专题2宇宙中的双星及多星问题
高考万有引力双星、多星问题
万有引力应用二——双星及多星问题1、(多选)经长期观测,人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的半径远小于两颗星之间的距离,而且双星系统一般远离其他天体.如图两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动.现测得两颗星之间的距离为l ,质量之比约为m 1:m 2=3:2,则可知( )A .m 1:m 2做圆周运动的线速度之比为2:3B .m 1:m 2做圆周运动的角速度之比为1:1C .m 1做圆周运动的半径为53l D .m 2做圆周运动的半径为53l 答案及解析:.ABD解:双星围绕连线上的O 点做匀速圆周运动,彼此间万有引力提供圆周运动向心力,可知双星做圆周运动的周期和角速度相等.令星m 1的半径为r ,则星m 2的半径为l ﹣r则有:据万有引力提供圆周运动向心力有:即m 1r=m 2(l ﹣r )又∵ ∴ 则星m 2的半径为,故C 错误,D 正确又因为v=rω可知,两星做圆周运动的线速度之比等于半径之比即:,所以A 正确.双星运动的角速度相同,故B 正确.故选:ABD .2、(多选)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 2BC [对m 1有:Gm 1m 2R 1+R 22=m 1R 14π2T 2,解得m 2=4π2R 1R 1+R 22GT2,同理可得m 1=4π2R 2R 1+R 22GT2,故两者质量不相等,故选项A 错误;将两者质量相加得m 1+m 2=4π2R 1+R 23GT 2,故选项B 正确;m 1∶m 2=R 2∶R 1,故选项C 正确;两者质量之和为4π2R 1+R 23GT 2,则不可能其中一个的质量为4π2R 1+R 23GT 2,故选项D 错误.]3、(单选)我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为( )A. B.C. D.答案及解析:D 解:设星体S 1和S 2的质量分别为m 1、m 2, 星体S 1做圆周运动的向心力由万有引力提供得:解得 m 2=,故D 正确、ABC 错误.故选:D .4、(单选)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G ,下列说法正确的是( ) A .每颗星做圆周运动的角速度为3GmL 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D .若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍C 任意两星间的万有引力F =G m 2L2,对任一星受力分析,如图所示.由图中几何关系和牛顿第二定律可得:3F =ma =mω2L 3,联立可得:ω=3Gm L 3,a =ω2L 3=3Gm L 2,选项A 、B 错误;由周期公式可得:T =2πω=2πL 33Gm,当L 和m 都变为原来的2倍,则周期T ′=2T ,选项C 正确;由速度公式可得:v =ωL 3=GmL ,当L 和m 都变为原来的2倍,则线速度v ′=v ,选项D 错误.]5、(多选)宇宙间存在一个离其他星体遥远的系统,其中有一种系统如图所示,四颗质量均为m 的星体位于正方形的顶点,正方形的边长为a ,忽略其他星体对它们的引力作用,每颗都在同一平面内绕正方形对角线的交点O 做匀速圆周运动,引力常量为G ,则( ) A .每颗星做圆周运动的线速度大小为1+24Gm aB .每颗星做圆周运动的角速度大小为Gm 2a3 C .每颗星做圆周运动的周期为2π2a3GmD .每颗星做圆周运动的加速度与质量有关AD [由星体均围绕正方形对角线的交点做匀速圆周运动可知,星体做匀速圆周运动的轨道半径r =22a ,每颗星体在其他三个星体万有引力的合力作用下围绕正方形对角线的交点做匀速圆周运动,由万有引力定律和向心力公式得:Gm 22a2+2G m 2a 2cos45°=m v 222a,解得v =1+24Gma,角速度为ω=vr =2+22Gm a 3,周期为T =2πω=2π2a34+2Gm,加速度a =v 2r =22+1Gm2a 2,故选项A 、D 正确,B 、C 错误.]珠”的奇观.假设火星和木星绕太阳做匀速圆周运动,周期分别是T 1和T 2,而且火星离太阳较近,它们绕太阳运动的轨道基本上在同一平面内,若某一时刻火星和木星都在太阳的同一侧,三者在一条直线上排列,那么再经过多长的时间将第二次出现这种现象( )A.T 1+T 22B.T 1T 2C.T 1T 2T 2-T 1D.T 21+T 222C [根据万有引力提供向心力得:GMm r 2=m 4π2r T 2,解得T =2πr 3GM,火星离太阳较近,即轨道半径小,所以周期小.设再经过时间t 将第二次出现这种现象,此为两个做匀速圆周运动的物体追及相遇的问题,虽然不在同一轨道上,但是当它们相遇时,运动较快的物体比运动较慢的物体多运行2π弧度.所以2πT 1t -2πT 2t =2π,解得t =T 1T 2T 2-T 1,选项C 正确.] 7、宇宙中存在一些离其他恒星较远的两颗星组成的双星系统,通常可忽略其他星体对它们的引力作用.已知双星系统中星体1的质量为m ,星体2的质量为2m ,两星体相距为L ,同时绕它们连线上某点做匀速圆周运动,引力常量为G .求该双星系统运动的周期. 2πLL3Gm解析 双星系统围绕两星体间连线上的某点做匀速圆周运动,设该点距星体1为R ,距星体2为r 对星体1,有G 2mm L 2=m 4π2T 2R 对星体2,有G 2mm L 2=2m 4π2T2r根据题意有R +r =L ,由以上各式解得T =2πLL 3Gm。
专题2 宇宙中的双星及多星问题
宇宙中的双星及多星问题一、双星问题在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;《第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
【深入学习】例题1:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)】例题2:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()1、第一种情况:例题3:宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是()A.在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B.在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧2、第二种情况::例题4:宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为m的星体位于等边三角形的三个顶点上,三角形边长为R.忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G.则()【课堂检测】1.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.那么S1、S2做匀速圆周运动的()A. 角速度与其质量成反比B. 线速度与其质量成反比C. 向心力与其质量成反比D. 半径与其质量的平方成反比2.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()~A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍物理限时练一、单项选择题1.2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.一块陨石从外太空飞向地球,到A 点刚好进入大气层,由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( ) A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大&D .进入大气层陨石的机械能渐渐变大2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.(2015·福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r1、r2,线速度大小分别为v1、v2,则( ) =r2r1 =r1r2=(r2r1)2 =(r1r2)24.(2015·天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( ) 、A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小5.(2015·四川卷)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )行星 半径/m质量/kg 轨道半径/m 地球 } ×106 ×1024 ×1011 火星×106×1023×1011A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大6.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G.由此可求出S 2的质量为 ( ){A.212)(4GTr r r 2π B.2312π4GTrC.232π4GTrD. 2122π4GT r r7.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星与多星问题
双星与多星问题双星模型1、模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上得某点做周期相同得匀速圆周运动得行星称为双星。
2、模型条件①两颗星彼此相距较近。
②两颗星靠相互之间得万有引力做匀速圆周运动。
③两颗星绕同一圆心做圆周运动。
3、模型特点如图所示为质量分别就是m 1与m2得两颗相距较近得恒星。
它们间得距离为L 、此双星问题得特点就是:(1)两星得运行轨道为同心圆,圆心就是它们之间连线上得某一点。
(2)两星得向心力大小相等,由它们间得万有引力提供。
(3)两星得运动周期、角速度相同。
(4)两星得运动半径之与等于它们间得距离,即r 1+r2=L、4、 双星问题得处理方法双星间得万有引力提供了它们做圆周运动得向心力,即 错误!=m 1ω2r 1=m 2ω2r 2。
5、 双星问题得两个结论(1)运动半径:m1r 1=m 2r 2,即某恒星得运动半径与其质量成反比。
(2)质量之与:由于ω=错误!,r1+r 2=L ,所以两恒星得质量之与m 1+m 2=错误!。
【示例1】2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前得预测,弥补了爱因斯坦广义相对论中最后一块缺失得“拼图”、双星得运动就是产生引力波得来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星绕它们连线得某一点在万有引力作用下做匀速圆周运动,测得a 星得周期为T ,a 、b 两颗星得距离为l ,a 、b 两颗星得轨道半径之差为Δr (a 星得轨道半径大于b 星得轨道半径),则( )A 、b 星得周期为\f(l -Δr,l +Δr )TB 、a星得线速度大小为π(l +Δr )TC 、a 、b 两颗星得半径之比为错误!D 、a 、b 两颗星得质量之比为错误!规律总结解答双星问题应注意“两等”“两不等”(1)双星问题得“两等”:①它们得角速度相等。
②双星做匀速圆周运动得向心力由它们之间得万有引力提供,即它们受到得向心力大小总就是相等得。
高考物理复习微专题 双星和多星问题
微专题:双星和多星模型解题攻略(一)双星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图8所示.图8(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L 2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1,与星体运动的线速度成反比.[思维深化]1.若在双星模型中,图8中L 、m 1、m 2、G 为已知量,双星运动的周期如何表示?答案 T =2πL 3G (m 1+m 2)2.若双星运动的周期为T ,双星之间的距离为L ,G 已知,双星的总质量如何表示? 答案 m 1+m 2=4π2L 3T 2G[典例1] 如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L 。
已知A 、B 的中心和O 点始终共线,A 和B 分别在O 点的两侧。
引力常量为G 。
图1(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。
但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T 2。
已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg 。
求T 2与T 1两者的平方之比。
(结果保留3位小数)[解析] (1)A 和B 绕O 点做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等,且A 、B 的中心和O 点始终共线,说明A 和B 组成双星系统且有相同的角速度和周期。
设A 、B 做圆周运动的半径分别为r 、R ,则有m ω2r =M ω2R ,r +R =L联立解得R =mM +m L ,r =MM +mL 对A ,根据牛顿第二定律和万有引力定律得GMm L 2=m ⎝ ⎛⎭⎪⎫2πT 2MM +mL解得T =2πL 3G M +m。
(完整版)双星三星四星问题
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
(新课标)高考物理大一轮复习思想方法4“双星”、“多星”问题的处理方法
(2)如右图所示,三颗质量相等的行星位于一正三角形的顶点处,都 绕三角形的中心做圆周运动.每颗行星运行所需向心力都由其余两颗行 星对其万有引力的合力来提供.
Gm2 ×2×cos 30° =ma向,其中L=2rcos 30° . L2 三颗行星转动的方向相同,周期、角速度、线速度的大小相等.
[典例]
Gm m′g,解得g= 2 ,故C正确;由万有引力定律和向心力公式得 R Gm2 2Gm2 4π2 2a =m 2 ,T=2πa 2 2+ a T 2 2a 2a ,故D正确. 4+ 2Gm
2.宇宙三星或多星 (1)如右图所示,三颗质量相等的行星,一颗行星位于中心位 置不动,另外两颗行星围绕它做圆周运动.这三颗行星始终位于 同一直线上,中心行星受力平衡.运转的行星由其余两颗行星的 Gm2 Gm2 引力提供向心力: 2 + =ma向 r 2r2
两行星转动的方向相同,周期、角速度、线速度的大小相等.
2π m T 2RC,可得T=π
a3 Gm.
答案 (4)π
m2 (1)2 3G 2 a a3 Gm
m2 (2) 7G 2 a
7 (3) a 4
[突破训练] 1.2015年4月,科学家通过欧航局天文望远镜在一个河外星 系中,发现了一对相互环绕旋转的超大质量双黑洞系统,如图所 示.这也是天文学家首次在正常星系中发现超大质量双黑洞.这 对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应 性等都具有十分重要的意义.我国今年底也将发射全球功能最强 的暗物质探测卫星.若图中双黑洞的质量分别为M1和M2,它们 以两者连线上的某一点为圆心做匀速圆周运动.根据所学知识, 下列选项正确的是( )
mAmB (2)同上,B星体所受A、C星体引力大小分别为FAB=G r2 2m 2 =G 2 , a m Cm B m2 FCB=G 2 =G 2 ,方向如图所示. r a m2 由FBx=FABcos 60° +FCB=2G 2 ,FBy=FABsin 60° = a
高中物理双星和多星问题
高中物理双星和多星问题一、选择题1. 如图,“食双星”是指在相互引力作用下绕连线上O点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成亮度发生周期性变化的两颗恒星.在地球上通过望远镜观察这种双星,视线与双星轨道共面.已知两颗恒星A、B间距为d,运动周期为T,万有A.4π2d3GT2引力常量为G,则可推算出双星的总质量为()B.π2d2GT2C.2π2d2GT2D.π2d3GT22. 宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起,如图所示,某双星系统中A、B 两颗天体绕O点做匀速圆周运动,它们的轨道半径之比r A:r B=1:2,则两颗天体的() A.质量之比m A:m B=2:1B.角速度之比ωA:ωB=1:2C.线速度大小之比v A:v B=2:1D.向心力大小之比F A:F B=2:13. 人类已直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前的某一时刻,他们相距L,绕二者连线上的某点每秒转动n圈.将两颗中子星都看作是质量均匀分布的球体,已知万有引力常量为G,结合牛顿力学知识可算出这一时刻两颗中子星的质量之和为()A.4π2n2L3G B.8π2n2L3GC.G4π2n2L3D.G8πn2L34. 2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星A和B合并前它们相距L,绕二者连线上的某点每秒转动n圈.合并前将两颗中子星都看作是质量均匀分布的球体,A和B的质量之比为k,并且它们各自的运动都看做是匀速圆周运动,下列说法中正确的是()A.中子星A和B的运动周期均为nB.中子星A和B的角速度大小之比为1:1C.中子星A和B的向心力大小之比为1kD.中子星A和B的线速度大小之和为πnL5. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕地球与月球连线上某点O做匀速圆周运动.据此观点,可知月球与地球绕O点运动线速度大小之比约为()A.1:6400B.1:80C.80:1D.6400:16. 2017年,人类第一次直接探测到来自双中子星的引力波.根据科学家们复原的过程,在两颗中子星合并前约100s时,它们相距约400km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做质量均匀分布的球体,且合并前两颗中子星的质量均保持不变.估算一下,当两颗中子星相距100km 时,绕二者连线上的某点每秒转动( ) A.6圈B.24圈C.48圈D.96圈7. 银河系的恒量中大约有四分之一是双星,某双星由质量分别为M 和m(M >m) 的两个星体构成,两星体在相互之间的万有引力作用下绕两者连线上某一定点O 做匀速圆周运动,若该双星运行的周期为T ,引力常量为G ,不考虑其他星体的影响,则两星体之间的距离为( ) A.√GT 2(M+m)4π23B.√GT 2(M−m)4π23C.√GT 24π2(M+m)3 D.√GT 24π2(M−m)38. 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.√nkTB.√n 2kT C.√n 3kT D.√n 3k 2T二、 多选题9. 引力波探测于2017年获得诺贝尔物理学奖.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由P 、Q 两颗星体组成,这两颗星绕它们连线的某一点在二者万有引力作用下做匀速圆周运动,测得P 星的周期为T ,P 、Q 两颗星的距离为L ,P 、Q 两颗星的轨道半径之差为Δr(P 星的轨道半径大于Q 星的轨道半径),万有引力常量为G ,则( )A.Q 、P 两颗星的质量之和为4π2l 3GT 2B.P 、Q 两颗星的运动半径之比为ll−Δr C.P 、Q 两颗星的线速度大小之差为2πΔr TD.P 、Q 两颗星的质量之比为l−Δrl+Δr10. 双星系统如图所示,已知恒星A 、B 间的距离恒为L ,恒星A 和恒星B 的总质量为4M ,恒星A 与恒星B 的转动半径之比为3:1,引力常量为G ,下列说法正确的是( ) A.恒星的角速度为√GM4L 3 B.恒星A 的质量为MC.恒星A 与恒星B 的向心力大小之比为1:1D.恒星A 与恒星B 的线速度大小之比为1:4参考答案一、选择题1.A解:设A、B两天体的轨道半径分别为r1、r2,两者做圆周运动的周期都为T,万有引力提供向心力,由牛顿第二定律可得Gm A m Bd2=m A(2πT)2r1,Gm A m Bd2=m B(2πT)2r2,其中d=r1+r2,解得M=m A+m B=4π2d3GT2.故选A.2.A解:双星都绕O点做匀速圆周运动,两者之间的万有引力提供向心力,角速度相等,设为ω,对A星:G m A m BL2=m Aω2r A,对B星:G m A m BL2=m Bω2r B,故m A:m B=r B:r A=2:1,角速度之比ωA:ωB=1:1,由v=ωr得线速度大小之比v A:v B=r A:r B=1:2,向心力大小之比F A:F B=1:1,故A正确,BCD错误.故选A.3.A解:设两颗星的质量分别为m1、m2,轨道半径分别为r1、r2,根据万有引力提供向心力可知:G m1m2L2=m14π2T2r1=m24π2T2r2,解得质量之和m1+m2=4π2L3GT2,而周期T=1n ,联立解得m1+m2=4π2n2L3G,故A正确.故选:A.4.B解:A.A、B两颗星的周期均为T=1n,故A错误;B.A、B两颗星的周期相同,所以角速度之比为1:1,故B正确;C.因为两星之间的万有引力提供向心力,所以两星的向心力相同,故C错误;D.两星的向心力相同,根据F向=mω2r得,m1ω2r1=m2ω2r2,即m1r1=m2r2,A、B质量之比为k,故r1r2=1k,其中r1+r2=L、v=ωr,解得A和B的线速度大小之和为2πnL,故D错误.故选B.5.C解:月球和地球绕O做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等,且月球和地球和O始终共线,说明月球和地球有相同的角速度和周期,因此有:mω2r =Mω2R , 又由于v =ωr , 所以v 月v 地=M m =801.故选C .6.D 解:设两颗星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,相距L =400km , 根据万有引力提供向心力可知:Gm 1m 2L 2=m 1r 1ω12, Gm 1m 2L 2=m 2r 2ω12,r 1+r 2=L , 联立可得:r1r 2=m 2m 1,合并前两颗中子星的质量均保持不变,则它们的轨道半径的比值不变;当两颗中子星相距:L ′=100km =L4时,r 1′=14r 1,由于:Gm 1m 2L ′2=m 1r 1′ω22,则可得:ω2=8ω1,开始时两颗星绕二者连线上的某点每秒转动12圈,角速度增大为8倍后,则两颗星绕二者连线上的某点每秒转动的速度增大为8倍,为每秒96圈,故ABC 错误,D 正确. 故选D .7.A 解:设星体S 1和S 2的质量分别为M 、m ,两星间距离为L , 星体S 1做圆周运动的向心力由万有引力提供得:GMm L 2=Mω2r 1, 星体S 2做圆周运动的向心力由万有引力提供得:GMm L 2=mω2r 2,r 1+r 2=L , 联立解得:L =√GT 2(M+m)4π3.故选:A .8.C 解:设m 1的轨道半径为R 1,m 2的轨道半径为R 2,两星之间的距离为L ,由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同,由向心力公式可得: 对m 1:G m 1m 2L 2=m 14π2T 2R 1, 对m 2:Gm 1m 2L 2=m 24π2T 2R 2,又因为R 1+R 2=L ,m 1+m 2=M , 联立可得:T =2π√L 3GM ,所以当两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,圆周运动的周期为:T ′=2π√(nL)3GkM =√n 3k T . 故选C .二、多选题9.A,C,D解:ABD.双星系统靠相互间的万有引力提供向心力,角速度大小相等,则周期相等,所以Q星的周期为T,根据题意可知,r P+r Q=l,r P−r Q=Δr,解得:r P=l+Δr 2,r Q=l−Δr2,则P、Q两颗星的运动半径之比为l+Δrl−Δr,根据G m p m Ql2=m pω2r P=m Qω2r Q,可得m P=ω2r Q l2G ,m Q=ω2r P l2G,则质量和为:m P+m Q=ω2r Q l2G +ω2r P l2G=4π2l2GT2(r Q+r P)=4π2l2GT2,质量比为:m Pm Q=r Qr P=l−Δrl+Δr,故AD正确,B错误;C.P星的线速度大小v P=2πr PT =π(l+Δr)T,Q星的线速度大小v Q=2πr QT=π(l−Δr)T,则PQ两颗星的线速度大小之差为Δv=2πΔrT,故C正确.故选ACD.10.B,C解:B.设恒星A的质量为m A、运动的半径为r A,恒星B的质量为m B,运动的半径为r B,由于双星的角速度相同,故有Gm A m BL2=m Aω2r A=m Bω2r B,解得m A r A=m B r B,即m A=M,选项B正确;A.r A=34L,代入Gm A m BL2=m Aω2r A,解得ω=√4GML3,选项A错误;C.恒星A与恒星B的向心力都由万有引力提供,且都为Gm A m BL2,选项C正确;D.由于双星的角速度相同,恒星A与恒星B的线速度之比为半径之比,即为3:1,选项D错误.故选BC.。
高中物理专题复习---双星与多星问题
微专题25 双星与多星问题【核心要点提示】(1)核心问题是“谁”提供向心力的问题.(2)“双星问题”的隐含条件是两者的向心力相同、周期相同、角速度相同;双星中轨道半径与质量成反比;(3)多星问题中,每颗行星做圆周运动所需的向心力是由它们之间的万有引力的合力提供,即F 合=m v 2r ,以此列向心力方程进行求解.【微专题训练】“双星体系”由两颗相距较近的恒星组成,每个恒星的半径远小于两个星球之间的距离,而且双星系统一般远离其他天体.如图1所示,相距为L 的A 、B 两恒星绕共同的圆心O 做圆周运动,A 、B 的质量分别为m 1、m 2,周期均为T .若有间距也为L 的双星C 、D ,C 、D 的质量分别为A 、B 的两倍,则( )A .A 、B 运动的轨道半径之比为m 1m 2B .A 、B 运动的速率之比为m 1m 2C .C 运动的速率为A 的2倍D .C 、D 运动的周期均为22T 【解析】对于双星A 、B ,有G m 1m 2L 2=m 1(2πT )2r 1=m 2(2πT )2r 2,r 1+r 2=L ,得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,T =2πL L G m 1+m 2,A 、B 运动的轨道半径之比为r 1r 2=m 2m 1,A 错误;由v=2πr T 得,A 、B 运动的速率之比为v 1v 2=r 1r 2=m 2m 1,B 错误;C 、D 运动的周期T ′=2πL L G 2m 1+2m 2=22T ,D 正确;C 的轨道半径r 1′=2m 22m 1+2m 2L =r 1,C 运动的速率为v 1′=2πr 1′T ′=2v 1,C 错误.【答案】D(2013·山东理综)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3kT C.n 2kT D.n kT 【解析】双星靠彼此的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时 T ′=2πn 3L 3Gk (m 1+m 2)=n 3k·T 故选项B 正确. 【答案】B(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a2C .四颗星表面的重力加速度均为GmR 2D .四颗星的周期均为2πa2a(4+2)Gm【解析】其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR2,故C 正确;由万有引力定律和向心力公式得Gm 2(2a )2+2Gm 2a 2=m 4π2T 2·2a2,T =2πa2a(4+2)Gm,故D正确. 【答案】ACD(2016·河南省郑州市高三月考)宇宙中有这样一种三星系统,系统由两个质量为m 的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r 。
双星及多星问题
双星及多星问题1.在天体运动中,将两颗彼此相距较近的行星称为双星。
它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。
如果双星间距为L ,质量分别为M 1和M 2,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度。
2.两颗靠得较近的天体叫双星,它们以两者重心连线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是 ( )A 它们做圆周运动的角速度与其质量成反比B 它们做圆周运动的线速度与其质量成反比C 它们所受向心力与其质量成反比D 它们做圆周运动的半径与其质量成反比3.宇宙中两个星球可以组成双星,它们只在相互问的万有引力作用下,绕球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法错误的是 ( )A .双星间的万有引力减小B .双星圆周运动的角速度增大C .双星圆周运动的周期增大D .双星圆周运动的半径增大4.月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动。
据此观点,可知月球与地球绕O 点运动的线速度大小之比约为A 1:6400B 1:80C 80:1D 6400:15.我们的银河系的恒星中大约四分之一是双星。
某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动。
由于文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G 。
由此可求出S 2的质量为( )A .2122)(4GT r r r −π B .23124GT r πC .2324GTr πD .1224GT r r π6.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7:1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的 A .轨道半径约为卡戎的B .角速度大小约为卡戎的C .线速度大小约为卡戎的7倍速D .向心力大小约为卡戎的7倍7.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
高中物理 双星、多星系统问题
双星、多星系统问题宇宙中不存在孤立的天体,常见的情况是两个或多个天体组成一个相对独立的系统。
高中物理中常常处理一些相对简单的天体系统,其中最简单的是双星系统,相对复杂的有三星、四星系统等。
一、稳定双星系统1、基本模型如图2-14-1所示,质量分别为m 1、m 2的两个天体在万有引力的相互作用下,绕着二者连线上的某个点(公共圆心O )以相同的角速度做圆周运动,构成一个稳定的双星系统。
在这个系统中,两天体的运动存在如下三个基本关系:(1)向心力大小相同:2212n 1n L m m GF F ==;(2)速度大小相同:ωωω==21;(3)轨道半径之和等于两天体的间距:L r r =+21。
2、基本结论(1)轨道半径关系:2211r m r m =由牛顿第二定律,有天体1:121221r m L m Gm ω=,天体2:222221r m Lm Gm ω=;两式联立,有2211r m r m =,即两天体的轨道半径与各自的质量成反比,质量大的天体轨道半径小,质量小的天体轨道半径大;联立L r r =+21,可得L m m m r 2121+=,L m m m r 2112+=。
(2)系统的周期:)(π2213m m G L T +=把L m m m r 2121+=代入121221r m L m m G ω=,可得321)(Lm m G +=ω,则双星系统的周期为)(π2π2213m m G L T +==ω;即两天体间距越小,总质量越大,系统的周期越小,角速度越大。
(3)线速度关系:2211v m v m =,且Lm m G L v v )(2121+==+ω在2211r m r m =式两边乘以共同的角速度ω,得2211r m r m ωω=,也就是2211v m v m =,即两天体的线速度大小与各自的质量成反比,质量大的天体线速度小,质量小的天体线速度大。
联立321)(Lm m G +=ω,2211r v r v ωω==,,L r r =+21,可得两天体的线速度大小之和为:L m m G L v v v )(2121+==+=ω。
专题2 宇宙中的双星及多星问题汇总
宇宙中的双星及多星问题一、双星问题在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
【深入学习】例题1:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)例题2:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()1、第一种情况:例题3:宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r .关于该三星系统的说法中正确的是( )A .在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B .在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧2、第二种情况:例题4:宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为m 的星体位于等边三角形的三个顶点上,三角形边长为R .忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G .则( )【课堂检测】1.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.那么S 1、S 2做匀速圆周运动的( )A. 角速度与其质量成反比B. 线速度与其质量成反比C. 向心力与其质量成反比D. 半径与其质量的平方成反比2.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍物理限时练一、单项选择题1.2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.一块陨石从外太空飞向地球,到A 点刚好进入大气层,由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( ) A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层陨石的机械能渐渐变大2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.(2015·福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r1、r2,线速度大小分别为v1、v2,则( ) A .v1v2=r2r1 B .v1v2=r1r2C .v1v2=(r2r1)2D .v1v2=(r1r2)2 4.(2015·天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( ) A .旋转舱的半径越大,转动的角速度就应越大 B .旋转舱的半径越大,转动的角速度就应越小 C .宇航员质量越大,旋转舱的角速度就应越大 D .宇航员质量越大,旋转舱的角速度就应越小 5.(2015·四川卷)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大6.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G .由此可求出S 2的质量为 ( )A.212)(4GT r r r 2π B.2312π4GT rC.232π4GT rD. 2122π4GT r r7.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
天体运动的双星和多星问题解析
天体运动的双星和多星问题解析天体运动的双星和多星随着天体演化论的建立和完善,人们从天文观测中获得了许多有关双星和多星系统的知识。
双星或多星系统所呈现出来的各种复杂的运动,主要受这些天体之间相互作用的影响,其研究内容十分丰富。
本文仅就这些年发现的较重要的双星问题做一些探讨。
1.太阳系成员双星问题解析例2。
天琴座RR型变星(RRCator)也称为周期为半年至数百天的周期性变星。
根据它们光变周期的长短可以把它们分成两大类:长周期的以恒星和白矮星为主,短周期的以主序星为主。
其中长周期的又分为三个子类: a.椭圆形变星:由于温度的周期性变化而引起光度的周期性变化; b.光谱分类:根据恒星的谱线和光变周期的特点将它们分成三类; c.光谱分类不能确定的:它们往往在光度上有显著的变化。
2。
双星系统共同特征问题解析例3。
河系示意图显示,横坐标表示相对大小,纵坐标表示光变周期。
横坐标右边的弧是近日点,近日点光变周期随距离增大而逐渐减小;纵坐标左边的弧是远日点,远日点光变周期随距离增大而逐渐增大。
根据河系演化示意图和上述对河系演化规律的分析,可得到如下几点结论:(1)当距太阳较远时,由于天体的演化使恒星向红巨星或红超巨星演化;当恒星向红巨星演化时,河系扩张迅速,星体的温度较高,化学元素稳定性强,导致对流和恒星风的活动不剧烈。
而且“星星”和“太阳”还是一对双星,即多星,其主星和伴星还有重合的现象。
它们的特点是两星的亮度有很大的差异,从一星看是很暗的“点”,从另一星看则是很亮的“点”,因此它们既有双星的共性,又具有独特性。
这对星系将来是否会发生碰撞?应该说可能性是存在的,但希望渺茫。
“北落师门”是最有可能的系外双星之一。
“北落师门”,在天球上位于南鱼座的一个不起眼的小星系。
它与银河系之间的距离大约是100万光年。
尽管这个小星系在尺度上只是银河系的百万分之一,但它却是一颗相当重要的恒星——南鱼座“北落师门”星是双星,两子星相距约9光年。
双星多星专题
专题强化 双星或多星模型命题点 双星或多星模型1.双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r1+r2=L(3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r1.2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).例1(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图4为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.1.(2013·山东理综·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T2.银河系的恒星中大约四分之一是双星.如图5所示,某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动.由天文观察测得它们的运动周期为T,若已知S1和S2的距离为r,引力常量为G,求两星的总质量M.。
双星与多星问题
双星与多星问题双星与多星问题例1、(2019全国理综1)如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。
已知A、B的中心和O三点始终共线,A和B分别在O的两侧。
引力常数为G。
求:两星球做圆周运动的周期:总结:双星的特点。
练习1、经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。
则可知() A.m1、m2做圆周运动的角速度之比为2︰3 B.m11、m2做圆周运动的线速度之比为3︰22LC.m1做圆周运动的半径为5D.m2做圆周运动的半径为L练习2、天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。
(引力常量为G)例2、(2019年高考广东物理)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为 R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。
设每个星体的质量均为m。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?例3、宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用。
星体追击问题和双星多星问题专题
宇宙中两颗星球可以组成双星,它们只在相互间的万
【例3】双星系统在银河系中很普遍。
LMCX-3双星系统,它由
可见星A 和不可见的暗星B 构成。
两星视为质点,不考虑其它天体的影响,A 、B 两星均围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图所示。
已知引力常量为G ,可见星A 的运行周期为T 。
⑴若A 、B 两星之间的距离为L ,则该双星系统的总质量为多少?
⑵若用可见星C 置于O 处并保持不动,来替代暗星B ,使A 的运行周期仍为T ,还知道运行线速度为V ,则C 的质量M C 应为多大?
两行星相距最远。
高考万有引力双星、多星问题
万有引力应用二一双星及多星问题1、(多选)经长期观测,人们在宇宙中已经发现了"双星系统”・"双星系统"由两颗相距较近的恒星组成,每个恒星的半径远小于两颗星之间的距离,而且双星系统一般远离其他天体.如图两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做匀速圆周运动・现测得两颗星之间的距离为L质呈之比约为m仁m2=3: 2,则可知()A.m1: m2做圆周运动的线速度之比为2: 3B. m,: m2做圆周运动的角速度之比为1 : 1C. g做圆周运动的半径为£ID. Rh做圆周运动的半径为答案及解析:-ABD解:双星围绕连线上的0点做匀速圆周运动,彼此间万有引力提供圆周运动向心力,可知双星做圆周运动的周期和角速度相等.令星E的半径为r,则星m2的半径为IΓD j ID 2 2(l-r)G - IΓI]1? W —ΓD 2 则有:据万有引力提供圆周运动向心力有:1■-2≡Γ即时利(I -r)又・严2 2∙∙∙r 5则星m2的半径为亏,故C错误,D正确V lr 2又因为v=rα>可知,两星做圆周运动的线速度之比等于半径之比即:V2 1 ~r 3,所以A正确.双星运动的角速度相同,故B正确.故选:ABD.2、(多选)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为Λ两星到某一共同圆心的距离分别为斤和金,那么,系统中两颗恒星的质呈关系是()A.这两颗恒星的质量必定相等B.这两颗恒星的质呈之和为4ri-护用一A 2 D I Irk 3C.这两颗恒星的质量之比为炯:∏h=R2 : R、D.其中必有一颗恒星的质量为一Gr2CC Z—七Z加规o4π2心怕4n% R↑ + R22I=ITra∙z∏∙<b 4n 先R↑-VR2ZBC [对冊有:6~~盂JR一~=ER、一^~、解侍∕7b=------ 丽------ ,同理可侍冊=------- 而------ ,故两者质呈不相等,故选项A错误;将两者质量相加得讥血=一,故选项B正确;〃:加=2,3 2 g 34 ri篇",则不可能其中一个的质量为一,R八R、、故选项C正确;两者质呈之和为故选项D错误.]3、(单选)我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体&和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T, S,到C点的距离为门,S和S2的距离为r,已知引力常量为G.由此可求岀S2的质呈为()B. 每颗星做圆周运动的加速度与三星的质呈无关C. 若距离厶和每颗星的质量刃都变为原来的2倍,απ2r 2 (r- F 1 )A.GT 2B 哙GT ZC .4兀7GT 2GT 24、(单选)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示, 答案及解析:D 解:设星体S (和S?的质量分别为口、m 2l 4兀2ι^F r 1三颗质量均为 加的星位于等边三角形的三个顶点,三角形边长为厶 忽略其他星体对它们的引力作用, 三星在同一平面内绕三角形中心0做匀速圆周运动,引力常呈为G,下列说法正确的是()A.每颗星做圆周运动的角速度为∙oD.若距离厶和每颗星的质量刃都变为原来的2倍,则线速度变为原来的4倍C 任意两星间的万有引力F=気 对任一星受力分析,如图所示.由图中几何关系和牛顿第二定 曰=S 孚=警,选项A 、B 错误;由周律可得:书F=ma=f∏y^,联立可得:3 期公式可得:厂=弓由速度公式可得:/ 当厶和刃都变为原来的2倍,则周期厂=2Γ,选项C 正确; m ,当£和刃都变为原来的2倍,则线速度/ =*选项D 错误.] 5、(多选)宇宙间存在一个离其他星体遥远的系统,其中有一种系统如图所示,四颗质量均为刃的星体 位于正方形的顶点,正方形的边长为日,忽略其他星体对它们的引力作用,每颗都在同一平面内绕正方 形对角线的交点0做匀速圆周运动,引力常量为G,贝∣J() A.每颗星做圆周运动的线速度大小为 \将? B.每颗星做圆周运动的角速度大小为 C. 每颗星做圆周运动的周期为2π D.每颗星做圆周运动的加速度与质量刃有关 AD [由星体均围绕正方形对角线的交点做匀速圆周运动可知,星体做匀速圆周运动的轨道半径厂=芈 曰,每颗星体在其他三个星体万有引力的合力作用下围绕正方形对角线的交点做匀速圆周运动,由万有则周期变为原来的2倍2C [根据万有引力提供向心力得:字=世尹,解得7∙=2n所以周期小.设再经过时间门务第二次出现这种现象,此为两个做匀速圆周运动的物体追及相遇的问W 虽然不在同一轨道上,但是当它们相遇时,运动较快的物体比运动较慢的物体多运行2 π弧度.所以弓 十一年Q2π,解得选项C 正确.]7、宇宙中存在一些离其他恒星较远的两颗星组成的双星系统,通常可忽略其他星体对它们的引力作 用.已知双星系统中星体1的质呈为必星体2的质呈为2刃,两星体相距为厶同时绕它们连线上某点 做匀速圆周运动,引力常量为G 求该双星系统运动的周期.解析 双星系统围绕两星体间连线上的某点做匀速圆周运动,设该点距星体1为/?,距星体2为厂对星2 2亠 2mm 4 rΓ I E= f , 亠 Irrm 4 π体 1,有 6-p-=∕τry∕?对主体 2,有 6-p-= 2∕τrγ-r引力定律和向心力公式得:弋 2+半% ,解得周期为代 1冷,角速度为ω4÷√2 E 加速度4=d ⅜T 故选项 r A 、D 正确,B 、C 错误•] 6、(单选)2002年四月下旬,天空中岀现了水星、金星、火星、木星、土星近乎直线排列的"五星连 珠"的奇观・假设火星和木星绕太阳做匀速圆周运动,周期分别是刀和T u 而且火星离太阳较近,它们 绕太阳运动的轨道基本上在同一平面内,若某一时刻火星和木星都在太阳的同一侧,三者在一条直线上 排列,那么再经过多长的时间将第二次岀现这种现象() 、75+7i A. 丁B .√7Γ^D .根据题意有R+r=L.由以上各式解得T=InL2火星离太阳较近,即轨道半径小,。
核心素养微专题3 宇宙双星与多星问题
二轮 ·物理
④ ⑤
二轮 ·物理
[应用提升练] 1.(多选)在地月系统中,若忽略其他星球的影响,可以将月球和地球看 成在引力作用下都绕某点做匀速圆周运动;但在近似处理问题时,常常 认为月球是绕地心做圆周运动。我们把前一种假设叫“模型一”,后一 种假设叫“模型二”。已知月球中心到地球中心的距离为L,月球运动 的周期为T。利用( BC ) A.“模型一”可确定地球的质量 B.“模型二”可确定地球的质量 C.“模型一”可确定月球和地球的总质量 D.“模型二”可确定月球和地球的总质量
双星系统周期理论值 T0 及 C 的质量分别为( D )
A.2π
2GL2m,1+4kk2m
B.2π
2GL3m,1-4kk2m
C.2π
2GL3m,1+4kk2m
D.2π
2GL3m,1- 4k2k2m
11
二轮 ·物理
解析:两星的角速度相同,根据万源自引力充当向心力知 GmL22=mω2r1=
mω2r2,可得 r1=r2
2
二轮 ·物理
2.特点 (1)各自所需的向心力由彼此间的万有引力提供,即GmL12m2=m1ω12r1, GmL12m2=m2ω22r2。 (2)两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2。 (3)两颗星的半径与它们之间的距离关系为 r1+r2=L。 (4)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm21=rr21。
科学思维
宇宙双星与多星问题
二轮 ·物理
1
二轮 ·物理
在宇宙中有一些彼此较近,而离其他星较远的几颗星组成的孤立行星系 统,称为多星系统,常见为“双星系统”和“三星系统”。这类系统具 有研究对象多个、运动模型多样、受力情况复杂、科技联系密切等特点, 备受高考命题者青睐。 一、双星系统 1.条件:两颗恒星彼此相距较近;两颗恒星靠相互之间的万有引力做 匀速圆周运动;两颗恒星绕同一圆心做匀速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宇宙中的双星及多星问题一、双星问题在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
【深入学习】例题1:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)例题2:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()1、第一种情况:例题3:宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是()A.在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B.在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧2、第二种情况:例题4:宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为m的星体位于等边三角形的三个顶点上,三角形边长为R.忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G.则()【课堂检测】1.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.那么S 1、S 2做匀速圆周运动的( )A. 角速度与其质量成反比B. 线速度与其质量成反比C. 向心力与其质量成反比D. 半径与其质量的平方成反比 2.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍物理限时练一、单项选择题1.2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.一块陨石从外太空飞向地球,到A 点刚好进入大气层,由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( ) A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层陨石的机械能渐渐变大2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.(2015·福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r1、r2,线速度大小分别为v1、v2,则( ) =r2r1=r1r2=(r2r1)2 =(r1r2)2 4.(2015·天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( ) A .旋转舱的半径越大,转动的角速度就应越大 B .旋转舱的半径越大,转动的角速度就应越小 C .宇航员质量越大,旋转舱的角速度就应越大 D .宇航员质量越大,旋转舱的角速度就应越小5.(2015·四川卷)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )行星半径/m质量/kg轨道半径/m地球 ×106 ×1024 ×1011 火星×106×1023×1011A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大6.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G.由此可求出S 2的质量为 ( )A.212)(4GT r r r 2π B.2312π4GT rC.232π4GT rD.2122π4GT r r 7.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )8.天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。
2014级物理限时练答案 0491.解析:陨石进入大气层前,只有万有引力做正功,速度增大,A 错误;进入大气层后,空气阻力做负功,机械能减小,D 错误;由GMm r2=m v2r =mω2r 得:v =GMr,ω=GMr3,故随r 减小,v 、ω均增大,B 错误,C 正确.答案:C2.解析:本题考查开普勒定律,意在考查考生对开普勒三定律的理解.由于火星和木星在椭圆轨道上运行,太阳位于椭圆轨道的一个焦点上,A 项错误;由于火星和木星在不同的轨道上运行,且是椭圆轨道,速度大小变化,火星和木星的运行速度大小不一定相等,B 项错误;由开普勒第三定律可知,T2火R3火= T2木R3木=k ,T2火T2木=R3火R3木,C 项正确;由于火星和木星在不同的轨道上,因此它们在近地点时的速度不等,在近地点时12v 火Δt 与12v 木Δt 不相等,D 项错误.答案:C3.解析:根据万有引力定律可得G Mm r2=m v2r ,即v =GM r ,所以有v1v2=r2r1,所以A 项正确,B 、C 、D 项错误.答案:A4.解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg =mrω2,ω=gr,因此角速度与质量无关,C 、D 项错误;半径越大,需要的角速度越小,A 项错误,B 项正确.答案:B5.解析:根据万有引力定律可知GM 太m r2=m(2πT)2r ,得公转周期公式T =4π2r3GM 太,对同一中心天体,环绕天体的公转半径越大,公转周期越大,A 项错误;根据公转向心加速度公式a =GM 太r2,环绕天体的公转半径越大,公转向心加速度越小,B 项正确;对于天体表面的重力加速度,由g =GMR2,得g 地>g 火,C 项错误;由第一宇宙速度公式v1=GMR,得v1地>v1火,D 项错误.答案:B6.答案 :D解析 双星的运动周期是一样的,选S 1为研究对象,根据牛顿第二定律和万有引力定律得221121π4Tr m =r m Gm 2,则m 2=2122π4GT r r .故正确选项D 正确.7.【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G 1211221r w m rm m =③G 1221221r w m r m m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214rGT m m π=+8.解析:双星绕两者连线上某点做匀速圆周运动,即:222121221L M L M LM M Gωω==--------- ..L L L =+21------- 由以上两式可得:L M M M L 2121+=,L M M M L 2122+=又由12212214L T M L M M G π=.---------- 得:)(221M M G L L T +=。