率论及数理统计期末考试试题及解答
WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。
概率论和数理统计期末考试题库 (2)
数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xyy x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX,k 、b 为常数,则有)(b kX E +=,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计-期末测试(新)第二章练习题
概率论与数理统计-期末测试(新)第二章练习题一、选择题1、离散型随机变量X 的分布律为(),1,2,kP X k b k λ===,则λ为( )。
(A)0λ>的任意实数 (B)1b λ=+ (C)11bλ=+(D)11b λ=-2、设随机变量X 的分布律为()!kP X k ak λ==(λ>0,k=1,2,3,…),则a = ( )。
(A)e λ- (B) e λ (C) 1e λ-- (D) 1eλ-3、离散型随机变量X 的分布律为{},0,1,2,3!kAP X k k k ===则常数A 应为( )。
(A) 31e (B) 31-e (C) 3-e (D) 3e4、离散型随机变量X 20251357Pr.248Xa a aa-,则{||2|0}P X X ≤≥为( )。
(A)2129 (B)2229 (C)23 (D)135、随机变量X 服从0-1分布,又知X 取1的概率为它取0的概率的一半,则(1)P X =为( )。
(A) 13 (B) 0 (C) 12 (D) 16、设随机变量X 的分布律为:0120.250.350.4XP,而{}()F x P X x =≤,则=)2(F ( )。
(A) 0.6 (B) 0.35 (C) 0.25 (D) 07、已知离散型随机变量的分布律为1010.250.50.25X P -,则以下各分布律正确的是( )。
(A)22020.510.5XP- (B)211130.250.250.5X P +-(C) 210.50.25X P (D) 210.50.5X P8、随机变量,X Y 都服从二项分布:~(2, ), ~(4, )X B p Y B p ,01p <<,已知{}519P X ≥=,则{}1P Y ≥=( )。
(A) 6581 (B) 5681 (C) 8081(D) 19、随机变量X 的方差()3D X =,则(25)D X -等于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、(8分)已知随机变量X与Y的联合分布律为 X 1 2 3 Y 1 2 3
1/9 2/9 2/9
0 0 1/9 0 2/9 1/9
( 1 )求Z XY的分布律;( 2)U max{X , Y }的分布律;( 3)Cov( X , Y )
七、(12分)设二维随机变量(X,Y)的联合概率密度为
2 6. 设某种保险丝的融化时间 X ~ N ( , ) (单位:秒),取n=5
样本,的样本均值和样本方差分别为 X 15,S 2 0.02, 则 的置 信度 为90%的置信区间为
(已知t0.1 (4) 1.5332 , t0.05 (4) 2.1218 )
二、解答下列各题(每小题8分,共24分)
二、解答下列各题(每小题8分,共16分)
1 ( x 1), f ( x ) 1.(8分)设随机变量X的概率密度为 2 0, 1 x 1; 其它
求 (1) E( X ), D( X ) ; (2)Y 3X 2 的概率密度
0 , 2.(8分)设随机变量X的概率密度为 f ( x) x 1, a 1 x 2
五、(8分)为测锰的熔化点,进行5次实验,测得锰的熔化点 如下(℃):1269, 1271, 1256, 1265, 1254 已知锰的熔化点服从正态分布,问是否可以认为锰的熔化点显 著高于1250℃?(显著水平 0.01)
( z0.01 0.161 , t0.01 (5) 3.364, t0.01 (4) 3.7469 ,t0.005 (5) 4.032 ,t0.005 (4) 4.60)
x 1, 1 x 0, x 0,
求(1)常数a;(2)X的分布函数F(x); (3) P{2 X }
4
四、(8分)某种型号器件的寿命X(以小时计)具有概率密 度 1000 x 1000 , 2 , f ( x) x 其它 0
现有一批此种器件(设各器件损坏与否相互独立),从中任取 5只,求其中至少有2只寿命大于1500小时的概率。
x1 , x2 , , xn 为相应的样本值 . (1)求参数的矩估计量 .(2)求的最大似然估计值 .
1, f ( x,y ) 0 0 x 1,0 y 2(1 x ), 其 它,
求
( 1)关于X和Y的边缘密度函数 f X( x)和f Y( y ); (2)P{Y X }; (3)E ( XY ),并判断X和Y是否相关?
-1 x ,0 x 1, 八、设总体X的概率密度为 f ( x) 其它 0, 其中( 0)为未知参数, X 1 , X 2 , , X n 是来自总体X的样本.
一、填空题
概率统计模拟题(1)1501
1.一批电子元件共有100个,次品率为0.05。连续两次不 放回地从中任取一个,则第二次才取到正品的概率为
2.设X的分布函数
3.设X
1 e2 x x0 F ( x) 则 f ( x) x0 0
2 X ~ b(n, p) , E ( X ) 2 , D( X ) , 则P{ X 1} 3
1 1 1 P ( ) , P ( B | A ) , P ( A | B ) 1.(6分)已知 4 3 2
1 )P( A B);( 2)P( A B ). 求(
2. (8分)已知甲,乙两箱中装有同种产品,其中甲箱中装有3 件合格品和3件次品,乙箱中仅有3件合格品。从甲箱中任取3件 产品放入乙箱,求乙箱中次品件数X的分布律及数学期望。 3. (8分)某次大型体育运动会有1000名运动员参加,其中100 人服用了违禁药品,在使用者中,假定有90人的药检呈阳性, 而未使用者中也有5人检验结果显示阳性。若已知一个运动员的 药监结果是阳性,求这名运动员确实使用违禁药的概率。
4.设二维随机变量(X,Y)的联合分布律为 X 0 1 Y 0 1
0.2 a 0.4 b
,b
已知 P{X 0} P{X Y 1},则a
5.设总体 X ~ N (3,4) ,抽取容量为4的样本
X
X1,X 2,X 3,X 4,
为其均值,则 P{1 X 5}
(已知 (2) 0.9772)