南安市2014-2015年八年级上期末教学质量数学试卷及答案修改版

合集下载

福建省南安市2014年初中学业质量检查数学试题及答案

福建省南安市2014年初中学业质量检查数学试题及答案

2014 年 南 安 市 初 中 学 业 质 量 检 查数 学 试 题(满分:150分;考试时间:120分钟)友情提示:所有答案必须填写在答题卡相应的位置上.毕业学校: 姓名: 考生号:一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分. 1.-2014的倒数是( ).A .2014B .-2014C .20141D .20141-2.计算:24a a ⋅等于( ).A .6a B .8a C .42a D .24a 3.不等式01<+x 的解集在数轴上表示正确的是( ).4.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃), 则这组数据的众数为( ).A .27B .28C .29D .305.如图是某立体图形的三视图,则这个立体图形是( ). A .圆锥 B .圆柱 C .球 D .正方体 6.顺次连结菱形四边中点所得的四边形一定是( ). A .正方形 B .矩形 C .菱形 D .等腰梯形 7.如图,已知∠BAC =45°,一动点O 在射线AB 上运动(点O与点A 不重合),设O A =x ,如果半径为1的⊙O 与射线 AC 没有公共点,那么x 的取值范围是( ). A .20≤<x B .21≤<x C .21<≤x D .2>x二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.实数0的平方根为 .9.“马航客机失联”,引起人们的广泛关注,在Google 网上,有近897 000 000条关于马航失联信息.将897 000 000用科学记数法表示为 . 10.因式分解:24x -= .11.正十边形的每一个外角.....为 °. 12.计算:_______x yx y x y +=++.13.已知一个梯形的上底长为3 cm ,下底长为5cm ,则该梯形的中位线长为________cm . 14.方程组⎩⎨⎧=-=+122y x y x 的解是_______________.15.已知A (3,1y )、B (4,2y )都在抛物线12+=x y 上,试比较1y 与2y 的大小: . 16.如图,△ABC 中,DE ∥BC ,如果AD :AB =1∶3,则:(1)DE ∶BC = ;(2)ADE S ∆:DBCE S 四边形= .17.甲、乙两车分别从M 、N 两地相向而行,甲车出发1小时后乙车才出发,并以各自速度匀速行驶,甲车出发3小时 两车相遇,相遇后两车仍按原速度原方向各自行驶.如图 折线A-B-C-D 表示甲、乙两车之间的距离S (千米) 与甲车 出发时间t (小时)之间的函数图象.则: ①M 、N 两地之间的距离为 千米; ②当50S =千米时,t = 小时.三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)计算:10|3|42(2014)π--⨯+-.19.(9分)先化简,再求值:2(1)(2)a a a ++-,其中3=a .20.(9分)如图,四边形ABCD 是正方形, 点G 是BC 边上一点,DE ⊥AG 于点E ,BF ⊥AG 于点F .求证:DE =AF .21.(9分)有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中也有3个球,分别标有数字0,1,4;这6个球除所标数字外没有任何区别.(1)随机地从甲袋中摸出1个球,求摸到数字2的概率;(2)从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.22.(9分)为庆祝中国首个“东亚文化之都”花落泉州.某校举行全校学生参与的“爱我文都——泉州”知识竞赛,并对竞赛成绩 (成绩取整数,满分为100分)作了随机抽样统计分析,抽样统计结果绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息解答下列问题:(1)在频数、频率分布表中,=a ,=b ; (2)请你把频数分布直方图补充完整;(3)若该校共有学生600人,请你估计该校本次竞赛成绩不低于90分的学生共有多少人?23.(9分)如图,已知直线12y x =与双曲线(0)ky k x=> 交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值;(2)直接写出点B 的坐标.24.(9分)已知长方形硬纸板ABCD 的长BC 为40cm ,宽CD 为30cm ,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖..的长方体盒子,设剪掉的小正方形边长为x cm .(纸板的厚度忽略不计) (1)填空:E F = cm ,GH = cm ;(用含x 的代数式表示)(2)若折成的长方体盒子的表面积为950cm 2,求该长方体盒子的体积.25.(12分)如图,直线4y x =+分别与x 、y 轴交于点 A 、 B , 以OB 为直径作⊙M ,⊙M 与直线AB 的另一个交点为D .(1)求∠BAO的大小;(2)求点D的坐标;(3)过O、D、A三点作抛物线,点Q是抛物线的对称轴l上的动点,探求:∣QO-QD∣的最大值.,0),B(0,2).以OA、OB为边26.(14分)如图1,在平面直角坐标系中,已知A(3作矩形AOBC,再以C为圆心,CA为半径作⊙C交y轴于E、F两点.(1)直接写出点C的坐标;(2)求线段EF的长;(3)如图2,以AB为边向下作等边三角形ABM.①求点M的坐标;②若以M为圆心,R为半径的⊙M上有且只有一个点到点C的距离等于2,请直接写出R的值.2014年南安市初中学业质量检查数学试题参考答案及评分标准说明: (一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.D ; 2.A ; 3.A ; 4.C ; 5.B ; 6.B ; 7.D . 二、填空题(每小题4分,共40分)8.0; 9.81097.8⨯; 10.)2)(2(x x -+ 11.36; 12.1; 13.4; 14.⎩⎨⎧==11y x ; 15.21y y <; 16.(1)1:3;(2)1:8; 17.(1)560;(2)2261或2271. 三、解答题(共89分) 18.(本小题9分)解:原式=1233++-………………8分=3…………… ……………9分19.(本小题9分)解:原式=a a a a 22122-+++………………………4分=122+a ……………………………………6分 当3=a 时,原式=1)3(22+⨯………………………7分=7………………………………9分20.(本小题9分)证明:∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD .…………………2分 ∵DE ⊥AG ,BF ⊥AG , ∴∠AFB =∠AED =90°. ………………………4分 ∵∠BAF +∠DAE =∠ADE +∠DAE =90°,∴∠BAF =∠ADE . ……………………………6分 ∵∠BAF =∠ADE ,∠AFB =∠AED ,AB =AD . ∴△ABF ≌△ADE .……………………………………7分 ∴DE =AF .……………………………………9分 21. (本小题9分)解:(1)P (摸到数字2)=31;……………………………3分 (2)画树状图如下:……………6分(或列表格:略)由树状图(或列表)可知,共有9种机会均等的情况,其中满足数字之和是6的情况有2种,∴P (数字之和是6)92=.…………………9分 22.(本小题9分) 解:(1)8,0.08,………………4分,(2)图略(8人)……………………6分 (3)4808.0600=⨯(名)………8分∴估计该校本次竞赛成绩不低于90分的学生共有48人.………9分 23. (本小题9分) 解:(1)在12y x =中,当4=x 时,2=y , ∴A (4,2)……………………………3分∵A (4,2)在双曲线(0)ky k x=>上, ∴824=⨯=k ……………………………6分(2)B (-4,-2)…………………………9分 24.(本小题9分)解:(1)E F =)230(x -cm ,GH =)20(x -cm .…………………3分 (只答对一个得2分)(2)根据题意,得:950202230402=⨯--⨯x x …………………5分[或2950)20()230()20)(230(=-+-+--x x x x x x ] 解得:51=x ,252-=x (不合题意,舍去)…………………7分 ∴长方体盒子的体积=)(150015205)20)(230(3cm x x x =⨯⨯=--……9分25.(本小题12分)解:(1)∵直线43y x =-+分别与x 、y 轴交于点 A 、 B∴当0=y 时,34=x ;当0=x 时,4=y∴A (0,34),B (0,4) …………………………2分 在Rt △AOB 中,∵33344tan ===∠OA OB BAO ∴∠BAO =30° …………………………4分(2)连结OD ,过D 作DE ⊥OA 于点E ,∵OB 是⊙M 的直径∴∠BDO =∠ADO =90°.……………5分 在Rt △AOD 中,∵∠BAO =30°∴OD 21=OA 32=,∠DOA =60°…6分 在Rt △DOE 中,OE 3cos =∠=DOE OD DE 3sin =∠=DOE OD∴点D 的坐标为(3,3)……………8分 (3)易知对称轴l 是OA 的垂直平分线,延长OD 交对称轴l 于点Q , 此时∣QO -QD ∣=OD 的值最大.……………9分 理由:设Q /为对称轴l 上另一点,连结OQ /,DQ /, 则在△ODQ /中,∣Q /O -Q /D ∣<OD .………11分∴∣QO -QD ∣的最大值=OD 32=.………12分 26.(本小题14分)解:(1)C (3-,2)………………………2分(2)连结CE ,则CE =CA =2,CB =OA =3…………3分 ∴在Rt △BCE 中,1)3(22222=-=-=CB CE BE ……4分∵CB ⊥EF ∴EF =2BE =2 …………………………6分 (3)①方法一:连结AE 、CE 、ME ,过M 作MN ⊥y 轴于点N , 由(2)易求AE =CE =AC =2,∠BEC =∠AEO =60°. ∴△ACE 为等边三角形,…………………………7分又∵△ABM 也是等边三角形, ∴∠CAE =∠BAM =60°,AB =AM , ∴∠CAE -∠BAE =∠BAM -∠BAE 即∠CAB =∠EAM∴△ABC ≌△AME ……………………9分∴∠AEM =∠ACB =90°,ME =BC =3∴∠MEN =∠AEM -∠AEO =90°-60°=30°………10分在Rt △MEN 中,MN 23213sin =⨯=∠=MEN ME EN 23233cos =⨯=∠=MEN ME ∴ON =EN -EO =21123=- ∴点M 的坐标为(2123-,).…………………12分 方法二:以M 为圆心,MA 为半径作圆,与y 轴交于另一点P ,连结AP ,则∠APB =21∠AMB =30°…………………8分 在Rt △AOP 中,OP =3333tan =÷=∠APO OA∴BP =BO +OP =2+3=5…………………9分过M 作MN ⊥y 轴于点N , 则BN =PN 25=,ON =BN -BO 21225=-=…………………10分∵MB =AB 7)3(222=+=∴MN =23)25()7(2222=-=-BN BM …………………11分 ∴点M 的坐标为(2123-,).…………………12分 ②213+=R 或213-=R .…………………14分。

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014--2015学年八年级上册期末考试数学试题及答案

2014--2015学年八年级上册期末考试数学试题及答案

期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案1.点P(3,1)所在的象限是第一象限。

2.大于2且小于3的数是2.3.不能由图1滑雪人经过旋转或平移得到的是第四个滑雪人。

4.这组数据中的众数和中位数分别是22个和21个。

5.洗衣机内水量y(升)与从注水开始所经历的时间x (分)之间的函数关系对应的图象大致为选项B。

6.a的值为-2或4.7.结论a。

ab。

b不一定正确。

8.a的值为-1.9.一次函数y=ax+(239/77)的解析式为y=(-9/7)x+(3/7)。

10.线段AC扫过的面积为16.11.关于x的一次函数y=min{2x。

x+1}可以表示为y=2x-2(x≤1)或y=x+1(x>1)。

21.1) 点B1的坐标为 (-1.-2)。

向右平移3个单位,即横坐标加3,向下平移4个单位,即纵坐标减4,得到点B1的坐标。

这次平移的距离为向右平移3个单位,向下平移4个单位。

2) 如图所示,将△ABC绕点O顺时针旋转90°后得到△A2B2C2,其中点O为坐标原点。

根据坐标轴上点的旋转公式,可得点A2的坐标为 (-4.2),点B2的坐标为 (-2.-4),点C2的坐标为 (0.-1)。

22.1) 设男装一天的租金为x元,女装一天的租金为y元,则根据题意可列出如下方程组:5x + 8y = 5106x + 10y = 630解方程组可得,x = 60,y = 45.因此男装一天的租金为60元,女装一天的租金为45元。

2) 原计划租用男装6套,女装17套,租金为6×60 +17×45 = 1020元。

现在租用男装6套,女装14套,歌手服装3套,租金为6×60 + 14×45 + 3×1.2×45 = 1023元。

因此在演出当天租用服装实际需支付租金1023元。

23.1) 由于BE是△ABC的高,所以△ABE与△ACB相似。

2014-2015学年度第一学期八年级数学期末试卷及答案

2014-2015学年度第一学期八年级数学期末试卷及答案

2014-2015学年度第一学期期末教学质量检测八年级数学试卷(时间:100分钟,满分100分)一、选择题(本大题共10题,每小题3分,共30分)1.在x 1、21、212+x 、πxy3、y x +3、3x -中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 2.下列“表情”中属于轴对称图形的是 ( )A .B .C .D .3.等腰三角形的顶角为80°,则它的底角的度数是( )A .20°B .50°C .60°D .80°4.如图,△ABC 中,AB=AC ,EB=EC ,则由“SSS”可以判定( ) A.△ABD ≌△ACDB.△ABE ≌△ACEC.△BDE ≌△CDED.以上答案都不对5.下列运算不正确...的是 ( ) A 、 x 2·x 3= x 5B 、 (x 2)3= x 6C 、 x 3+x 3=2x 6D 、 (-2x)3=-8x 36.下列每组数分别是三根小棒的长度,用它们能摆成三角形的是( )A 、3cm ,4cm ,8cmB 、8cm ,7cm ,15cmC 、13cm ,12cm ,20cm C 、5cm ,5cm ,11cm 7.下列各式由左边到右边的变形中,是分解因式的为( ).C BADA .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+- 8.计算3a.2b 的值为( )A.3abB.6aC.6abD.5ab 9.若分式有意义,则x 的取值范围是( )A. x ≠3B. x ≠﹣3C. x >3D. x >﹣310.小张和小李同时从学校出发,步行15千米去县城购买书籍,小张比小李每小时多走1千米,结果比小李早到半小时,两位同学每小时各走多少千米?设小李每小时走x 千米,依题意,得到的方程:(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112x x -=- 二、填空题(本大题共8题,每小题3分, 共24分)11.已知点A(m,3)与点B (2,n+1)关于y 轴对称,则m=______,n=________。

2014-2015八年级上册数学期末试卷

2014-2015八年级上册数学期末试卷

2014—2015学年上期期末质量调研试题八年级数学参考答案一、选择题(每小题3分,共24分) 1. A 2. B 3.A 4.C 5. C 6.D 7.C 8.D 二、填空题(每小题3分,共21分)9. 6a 4b 4 10.20 11. 70 12. (3)(3)mn m m +- 13. 75° 14. 2 15.22015α三、解答题(本大题共8小题,满分75分) 16.解:23xy -…………………………………………………………5分(2)22()()b a a b ----或……………………………………………………5分17. (8分)解;(1)作出射线DN ………………………4分(2)ADF △是等腰直角三角形. ………8分18. (8分)解:原式=2(1)1(2)(2)2a a a aa a a a --∙=--++又由于为使分式有意义,a 不能取1、±2、0;则在﹣3<a <3范围内,整数a 只能取﹣1;…………………………6分 当a=﹣1时,原式==﹣1.…………………………………8分19. (9分) 解:解(1)A ′(2,3),B ′(3,2),C ′(1,1);……………6分 (2)点P 如图所示.…………………………9分20. (9分) 解:依题意可得:132xx-=- ……………………………………2分 去分母得:1﹣x =3(2﹣x ),去括号得:1﹣x =6﹣3x , 移项得:﹣x +3x =6﹣1, 解得:x =………………………………………………7分经检验,x =是原方程的解.………………………………………8分 因此x 的值是.…………………………………………9分 21.(10分)(1)证明:∵以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD′E,∴AD=AD′,……………………………………2分 ∵在△ABD 和△ACD′中,∴△ABD≌△ACD′;……………………………………5分(2)解:∵△ABD≌△ACD′, ∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°………………………………7分∵以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD′E, ∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.…………………………………………………………10分 22.(10分)11122x x(+)=1,…………………………………………………………2分解得:x =18,经检验得出:x =18是原方程的解, 则乙车单独运完此堆垃圾需运:2x =36,答:甲车单独运完需18趟,乙车单独运完需36趟;…………………………5分(2)设甲车每一趟的运费是a 元,由题意得: 12a +12(a ﹣200)=4800,解得:a =300.………………………………………………………………7分 则乙车每一趟的费用是:300﹣200=100(元), 单独租用甲车总费用是:18×300=5400(元), 单独租用乙车总费用是:36×100=3600(元), 3600<5400,故单独租用一台车,租用乙车合算.答:单独租用一台车,租用乙车合算……………………………………10分 23.(11分).解:(1)90°. ·················································································································· 3分 (2)①180αβ+=°. ········································································································ 4分 ∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠. 即BAD CAE ∠=∠.又AB AC AD AE ==,, ∴ABD ACE △≌△. ········································································································ 7分 ∴B ACE ∠=∠.∴B ACB ACE ACB ∠+∠=∠+∠. ∴B ACB β∠+∠=. ∵180B ACB α+∠+∠=°,∴180αβ+=°. ················································································································· 9分 ②当点D 在射线BC 上时,180αβ+=°. ······································································ 10分 当点D 在射线BC 的反向延长线上时,αβ=. ······························································ 11分。

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015 年人教版八年级数学上册期末测试题2014-2015 年人教版八年级数学上册期末测试题带详尽解说一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B .C. D .2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3 根3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 2+43 2 6 0B .( x+2) =x C.( ab ) =ab D.(﹣ 1) =16.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a)( x+a) 2 2 C.( x﹣ a)( x﹣ a) D .(x+a) a+( x+a) xB . x +a +2ax7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C . 22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+68.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠09.( 3 分)(2012?安徽)化简的结果是( ) A .x+1 B . x ﹣ 1C .﹣ xD . x2 3 5;③2 ﹣2 4 2 2 210.(3 分)( 2011?鸡西)以下各式: ①a =1 ;②a ?a =a =﹣ ;④﹣( 3﹣ 5)+(﹣ 2) ÷8×(﹣ 1)=0 ;⑤x +x =2x , 此中正确的选项是( )A .①②③B .①③⑤C .②③④D .②④⑤11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A .15 分钟,现已知小林家距学校 8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为( )B .C .D .12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DCC .∠ADB= ∠ADCD . ∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式: x3﹣ 4x 2﹣ 12x= _________ .14.( 4 分)( 2012?攀枝花)若分式方程:有增根,则 k= _________ .15.( 4 分)( 2011?昭通)以下图,已知点 A 、 D 、B 、F 在一条直线上, AC=EF , AD=FB ,要使 △ABC ≌△FDE ,还需增添一个条件,这个条件能够是_________.(只需填一个即可)16.( 4 分)( 2012?白银)如图,在 △ABC 中, AC=BC , △ABC 的外角∠ACE=100 °,则∠A= _________ 度.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共 7 小题,满分64 分)18.( 6 分)先化简,再求值:2 2 2 2, b=﹣.5( 3a b﹣ ab )﹣ 3( ab +5a b),此中 a=19.( 6 分)( 2009?漳州)给出三个多项式:2 2 2﹣ 2x.请选择你最喜爱的两个多项式进行x +2x ﹣1,x +4x+1 , x加法运算,并把结果因式分解.20.( 8 分)( 2012?咸宁)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:_________.l 当作一条直线(图(2)),问题就转变AB 、 AC 边的中点, BC=6 , BC 边上的高为参照答案与试题分析一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A . B .C. D .考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根 D . 3 根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ACD 及△ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC ,∠BAE= ∠CAD ,BE=DC , AD=AE ,故 A 、B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣ 60°=120°;∴∠α+∠β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为 180°,四边形的内角和是 360°等知识,难度不大,属于基础题5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 23 2 6 0B .( x+2) =x +4 C.( ab ) =ab D.(﹣ 1) =1考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析: A 、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D 、任何不为0 的数的 0 次幂都等于1.解答:解:A、不是同类项,不可以归并.故错误;2 2B 、( x+2) =x +4x+4 .故错误;32 2 6C、( ab ) =a b .故错误;D 、(﹣ 1) =1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a )( x+a ) 2 2C .( x ﹣ a )( x ﹣ a )D . (x+a ) a+( x+a ) xB . x +a +2ax考点 : 整式的混淆运算.剖析: 依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答: 解:依据图可知,222S 正方形 =( x+a ) =x +2ax+a ,应选 C .评论: 本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C .22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+6考点 : 因式分解的意义.剖析: 依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解: A 、 x 2﹣ 5x+6=x ( x ﹣5) +6 右侧不是整式积的形式,故不是分解因式,故本选项错误; B 、 x 2﹣5x+6= ( x ﹣ 2)( x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、( x ﹣ 2)( x ﹣ 3) =x 2﹣ 5x+6 是整式的乘法,故不是分解因式,故本选项错误; D 、 x 2﹣ 5x+6= ( x ﹣ 2)( x ﹣ 3),故本选项错误.应选 B .评论: 本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠0考点 : 分式存心义的条件. 专题 : 计算题.剖析: 依据分式存心义的条件进行解答. 解答: 解:∵分式存心义,∴a+1≠0, ∴a ≠﹣ 1. 应选 C .评论: 本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点: ( 1)分式无心义 ? 分母为零;( 2)分式存心义 ? 分母不为零;9.( 3 分)(2012?安徽)化简的结果是( )A .x+1B . x ﹣ 1C .﹣ xD . x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x ,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.0 2 3 5 ﹣2 4 2 2 2 10.(3 分)( 2011?鸡西)以下各式:①a =1;②a ?a =a ;③2 =﹣;④﹣( 3﹣ 5)+(﹣ 2)÷8×(﹣ 1)=0 ;⑤x +x =2x ,此中正确的选项是()A .①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;②切合同底数幂的乘法法例,故本小题正确;﹣2= ,依据负整数指数幂的定义﹣p( a≠0, p 为正整数),故本小题错误;③2 a =④﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0 切合有理数混淆运算的法例,故本小题正确;2 2 2,切合归并同类项的法例,本小题正确.⑤x +x =2x应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A.15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为()B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DC C .∠ADB= ∠ADCD . ∠B=∠C考点 : 全等三角形的判断.剖析: 先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中 C 、AB=AC 与∠1=∠2、 AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答: 解: A 、∵AB=AC ,∴,∴△ABD ≌△ACD ( SAS );故此选项正确;B 、当 DB=DC 时, AD=AD ,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误; C 、∵∠ADB= ∠ADC , ∴,∴△ABD ≌△ACD ( ASA );故此选项正确;D 、∵∠B=∠C ,∴,∴△ABD ≌△ACD ( AAS );故此选项正确. 应选: B .评论: 本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS 、 ASA 、 SAS 、 SSS ,但 SSA没法证明三角形全等.二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式:x 3﹣ 4x 2﹣ 12x=x ( x+2)( x ﹣ 6) .考点 : 因式分解 -十字相乘法等;因式分解-提公因式法.剖析: 第一提取公因式 x ,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答: 解: x 3﹣ 4x 2﹣ 12x2=x ( x ﹣ 4x ﹣ 12)故答案为: x ( x+2 )( x ﹣ 6).评论: 本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.( 4 分)( 2012?攀枝花)若分式方程: 有增根,则 k= 1 或 2 .考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣ 2=0 ,2﹣ x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2) +1 ﹣ kx=﹣ 1,整理得:( 2﹣ k) x=2,当 2﹣ k=0 时,此方程无解,∵分式方程有增根,∴x﹣ 2=0 , 2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣ k)x=2 得: k=1.故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于 0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.( 4 分)( 2011?昭通)以下图,已知点A、 D、B 、F 在一条直线上,AC=EF , AD=FB ,要使△ABC ≌△FDE ,还需增添一个条件,这个条件能够是∠A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故增添∠A=∠F,利用SAS可证全等.(也可增添其余条件).解答:解:增添一个条件:∠ A=∠F,明显能看出,在△ABC和△FDE中,利用SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、 AAS 、SAS、 SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.( 4 分)( 2012?白银)如图,在△ABC 中, AC=BC ,△ABC 的外角∠ACE=100 °,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠ A= ∠B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:∵AC=BC ,∴∠A= ∠B , ∵∠A+ ∠B=∠ACE ,∴∠A= ∠ACE=×100°=50°.故答案为: 50.评论: 本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .考点 : 平方差公式的几何背景.剖析: 依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答: 解:设拼成的矩形的另一边长为 x ,则 4x= ( m+4)2﹣ m 2=( m+4+m )( m+4﹣m ),解得 x=2m+4 . 故答案为: 2m+4 .评论: 本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.( 6 分)先化简,再求值: 2222, b=﹣ .5( 3a b ﹣ ab )﹣ 3( ab +5a b ),此中 a= 考点 : 整式的加减 —化简求值.剖析: 第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.解答: 解:原式 =15a 22222b ﹣ 5ab ﹣3ab ﹣ 15a b=﹣ 8ab ,当 a= , b=﹣ 时,原式 =﹣8× × =﹣ .评论: 娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.( 6 分)( 2009?漳州)给出三个多项式:2﹣1, 2, 2﹣ 2x .请选择你最喜爱的两个多项式进行 x +2xx +4x+1 x加法运算,并把结果因式分解.考点 : 提公因式法与公式法的综合运用;整式的加减.专题 : 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答: 解:状况一: 2 ﹣ 1+ 2 2( x+6 ).x +2x x +4x+1=x +6x=x状况二:x 2+2x ﹣ 1+ x 2﹣ 2x=x 2﹣ 1=( x+1)( x ﹣ 1).状况三:2 2 2 2x +4x+1+ x ﹣ 2x=x +2x+1= ( x+1) .评论: 本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点.熟记公式构造是分解因式的重点.平方差公式:2 22 2a ﹣ b=( a+b )(a ﹣ b );完整平方公式: a ±2ab+b =( a ±b )2 .20.( 8 分)( 2012?咸宁)解方程:.考点 : 解分式方程.剖析: 察看可得最简公分母是( x+2)( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解.解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2), 得 x ( x+2)﹣( x+2 )( x ﹣ 2)=8.( 4 分) 化简,得2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,( x+2 )( x ﹣ 2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. ( 8 分)评论: 本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.( 10 分)已知:如图, △ABC 和 △DBE 均为等腰直角三角形.( 1)求证: AD=CE ; ( 2)求证: AD 和 CE 垂直.考点 : 等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析: ( 1)要证 AD=CE ,只需证明 △ABD ≌△CBE ,因为 △ABC 和 △DBE 均为等腰直角三角形,因此易证得结论.( 2)延伸 AD ,依据( 1)的结论,易证∠ AFC= ∠ABC=90 °,因此 AD⊥CE .解答: 解:( 1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC , BD=BE ,∠ABC= ∠DBE=90 °, ∴∠ABC ﹣∠DBC= ∠DBE ﹣∠DBC , 即∠ABD= ∠CBE , ∴△ABD ≌△CBE ,∴AD=CE .(2)垂直.延伸 AD 分别交 BC 和 CE 于 G 和 F,∵△ABD ≌△CBE,∴∠BAD= ∠BCE,∵∠BAD+ ∠ABC+ ∠BGA= ∠BCE+ ∠AFC+ ∠CGF=180 °,又∵∠BGA= ∠CGF ,∴∠AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠DCE=∠ACB,依据SAS证△DCE≌△ACB,依据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+ ∠ACE= ∠BCE+ ∠ACE ,∴∠DCE= ∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.( 2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:(1)设这项工程的规准时间是x 天,依据题意得:(+)×15+=1 .解得: x=30.经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.( 2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18×(6500+3500 ) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是 AB 、 AC 边的中点, BC=6 , BC 边上的高为4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D ′,连结 D′E,与 BC 交于点 P, P 点即为所求;( 2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)作D点对于BC的对称点D′,连结D′E,与BC交于点P,P点即为所求;(2)∵点 D、 E 分别是 AB 、 AC 边的中点,∴DE 为△ABC 中位线,∵BC=6 , BC 边上的高为 4,∴DE=3 , DD ′=4,∴D′E===5,∴△PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△PDE周长的最小值,求出 DP+PE 的最小值即但是解题重点.2013 八年级上学期期末数学试卷及答案二一、选择题(每题 3 分,共 24 分)1.的值等于()A .4B.-4C.±4 D .±22. 以下四个点中,在正比率函数的图象上的点是()A.( 2, 5)B.(5,2)C.(2,-5)D.(5,― 2)3. 估量的值是()A.在 5与6之间B.在 6与7之间 C .在 7与8之间 D .在 8与 9之间4. 以下算式中错误的选项是()A.B.C.D.5.以下说法中正确的选项是()A.带根号的数是无理数B.无理数不可以在数轴上表示出来C.无理数是无穷小数D.无穷小数是无理数6. 如图,一根垂直于地面的旗杆在离地面5m处扯破折断,旗杆顶部落在离旗杆底部12m处,旗杆折断以前的高度是()A . 5m B.12m C.13m D.18m7.已知一个两位数,十位上的数字x 比个位上的数字y 大 1,若颠倒个位与十位数字的地点,获得新数比原数小9,求这个两位数列出的方程组正确的选项是()座位号(考号末两位)A.B.C.D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B.y2>y1C.y1=y2D.不可以确立二、填空题(每题 3 分,共 24 分)9. 计算:.10. 若点 A 在第二象限,且 A 点到 x 轴的距离为 3,到 y 轴的距离为4,则点 A 的坐标为.11. 写出一个解是的二元一次方程组.12. 矩形两条对角线的夹角是60°,若矩形较短的边长为 4cm,则对角线长.13. 一个正多边形的每一个外角都是36°,则这个多边形的边数是.14. 等腰梯形 ABCD中, AD= 2,BC=4,高 DF=2,则腰 CD长是.15. 已知函数的图象不经过第三象限则0,0.16. 如图,已知 A 地在 B 地正南方 3 千米处,甲、乙两人同时分别从 A、 B 两地向正北方向匀速直行,他们与 A 地的距离 S(千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC和 BD给出,当他们行走 3 小时后,他们之间的距离为千米.三、解答题(每题 5 分,共 15 分)17. (1)计算(2)化简( 3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为 1 个单位长度的方格纸中,有一个△ ABC和点O,△ABC的各极点和O点均与小正方形的极点重合. (1)在方格纸中,将△ ABC向下平移 5 个单位长度得△ A1B1C1,请画出△ A1B1C1.(2)在方格纸中,将△ ABC绕点 O顺时针旋转 180°获得△ A2B2C2,请画出△ A2B2C2.19. 某校教师为了对学生零花费的使用进行教育指导,对全班50 名学生每人一周内的零花费数额进行了检查统计,并绘制了下表零花费数额 / 元 5 10 15 20学生人数10 15 20 5(1 )求出这 50 名学生每人一周内的零花费数额的均匀数、众数和中位数(2 )你以为( 1)中的哪个数据代表这50 名学生每人一周零花费数额的一般水平较为适合?简要说明原因.五、解答题( 20 题 6 分,21 题 7 分,共 13 分)20. 已知点 A( 2,2), B(- 4, 2), C(- 2,- 1), D(4,- 1). 在以下图的平面直角坐标系中描出点A、B、C、 D,而后挨次连结 A、B、C、 D 获得四边形ABCD,试判断四边形ABCD的形状,并说明原因.21. 阅读以下资料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点 B 逆时针旋转必定角度后,获得正方形GBEF,边 AD与 EF订交于点 H.请你判断四边形ABEH是不是“筝形”,说明你的原因.六、(每题10 分,共 20 分)22 .以下图,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直均分线交AD于 E,交 BC于 F. (1)试判断四边形AFCE是如何的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价钱规定以下表购票人数1—50 人51—100 人100 人以上每人门票价12 元10 元8 元某校八年( 1)( 2)两班共 102 人去旅行该景点,此中(1)班不足50 人,( 2)班多于 50 人,假如两班都以班为单位分别购票,则一共付款1118 元(1)两班各有多少名学生?(2)假如你是学校负责人,你将如何购票?你的购票方法可节俭多少钱?七、( 12 分)24.我国是世界上严重缺水的国家之一,为了加强居民的节水意识,某自来水企业对居民用水采纳以户为单位分段计费方法收费;即每个月用水 10 吨之内(包含 10 吨)的用户,每吨水收费 a 元,每个月用水超出 10 吨的部分,按每吨 b 元( b>a)收费,设一户居民月用水x (吨),应收水费y(元), y 与 x 之间的函数关系以下图.(1)分段写出 y 与 x 的函数关系式 .(2)某户居民上月用水 8 吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水 4 吨,两家一共交水费46 元,求他们上月分别用水多少吨?八年级数学参照答案四、 18 略(1)3 分(2)3 分19( 1)均匀数是 12 元( 2 分)众数是 15 元( 1 分)中位数是12.5 元( 1 分)( 2)用众数代表这50 名学生一周零花费数额的一般水平较为适合,因为15 元出现次数最多,因此能代表一周零花费的一般水平(2 分)五、 20 画出图形( 3 分)说明是平行四边形( 3 分) 21 能够判断 ABEH是筝形,证△ HAB≌△ HEB(7 分)六、 22( 1)菱形( 5 分)( 2)周长是25cm(5 分)23( 1)设一班学生x 名,二班学生y 名依据题意(5 分)。

南安市八年级上册期末考试数学试卷有答案【精编】.doc

南安市八年级上册期末考试数学试卷有答案【精编】.doc

南安市上学期初中期末教学质量监测初二年数学试题(满分:150分;考试时间:120分钟)学校 班级 姓名 考号 友情提示:本次考试有设置答题卡,请把各题的解答另填写在答题卡指定的位置,这样的解答才有效!一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.,3.14,311,5π,0.66666,这6个数中,无理数共有( ).A .2个B .3个C .4个D .5个 2.下列算式中,结果等于6a 的是( ).A .42a a +B .222a a a ++C .23a a ⋅D .222a a a ⋅⋅ 3.在下列各组数据中,不能作为直角三角形的三边长的是( ). A .4,5,6 B .6,8,10 C .7,24,25 D .9,12,154.如图,是某企业1~5月份利润的折线统计图, 根据图中信息,下列说法错误的是( ). A .利润最高是130万 B .利润最低是100万C .利润增长最快的是2~3月份D .利润增长最快的是4~5月份5.若2(3)(2)y y y my n +-=++,则m 、n 的值分别为( ). A .5m =,6n = B .1m =,6n =- C .1m =,6n = D .5m =,6n =- 6.下列作图语言中,正确的是( ).A .画直线AB =3cmB .延长线段AB 到C ,使BC =ABC .画射线AB =5cmD .延长射线OA 到B ,使AB =OA(第4题图)7.下列命题中,真命题的是( ).A .同位角相等B .相等的角是对顶角C .同角的余角相等D .内错角相等8.用反证法证明“若0a b >>,则22a b >”,应假设( ).A .22a b <B .22a b =C .2a ≤2bD .2a ≥2b9.下列式子中,能用平方差公式计算的是( )A .(1)(1)x x -+-B .(1)(1)x x --+C .(1)(1)x x ---+D .(1)(1)x x -- 10.如图所示,是一块三角形的草坪,现在要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ).A .△ABC 的三边中线的交点B .△ABC 的三条角平分线的交点C .△ABC 的三条高所在直线的交点D .△ABC 的三边的中垂线的交点二、填空题(本大题共6小题,每小题4分,共24分).11.若1n n <<+,且n 是正整数,则n = . 12.分解因式:22mn mn m ++= .13.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是 人.14.写出命题“内错角相等”的逆命题 . 15.计算:201620181()(3)3⨯-= .16.如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1, 设直角三角形较长直角边为a ,较短直角边为b ,则a b +的值是 .(第16题图)(第10题图)ABC三、解答题(本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤)17.(81.18.(8分)用简便方法计算(要写出运算过程):(1)2018201620172⨯- (2)219819.(8分)先化简,再求值:23522)1612()42(3a a a a a a ÷---,其中2-=a .20.(8分)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠1=∠2,AF =CE . (1)写出图中全等的三角形; (2)选择其中一对,说明理由.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图。

(完整word版)2014-2015学年八年级上册期末考试数学试题及答案【新课标人教版】,推荐文档

(完整word版)2014-2015学年八年级上册期末考试数学试题及答案【新课标人教版】,推荐文档

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

新人教版数学2014—2015学年八年级上学期期末试题(含答案)

新人教版数学2014—2015学年八年级上学期期末试题(含答案)

2014—2015学年度第一学期期末考试八年级数学试题一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并1.等腰三角形两边长分别为4和10,则它的周长为A.18B.24C.18或24D.不能确定2.在△ABC中,若∠A:∠B:∠C=2:1:1,则△ABC是A.等边三角形B.锐角三角形C. 等腰直角三角形D. 钝角三角形3.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC与BD相交于点E,且AC=BD.则下列关系:①△ABD≌△BAC;②△ABE是等腰三角形;③△ADE ≌△BCE;④AC平分∠DAB.其中一定成立的关系有A.4个 B.3个C.2个 D.1个4.下列命题中是假命题的是A.角的平分线上的点到角的两边的距离相等第3题图B.到角的两边的距离相等的点在这个角的平分线上C.线段垂直平分线上的点与这条线段两个端点的距离相等D.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上A B C D7.下列多项式在实数范围内能因式分解的是A.22x y +B. 22x y --C.2x x 1++D. 24x 4x 1+--8.下列各式中,无论x 取何值,分式都有意义的是 A.1x 1+ B. 2x 1x + C. 2x 1x 1++ D. 2x 1x 1+- 9. 雾霾天气是一种大气污染状态,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶” .已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为A. 70.2510-⨯米 B. 62.510-⨯米 C. 52510-⨯米 D. 52.510-⨯米 10.已知b >a >0,c >0,现将分式a b 的分子与分母都加上c ,那么所得分式a+cb+c的值与原分式ab的值相比是 A.增大了 B.减小了 C.不变 D.不确定 二、填空题:11.等腰三角形的一个外角为80°,则它的顶角是 °.12.在平面直角坐标系中,线段AB 被x 轴垂直平分,其中A 点坐标为(-3,5),则B 点的坐标是 .13.如图,BD 是△ABC 的中线,点E 、F 分别为BD 、AE 的中点,如果△DEF 的面积是2,那么△ABC 的面积是 .14.若一个多边形的内角和与外角和之比是5:2,则它是 边形.15.如图,△ABD 和△AEC 都是等边三角形,CD 与BE 相交于点F ,则∠BFD 的度数为 .16.计算:2222342a b a b a ----⋅÷()()= . 第13题图 第15题图17.如果15x x 2+=,那么221x x += . 18.已知2015aa 1-=(a ≠0),则a 的值为 . 三、解答题:19.计算:223323xy xy xy 6x y 0.5x y ⎡⎤--÷-⎣⎦()(5)()20.运用乘法公式计算:2x y 1x y+1+-⋅-()(2)21.分解因式:(1)2m a b n b a (-)-6(-)(2)2a 2b 8ab +(-)22.先化简,再求值:x35x2x2x2-÷+---(),其中x=212--().23.解方程:32x1 x+13x+3=+24.列方程解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量..25.如图,AO平分∠BAC,CO⊥AB,BO⊥AC,垂足分别为D,E.求证:∠OBC=∠OCB.第25题图26.(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”.请直接写出此题答案:BE的长为 .(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:△ABE≌△CAF.(3)拓展应用:如图③,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .(直接填写结果,不需要写解答过程)第26题图①第26题图②第26题图③2014—2015学年第一学期八年级数学试题参考答案及评分标准一、选择题:二、填空题:11.100; 12.(-3,-5); 13.16; 14.七(写成7的扣一分); 15.60°(没写度号扣一分);16.8b ; 17.1714 4.2544(写成或都可以);18.1或-1或2015.(少一种情况扣一分) 三、解答题:(共46分)19. 223323xy xy xy 6x y 0.5x y ⎡⎤--÷-⎣⎦()(5)() =()24244229x y x y 6x y 0.5x y -+÷-5() ……………2分=2424224x y 0.5x y 6x y 0.5x y ÷-+÷-()()……………3分 =328y 12x y -- ……………4分 20. 2x y 1x y+1+-⋅-()(2)=[][]2x (1)2(1)y x y +--- ……………1分=222x y 1--()() ……………2分 =224x y 2y 1--+()……………3分 =224x y 2y 1-+- ……………4分 21. (1)2m a b n b a (-)-6(-) = 2m a b n a b (-)+6(-) ……………1分=2a b (m n (-)+3) ……………3分(2)2a 2b 8ab +(-) = 22a ab+b 8ab +-4 ……………1分=2a+2b () ……………3分 22. 解:x 35x 2x 2x 2-÷+---()= 2x 3x 9x 2x 2--÷-- ……………1分 =x 3x 2x 2x+3(x 3--⋅--()) ……………2分 =1x 3+ ……………3分当x=212--()=-4时 ……………4分 原式=1x 3+=143-+=-1 ……………5分23. 解:方程两边乘3(x+1),得92x 3x 1=++()……………1分 解得 x=65 ……………3分检验:当x=65时,3(x+1)≠0. ……………4分所以,原分式方程的解为x=65. ……………5分24. 解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为(2x -4)毫克.由题意得:10005502x 4x=- ……………2分 解得:x=22 ……………4分 经检验:x=22是原分式方程的解. ……………5分 答:一片国槐树叶一年的平均滞尘量为22毫克. ……………6分 25. 证明:∵A O 平分∠BAC,OD ⊥AB,OE ⊥AC∴OD=OE ,∠OEC=∠ODB ……………2分 又∠DOB=∠EOC∴△D OB ≌△EOC , ……………4分 ∴OB=OC∴∠OBC =∠OCB. ……………6分26. (1)0.8cm.(没写单位的扣一分) ……………2分(2)证明:∵∠B ED=∠BAE+∠ABE, ∠B AC=∠BAE+∠CAF又∠B ED=∠BAC∴∠ABE =∠CAF ……………4分∵∠B ED=∠CFD∴∠AEB =∠CFA ……………6分又AB=AC∴△ABE≌△CAF. ……………8分(3)5 ……………10分。

完整word版,2014-2015第一学期八年级数学试题及答案

完整word版,2014-2015第一学期八年级数学试题及答案

2014——2015学年度第一学期期末质量检测八年级数学试题时间:120分钟; 满分:120分.一、选择题(每小题3分,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.化简分式112-+aa 的结果是( ). A .1-a a B .11-a C .11+a D .1+a2.下列四副图案中,不是轴对称图形的是( ).3.如图,□ABCD 中,ο108=∠C ,BE 平分ABC ∠,则ABE ∠等于( ). A .18° B .36° C .72° D .108°4.如图所示,已知ABE ∆≌ACD ∆,21∠=∠,C B ∠=∠,下列不正确的等式是( ).A .AC AB = B .CAD BAE ∠=∠C .DC BE =D .DE AD =等级A .B .C .D .5.如果0622=---x x x ,则x 等于( ).A . ±2B . -2C . 2D . 36.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( ). A .96,94.5 B .96,95 C .95,94.5 D .95,95 7.下列命题中,是假命题的是( ).A .同角的余角相等B .一个三角形中至少有两个锐角C .如果a >b ,a >c ,那么c b =D .全等三角形对应角的平分线相等 8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级 参加人数 中位数 方差 平均数 甲 55 149 191 135 乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字达150个以上为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小. 上述结论中正确的是( ).A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3) 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ). A .当BC AB =时,它是菱形 B .当BD AC ⊥时,它是菱形 C .当ο90=∠ABC 时,它是矩形 D . 当BD AC =时,它是正方形10.如图,在△中,,,BC BD AC AB ==若ο40=∠A ,则BDC ∠的度数是( ). A .ο80B .ο70C .ο60D .ο50第9题图D CBA11.如图,ABC ∆中,E D ,分别是AC BC ,的中点,BF 平分ABC ∠,交DE 于点F ,若6=BC ,则DF 的长是( ).A .2B .3C .25D .412.国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ).. A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、黄花种植面积一定相等 二、填空题(每小题3分,共24分. 只要求填写最后结果.) 13.若n m 43=,则m :=n .14.命题“相等的角是对顶角”的条件是 ,结论是 ; 它的逆命题是 .15.若一组数据2,4,5,1,a 的平均数为a ,则=a ;这组数据的方差=2S .16.如图所示,根据四边形的不稳定性制作的边长均为cm 15 的可活动菱形衣架,若墙上钉子间的距离cm BC AB 15==, 则=∠1_______. 17.已知分式方程441+=+-x mx x 有增根,则_______.黄 蓝 紫 橙 红 绿 AG EDH CB第12题图18.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 .19.小明家去年的旅游、教育、饮食支出分别出3600元、1200元、7200元,今年这三项支出依次比去年增长10%、20%、30%,则小明家今年的总支出比去年增长的百分数是_________.20.如图,矩形ABCD 的面积为5,它的两条对角线交于 点O 1,以AB 、A O 1为两邻边作平行四边形AB C 1 O 1, 平行四边形ABC 1O 1的对角线交于点O 2,同样以 AB 、AO 2为两邻边作平行四边形ABC 2O 2,……, 依次类推,则平行四边形ABC n O n 的面积为 .三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.) 21.计算与化简:(每小题5分,共10分) (1)ab b a b a a -+--443;(2) 先化简,再求值:422232-÷⎪⎭⎫ ⎝⎛--+x x x x x x ,其中6=x .22.(本题6分)如图,画出ABC ∆关于y 轴对称的111C B A ∆, 并写出111C B A ∆的各顶点1A 、1B 和1C 的坐标.23.(本题8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据. 已知:如图,DF BE ABC ADC ,,∠=∠分别 平分,,ADC ABC ∠∠且21∠=∠.求证:C A ∠=∠.证明:∵DF BE ,分别平分ADC ABC ∠∠,( 已知 ), ∴ADC ABC ∠=∠∠=∠213,211( ),∵ADC ABC ∠=∠( 已知 ). ∴ADC ABC ∠=∠2121( ), ∴31∠=∠( ),又因为∵21∠=∠( ), ∴32∠=∠( ).∴AB ∥CD ( ),∴οο180,180=∠+∠=∠+∠ABC C ADC A ( ). ∴C A ∠=∠( ).24.(本题6分)如图,已知在ABC ∆中,D 是BC 的中点,AB DE ⊥于点E ,AC DF ⊥ 于点F ,且CF BE =.求证:AD 平分BAC ∠.25.(本题7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?y (人数)403010205026.(本题7分)如图,在□ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:(1)ABE ∆≌FCE ∆;(2)21=∆∆的周长的周长AFD ABE .27.(本题7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元? (2)超市销售这种干果共盈利多少元?28.(本题9分)以四边形ABCD 的边DA CD BC AB ,,,为斜边分别向外侧作等腰直角三角形,直角顶点分别为H G F E ,,,,顺次连结这四个点,得四边形EFGH .如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形.(1)如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,若ο40=∠ADC , ①试求HAE ∠的度数; ②求证:HG HE =;③请判定四边形EFGH 是什么四边形?并说明理由.A BCDHEFG(图2)E BFGD HAC(图3)(图1)A BCDH EFG八年级数学试题参考答案一、选择题(每小题3分,共36分.)1. B2.A3.B4.D5.C6.A7.C8.B9.D 10.B 11.B 12. C. 二、填空题(每小题3分,共24分.) 13.34; 14.两个角相等,这两个角是对顶角,对顶角相等; 15.3,2; 16.120o ;17.;18. 答案不唯一:平行四边形或矩形或菱形; 19.23%; 20.n25. 三、解答题(本大题共7小题,共60分.) 21.(1)ba b a 44-+;…………5分(2)解:原式3(2)(2)(2)(2)(2)(2)(2)(2)2x x x x x x x x x x x ⎡⎤-++-=-⨯⎢⎥+-+-⎣⎦2(4)(2)(2)(2)(2)2x x x x x x x-+-=⨯+-4x =- (3)分当x=6时,原式=6-4=2.…………5分22.如图…………3分;()2,31A ,()3,41-B ,()1,11-C .…………6分23.(每空1分)证明:∵DF BE ,分别平分ADC ABC ∠∠,(已知), ∴ADC ABC ∠=∠∠=∠213,211( 角平分线定义),∵ADC ABC ∠=∠( 已知).∴ADC ABC ∠=∠2121(等式性质), ∴31∠=∠(等量代换),又因为∵21∠=∠(已知),∴32∠=∠(等量代换). ∴AB ∥CD (内错角相等,两直线平行),∴οο180,180=∠+∠=∠+∠ABC C ADC A (两直线平行,同旁内角互补).A∴C A ∠=∠( 等角的补角相等). 24.证明:∵BE=CF ,BD=CD …………2分 ∴Rt △BDE ≌Rt △CDF ,∴DE=DF ,…………4分 又DE ⊥AB 于E ,DF ⊥AC ∴AD 平分∠BAC …………6分25.解:(1)150;…………2分(2)4.25~4.55;…………4分(3)600…………7分26.证明:(1)在平行四边形ABCD 中,AB ∥CD ,∴∠FAB=∠F 在△ABE 和△FCE 中, ∠FAB=∠F 又∠AEB=∠FEC ,BE=CE. ∴ △ABE ≌△FCE .…………4分(2)根据(1),△ABE ≌△FCE ,AE=EF ,BF=CE ,AB=CD=CF ,…………5分 ∴AD=2BE ,DF=2AB ,AF=2AE.∴21=∆∆的周长的周长AFD ABE .…………7分27.解:解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,…………1分 由题意,得=2×+300,解得x=5,经检验x=5是方程的解.…………3分答:该种干果的第一次进价是每千克5元…………4分 (2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000 =1500×9+4320﹣12000 =13500+4320﹣12000 =5820(元).…………6分答:超市销售这种干果共盈利5820元.…………7分28.(1)四边形EFGH 是正方形.…………2分 (2) ①∵∠ADC =ο40,在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=140°; ∵△HAD 和△EAB 都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-140°=130°.………4分②∵△AEB和△DGC都是等腰直角三角形,∴△AEB≌△CGD,∴AE=BE=CG=DG,在□ABCD中,AB=CD,∴AE=DG,∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAE.∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.…………6分③四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠DHG=∠AHE,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.………………9分八年级数学试题第11 页(共11页)。

2014---2015年八年级数学期末试卷及答案

2014---2015年八年级数学期末试卷及答案

2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。

题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。

10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。

若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。

——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。

(word完整版)2014-2015年人教版初二上册数学期末试卷及答案,推荐文档

(word完整版)2014-2015年人教版初二上册数学期末试卷及答案,推荐文档

2014~2015学年第一学期考试八年级数学试卷一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( ) A、 80° B 、40° C 、 120° D 、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A 、10:05B 、20:01C 、20:10D 、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( ) A 、120° B 、90° C 、100° D 、60°7、点P (1,-2)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1) 8、已知()22x -,求y x 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB=10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm10、如图,在△A BC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、6cm ²二、填空题(每题4分,共20分) 11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .FED CAE DCACD第9题图第10题图 第14题图15、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= . 三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。

2014-2015第一学期期末八年级答案

2014-2015第一学期期末八年级答案

2014-2015学年度第一学期期末学业水平检测八年级数学参考答案及评分标准一、选择题:(本题满分24分,共有8道小题,每小题3分)二、填空题:(本题满分24分,共有8道小题,每小题3分)9. 7 10. 10 11. 12. 34° 13. 14. 15. 84 16.三、解答下列各题:(本题满分72分,共有8道小题)17.解方程组(本小题满分10分,共有两道小题,每小题5分)(1) (2) 18.(本小题满分6分)解:(1)建立直角坐标系正确; ………3分(2)A (-2,5),B (-2,1),D (2,5)………6分19.(本小题满分8分)解:设滑道AC 的长为x m ,则AB 的长为x m ,AE 的长为(x -1 )m .………1分在Rt △ACE 中, ∵∠AEC =90°∴AE 2+EC 2= AC 2(勾股定理) ………4分 ∵CE =3∴(x -1)2+32=x 2解得,x =5 ………7分 答:滑道AC 的长是5 m . ………8分20.(本小题满分8分)本题给出两种评分标准(每步的理由不写或不正确酌情扣1-3分):评分标准(一)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分(2)∵EC ∥BF (已证)∴∠AEG =∠B (两直线平行,同位角相等)………5分 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………7分73310⎩⎨⎧==42y x 2521±=x ⎩⎨⎧==23n m ABCFDEGH∴∠A =∠D (两直线平行,内错角相等) ………8分评分标准(二)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分∴∠AEG =∠B (两直线平行,同位角相等) 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………6分 (2)∵AB ∥CD (已证)∴∠A =∠D (两直线平行,内错角相等) ………8分 21.(本小题满分8分)解:设小明8:00时看到的两位数的十位数字为x ,个位数字为y .根据题意,得…………4分解方程组,得 …………7分所以,小明8:00时看到的两位数为:10×1+5=15答:小明在8:00时看到的里程碑上的数是15. …………8分22.(本小题满分10分)…………4分 (2)小颖的成绩为:(分) 小亮的成绩为:(分) 所以,小亮的成绩高. …………8分(3)建议合理. …………10分23.(本小题满分10分)解:(1)l 1对应的一次函数表达式为:y =0.2x +4.5(用待定系数法求解,步骤略).…………3分l 2对应的一次函数表达式为:y =0.5x (用待定系数法求解,步骤略).…………5分 (2)解方程组 ,得 …………7分()()⎪⎩⎪⎨⎧+-+=+-+=+y x x y x y y x y x 10105.1101006⎩⎨⎧==51y x ()()7.7988851010101088080905801070807090≈+++++++⨯+++⨯+⨯+++()()1.808885101010108509070590101006010080≈+++++++⨯+++⨯+⨯+++⎨⎧=+=x y x y 5.05.42.0⎨⎧==5.715y x所以,快艇B 出发15 min 后,追上可疑船只A . …………8分(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义分别是可疑船只A 和快艇B 的速度. …………10分 24.(本小题满分12分)解:探究三:如图③,设点A (t ,3t )(t>0)在直线y =3x 上,则点B (-3t ,t )一定在直线y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D . ∵OC =t ,AC =3t ,OD =3t ,BD =t∴OC=BD ,AC=OD 又∵∠ACO =∠ODB =90° ∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180°∴∠AOB =90° 所以,在同一直角坐标系内,直线y =3x 与y = x 是互相垂直. …………5分解决问题: (或 或 )…………8分拓广应用:(1) (或 等)(答案不唯一)…………10分(2)垂直,垂足为(0,-7) …………12分31-31-x y 10-=110+-=x y 121-=⋅k k 211k k -=121k k -=。

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 24382013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a ) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a 〉b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a —b) 2=a 2—2ab+b 2C 、a 2-b 2=(a+b )(a —b )D 、(a+2b)(a-b )=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD;(3)A B ∥CD ,BC ∥DA.其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: =53-x 22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 10、当x 时,分式 有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b —2ab 2-b 2)÷b —(a+b )(a —b ),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。

2014-2015学年度八年级上册数学期末试卷

2014-2015学年度八年级上册数学期末试卷

2014~2015学年度素质教育评估试卷 第一学期期末八年级数学一.选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2·2x 3的正确结果是 ( ) A 、1; B 、x C 、4x 6; D 、x 43、一次函数 12+-=x y 的图象经过点 ( ) A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( ) ①1))((122--+=--y x y x y x ②)1(23+=+x x x x ③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=- A .1个 B .2 个 C .3个 D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )ADB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE8、下列图案中,是轴对称图形的是 ( )9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南安市2014-2015学年度上学期初中期末教学质量抽查初二年数学试题(满分:150分;考试时间:120分钟) 类别 第一部分(A 组题) 第二部分(B 组题) 第三部分(C 组题) 总 计 题号 1—3 4—10 11—14 1—3 4—5 6—8 1 2 3 4 26题 得分第一部分 (A 组题,课本、练习册原题,共73分)一、单项选择题(每小题3分,共9分).1.9的值等于( ).A .3B .-3C .±3D .32.下列运算,结果正确的是( ).A .623a a a =⋅B .633)(x x =C . 1055x x x =+D .3325)()(b a ab ab -=-÷-3.以下列各组数据为边组成的三角形,不是..直角三角形的是( ).A .3,3,5B .1,1, 2C . 5,4,3D .5,12,13二、填空题(每小题4分,共28分).4.-27的立方根是 .5.比较大小:10 3.6.用科学记数法表示:0.0000314= .7.计算:x x ax 5)155(2÷+= .8.当x 时,式子x 21-有意义.9. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .10.已知数据:31,2,3,π,-2,其中无理数出现的频率是 .三、解答题(每小题9分,共36分).11.(9分)因式分解(第(1)题4分,第(2)题5分).(1)221625y x - (2)22242b ab a ++12.(9分)先化简,再求值:)2()3)(3(---+x x x x ,其中4=x .13.(9分)如图,已知:△ABC 中,AB=AC ,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且BD=CE .求证:M D=M E .14. (9分)已知:在ABC △中,AC BC =,90ACB ∠=︒,点D 是AB 的中点,点E 是AB 边上一点.(1)BF 垂直CE 于点F ,交CD 于点G (如图①),求证:AE CG =.(2)AH 垂直CE ,垂足为H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.① ②第二部分 (B 组题,课本、练习册原题改编,共44分)一、单项选择题(每小题3分,共9分).1.等腰三角形的顶角为80°,那么它的一个底角的大小为( ).A .20°B .50°C .80°D .50°或20°2.已知:如图,B ,C ,E 三点在同一条直线上,AC CD =,B ∠=90E ∠=︒,AC CD ⊥,则不正确的结论是( )A.A ∠与D ∠互为余角B.2A ∠=∠C.ABC CED △≌△D.∠1=∠23.如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,点D 是AE 上的一点,则下列结论错误的...是( ).A .AE ⊥BCB .△BED ≌△CEDC .△BAD ≌△CAD D .∠ABD=∠DBE二、填空题(每小题4分,共8分).4.命题“全等三角形的对应角相等”的逆命题是: .该逆命题是 命题(选填“真”或“假”).5.如图,在△ABC 中,已知边AC 的垂直平分线DE 交BC 于点D ,连结AD ,AD=3,BD=4,则BC= .三、解答题(每小题9分,共27分).6.(9分)计算:032015168-+- 7.(9分)计算)32)(32()2(2y x y x y x -+-+8. (9分)如图,在ABC △中,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥于点E ,点F 在AC 上,BD DF =. 证明:(1)CF EB =;(2)2AB AF EB =+.第三部分 (C 组题,综合提高题,共33分)一、选择题(每小题3分,共3分).1.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分....面积的关系,可以直观地...得到一个关于a 、b 的恒等式为( )。

A .))((22b a b a b a -+=- B .2222)(b ab a b a ++=+C .ab b a b a 4)()(22-+=-D .)(2b a a ab a +=+ 二、填空题(每小题4分,共4分).2. 如图是一个长为4cm ,宽为3cm ,高为5cm 的长方体纸箱, 则 AC= cm.若一只蚂蚁要从A 点沿纸箱外表面爬行到B 点,那么它所行走的最短路径的长是 cm.(保留根号)三、解答题(共26分).3. (12分)如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC=4,点E 在AB 边上,BE=3,∠CED =90°.(1)求CE 的长度;(2)求证:△ADE ≌△BEC ;(3)设点P 是线段AB 上的一个动点,求 DP + CP 的最小值是多少?(备用图)D4.(14分)在△ABC 中,D 是边BC 的中点.(1)①如图1,求证:△ABD 和△ACD 的面积相等;②如图2,延长AD 至E ,使DE=AD ,连结CE ,求证:AB=EC.(2)当∠BAC=90°时, 可以结合利用以上各题的结论,解决下列问题:①求证:AD=21BC (即:直角三角形斜边上的中线等于斜边的一半); ②已知BC=4,将△ABD 沿AD 所在直线翻折,得到△ADB ′,若△ADB ′与 △ABC 重合部分的面积等于△ABC 面积的41,请画出图形(草图)并求出AC 的长度.南安市2014—2015学年度上学期期末教学质量抽查初二数学试题参考答案及评分标准第一部分一、选择题(每小题3分,共9分)1.A ; 2.D ; 3.A ;二、填空题(每小题4分,共28分)4.-3;5. >;6.51014.3-⨯;7. 3+ax ;8.21≤x ; 9.1350; 10.0.6. 11.(本小题9分, 第(1)题4分,第(2)题5分)(1)解:原式=)4-5()45(y x y x +………………………………………… (4分)(2)解:原式=)2(222b ab a ++…………………………………………… (2分)=2)(2b a +……………………………………………………… (5分)12.(本小题9分)解:原式=x 2-9-x 2+2x ……………………………………… (4分)=2x-9……………………………………………… (6分)当x=4时,原式=4×2-9……………………………… (8分)=-1…………………………………………………(9分)13.(本小题9分)证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM. ……… (2分)∵M 是BC 的中点,∴BM=CM. …………………………………………………… (4分)在△BDM 和△CEM 中, ∵,…………………………………………………………… (6分)∴△BDM ≌△CEM (SAS ). ……………………………………………………………(8分) ∴MD=ME .………………………………………………………………………………(9分)14.(本小题9分)(1)证明:因为BF 垂直CE 于点F ,所以90CFB =︒∠,所以90ECB CBF ∠+∠=︒.又因为90ACE ECB ∠+∠=︒,所以ACE CBF ∠=∠.BD CE DBM ECM BM CM =⎧⎪∠=∠⎨⎪=⎩因为AC BC =,90ACB =︒∠,所以45A CBA ∠=∠=︒.又因为点D 是AB 的中点,所以45DCB =︒∠.所以DCB A ∠=∠.因为ACE CBF ∠=∠,DCB A =∠∠,AC BC =,所以CAE BCG △≌△,所以AE CG =………………………………………(4分)(2)解:BE CM =.证明如下:… ………………………………………(6分)在ABC △中,因为AC BC =,90ACB ∠=︒,所以45CAB CBA ∠=∠=︒,90ACH BCE ∠+∠=︒.因为CH AM ⊥,即90CHA =︒∠,所以90ACH CAM ∠+∠=︒,所以BCE CAM ∠=∠.因为CD 为等腰直角三角形斜边上的中线,所以CD AD =,45ACD ∠=︒.在BCE △和CAM △中,BC CA =,BCE CAM ∠=∠,CBE ACM ∠=∠,所以CAM BCE △≌△,所以BE CM =.………………………(9分)第二部分一、选择题(每小题3分,共9分)1.B;2.D;3.D二、填空题(每小题4分,共8分)4.如果两个三角形的对应角相等,那么这两个三角形是全等三角形、假;5.7.6.(本小题9分)解:原式=-2+4-1………………(6分)=1 …………………………………………………(9分)7.(本小题9分)解:原式=)94(442222y x y xy x --++…………………………… (4分) =22229444y x y xy x +-++………………………………(8分) = 4xy+10y 2 ………………………………………(9分)8. (本题9分)解:分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD DE =.再根据Rt Rt CDF EDB △≌△,得CF EB =.(2)利用角平分线性质证明ADC ADE △≌△,∴ AC AE =,再将线段AB 进行转化. 证明:(1)∵ AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,∴ DE DC =.又∵ BD DF =,∴ Rt Rt CDF EDB △≌△,∴ CF EB =.(2)∵ AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,∴ ADC ADE △≌△,∴ AC AE =,∴ 2AB AE BE AC EB AF CF EB AF EB =+=+=++=+.第三部分一、选择题(每小题3分,共3分) 1.C;二、填空题(每小题4分,共4分) 2.5、743. (本题12分)解:(1)在直角三角形BCE 中,BC=4,BE=3,根据勾股定理可得5342222=+=+=BE BC CE ………………………………………………(3分)(2) 090=∠CED 090=∠+∠∴DEA CEB ……………………………………(4分) 090=∠B 090=∠+∠∴ECB CEBECB DEA ∠=∠∴①……………………………………………………………… (5分) 090,//=∠B BC AD 090=∠=∠∴B A ②…………………………………… (6分) 3==BE AD ③ADE ∆∴≌△BEC(AAS) ………………………………………(7分)(3)延长DA 至F ,使得AD=AF ,并连接CF,此时CF 与AB 的交点为点P,AD AB ⊥ ,且AD=AF ∴△DEF 是等腰三角形…………………………………… (9分) ∴DP=FP ∴DP+CP 的最小值为CF, ……………………………………… ……(10分) 过点F 作FH 垂直CB 的长线,垂足为H ,显然CH=7,FH=7,根据勾股定理可得,98772222=+=+=CH FH CF …………………………………………(12分)4.(本题14分)(1)证明:①过点A 作AH ⊥BC ,垂足为H ………………………(1分) 则S △ABD =21BD ·AH , S △ACD =21CD ·AH, …………………………………… (2分) ∵点D 是BC 中点,∴BD=CD,∴△ABD 和△ACD 的面积相等……………………………………………………… (3分) ②在△ABD 和△ECD 中,∵BD=DC ,∠BDA=∠CDE ,AD=ED ,………………………(4分) ∴△ABD ≌△ECD(S.A.S),………………………………………………………… (5分) ∴AB=EC ……………………………………………………………………………… (6分)(2) ① ∵△ABD ≌△ECD(已证)∴∠B=∠ECD ,……………………………………(7分) ∵∠B+∠ACB=90°,∴∠ECD+∠ACB =90°,∴∠ACE=∠BAC=90°…………………………………………………………………(8分) ∵AB=CE(已证),AC=CA ,∴△ABC ≌△CEA(S.A.S),………………………………………………………… (9分) ∴BC=AE ,∵AD=21AE ,∴AD=21BC .………………………………………………(10分) ②画草图如下:…………(12分)(Ⅰ)当AB>AC 时,如图1,由△ADB ′与△ABC 重合部分的面积等于△ABC 面积的41, 再根据第(1)①题的结论,可以得到点O 既即是AB ˊ的中点,也是CD 的中点, 从而证得△AOC ≌△B ˊOD,得AC= B ˊD=BD=21BC=2;……………………(13分) (Ⅱ)当AB<AC 时,方法一:如图2,与第(Ⅰ)题同理可以证得△AOB ˊ≌△COD, ∴AB ˊ= CD = 2,∠B ˊ=∠CDO,又∵ ∠B ˊ=∠B , ∴∠B=∠CDO, ∴AB//OD, ∴∠COD =∠A=900,又∵DO=OB ˊ= 1,由勾股定理可得CO=3,进而得到AC=2CO=32方法二: 如图2,与第(Ⅰ)题同理可以证得△AOB ˊ≌△COD, ∴AB ˊ= CD = 2, 利用直角三角形斜边的中线等于斜边的一半,从而得到△ADB ˊ是等边三角形,可得AO=3,进而得到AC=32.(Ⅲ)当 AB=AC 时,由等腰三角形的性质可知,折叠后重合的面积等于△ABC 面积的21,不可能等于14,所以不合题意,舍去. 综上所述:AC=2或32…………………………………………………………………(14分) 3。

相关文档
最新文档