高一数学(必修⑤)期末试卷_2
高一数学期末试卷带答案
高一数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 已知则p 是q 成立的( )......A .充分不必要条件B .必要不充分条件 ......C .充要条件D .既不充分也不必要条件 2.y=的单调减区间为( )C .D .3.设是等差数列的前n 项和,若S 7=35,则a 4=()A .8B .7C .6D .54.等差数列{}中,=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是( ) A . B . C . D .5.已知函数,则取最小值时对应的的值为( )A .B .C .0D .16.在中,若则角C 的度数是( ).A .120°B .60°C .60或120°D .45° 7.设函数,若>1,则a 的取值范围是( )A .(-1,1)B .C .D .8.函数是 ( )A .上是增函数B .上是减函数C .上是减函数D .上是减函数9.已知函数在区间上的最小值是-2,则的最小值等于( ) A . B . C .2 D .310.已知的平面直观图A 1B 1C 1是边长为2的正三角形,则原的面积是( ) A .B .C .D .11.如图,已知三棱锥则二面角的大小为( )A .B .C .D .12.如图,该程序框图所输出的结果是( )A .32B .62C .63D .6413.若圆x 2 +y 2 −2x −4y =0的圆心到直线x −y +a =0的距离为,则a 的值为(__)A.−2或2 B . 或 C.2或0 D .−2或0 14.下列说法正确的有( )(1)和都是等差数列,则为等差数列(2)是等差数列,则为等差数列(3)若为等比数列,其中,则为等差数列;若为等差数列,则为等比数列.(4)若为等比数列,则,都为等比数列.A.1个 B.2个 C.3个 D.4个15.中,已知,则的形状为()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形16.已知:定义在R上的奇函数满足,则的值是()A. B. C. D.17.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. B. C. D.18.(2014•咸阳二模)若正实数a,b满足a+b=1,则()A.有最大值4B.ab有最小值C.有最大值D.a2+b2有最小值19.已知函数,若x1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>020.函数的定义域为,的解集为,的解集为,则下列结论正确的是()A.B.C.D.二、填空题21.不等式的解集为R,则实数的取值范围是 .22.计算23.角的终边经过点,则=____________________.24.(2010•北京)如图,⊙O的弦ED ,CB 的延长线交于点A.若BD⊥AE ,AB=4,BC=2,AD=3,则DE= ;CE= .25.球O的一个小圆O/的面积为25,O到此小圆截面的距离是12,则这个球的表面积为。
高一年级上册数学期末试题
【导语】学习是⼀个坚持不懈的过程,⾛⾛停停便难有成就。
⽐如烧开⽔,在烧到80度是停下来,等⽔冷了⼜烧,没烧开⼜停,如此周⽽复始,⼜费精⼒⼜费电,很难喝到⽔。
学习也是⼀样,学任何⼀门功课,都不能只有三分钟热度,⽽要⼀⿎作⽓,天天坚持,久⽽久之,不论是状元还是伊⼈,都会向你招⼿。
⽆忧考⾼⼀频道为正在努⼒学习的你整理了《⾼⼀年级上册数学期末试题》,希望对你有帮助! 【⼀】 ⼀、选择题(每⼩题5分,共60分) 1.已知a=2,集合A={x|x≤2},则下列表⽰正确的是().A.a∈AB.a/∈AC.{a}∈AD.a⊆A 2.集合S={a,b},含有元素a的S的⼦集共有().A.1个B.2个C.3个D.4个 3.已知集合M={x|x<3},N={x|log2x>1},则M∩N=(). A. B.{x|0 4.函数y=4-x的定义域是().A.[4,+∞)B.(4,+∞)C. -∞,4]D.(-∞,4) 5.国内快递1000g以内的包裹的邮资标准如下表: 运送距离x(km)0 邮资y(元)5.006.007.008.00… 如果某⼈在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是().A.5.00元B.6.00元C.7.00元D.8.00元 6.幂函数y=x ( 是常数)的图象().A.⼀定经过点(0,0)B.⼀定经过点(1,-1)C.⼀定经过点(-1,D.⼀定经过点(1,1) 7.0.44,1与40.4的⼤⼩关系是().A.0.44<40.4<1B.0.44<1<40.4C.1<0.44<40.4D.l<40.4<0.44 8.在同⼀坐标系中,函数y=2-x与y=log2x的图象是(). A.B.C.D. 9.⽅程x3=x+1的根所在的区间是().A.(0,1)B.(1,2)C.(2,3)D.(3,4) 10.下列函数中,在区间(0,+∞)上是减函数的是().A.y=-1xB.y=xC.y=x2D.y=1-x 11.若函数f(x)=13-x-1+a是奇函数,则实数a的值为().A.12B.-12C.2D.-2 12.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},则集合A⊙B中的所有元素之和为(). A.0B.6C.12D.18 ⼆、填空题(每⼩题5分,共30分) 13.集合S={1,2,3},集合T={2,3,4,5},则S∩T=. 14.已知集合U={x|-3≤x≤3},M={x|-1 15.如果f(x)=x2+1(x≤0),-2x(x>0),那么f(f(1))=. 16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________. 17.已知2x+2-x=5,则4x+4-x的值是. 18.在下列从A到B的对应:(1)A=R,B=R,对应法则f:x→y=x2;(2)A=R,B=R,对应法则f:x→y=1x-3;(3)A= (0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N*,B={-1,1},对应法则f:x→y=(-1)x其中是函数的有.(只填写序号) 三、解答题(共70分) 19.(本题满分10分)计算:2log32-log3329+log38-. 20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a>0}. (1)若A B,求实数a的取值范围; (2)若A∩B≠ ,求实数a的取值范围. 21.(本题满分12分)已知⼆次函数的图象如图所⽰. (1)写出该函数的零点; (2)写出该函数的解析式. 22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x). (1)求函数h(x)的定义域; (2)判断函数h(x)的奇偶性,并说明理由. 23.(本题满分12分)销售甲、⼄两种商品所得利润分别是P(万元)和Q(万元),它们与投⼊资⾦t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资⾦投⼊经营甲、⼄两种商品,其中对甲种商品投资x(万元). 求:(1)经营甲、⼄两种商品的总利润y(万元)关于x的函数表达式; (2)总利润y的值. 24.(本题满分14分)已知函数f(x)=1x2. (1)判断f(x)在区间(0,+∞)的单调性,并⽤定义证明; (2)写出函数f(x)=1x2的单调区间. 试卷答案 ⼀、选择题(每⼩题5分,共60分)1.A2.B3.D4.C5.C6.D7.B8.A9.B10.D11.A12.D[ ⼆、填空题(每⼩题5分,共30分) 13.{2,3}14.[-3,-1]∪[1,3]15.516.1117.2318.(1)(4) 三、解答题(共70分) 19.解原式=log34-log3329+log38-3=log3(4×932×8)-3=log39-3=2-3=-1. 20.解(1)B={x|x-a>0}={x|x>a}.由A B,得a 21.(1)函数的零点是-1,3; (2)函数的解析式是y=x2-2x-3. 22.解(1)由2+x>0,2-x>0,得-2 (2)∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数. 23.解(1)根据题意,得y=35x+15(3-x),x∈[0,3]. (2)y=-15(x-32)2+2120. ∵32∈[0,3],∴当x=32时,即x=94时,y值=2120. 答:总利润的值是2120万元. 24.解(1)f(x)在区间(0,+∞)为单调减函数.证明如下: 设0 因为00,x2-x1>0,x2+x1>0,即(x2-x1)(x2+x1)x12x22>0. 所以f(x1)-f(x2)>0,即所以f(x1)>f(x2),f(x)在区间(0,+∞)为单调减函数. (2)f(x)=1x2的单调减区间(0,+∞);f(x)=1x2的单调增区间(—∞,0). 【⼆】 ⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的 1.函数的定义域为()A.(,1)B.(,∞)C.(1,+∞)D.(,1)∪(1,+∞) 2.以正⽅体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建⽴空间直⾓坐标系,且正⽅体的棱长为⼀个单位长度,则棱CC1中点坐标为()A.(,1,1)B.(1,,1)C.(1,1,)D.(,,1) 3.若,,,则与的位置关系为()A.相交B.平⾏或异⾯C.异⾯D.平⾏ 4.如果直线同时平⾏于直线,则的值为() A.B. C.D. 5.设,则的⼤⼩关系是() A.B.C.D. 6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的⾓为()A.45°B.30°C.60°D.90° 7.如果函数在区间上是单调递增的,则实数的取值范围是() A.B.C.D. 8.圆:和圆:交于A,B两点,则AB的垂直平分线的⽅程是() A.B. C.D. 9.已知,则直线与圆的位置关系是()A.相交但不过圆⼼B.过圆⼼C.相切D.相离 10.某三棱锥的三视图如右图所⽰,则该三棱锥的表⾯积是()A.28+65B.60+125C.56+125D.30+65 11.若曲线与曲线有四个不同的交点,则实数m的取值范围是() A.B. C.D. 12.已知直线与函数的图象恰好有3个不同的公共点,则实数m的取值范围是() A.B. C.D. ⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上) 13.若是奇函数,则. 14.已知,则. 15.已知过球⾯上三点A,B,C的截⾯到球⼼O的距离等于球半径的⼀半,且AB=BC=CA=3cm,则球的体积是. 16.如图,将边长为1的正⽅形ABCD沿对⾓线AC折起,使得平⾯ADC⊥平⾯ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法: ①△DBC是等边三⾓形;②AC⊥BD;③三棱锥D-ABC的体积是26. 其中正确的序号是________(写出所有正确说法的序号). 三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤) 17.(本⼩题10分)根据下列条件,求直线的⽅程: (1)已知直线过点P(-2,2)且与两坐标轴所围成的三⾓形⾯积为1; (2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0. 18.(本⼩题12分)已知且,若函数在区间的值为10,求的值. 19.(本⼩题12分)定义在上的函数满⾜,且.若是上的减函数,求实数的取值范围. 20.(本⼩题12分)如图,在直三棱柱(侧棱垂直于底⾯的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点. 求证:(1)平⾯平⾯; (2)直线平⾯. 21.(本⼩题12分)如图所⽰,边长为2的等边△PCD所在的平⾯垂直于矩形ABCD所在的平⾯,BC=22, M为BC的中点. (1)证明:AM⊥PM; (2)求⼆⾯⾓P-AM-D的⼤⼩. 22.(本⼩题12分)已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截距相等,求此切线的⽅程. (2)从圆C外⼀点P(x1,y1)向该圆引⼀条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最⼩值的点P 的坐标. 试题答案 ⼀、选择题 ACBADBDCADBC ⼆、填空题 13.14.1315.16.①② 三、解答题 17.(本⼩题10分) (1)x+2y-2=0或2x+y+2=0. (2)3x-y+2=0. 18.(本⼩题12分) 当0 当x=-1时,函数f(x)取得值,则由2a-1-5=10,得a=215, 当a>1时,f(x)在[-1,2]上是增函数, 当x=2时,函数取得值,则由2a2-5=10, 得a=302或a=-302(舍), 综上所述,a=215或302. 19.(本⼩题12分) 由f(1-a)+f(1-2a)<0, 得f(1-a) ∵f(-x)=-f(x),x∈(-1,1), ∴f(1-a) ⼜∵f(x)是(-1,1)上的减函数, ∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0 故实数a的取值范围是0,23. 20.(本⼩题12分) (1)∵是直三棱柱,∴平⾯。
2024届四川绵阳中学高一数学第二学期期末统考试题含解析
2024届四川绵阳中学高一数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列{}n a 的前n 项和为n S ,若113a =,312S S =,则8a 的值为( ) A .137-B .0C .137D .1822.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为 ( ). A .x +y =0 B .x -y =0 C .x -y +1=0D .x +y -6=03.如图,AB 是圆O 的直径,点C D 、是半圆弧的两个三等分点,AC a =,AD b =,则AO =( )A .b a -B .12a b - C .12a b -D .22b a -4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12B .π6C .π4D .π35.tan15tan75︒+︒=( ) A .4B .23C .1D .26.已知函数2,01,()1,1.x x f x x x⎧⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦7.直线210mx y --=与直线2310x y 垂直,则m 的值为( ) A . 3B .34-C .2D .3-8.已知圆()()221 221:C x y ++-=,圆 ()()222 2516:C x y -+-= ,则圆1 C 与圆2C 的位置关系是( ) A .相离B .相交C .外切D .内切9.已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A .23πB .2πC .3πD .π10.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据: 2 4 5 6 830405070根据上表提供的数据,求出关于的回归直线方程为,则的值为( ) A .40B .50C .60D .70二、填空题:本大题共6小题,每小题5分,共30分。
高一数学期末试卷带答案解析
高一数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若角的终边上有一点,则的值是( ). A .B .C .D .2.设向量,,,,,若,则的最小值是( ) A .B .C .D .3.已知集合,则=A .B .C .D .4.已知lg2≈0.3010,且a = 2×8×5的位数是M ,则M 为( ). A .20 B .19 C .21 D .225.在中,已知向量,则的面积等于( ) A . B .C .D .6.已知,若不等式对任意恒成立,则实数的取值范围是( )A .B .C .D .7.若函数在区间上是减函数,则实数的取值范围是( ) A .B .C .D .8.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷调查.如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9C.8D.79.在△ABC中,三边长AB=7,BC=5,AC=6,则的值为()A.19 B.-14 C.-18 D.-1910.已知函数的一部分图象如图所示,如果,则()A. B. C. D.11.已知函数设表示中的较大值,表示中的较小值,记的最小值为的最大值为,则( )A. B. C.16 D.-1612.若,则下列不等式成立的是()A. B. C. D.13.已知下列说法正确的是(A.B.C.D.14.设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足()A.A={1,2,4,8,16}B.A={0,1,2,log23}C.A{0,1,2,log23}D.不存在满足条件的集合15.已知函数,且,则等于()A. B. C. D.16.已知数列满足()A. B. C. D.17.已知满足,则直线必过定点( ) A .B .C .D .18.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .419.一名射击运动员射击10次,命中环数如下,则该运动员命中环数的标准差为( )10 10 10 9 10 8 8 10 10 8 A .B .C .D .20.下列函数中,既是偶函数又在单调递增的函数是( ) A .B .C .D .二、填空题 21.已知都是定义域内的非奇非偶函数,而是偶函数,写出满足条件的一组函数,______________;________________; 22.求满足>的x 的取值集合是 .23.已知幂函数满足,则24.25.函数的定义域是 .26.二面角α﹣l ﹣β的平面角为120°,在面α内,AB ⊥l 于B ,AB=2在平面β内,CD ⊥l 于D ,CD=3,BD=1,M 是棱l 上的一个动点,则AM+CM 的最小值为 .27.根据任意角的三角函数定义,将正弦、余弦、正切函数在弧度制下的值在各象限的符号(用“+”或“-”)填入括号(填错任何一个将不给分)。
2023-2024第二学期期末考试高一数学试卷
2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。
本试卷满分为150分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。
3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。
2022~2023学年高一年级数学上册期末备考模拟试卷(2)【含答案】
期末模拟试卷(2)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}4U x x =∈≤N ,集合{1,},{1,2,4}A m B ==.若(){0,2,3}U A B = ð,则m =().A .4B .3C .2D .02.已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为().A .(][),04,-∞+∞U B .[]0,4C .[)4,+∞D .()0,43.函数()log 14a y x =-+的图像恒过定点P ,点P 在幂函数()y f x =的图像上,则(4)f =().A .16B .8C .4D .24.函数()2log 21f x x x =+-的零点所在区间为().A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭5.函数e 1()cos e 1x x f x x -=⋅+的图像大致为().A .B .C .D .6.牛顿冷却定律描述物体在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t 分钟后的温度T 满足()012tha a T T T T ⎛⎫-=- ⎪⎝⎭,h 称为半衰期,其中a T 是环境温度.若25a T =℃,现有一杯80℃的热水降至75℃大约用时1分钟,那么水温从75℃降至45℃,大约还需要().(参考数据:lg 20.30≈,lg11 1.04≈)A .9分钟B .10分钟C .11分钟D .12分钟7.函数()()214tan πcos f x x x =--的最大值为().A .2B .3C .4D .58.定义在R 上的函数()f x 满足()()()()0,2x f x f x f x f -+==-,且当[]0,1x ∈时,()2f x x =.则函数()72y f x x =-+的所有零点之和为().A .7B .14C .21D .28二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,最小正周期为π,且在0,2π⎛⎫⎪⎝⎭上单调递增的是().A .sin 2y x =B .tan y x =C .sin y x =D .tan y x =10.设正实数m ,n 满足2m n +=,则下列说法正确的是().A .11m n+的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为5411.已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是().A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x <D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎣⎦,有()()()132f x f x f x +>成立12.已知()y f x =奇函数,()(2)f x f x =-恒成立,且当01x 时,()f x x =,设()()(1)g x f x f x =++,则().A .(2022)1g =B .函数()y g x =为周期函数C .函数()y g x =在区间(2021,2022)上单调递减D .函数()y g x =的图像既有对称轴又有对称中心三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.已知正实数a ,b 满足2a b +=,则24a ab+的最小值是______.14.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有两个实数解,则k 的范围是____.15.已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫ ⎪⎝⎭上有最小值无最大值,则ω=_______.16.若函数22sin 2,0()2,()()2,0x a x x f x g x a R x a x -+≥⎧==∈⎨+<⎩,对任意1[1,)x ∈+∞,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围___________四、解答题:本大题共6小题,共70分.第17题10分,第18至22题均12分.解答应写出文字说明、证明过程或演算步骤.17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在横线上,并回答下列问题.设全集U =R ,_____,22{|0}.B x x x a a =++-<(1).若2a =,求()()U UC A C B ;(2).若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.18.已知关于x 的不等式2tan 0x θ-+≥对x ∈R 恒成立.(1).求tan θ的取值范围;(2).当tan θ取得最小值时,求22sin 3sin cos 1θθθ++的值.19.已知函数()π2sin 226f x x ⎛⎫=++ ⎪⎝⎭.(1).若()3f α=,且()0,πα∈,求α的值;(2).若对任意的ππ,42x ⎡⎤∈⎢⎥⎣⎦,不等式()3f x m >-恒成立,求实数m 的取值范围.20.某地区的一种特色水果上市时间11个月中,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数:①()x f x p q =⋅;②2()1f x px qx =++;③()sin(44f x A x B ππ=-+(以上三式中,,,p q A B 均为非零常数,且1q >)(1).为准确研究其价格走势,应选哪种价格模拟函数,为什么?(2).若(3)8,(7)4,f f ==求出所选函数()f x 的解析式,为保证果农的收益,打算在价格在5元以下期间积极拓宽外销渠道,请你预测该水果在哪几个月份要采用外销策略?(注:函数的定义域是[]0,10,其中0x =表示1月份,1x =表示2月份, ,以此类推)21.已知函数41()log 2x a x f x +=(01)且a a >≠.(1).试判断函数()f x 的奇偶性;(2).当2a =时,求函数()f x 的值域;(3).已知()g x x =-[][]124,4,0,4x x ∀∈-∃∈,使得12()()2f x g x ->,求实数a的取值范围.22.已知函数2()1(0).f x ax x a =++>(1).若关于x 的不等式()0f x <的解集为(3,)b -,求a ,b 的值;(2).已知1()422x xg x +=-+,当[]1,1x ∈-时,(2)()x f g x ≤恒成立,求实数a 的取值范围;(3).定义:闭区间1212[,]()x x x x <的长度为21x x -,若对于任意长度为1的闭区间D ,存在,,|()()|1m n D f m f n ∈-≥,求正数a 的最小值.期末模拟试卷02参考答案一、单选题:本题共8小题,每小题5分,共40分.1.A 【详解】因为{}{}40,1,2,3,4U x x =∈≤=N ,又(){0,2,3}U A B = ð,所以{}1,4A B = ,即1A ∈且4A ∈,又{1,}A m =,所以4m =;故选A2.A 【详解】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即()21Δ24404a =--⨯⨯<,解得04a <<,所以若该命题是假命题,则实数a 的取值范围为(][),04,-∞+∞U .故选A.3.A 【详解】当2x =时,log 144a y =+=,所以函数()log 14a y x =-+恒过定点(2,4)记()m f x x =,则有24m =,解得2m =,所以2(4)416f ==.故选A4.B【详解】函数()2log 21f x x x =+-在()0+∞,上单调递增,1102f ⎛⎫=- ⎪⎝⎭<,()110f =>,由零点存在性定理可得,函数()2log 21f x x x =+-零点所在区间为1,12⎛⎫⎪⎝⎭.故选B.5.A 【详解】函数定义域是R ,e 1e e 1()cos()c )11e os (x x xxf x x x f x -----=⋅-==-++,函数为奇函数,排除BD ,当02x π<<时,()0f x >,排除C .故选A .6.B【详解】由题意,25a T =℃,由一杯80℃的热水降至75℃大约用时1分钟,可得()11752580252h ⎛⎫-=- ⎪⎝⎭,所以11501025511h ⎛⎫== ⎪⎝⎭,又水温从75℃降至45℃,所以()1452575252th⎛⎫-=- ⎪⎝⎭,即12022505th⎛⎫== ⎪⎝⎭,所以11110222115tt thh ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以10112lg 22lg 2120.315log 101051lg111 1.04lg 11t -⨯-===≈=--,所以水温从75℃降至45℃,大约还需要10分钟.故选B.7.B 【详解】()()22222sin cos 4tan tan 4tan 1tan 23cos x x f x x x x x x+=--=---=-++,当tan 2x =-时,()f x 取得最大值,且最大值为3,故选B8.B【详解】()f x 是奇函数.又由()()2f x f x =-知,()f x 的图像关于1x =对称.()()()()()()()4131322f x f x f x f x f x +=++=-+=--=-+()()()()2f x f x f x =---=--=,所以()f x 是周期为4的周期函数.()()()()()()()()211112f x f x f x f x f x f x +=++=-+=-=-=--,所以()f x 关于点()2,0对称.由于()()27207x y f x x f x -=-+=⇔=,从而求函数()f x 与()27x g x -=的图像的交点的横坐标之和.而函数()27x g x -=的图像也关于点()2,0对称.画出()y f x =,()27x g x -=的图象如图所示.由图可知,共有7个交点,所以函数()72y f x x =-+所有零点和为7214⨯=.故选B9.BCD【详解】A ,sin 2y x =,2T ππω==,由0,2x π⎛⎫∈ ⎪⎝⎭,得()20,x π∈,函数在区间0,2π⎛⎫ ⎪⎝⎭上不单调,故A 错误;B ,tan y x =最小正周期为π且在0,2π⎛⎫ ⎪⎝⎭上单增,故B 正确;C ,sin y x =最小正周期为π且在0,2π⎛⎫⎪⎝⎭上单增,故C 正确;D ,tan y x =,最小正周期为π,且在0,2π⎛⎫⎪⎝⎭上单调递增,故D 正确;故选BCD.10.AB 【详解】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当n m m n =,即1m n ==时等号成立,故A 正确;2m n +=≥ 1mn ≤,当且仅当1m n ==时,等号成立,故B正确;22224⎡⎤≤+=⎢⎥⎣⎦ ,2,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选AB 11.ACD【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立,故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+ ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭,所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎝⎭在50,12π⎛⎫ ⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎣⎦,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦,sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213+>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选ACD.12.BCD【详解】因为()(2)f x f x =-,所以()(2)f x f x -=+,又()f x 为奇函数,故()()(2)(2)(2)f x f x f x f x f x -=-=--=-=+,利用(2)(2)f x f x -=+,可得()(4)f x f x =+,故()f x 的周期为4;因为()f x 周期为4,则()g x 的周期为4,又()f x 是奇函数,所以(2022)(50542)(2)(2)(3)(2)(1)(1)1g g g f f f f f =⨯+==+=+-=-=-,A 错误,B 正确;当01x 时,()f x x =,因为()f x 为奇函数,故10x -≤<时,()f x x =,因为()(2)f x f x =-恒成立,令021x ≤-≤,此时,(2)2f x x -=-,则21x ≥≥,()(2)2f x f x x =-=-,故02x ≤≤时,,01()2,12x x f x x x ≤≤⎧=⎨-<≤⎩,令21x -≤<-,即12x <-≤,则()2()f x x f x -=+=-,即()2f x x =--;令10x -≤<,即01x <-≤,则()()f x x f x -=-=-,即()f x x =;令23x <<,即32x -<-<-,120x -<-<,(2)2()f x x f x -=-=所以(),112,13f x x xx x⎪=-≤≤⎨⎪-<≤⎩,根据周期性()y g x=在(2021,2022)x∈上的图像与在(1,2)x∈相同,所以,当12x≤<,即213x≤+<时,()()(1)22(1)32g x f x f x x x x=++=-+-+=-,故()g x在(1,2)x∈上单调递减,C正确;由()f x是周期为4的奇函数,则(2)()(2)f x f x f x+=-=-且(1)(1)f x f x-=-+,所以(1)(1)(2)(1)(2)()(1)()g x f x f x f x f x f x f x g x-=-+-=----=++=,故()g x关于12x=对称,()(3)()(1)(3)(4)()(1)(1)()0g x g x f x f x f x f x f x f x f x f x+-=+++-+-=++-+-=,所以()g x关于3,02⎛⎫⎪⎝⎭对称,D正确.故选BCD三、填空题:本大题共4小题,每小题5分,共20分.13.3+【详解】242422222133a b a b a b b aa ab a ab a b a b a b++++=+=+=+=+++≥++(当且仅当2b aa b=,即42a b=-=时等号成立).所以24a ab+的最小值为3+ 14.{}()43,--+∞【详解】由题意可知,直线y k=与函数()f x的图象有两个交点,作出直线y k=与函数()f x的图象如图所示:由图象可知,当4k=-或3k>-时,直线y k=与函数()f x的图象有两个交点.因此,实数k的取值范围是{}()43,--+∞.15.4或10【详解】∵f(x)满足5412f fππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,∴541223xπππ+==是f(x)的一条对称轴,∴362kπππωπ⋅+=+,∴13kω=+,k∈Z,∵ω>0,∴1,4,7,10,13,ω=⋯.当5,412xππ⎛⎫∈ ⎪⎝⎭时,5,646126xπππππωωω⎛⎫+∈++⎪⎝⎭,要使()f x在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则:31624624355321262ππππωωππππω⎧≤+<⎪⎪⇒≤<⎨⎪<+⎪⎩或57285224627593521262ππππωωππππω⎧≤+<⎪⎪⇒≤<⎨⎪<+⎪⎩,此时ω=4或10满足条件;区间5,412ππ⎛⎫⎪⎝⎭的长度为55312412126πππππ-=-=,当13ω 时,f(x)最小正周期22136Tπππω=<,则f(x)在5,412ππ⎛⎫⎪⎝⎭既有最大值也有最小值,故13ω 不满足条件.综上,ω=4或10.16.14a<或322a≤≤【详解】因2()2xf x-=在[1,)+∞上单调递增,则有min1()(1)2f x f==,于是得()f x在[1,)+∞上的值域是1[,)2+∞,设()g x的值域为A,1212在上的值域包含于()g x 的值域”,从而得1[,)2A +∞⊆,0x <时,2()2g x x a =+为减函数,此时()2g x a >,0x ≥时,()sin 2g x a x =+,此时2||()2||a g x a -≤≤+,当122a <,即14a <时,1[,)2A +∞⊆成立,于是可得14a <,当122a ≥,即14a ≥时,要1[,)2A +∞⊆成立,必有0x ≥,()[2,2]g x a a ∈-+满足22122a aa ≤+⎧⎪⎨-≤⎪⎩,即232a a ≤⎧⎪⎨≥⎪⎩,从而可得322a ≤≤,综上得14a <或322a ≤≤,所以实数a 的取值范围是14a <或322a ≤≤.四、解答题:本大题共6小题,共70分.第17题10分,第18至22题均12分.17.【详解】(1).若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<若选③:()(){}233{|log }0|31011xxA x y x x x x x x ⎧⎫--===>=-+>=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2).由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,①若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)a a -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.②若(1)a a -=--,则B =∅,不合题意舍去;③若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a-≥--⎧⎨≤-⎩解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.【详解】(1).不等式2tan 0x θ-+≥对x ∈R 恒成立,则0∆≤,即24tan 0θ-≤,tan 2θ≥,则tan θ的取值范围为[2,)+∞(2).由(1)知tan θ的最小值为2,则22sin 3sin cos 1θθθ++22223sin 3sin cos cos sin cos θθθθθθ++=+223tan 3tan 1126119tan 1415θθθ++++===++.19.【详解】(1).因为()3f α=,所以π2sin 2236α⎛⎫++= ⎪⎝⎭,即1sin 262απ⎛⎫+= ⎪⎝⎭,又由()0,πα∈,得132666απππ<+<,所以π5π266α+=,解得π3α=.(2).对ππ,42x ⎡⎤∈⎢⎥⎣⎦,有2ππ7π2366x ≤+≤,所以1sin 226απ⎛⎫-≤+ ⎪⎝⎭()12f x ≤≤所以要使()3f x m >-对任意的ππ,42x ⎡⎤∈⎢⎣⎦恒成立,只需()min 3f x m >-,所以31m -<,解得4m <.故所求实数m 的取值范围为(),4-∞.的图象不具备先上升,后下降,再上升的特点,不符合题意,对于③,当0A >时,函数()sin()44f x A x B ππ=-+在[0,3]上的图象是上升的,在[3,7]上的图象是下降的,在[7,11]上的图象是上升的,满足题设条件,应选③.(2).依题意,84A B A B +=⎧⎨-+=⎩,解得2,6A B ==,则[]()2sin()6,0,10,N 44f x x x x ππ=-+∈∈,由2sin()6544x ππ-+<,即1sin()442x ππ-<-,而[]0,10,N x x ∈∈,解得{0,6,7,8}x ∈,所以该水果在第1,7,8,9月份应该采取外销策略.21.【详解】(1).()f x 的定义域为R ,4114()log log ()22x xa a x x f x f x --++-===,故()f x 是偶函数.(2).当2a =时,22411()log log (2)22x x x x f x +==+,因为20x >,所以1222x x +≥,所以()1f x ≥,即()f x 的值域是[1,)+∞.(3).“[][]124,4,0,4x x ∀∈-∃∈,使得12()()2f x g x ->”等价于min min ()()2g x f x <-.22()111)1g x x =-=--=--,所以min ()(1)1g x g ==-.令函数12[),0,)(2x x x h x +∈=+∞,对12,[0,)x x ∀∈+∞,当12x x >时,有211212121212*********()()2222(22)(10222222x x x x x x x x x x x x x x h x h x --=+--=-+=-->⋅⋅,所以()h x 在[0,)+∞上单调递增.于是,当1a >时,()f x 在[0,4]单调递增,故min ()(0)log 2a f x f ==,所以log 221a ->-,解得2a <,即a 的范围为12a <<;当01a <<时,()f x 在[0,4]单调递减,故min 257()(4)log 16a f x f ==,所以257log 2116a->-,无解.综上:a 的取值范围为(1,2).22.【详解】(1).∵不等式()0f x <解集为(3,)b -,则2()10f x ax x =++=的根为3,b -,且3b -<,∴11033a b b a a>-=-+=-,,,解得2392a b ==-,.(2).令1,22112x t =⎡⎤∈⎢⎥⎣⎦,若(2)()x f g x ≤,即2214112a t t t t++≤-+,则242a t t -≤-,∵22y t t =-的开口向上,对称轴为1t =,则22y t t =-在1,12⎡⎤⎢⎥⎣⎦单调递减,在(]1,2单调递增,且1|1t y ==-,∴41a -≤-,即03a <≤,故实数a 的取值范围为(]0,3.(3).2()1(0)f x ax x a =++>的开口向上,对称轴为12x a =-,∵211x x -=,根据二次函数的对称性不妨设121x x a+≥-,则有:当112x a≥-时,()f x 在12[,]x x 上单调递增,则可得()()()2222212221111()()1111211f x f x ax x ax x a x x ax a ⎡⎤-=++-++=+-+=++≥⎣⎦,即12112a a a ⎛⎫⨯-++≥ ⎪⎝⎭,解得1a ≥;当12x a <-,即22x a >-时,()f x 在1,2x a -⎪⎢⎣⎭上单调递减,在2,2x a -⎢⎥⎣⎦上单调递增,则可得()222222111()()111242f x f ax x a x a a a ⎛⎫⎛⎫--=++--=+≥ ⎪ ⎪⎝⎭⎝⎭,∵211211x x x x a -=⎧⎪⎨+≥-⎪⎩,则21122x a +≥,∴114a ≥,即4a ≥;综上所述:4a ≥,故正数a 的最小值为4.。
新课标人教版高一数学上学期期末试卷及答案2
上学期期末考试高一英语试题第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What did the woman have for lunch?A. French fries.B. Some soup.C. A cheese sandwich.2. When is the man’s flight leaving?A. At 9:15.B. At 10:15.C. At 10:50.3. Where did the conversation take place?A. At a department store.B. At a dry-cleaning shop.C. At a dress-making shop.4. Why can’t the man give the woman a hand?A. He is too heavy to help her.B. He doesn’t know how to help her.C. He is too busy to help her.5. How does the man feel about his job?A. He enjoys it.B. He doesn’t like it at all.C. He wants to find a new job.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至8题。
6. How is the relationship between the woman and her parents?A. Good.B. Bad.C. Hard to say.7. How much pocket money does the woman get a week?A. Three pounds.B. Two pounds.C. Four pounds.8. How old might the woman be?A. 16.B.17.C.18.听第7段材料,回答第9至11题。
高一数学期末试卷带答案解析
高一数学期末试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知向量()A.(8,1) B. C. D.2.若函数在给定区间上,存在正数,使得对于任意,有,且,则称为上的级类增函数,则以下命题正确的是()A.函数是(1,+∞)上的1级类增函数B.函数是(1,+∞)上的1级类增函数C.若函数为[1,+∞)上的级类增函数,则实数的取值范围为D.若函数为上的级类增函数,则实数的最小值为23.下列说法中正确的是()A.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B.事件A,B同时发生的概率一定比事件A,B恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件4.已知函数在区间上有零点,则实数的取值范围为( )A. B. C. D.5.函数是()A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数6.两个等差数列和,其前项和分别为,且则等于()A. B. C. D.7.在中,,,其的面积等于,则等于()A. B.1 C. D.8.已知角的终边过点且,则的值为()A.- B. C.- D.9.直线与圆的位置关系是()A.相离 B.相交 C.相切 D.不确定10.对于,,下列命题中,正确命题的个数是()①若,则;②若,则;③若,则;④若,则A. B. C. D.11.函数的定义域是:( )A. B. C.∪ D.∪12.函数的零点所在的区间是()A. B. C. D.13.、函数的图象为C:①图象C关于直线对称;②函数在区间内是增函数;③由y=3sin2x的图象向右平移个单位长度可以得到图象C;以上三个论断中,正确论断的个数是()A.0 B.1个 C.2个 D.3个14.(2009•安徽)i是虚数单位,i(1+i)等于()A.1+i B.﹣1﹣i C.1﹣i D.﹣1+i15.下列说法中,正确的是()A.任何一个集合必有两个子集B.若C.任何集合必有一个真子集D.若为全集,16.若函数的零点所在的区间为()A. B. C. D.17..一等腰三角形的周长是20,底边长是关于腰长的函数,则它的解析式为A.B.C.D.18.给定两个长度均为的平面向量和,它们的夹角为,点在以为圆心的圆弧上运动,如图所示,若+,其中,,则的最大值是()A. B. C. D.19.已知等比数列的公比为正数,且·=2,=1,则= ()A. B. C. D.220.若,,则的元素个数为()A.0 B.1 C.2 D.3二、填空题21.一个三位数字的密码键,每位上的数字都在到这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为____________22.已知等差数列的前项和为,若,且,,三点共线(该直线不过点),则=_____________.23.在锐角△ABC中,角A、B所对的边长分别为、,若2asinB=b,则角A等于________.24.将函数f(x)=sin(wx+j)(w>0)的图象向左平移个单位,若所得的图象与原图象重合,则w的最小值是_________.25.若|a+b|=|a-b|,则a与b的夹角为_______________.26. .27.设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,算出A、B两点的距离为 m.28.已知一个容量为80的样本,把它分为6组,第三组到第六组的频数分别为10,12,14,20,第一组的频率为0.2,那么第一组的频数是________;第二组的频率是_______。
高一数学期末试卷带答案
高一数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知在△ABC 中,sinA ∶sinB ∶sinC =3∶5∶7,那么这个三角形的最大角是( ) A .135° B .90° C .120° D .150°2.以下关于几何体的三视图的论述中,正确的是 A .球的三视图总是三个全等的圆 B .正方体的三视图总是三个全等的正方形 C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆 3.若关于x 的方程有且只有两个不同的实数根,则实数k 的取值范围是 A .B .C .D .4.已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图像上的两点,那么的解集的补集为 ( )A .(-1,)B .(-5,1)C .[,D .5.下列关系式中正确的是( ) A . B .C.D.6.函数y=的图象大致是()A. B. C. D.7.三个数..的大小顺序为( )A. B. C. D.8.下列每组函数是同一函数的是()A.B.C.D.9.等于()A. B. C. D.10.设集合,则()A. B. C. D.11.(2012•佛山一模)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁 C.33.6岁 D.36.6岁12.(2013•宁德模拟)若直线l1:x+my+3=0与直线l2:(m﹣1)x+2y+6m=0平行,则m=()A. B.2 C.﹣1 D.2或﹣113.设函数,区间,集合,则使M=N成立的实数对有()A.0个 B.1个 C.2个 D.无数多个14.已知函数,则函数在区间[-1,1)上()A.最大值为0,最小值为B.最大值为0,最小值为-2C.最大值为0,无最小值D.无最大值,最小值为15.下列分别为集合A到集合B的对应:其中,是从A到B的映射的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)16.在等比数列中,则()A.16 B.16或-16 C.32 D.32或-3217.设等比数列{an}的前n项为Sn,若则数列{ an}的公比为q为()A.2 B.3 C.4 D.518.(08·江西)函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图象大致是()19.若直线被圆截得弦长为,则实数的值为()20.已知,,那么的值为().A. B. C. D.二、填空题21.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于___________.22.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案,若某用户每月预计上网时间为66小时,则选择________方案最合算。
北京市海淀区2023-2024学年高一下学期期末练习(二)数学试题含答案
2023-2024学年度第二学期高一数学学科期末练习(二)(答案在最后)命题人班级姓名本试卷共三道大题,满分50分,考试时间30分钟一、选择题(共9小题,每小题4分,共36分)1.一个平面图形用斜二测画法画出的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的周长为()A.8B.C.16D.【答案】C【解析】【分析】根据斜二测画法的过程将直观图还原回原图形,找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形,再计算平行四边形的周长即可.【详解】还原直观图为原图形如图所示,O A''=,所以O B''=,还原回原图形后,因为2=''=,2OA O A2=''=OB O B,AB==,所以6⨯+=.所以原图形的周长为2(26)16故选:C.2.下列说法不正确的是()A.平行六面体的侧面和底面均为平行四边形B.直棱柱的侧棱长与高相等C.斜棱柱的侧棱长大于斜棱柱的高D.直四棱柱是长方体【分析】根据几何体的定义和性质依次判断每个选项判断得到直四棱柱不一定是长方体得到答案.【详解】根据平行多面体的定义知:平行六面体的侧面和底面均为平行四边形,A 正确;直棱柱的侧棱长与底面垂直,故与高相等,B 正确;斜棱柱的侧棱与高可构成以侧棱为斜边,高为直角边的直角三角形,斜边大于直角边,C 正确;当直四棱柱的底面不是长方形时不是长方体,D 错误.故选:D.3.下列命题正确的是()A.三点确定一个平面B.梯形确定一个平面C.两条直线确定一个平面D.四边形确定一个平面【答案】B【解析】【分析】依次判断每个选项:当三点共线时不能确定一个平面,梯形上底和下底平行,能确定一个平面,两条直线异面时不能确定一个平面,空间四边形不能确定一个平面,得到答案.【详解】当三点共线时不能确定一个平面,A 错误;梯形上底和下底平行,能确定一个平面,B 正确;两条直线异面时不能确定一个平面,C 错误;空间四边形不能确定一个平面,D 错误.故选:B.4.已知点A ∈直线l ,又A ∈平面α,则()A.//l αB.l A α=IC.l ⊂αD. l A α⋂=或 l α⊂【答案】D【解析】【分析】根据直线与平面的位置关系判断.【详解】点A ∈直线l ,又A ∈平面α,则l 与平面α至少有一个公共点,所以l A α=I 或l ⊂α.故选:D .5.若空间三条直线a ,b ,c 满足a ⊥b ,b c ,则直线a 与c ()A.一定平行B.一定垂直C.一定是异面直线D.一定相交【分析】根据空间中直线的位置关系分析判断.【详解】∵a ⊥b ,b c ,∴a ⊥c .故选:B.6.给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于α平面内无数条直线”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】由线面垂直的性质结合两个条件之间的推出关系可得正确的选项.【详解】若直线l 与平面α垂直,由垂直的定义知,直线l 垂直于α平面内无数条直线;但是当直线l 垂直于α平面内无数条直线时,直线l 与平面α不一定垂直.所以“直线l 与平面α垂直”是“直线l 垂直于α平面内无数条直线”的充分不必要条件,故选:A7.已知,αβ是平面,m 、n 是直线,则下列命题正确的是()A .若//,m m n α^,则//n α B.若,m m αβ⊥⊥,则//αβC.若,ααβ⊥⊥m ,则//m βD.若//,//m n αα,则//m n 【答案】B【解析】【分析】根据线面平行、线面垂直的性质依次判断每个选项得到答案.【详解】若//,m m n α^,则//n α或n ⊂α或n 与α相交,A 错误;若,m m αβ⊥⊥,则//αβ,B 正确;若,ααβ⊥⊥m ,则//m β或m β⊂,C 错误;若//,//m n αα,则//m n 或,m n 相交或,m n 异面,D 错误.故选:B.8.如图,三棱台111ABC A B C -中,底面ABC 是边长为6的正三角形,且11113AA A C C C ===,平面11AA C C ⊥平面ABC ,则棱1BB =()A.2B.C.3D.【答案】A【解析】【分析】取11,A C AC 中点分别为,M N ,连接1,,MB MN NB ,过点1B 作BN 的垂线,垂足为P ,从而在直角梯形1MNBB 求解即可.【详解】如图,取11,A C AC 中点分别为,M N ,连接1,,MB MN NB ,过点1B 作BN 的垂线,垂足为P ,因为113AA C C ==,所以MN AC ⊥,且6AC =,所以2MN ==,因为平面11AA C C ⊥平面ABC ,平面11AA C C 平面ABC AC =,,MN AC MN ⊥⊂面11AA C C ,所以MN ⊥平面ABC ,又因为BN ⊂平面ABC ,所以MN BN ⊥,又因为在三棱台111ABC A B C -中,1//MB NB ,所以四边形1MNBB 为直角梯形,因为12NP MB ===,NB ==,所以2PB =,所以在直角三角形1BPB 中,12BB ===,故选:A.9.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11AC 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A.存在点Q ,使得//PQ BDB.存在点Q ,使得PQ ⊥平面11AB C DC.三棱锥Q APD -的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为π6【答案】B【解析】【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =-- ,若它们夹角为θ,则cos ||θ==令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos (0,]6θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,cos (0,2θ∈;所以πcos 62=不在上述范围内,错.故选:B二、填空题(共2小题,每小题4分,共8分)10.如图,在正方体ABCD﹣A 1B 1C 1D 1中,点P 在面对角线AC 上运动,给出下列四个命题:①D 1P∥平面A 1BC 1;②D 1P⊥BD;③平面PDB 1⊥平面A 1BC 1;④三棱锥A 1﹣BPC 1的体积不变.则其中所有正确的命题的序号是_____.【答案】①③④【解析】【分析】利用线面平行的判定定理与性质定理,面面垂直的判定定理与三棱锥的体积公式对四个选项逐一分析判断即可.【详解】①∵在正方体中,D 1A ∥BC 1,D 1C ∥BA 1,且D 1A∩DC 1=D 1,∴平面D 1AC∥平面A 1BC 1;∵P 在面对角线AC 上运动,∴D 1P∥平面A 1BC 1;∴①正确.②当P 位于AC 的中点时,D 1P⊥BD 不成立,∴②错误;③∵A 1C 1⊥平面BDD 1B 1;∴A 1C 1⊥B 1D,同理A 1B ⊥B 1D ,∴B 1D⊥平面A 1BC 1,∴平面BDD 1B⊥面ACD 1,∴平面PDB 1⊥平面A 1BC 1;∴③正确.④三棱锥A 1-BPC 1的体积等于B-A 1PC 1的体积,△A 1PC 1的面积为定值12A 1C 1•AA 1,B 到平面A 1PC 1的高为BP 为定值,∴三棱锥A 1-BPC 1的体积不变,∴④正确.故答案为①③④.【点睛】本题考查空间直线与平面、平面与平面的位置关系及体积,突出考查面面平行的判定定理与性质定理,考查面面垂直的判定定理,考查几何体的体积运算.11.陀螺是中国民间最早的娱乐工具之一,也作陀罗,闽南语称作“干乐”,北方叫作“冰尜(gá)”或“打老牛”.传统古陀螺大致是木制或铁制的倒圆锥形.现有一圆锥形陀螺(如图所示),其底面半径为3,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周.①圆锥的母线长为9;②圆锥的表面积为36π;③圆锥的侧面展开图(扇形)的圆心角为60︒;④圆锥的体积为,其中所有正确命题的序号为______________.【答案】①②【解析】【分析】利用圆锥在平面内转回原位置求解以S 为圆心,SA 为半径的圆的面积,再求解圆锥的侧面积,根据圆锥本身恰好滚动了3周列出方程求解结果;利用圆锥的表面积公式进行计算;圆锥的底面圆周长即为圆锥侧面展开图(扇形)的弧长,根据弧长公式求解圆心角;求解圆锥的高,利用圆锥体积公式求解.【详解】解:设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2πl ,圆锥的侧面积为π3πrl l =,当圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则2π9πl l =,所以圆锥的母线长为9l =,故①正确;圆锥的表面积23π9π336π⨯+⨯=,故②正确;圆锥的底面圆周长为2π36π⨯=,设圆锥侧面展开图(扇形)的圆心角为rad α,则6π9α=,解得2π3α=,即120α=︒,故③错误;圆锥的高h ===,所以圆锥的体积为2211ππ333V r h ==⨯⨯=,故④错误.故答案为:①②.三、解答题12.如图,在正三棱柱111ABC A B C -中,P ,Q 分别为1A B ,1CC 的中点.(1)证明://PQ 平面AB C ;(2)证明:平面1A BQ ⊥平面11AA B B .请在下列证明过程中的横线上填上推理的依据.【解答】(1)证明:取AB 的中点D ,连接PD 、CD ,因为P ,Q 分别为1A B ,1CC 的中点,所以1PD AA ∥且112PD AA =,又三棱柱111ABC A B C -是正三棱柱,所以1CQ AA ∥,112CQ AA =,所以PD CQ ∥且PD CQ =,所以PDCQ 为平行四边形,所以PQ CD ∥,又因为PQ ⊂/平面ABC ,CD ⊂平面ABC ,所以//PQ 平面ABC (①定理).(2)证明:在正三棱柱111ABC A B C -中,D 为AB 的中点,所以CD AB ⊥,又1AA ⊥平面ABC ,CD ⊂平面ABC ,所以1CD AA ⊥,1AA AB A = ,1AA ,AB ⊂平面11ABB A ,所以CD ⊥平面11ABB A (②定理).又CD PQ ∥,所以PQ ⊥平面11ABB A ,又PQ ⊂平面1A BQ ,AA B B(③定理).所以平面1A BQ 平面11【答案】(1)答案见解析(2)答案见解析【解析】【分析】根据题意,由线面平行的判定定理以及线面与面面垂直的判定定理,即可得到结果.【小问1详解】①线面平行的判定定理【小问2详解】②线面垂直的判定定理③面面垂直的判定定理。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
湖南省张家界市慈利县通津铺联校2022-2023学年高一数学理下学期期末试卷含解析
湖南省张家界市慈利县通津铺联校2022-2023学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则( )A. B.C. D.参考答案:B2. 要得到的图像, 需将函数的图像( )A.向左平移个单位.B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:D略3. 设x,y满足约束条件,则目标函数的最大值是()A. 3B.C. 1D.参考答案:C【分析】作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.4. 函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则关于f (x)的说法正确的是()A.对称轴方程是x=+2kπ(k∈Z)B.φ=﹣C.最小正周期为πD.在区间(,)上单调递减参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数图象可得A,周期T=2[﹣(﹣)]=2π,可得C错误,利用周期公式可求ω,由点(,0)在函数图象上,结合范围|φ|<,可得φ=,可求B错误,可求函数解析式,令x+=kπ+,k∈Z,解得函数的对称轴方程可求A错误;令2kπ+≤x+≤2kπ+,k∈Z,解得函数的单调递减区间即可判定D正确,从而得解.【解答】解:由函数图象可得:A=1,周期T=2[﹣(﹣)]=2π,可得C错误,可得:ω===1,由点(,0)在函数图象上,可得:sin(+φ)=0,解得:φ=kπ﹣,k∈Z,又|φ|<,可得:φ=,故B错误,可得:f(x)=sin(x+).令x+=kπ+,k∈Z,解得函数的对称轴方程为:x=kπ+,k∈Z,故A错误;令2kπ+≤x+≤2kπ+,k∈Z,解得:2kπ+≤x≤2kπ+,k∈Z,可得函数的单调递减区间为:[2kπ+,2kπ+],k∈Z,由于(,)?[,],可得D正确.故选:D.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了三角函数周期公式,正弦函数的图象和性质的综合应用,考查了数形结合思想和转化思想,属于中档题.5. 某公司现有普通职员人,中级管理人员人,高级管理人员人,要从公司抽取个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么的值为()A.1 B.3 C.16D.20参考答案:D6. 函数y=f(x)在R上为减函数,且f(3a)<f(﹣2a+10),则实数a的取值范围是()A.(﹣∞,﹣2)B.(0,+∞)C.(2,+∞)D.(﹣∞,﹣2)∪(2,+∞)参考答案:C【考点】函数单调性的性质.【分析】直接利用函数的单调性列出不等式求解即可.【解答】解:函数y=f(x)在R上为减函数,且f(3a)<f(﹣2a+10),可得:3a>﹣2a+10,解得a>2.故选:C.7. 已知集合,,则与的关系正确的是()A. B. C. D.参考答案:A8. 已知二次函数,如果a>0,b<0,c<0,那么这个函数图像的顶点必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限w c o m参考答案:D略9. 在中,分别为角的对边,,则的形状为( )A.正三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形参考答案:B略10. 已知等差数列项和为等于()A. B. C. D.参考答案:C 解析:二、填空题:本大题共7小题,每小题4分,共28分11. 若,则的最小值是。
【浙教版】高中数学必修一期末试题及答案(2)
一、选择题1.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭2.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .33.若关于x 的方程12xa a -= (a >0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞)D .1(0,)24.函数()212()log 23f x x x =--+单调减区间为( ) A .(,1]-∞-B .(3,1]--C .[)1,1-D .[)1-+∞, 5.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .116.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38B .40C .45D .477.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 8.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( )A .1或3B .3或134C .3D .1349.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-310.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或211.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b12.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈二、填空题13.若函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩恰有两个零点,则实数a 的范围是________14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.已知函数()2log f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m n +=________. 16.给出下列命题:①函数2x y =与2log y x =互为反函数,其图象关于直线y x =对称; ②已知函数2(1)21f x x x -=-+,则(5)26f =;③当0a >且1a ≠时,函数()log (2)3a f x x =--的图像必过定点(3,3)-; ④用二分法求函数()ln 26f x x x =+-在区间(2,3)内的零点近似值,至少经过3次二分后精确度达到0.1;⑤函数2()2x f x x =-的零点有2个. 其中所有正确命题....的序号是______ 17.若对任意x ,y R ∈都有()()()f x y f x f y +=⋅,且()12f =,则()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值是______. 18.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.19.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.20.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.三、解答题21.新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+-,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?22.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为? 23.化简与求值: (1)2ln 43(0.125)e-++;(2)若1122x x -+=1x x --的值. 24.设函数()log (1)a f x ax =-,其中01a << (1)证明()f x 是1(,)a-∞上的增函数; (2)解不等式()1f x >.25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 26.已知不等式()210x a x a -++≤的解集为A .(1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.2.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.3.D解析:D 【分析】由题意转化条件为函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,按照a >1、0<a <1分类,数形结合即可得解. 【详解】根据题意,函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点, a >1时,如图(1)所示;0<a <1时,如图(2)所示.由图象知,0<2a <1,所以10,2a ⎛⎫∈ ⎪⎝⎭. 故选:D. 【点睛】本题考查了指数函数图象及函数图象变换的应用,考查了函数与方程的综合应用及数形结合思想、分类讨论思想,属于中档题.4.B解析:B 【分析】根据复合函数的单调性可知,()()212log 23f x x x =--+的单调减区间为223t x x =--+在定义域上的单调增区间.再根据一元二次函数的单调性求单调增区间即可. 【详解】解:函数()()212log 23f x x x =--+的定义域为()3,1- 令223t x x =--+,则()12log g t t =为单调递减函数,由复合函数的单调性可知:()f x的单调递减区间为223t x x =--+在()3,1-上的单调增区间.()222314t x x x =--+=-++,对称轴为1x =-,开口向下,所以223t x x =--+的单调增区间为(]3,1--. 故选:B. 【点睛】本题考查复合函数的单调性,属于中档题. 方法点睛:(1)先求出函数的定义域; (2)判断外层函数的单调性;(3)根据复合函数同增异减的原则,判断要求的内层函数的单调性; (4)求出单调区间.5.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.6.B解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.7.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.8.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.9.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍),本题选择C 选项.11.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.12.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】分别设分两种情况讨论即可求出的范围【详解】解:设若在时与轴有一个交点所以并且当时所以而函数有一个交点所以且所以若函数在时与轴没有交点则函数有两个交点当时与轴无交点无交点所以不满足题意(舍去)解析:1[,1)[2,)2+∞【分析】分别设()2,()4()(2)xh x a g x x a x a =-=--,分两种情况讨论,即可求出a 的范围.【详解】解:设()2,()4()(2)xh x a g x x a x a =-=--,若在1x <时,()2x h x a =-与x 轴有一个交点,所以0a >,并且当1x =时,(1)20h a =-> ,所以02a <<, 而函数()4()(2)g x x a x a =--有一个交点,所以21a ≥,且1a <, 所以112a ≤<, 若函数()2xh x a =-在1x <时,与x 轴没有交点, 则函数()4()(2)g x x a x a =--有两个交点,当0a ≤时,()h x 与x 轴无交点,()g x 无交点,所以不满足题意(舍去),当(1)20h a =-≤时,即2a ≥时,()g x 的两个交点满足12,2x a x a ==,都是满足题意的,综上所述a 的取值范围是112a ≤<,或2a ≥. 故答案为:1[,1)[2,)2+∞.【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5 【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个 故答案为:5 【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:【点睛】本题解析:52【分析】先画出函数图像并判断01m n <<<,再根据范围和函数单调性判断2x=m 时取最大值,最后计算得到答案. 【详解】如图所示:根据函数2()log x f x =的图象得01m n <<<,所以201m m <<<.结合函数图象,易知当2x=m 时()f x 在2,m n ⎡⎤⎣⎦上取得最大值,所以()222log 2f m m ==又01m <<,所以12m =, 再结合()()f m f n =,可得2n =,所以21522m n +=+=. 故答案为:52【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.16.①③【分析】①求解出的反函数再根据反函数的特点进行判断;②采用换元法求解出的解析式由此计算出的值并进行判断;③分析当对数式的真数为时此时的值由此确定出函数所过定点并进行判断;④根据每经过一次操作区间解析:①③ 【分析】①求解出2x y =的反函数,再根据反函数的特点进行判断;②采用换元法求解出()f x 的解析式,由此计算出()5f 的值并进行判断;③分析当对数式的真数为1时,此时,x y 的值,由此确定出函数所过定点并进行判断; ④根据每经过一次操作区间长度变为原来的一半,由此列出关于次数的不等式,求解出次数的范围并进行判断;⑤根据()()2,4f f 的值以及零点的存在性定理进行判断. 【详解】①令2y x =,所以2log y x =,所以函数2x y =与2log y x =互为反函数,则图象关于y x =对称,故正确;②令1x t -=,则1x t =+,所以()()()221211f t t t t =+-++=,所以()2f x x =,所以()525f =,故错误;③令21x -=,所以3x =,所以()3log 133a f =-=-,所以()f x 过定点()3,3-,故正确;④因为区间()2,3的长度为1,经过n 次操作过后区间长度变为12n ,所以10.12n≤,所以4n ≥,故错误;⑤因为()()22422220,4240f f =-==-=,且()()()21011210,020102f f --=--=-<=-=>,所以()f x 在()1,0-上有零点,所以()f x 的零点至少有3个,故错误; 故答案为:①③. 【点睛】 结论点睛:(1)同底数的指数函数和对数函数互为反函数,图象关于y x =对称;(2)形如()()()log 0,1a f x g x b a a =+>≠的图象过定点问题,可考虑令()1g x =,由此求解出x 的值,从而对应的()f x 的值可求,则定点坐标可求;(3)利用二分法求解函数零点的近似值时,每进行一次操作,区间长度会变为原来的一半.17.2014【分析】令得利用赋值法进行求解利用即可的值【详解】对任意的都有且令则故答案为:2014【点睛】本题主要考查函数值的计算利用赋值法是解决抽象函数的常用方法解析:2014 【分析】 令1y =,得(1)2()f x f x +=,利用赋值法进行求解.利用(1)2()f x f x +=,即可()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值. 【详解】对任意的x ,y R ∈都有()()()f x y f x f y +=,且(1)2f =,∴令1y =,则(1)()(1)2()f x f x f f x +==,∴(1)2()f x f x +=, ∴(2)(4)(6)(2012)(2014)222210072014(1)(3)(5)(2011)(2013)f f f f f f f f f f +++⋯++=++⋯+=⨯=. 故答案为:2014. 【点睛】本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.18.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤.故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.19.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.20.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a ≥或1a = 【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可. 【详解】由题意可得,集合A 为φ或有且仅有一个元素, 当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.三、解答题21.(1)2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)80万箱.【分析】(1)分060x <<和60x ≥两种情况分析,利用利润等于销售收入减去成本可得出口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(2)分060x <<和60x ≥两种情况分析,利用二次函数和基本不等式求出口罩销售利润y 的最大值及其对应的x 值,综合可得出结论. 【详解】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭;当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)当060x <<时,221150400(50)85022y x x x =-+-=--+, 当50x =时,y 取得最大值,最大值为850万元;当60x ≥时,6400146014601300y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元. 【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性. 22.①③④ 【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x x x x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x x x x =--- 122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x-=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④. 【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键. 23.(1)14;(2) 【分析】(1)利用幂的运算法则和对数的运算法则计算;(2)利用完全平方公式求得1x x -+,再求得22x x -+,然后可求得1x x --. 【详解】(1)原式=236342464⎛⎫-⨯- ⎪⎝⎭++=++=14;-(2)由1122x x -+=1+25x x -+=,所以13x x -+=所以2222+29=7x x x x --+=+, 则1222()2=5x x x x ---=-+所以1=x x -- 【点睛】幂的运算法则从整数范围推广到有理数范围,实数范围后,乘法公式也随之推广过来, 即公式222()2a b a ab b +=++,222()2a b a ab b -=-+,22()()a b a b a b +-=-中,a b 是是分数指数幂时,公式也适用,解题时要注意体会.24.(1)见解析;(2)11{|}a x x a a-<< 【分析】(1)根据函数单调性的定义及对数函数的性质,即可证出结果;(2)根据函数()f x 的单调性,可将不等式()1f x >转化为一元一次不等式,即可得到原不等式的解集. 【详解】(1)由10ax ->,01a <<得1x a<,所以()f x 的定义域为1(,)a -∞,设1x ,2x 为区间1(,)a -∞的任意两个值,且211x x a<<,则 211ax ax ->->-,所以21110ax ax ->->,又01a <<,所以21log (1)log (1)a a ax ax -<-,即21()()f x f x <, 所以()f x 是1(,)a-∞上的增函数.(2)由()1f x >得log (1)1log a a ax a ->=,又01a <<, 所以01ax a <-<,所以11ax a -<-<-,所以11a x a a-<<, 所以不等式()1f x >的解集为11{|}a x x a a-<<. 【点睛】本题主要考查对数型复合函数单调性的证明及对数不等式的解法,属于中档题.25.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数,函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12a a +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域. 26.(1){}|12x x ≤≤;(2)[]4,2. 【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解. 【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤,即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤. (2)由()210x a x a -++≤,可得()()10x x a --≤,当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<, 当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意; 当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。
2021_2022学年新教材高中数学模块测试卷二含解析新人教B版必修第一册
新教材高中数学:模块测试卷(二)(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数f (x )=-x 2+2x+4(x ∈R ),则它的值域与单调递增区间分别是( )A.值域[5,+∞),单调递增区间[1,+∞)B.值域[5,+∞),单调递增区间(-∞,1]C.值域(-∞,5],单调递增区间[1,+∞)D.值域(-∞,5],单调递增区间(-∞,1]f (x )=-x 2+2x+4=-(x 2-2x )+4=-(x-1)2+5,则函数f (x )=-x 2+2x+4(x ∈R )的值域是(-∞,5],单调递增区间为(-∞,1].故选D .2.(2021江苏扬州邗江高一期中)已知命题p :“∃x>0,x+t-1=0”,若p 为真命题,则实数t 的取值范围是( ) A.(1,+∞) B.(-∞,1) C.[1,+∞) D.(-∞,1]p :“∃x>0,x+t-1=0”,即“∃x>0,x=1-t ”,又p 为真命题,则1-t>0,即t<1.故选B . 3.已知函数f (x )=ax+1x 2+2是定义在R 上的偶函数,则实数a 的取值为( ) A.1 B.0C.-1D.2f (x )=ax+1x 2+2是定义在R 上的偶函数,所以f (x )=f (-x ),即ax+1x 2+2=-ax+1(-x )2+2,解得a=0.故选B . 4.(2021湖南长沙湖南师大附中高一期末)下列说法正确的是( ) A.若a>b ,则1a<1bB.若a<b<0,则|a|>|b|C.若a>b ,则ac 2>bc 2D.若ac>bc ,则a>ba>0>b 时,1a >1b ,故A 不正确;若a<b<0,则-a>-b>0,则|a|=-a>|b|=-b ,故B 正确;当c=0时,ac 2>bc 2不成立,故C 不正确;若ac>bc ,当c<0时,a<b ,故D 不正确.故选B.5.(2021山东济宁高一期末)中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式.设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S=√p (p -a )(p -b )(p -c )求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为( ) A.3B.3C.√7D.√11p=12×(3+5)=4,S=√4(4-a )(4-b )(4-c )=√4(4-b )(4-c )=2√(4-b )(4-c )≤8-(b+c )=3,当且仅当4-b=4-c ,即b=c 时,等号成立,∴此三角形面积的最大值为3.故选B .6.(2021湖北八市高三一模)已知M ,N 均为R 的子集,且M ⊆∁R N ,则∁R M ∩N=( ) A.⌀ B.MC.ND.R,如图所示,故∁R M ∩N=N.故选C .7.(2021辽宁营口高一期末)奇函数f (x )在(0,+∞)内单调递减且f (2)=0,则不等式(x+1)f (x )<0的解集为( )A.(-∞,-2)∪(-1,0)∪(2,+∞)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(-1,0)∪(0,2)f (x )在(0,+∞)内单调递减且f (2)=0,所以f (x )在(-∞,0)上单调递减,且f (-2)=0.由不等式(x+1)f (x )<0得{x +1>0,f (x )<0或{x +1<0,f (x )>0,即{x >-1,x >2或-2<x <0或{x <-1,0<x <2或x <-2,故x>2或-1<x<0或x<-2.故选A .8.(2021安徽江淮名校高一入学考试)设x ,y 均为正实数,且32+x +32+y =1,则x+y 的最小值为( ) A.8 B.16 C.9 D.6解析因为x ,y 均为正实数且32+x+32+y=1,所以x+y=2+x+2+y-4=[(2+x )+(2+y )]3x+2+3y+2-4=32+y+2x+2+x+2y+2-4≥32+2√y+2x+2·x+2y+2-4=12-4=8,当且仅当y+2x+2=x+2y+2,即x=y=4时,等号成立.因此x+y的最小值为8.故选A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2021山东烟台高一期中)已知集合U=(-∞,+∞),A={x|2x 2-x ≤0},B={y|y=x 2},则( ) A.A ∩B=0,12 B.∁U A ⊆∁U BC.A ∪B=BD.∁B A=12,+∞解析∵集合U=(-∞,+∞),A={x|2x 2-x ≤0}=x 0≤x ≤12,B={y|y=x 2}={y|y ≥0},∴A ∩B=0,12,故A 正确;∁U A=x x<0或x>12,∁U B={y|y<0},∴∁U A ⊇∁U B ,故B 错误;A ∪B=[0,+∞)=B ,故C 正确;∁B A=12,+∞,故D 正确.故选ACD .10.(2021云南昆明高一期末)已知函数f (x )=ax 2+2x+1(a ≠0),若方程f (x )=0有两个不等的实数根x 1,x 2,且x 1<x 2,则( )A.当a>0时,不等式f (x )<0的解集为{x|x 1<x<x 2}B.当a>0时,不等式f (x )<0的解集为{x|x<x 1或x>x 2}C.若不等式f (x )>0的解集为{x|x 1<x<x 2},则x 1>0D.若不等式f (x )>0的解集为{x|x 1<x<x 2},则x 2>0a>0时,函数图像开口方向向上,所以不等式f (x )<0的解集为{x|x 1<x<x 2},故A 正确,B 错误;若不等式f (x )>0的解集为{x|x 1<x<x 2},则a<0,对称轴-1a >0,函数又过定点(0,1),则x 1<0,故C 错误;若不等式f (x )>0的解集为{x|x 1<x<x 2},则a<0,对称轴-1a >0,则x 2>0,故D 正确.故选AD .11.(2021湖北黄冈、天门高一期末)下列各说法中,p 是q 的充要条件的有( ) A.p :四边形是正方形;q :四边形的对角线互相垂直且平分 B.p :两个三角形相似;q :两个三角形三边对应成比例 C.p :xy>0;q :x>0,y>0D.p :x=1是一元二次方程ax 2+bx+c=0的一个根;q :a+b+c=0(a ≠0),则四边形的对角线互相垂直且平分成立,但对角线互相垂直且平分的四边形可能是菱形,故p 不是q 的充要条件;两个三角形相似与两个三角形三边对应成比例可以互相推导,故p 是q 的充要条件;当xy>0时,可能x<0,y<0,故p 不是q 的充要条件;x=1是一元二次方程ax 2+bx+c=0的一个根,将x=1代入方程可得a+b+c=0,当a+b+c=0时,将c=-a-b 代入方程ax 2+bx+c=0得ax 2+bx-a-b=(ax+a+b )(x-1)=0,解得x=1,故p 是q 的充要条件.故选BD . 12.(2021山东威海高一期末)已知函数f (x )={x 2-2x ,x <0,-2x +3,x ≥0,则( )A.f [f (-1)]=-3B.若f (a )=-1,则a=2C.f (x )在R 上是减函数D.若关于x 的方程f (x )=a 有两解,则a ∈(0,3]f(-1)=(-1)2-2×(-1)=3,所以f[f(-1)]=f(3)=-2×3+3=-3,故A正确;当a<0时,f(a)=a2-2a=-1,解得a=1,不符合题意,舍去,当a≥0时,f(a)=-2a+3=-1,解得a=2,符合题意,故B正确;作出f(x)的图像,如图所示,所以f(x)在R上不是减函数,故C错误;方程f(x)=a有两解,则y=f(x)图像与y=a图像有两个公共点,如图所示.所以a∈(0,3],故D正确.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.(2021河北石家庄一中高一月考)已知集合A={x|-1≤x≤2,x∈Z},集合B={x|x>0},则集合A∩B的子集个数为.A={x|-1≤x≤2,x∈Z}={-1,0,1,2},B={x|x>0},∴A∩B={1,2},共有2个元素, 故集合A∩B的子集个数为22=4个.14.(2021山东威海高一期末)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成,若a=2,b=3,则该矩形的面积为.x,∵a=2,b=3,∴AB=a+b=5, 在Rt △ABC 中,AC 2+BC 2=AB 2, 即(2+x )2+(3+x )2=52,即x 2+5x=6,则该矩形的面积为(2+x )(3+x )=x 2+5x+6=12.15.(2021广东深圳高三一模)已知函数的图像关于y 轴对称,且与直线y=x 相切,则满足上述条件的二次函数可以为f (x )= .2+14(答案不唯一)f (x )的图像关于y 轴对称,所以设f (x )=ax 2+c.由{y =ax 2+c ,y =x ,得ax 2-x+c=0, 所以Δ=1-4ac=0,即ac=14. 取a=1,c=14,则f (x )=x 2+14(答案不唯一).16.(2021河北邯郸高一期末)已知函数f (x )={|x +1|,x >0,x 2+1,x ≤0,若f (f (m ))=2,则m= .f (m )=t ,则f (t )=2,①当t>0时,|t+1|=2,则t=1,所以f (m )=1; 当m>0时,|m+1|=1,则m=0(舍去), 当m ≤0时,m 2+1=1,则m=0. ②当t ≤0时,t 2+1=2,则t=-1, 所以f (m )=-1;当m>0时,|m+1|=-1,显然此时方程无实数解,当m ≤0时,m 2+1=-1,显然此时方程无实数解.综上所述,m=0.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021江西名校协作体高一联考)已知二次函数f (x )的最小值为1,函数y=f (x+1)是偶函数,且f (0)=3.(1)求f (x )的解析式;(2)若函数f (x )在区间[2a ,a+1]上不单调,求实数a 的取值范围.因为函数y=f (x+1)是偶函数,所以f (x )的图像关于x=1对称.又最小值为1,所以设f (x )=a (x-1)2+1. 又f (0)=3,解得a=2. ∴f (x )=2(x-1)2+1=2x 2-4x+3.(2)要使f (x )在区间[2a ,a+1]上不单调,则2a<1<a+1, ∴0<a<12.故实数a 的取值范围为0,12.18.(12分)(2021安徽安庆高一期末)已知正实数x ,y 满足4x+4y=1. (1)求xy 的最大值;(2)若不等式4x +1y ≥a 2+5a 恒成立,求实数a 的取值范围.x+4y=1,所以14=x+y ≥2√xy ,解得xy ≤164,当且仅当x=y=18时,等号成立,∴xy 的最大值为164. (2)4x+1y =4x+1y(4x+4y )=20+16y x+4x y≥20+2√16y x·4x y=36,当且仅当x=16,y=112时,等号成立, ∴a 2+5a ≤36,解得-9≤a ≤4, 即a 的取值范围是[-9,4].19.(12分)(2021江苏苏州新区吴县中学高一月考)已知f (x )={1,x <0,2,x ≥0,g (x )=3f (x -1)-f (x -2)2. (1)当1≤x<2时,求g (x );(2)当x ∈R 时,求g (x )的解析式,并画出其图像; (3)求函数h (x )=x f (g (x ))-2g (f (x ))的零点.当1≤x<2时,x-1≥0,x-2<0,故g (x )=6-12=52.(2)由(1)知,当1≤x<2时,g (x )=52. 当x<1时,x-1<0,x-2<0, 故g (x )=3-12=1. 当x ≥2时,x-1>0,x-2≥0,故g (x )=6-22=2.所以当x ∈R 时,g (x )的解析式为g (x )={1,x <1,52,1≤x <2,2,x ≥2.其函数图像如下:(3)因为g (x )>0,则f (g (x ))=2,x ∈R , 故g (f (x ))={g (1)=52,x <0,g (2)=2,x ≥0,所以方程x f (g (x ))=2g (f (x ))化简后可得x 2=5(x<0)或x 2=4(x ≥0), 解得x=-√5或x=2.20.(12分)(2021福建三明高一期末)某市居民用电收费方式有以下两种,用户可自由选择其中一种. 方式一:阶梯式递增电价,即把居民用户每月用电量划分为三档,电价实行分档递增,具体电价如下表:方式二:阶梯式递增电价基础上实行峰谷分时电价,即先按阶梯式递增电价标准计算各档电量的电费,然后高峰时段(8:00—22:00)每度加价0.03元,低谷时段(22:00至次日8:00)每度降价0.20元,得出用户的总电费.(1)假设某居民用户月均用电量为x 度,按方式一缴费,月均电价为y 元,求y 关于x 的函数解析式; (2)若该用户某月用电a 度(0<a<420),其中高峰时段用电量占该月总用电量的23,按方式二缴费,电费为143元,求该月用电量.由题意可得当0≤x ≤230时,y=0.5x ,当230<x ≤420时,y=230×0.5+0.6(x-230)=0.6x-23,当x>420时,y=230×0.5+0.6×(420-230)+0.8(x-420),即y=0.8x-107,所以y={0.5x ,0≤x ≤230,0.6x -23,230<x ≤420,0.8x -107,x >420.(2)因为该用户某月用电a 度,高峰时段用电量为23a 度,当0≤x ≤230时,用电费用为0.3×13a+0.53×2a3=143,解得a ≈315.4>230,不合题意,舍去.当230<x ≤420时,用电费用为0.3×13+0.53×23×230+0.4×13+0.63×23(a-230)=143,解得a ≈300, 所以该月用电量约为300度.21.(12分)(2021福建福州高一期末)已知函数f (x )=√x 2-(a -1)x +2a ,且f (1)=√3. (1)求实数a 的值;(2)判断f (x )在区间(-∞,0]上的单调性并用定义证明.由f (1)=√3,得1-(a-1)+2a=3,所以a=1.(2)由(1)知f (x )=√x 2+2,其定义域为R , f (x )在区间(-∞,0]上单调递减. 证明如下:任取x 1,x 2∈(-∞,0],且x 1<x 2,f (x 1)-f (x 2)=√x 12+2−√x 22+2=(√x 12+2-√x 22+2)(√x 12+2+√x 22+2)√x 1+2+√x 2+2=1222√x 1+2+√x 2+2 =1222√x 1+2+√x 2+2 =1212√x 1+2+√x 2+2.因为x 1≤0,x 2≤0,且x 1<x 2,所以x 1+x 2<0,x 1-x 2<0,√x 12+2+√x 22+2>0,则f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2), 故f (x )在区间(-∞,0]上单调递减.22.(12分)(2021安徽滁州高一期末)设命题p :对任意x ∈[1,4],不等式x 2-4x+2≥m 2-3m 恒成立;命题q :存在x ∈0,12,使得不等式x 2-x+m-54≥0成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p ,q 有且只有一个是真命题,求实数m 的取值范围.对任意x ∈[1,4],不等式x 2-4x+2≥m 2-3m 恒成立,即(x 2-4x+2)min ≥m 2-3m.x 2-4x+2=(x-2)2-2,当x=2时,x 2-4x+2取到最小值-2,即-2≥m 2-3m ,∴1≤m ≤2. 故p 为真命题时,实数m 的取值范围是[1,2].(2)命题q :存在x ∈0,12,使得不等式x 2-x+m-54≥0成立,故只需x 2-x+m-54max ≥0.而x 2-x+m-54=x-122+m-32, 所以当x=0时,x 2-x+m-54取到最大值m-54, 故m-54≥0,解得m ≥54.即命题q 为真命题时,实数m 的取值范围是54,+∞.依题意命题p ,q 一真一假,若p 为假命题,q 为真命题,则{m <1或m >2,m ≥54,,得m>2; 若q 为假命题,p 为真命题,则{1≤m ≤2,m <54,得1≤m<54.综上,实数m 的取值范围为1,54∪(2,+∞).。
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
高一必修一、二数学期末试卷及答案
高一数学期末考试一、选择题(每小题只有一个答案正确,每小题5分,共50分)1.已知集合M={R x x x y y ∈-+=,322},集合N={32≤-y y },则M =⋂N ( )。
A.{4-≥y y } B.{51≤≤-y y } C.{14-≤≤-y y } D.φ2.如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A.(M S P ⋂⋂)B.(M S P ⋃⋂)C.(M ⋂P )⋂(C U S )D.(M ⋂P )⋃(C U S )3.若函数()x f y =的定义域是[2,4],⎪⎪⎭⎫ ⎝⎛=x f y 21log 的定义域是( ) A.[21,1] B.[4,16] C.[41,161] D.[2,4] 4.下列函数中,值域是R +的是( ) A.132+-=x x y B.32+=x y ,+∞∈,0(x )C.12++=x x yD.x y 31= 5.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且PA ,PB ,PC 与α所成的角相等,则H 是△ABC 的( )A.内心B.外心C.垂心D.重心6.已知二面角α-l -β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.30°B.60°C.90°D.120°7.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A.(1,2) B.(,3)e C.(2,)e D.(,)e +∞8.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A A 1=1,则B C 1与平面BB 1D 1D 所成的角的正弦值为( ) A.63 B.255 C.155 D.10510.如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,满分20分11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩…,则()0f f =⎡⎤⎣⎦ . 12.函数b a y x+=(a >0且a 1≠)的图象经过点(1,7),其反函数的图象经过点(4,0),则b a = 13.函数⎪⎪⎭⎫ ⎝⎛=x y 3121log log 的定义域为 14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个结论:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个作为结论,写出你认为正确的一个命题是__________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15、(12分)已知1()(1)1x x a f x a a -=>+ (1)判断函数()y f x =的奇偶性;(2)探讨()y f x =在区间(,)-∞+∞上的单调性16.(12分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面P AD .17、(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .、18、(14分)已知函数2()22,(0)f x ax x a a =+--≤(1)若1,a =-求函数()y f x =的零点;(2)若函数在区间(0,1]上恰有一个零点,求a 的取值范围;19、(14分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社。
2019_2020学年高中数学第二章数列能力测试新人教A版必修5
第二章 数列能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年山西太原期末)数列1,3,6,10,…的一个通项公式是( ) A .a n =n n +12B .a n =n n -12C .a n =n 2-(n -1) D .a n =n 2-1【答案】A【解析】观察数列1,3,6,10,…,可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.故选A .2.已知等差数列{a n }的前n 项和为S n 且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .-2B .-1C .1D .2【答案】D【解析】由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,∴d =2.3.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( ) A .4或-2 B .-4或2 C .4 D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a +2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧ a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0,与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.故选C .4.已知等差数列{a n }的公差d <0,若a 4·a 6=24,a 2+a 8=10,则该数列的前n 项和S n的最大值为( )A .50B .40C .45D .35【答案】C【解析】∵a 4+a 6=a 2+a 8=10,a 4·a 6=24,d <0,∴⎩⎪⎨⎪⎧a 4=6,a 6=4.∴d =a 6-a 46-4=-1,∴a n =a 4+(n -4)d =10-n .∴当n =9或10时S n 取到最大值,S 9=S 10=45.5.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0.∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.故选C .6.已知各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则a 7a 9a 11=( ) A .16 B .16 2 C .32 D .32 2【答案】B【解析】∵各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,∴a 4a 14=(22)2=8.∴a 7a 11=a 29=8.∴a 7a 9a 11=16 2.故选B .7.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .129B .1210 C .110 D .15【答案】D 【解析】∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.8.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( ) A .54 B .45 C .36 D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6.∴S 9=9a 5=54.9.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2.∴a 1+a 2=12.∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+qq2=6.∵q >0,∴q =12.∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n .∴不等式a n a n +1a n +2>19化为29-3n>19,当n=4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 10.(2019年内蒙古包头模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2019=( )A .12 019 B .12 020 C .2 0182 019 D .2 0192 020【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又S n>0,∴n (n +1)S n -1=0,∴S n =1nn +1=1n -1n +1.∴S 1+S 2+…+S 2 019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2 0192 020.11.已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) A .4 B .5 C .6 D .7【答案】B【解析】由题意可知数列3,7,11,…,139的通项公式为a n =4n -1,139是数列第35项.数列2,9,16,…,142的通项公式为b m =7m -5,142是数列第21项.设数列3,7,11,…,139的第n 项与数列2,9,16,…,142的第m 项相同,则4n -1=7m -5,n =7m -44=7m 4-1,∴m为4的倍数且m 不大于21,n 不大于35.由此可知,m 只能为4,8,12,16,20.此时n 的对应值为6,13,20,27,34.∴公共项的个数为5.故选B .12.(2019年福建厦门模拟)已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,则k n =( )A .2×3n -1-1 B .2×3n -1+1C .2×3n-1 D .2×3n+1【答案】A【解析】设等比数列ak 1,ak 2,…,ak n 的公比为q .因为k 1=1,k 2=5,k 3=17,所以a 1·a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4da 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d ;另一方面,ak n 作为等比数列的第n 项,又有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017年新课标Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-8【解析】设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1+a 2=a 11+q =-1,a 1-a 3=a 11-q2=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,∴a 4=a 1q 3=-8.14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 【答案】13【解析】∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3.a n =a 1qn -1,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得q =13.15.已知数列{a n }满足a n +1=12+a n -a 2n 且a 1=12,则该数列的前 2 017项的和等于________.【答案】3 0252【解析】∵a 1=12,a n +1=12+a n -a 2n ,∴a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N +,1,n =2k k ∈N +,故数列的前2 017项的和S 2 017=1 008×1+1 009×12=3 0252.16.(2018年江苏)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.【答案】27【解析】B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑.1个:n =1+1=2,S 2=3,12a 3=36;2个:n =2+2=4,S 4=10,12a 5=60;3个:n =4+3=7,S 7=30,12a 8=108;4个:n =8+4=12,S 12=94,12a 13=204;5个:n =16+5=21,S 21=318,12a 22=396;6个:n =32+6=38,S 38=1 150,12a 39=780.发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516.因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n+1成立的n 的最小值为27.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(2017年北京)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 【解析】(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,∴2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 21q 4=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…b 2n -1=1+3+32+…+3n -1=3n-12.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n ,S 5=S 6且a 3=-6. (1)求数列{a n }的通项公式;(2)若等比数列{b n }满足b 2=6,6b 1+b 3=-5a 3,求{b n }的前n 项和T n .【解析】(1)由已知可得a 6=0,设等差数列的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得d =2,a 1=-10,∴数列{a n }的通项公式为a n =2n -12. (2)设{b n }的公比为q ,由题设得⎩⎪⎨⎪⎧b 1q =6,6b 1+b 1q 2=30,解得⎩⎪⎨⎪⎧b 1=3,q =2或⎩⎪⎨⎪⎧b 1=2,q =3.1-2当b 1=2,q =3时,T n =21-3n1-3=3n-1.19.(本小题满分12分)等差数列{a n }满足:a 2+a 4=6,a 6=S 3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若k ∈N *且a k ,a 3k ,S 2k 成等比数列,求k 值. 【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由a 2+a 4=6,a 6=S 3,得⎩⎪⎨⎪⎧2a 1+4d =6,a 1+5d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =1+1×(n -1)=n . (2)S 2k =2k +2k2k -12=2k 2+k , 由a k ,a 3k ,S 2k 成等比数列,得 9k 2=k (2k 2+k ),解得k =4.20.(本小题满分12分)已知数列{a n }是公差不为零的等差数列,a 1=2且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)若{b n -(-1)na n }是等比数列且b 2=7,b 5=71,求数列{b n }的前n 项和T n . 【解析】(1)设数列{a n }的公差为d (d ≠0), ∵a 1=2且a 2,a 4,a 8成等比数列, ∴a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 解得d =2或d =0(舍去).∴a n =a 1+(n -1)d =2+2(n -1)=2n .(2)令c n =b n -(-1)na n ,设数列{c n }的公比为q , ∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=7-2×2=3,c 5=b 5+a 5=71+2×5=81.∴q 3=c 5c 2=813=27,故q =3.∴c n =c 2·q n -2=3×3n -2=3n -1,即b n -(-1)n a n =3n -1,∴b n =3n -1+(-1)n·2n .则T n =b 1+b 2+b 3+…+b n =(30+31+…+3n -1)+[-2+4-6+…+(-1)n·2n ],1-322当n 为奇数时,T n =1-3n1-3+2×n -12-2n =3n-2n -32.∴T n=⎩⎪⎨⎪⎧3n+2n -12,n 为偶数,3n-2n -32,n 为奇数.21.(本小题满分12分)(2019年山东莱芜模拟)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和为S n . 【解析】(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18.∴q =a 3+a 2a 2+a 1=189=2. 又2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1.① ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n.② ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1.∴S n =3(n -1)2n+3.22.(本小题满分12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.【解析】(1)由题意得,(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n.∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ8+d ,16+d =2λ8+2d .∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1). ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14. ∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n,∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12. ∴C n <12S n .。
2022—2023学年呼市二中数学期末考试试卷真题+参考答案+详细解析
2022~2023年呼和浩特市第二中学高一数学期末试卷考试范围:必修一,必修二(函数,统计,概率);考试时间:120分钟;注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.本试卷满分150分,考试时间120分钟.2.答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束,将本试卷和答题卡一并交回.第 Ⅰ 卷(选择题 共60分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2016•新课标Ⅱ•文1)已知集合{1,2,3}A =,2{|9}B x x =<,则(A B = )A .{2,1,0,1,2,3}--B .{2,1,0,1,2}--C .{1,2,3}D .{1,2}2.已知函数12,4()2,4x x x f x x ⎧⎪=⎨⎪<⎩,则[(2)](f f = )A .16B .2C .2D .43.若a b c d >>>,则下列不等式一定成立的是( ) A .a ab c> B .ac bc > C .11a cb d<-- D .11a cb c<-- 4.函数42log (1)y x =-的图象大致是( )A .B .C .D .5.关于用统计方法获取数据,分析数据,下列结论错误的是( )A .某食品加工企业为了解生产的产品是否合格,合理的调查方式为抽样调查B .为了解高一学生的视力情况,现有高一男生480人,女生420人,按性别进行分层抽样,样本量按比例分配,若从女生中抽取的样本量为63,则样本容量为135C .若甲、乙两组数据的标准差满足S S <乙甲,则可以估计乙比甲更稳定D .若数据1x ,2x ,3x ,⋯,n x 的平均数为天,则数据i i y ax b =-,(1i =,2,3,,n )的平均数为ax b -6.设7log 3a =,13log 7b =,0.73c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b c a <<D .b a c << 7.已知偶函数()f x 在区间(,0]-∞上单调递减,则满足(21)(3)f x f +<的x 的取值范围是( )A .(1,2)-B .(2,1)-C .(1,1)-D .(2,2)-8.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图象绕原点逆时针旋转90︒后与原图象重合,则(1)f 的值一定不可能为( ) A .4B .3C .2D .1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是( )A .第一场得分的中位数为52 B .第二场得分的平均数为193C .第一场得分的极差大于第二场得分的极差D .第一场与第二场得分的众数相等 10.给出下列结论,其中正确的结论是( ) A .函数211()2x y -=的最小值为2B .已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2]C .在同一平面直角坐标系中,函数x y e =与ln y x =的图象关于直线y x =对称D .若x ,y ,z 为正数,346x y z ==,则212x y z+= 11.下列说法正确的是( )A .用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体m 被抽到的概率是0.1B .已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C .数据27,12,14,30,15,17,19,23的第70百分位数是23D .若样本数据1x ,2x ,⋯,10x 的标准差为8,则数据121x -,221x -,⋯,1021x -的标准差为16 12.若3398log 142log (3)a b a b ++=+,则( ) A .a b < B .2a b <C .a b >D .2a b >第 Ⅱ 卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分. 13.函数0()(1)f x x =+-的定义域是 .14.现有1件正品和2件次品,从中不放回的依次抽取2件产品,则事件“第二次抽到的是次品”的概率为 .15.若函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩在R 上单调递增,则实数a 的取值范围是 .16.(2017•新课标Ⅰ•文9改编)已知函数()ln ln(2)f x x x =+-,有以下结论: ①函数()f x 在(0,2)单调递减; ②函数()f x 在(1,2)单调递减 ; ③函数()f x 的值域为R ;④函数()f x 的图象有对称轴1x =; ⑤函数()f x 的图象有对称中心(1,0) 以上结论正确的是(只填序号即可) .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)(1)直方图中a 的值为多少?(2)要再用分层随机抽样的比例分配的方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出的人数为多少人?18.(本题满分12分)求函数最值有很多的方法,其中某些函数的最值可以利用配方法求值域,例如: 424222()2211(1)1f x x x x x x =-=-+-=--,所以函数()f x 的最小值为1-,当且仅当21x =时取得最小值.(1)利用配方法求函数4(0)y x x x=+>的最小值;(2)某面粉厂定期买面粉,每次都购买x 吨,运费为4万元每次,已知面粉厂一年购买面粉400吨,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值应为多少?a19.(本题满分12分)已知关于x 的不等式(1)(1)0ax x --<. (1)当2a =时,解上述不等式; (2)a R ∈,解上述关于x 的不等式.20.(本题满分12分)(1)已知函数()24x x f x =-,[2,1]x ∈-,求()f x 的值域; (2)设函数33()log (9)log (3)f x x x =⋅,199x ,求函数()y f x =的最大值与最小值及与之对应的x 的值.21.(本题满分12分)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型(0,1)x y ka k a =>>与12(0,0)y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg20.3010≈,lg30.4711≈).22.(本题满分12分)已知函数13()33x x f a x +=+-是奇函数.(1)求实数a 的值,判断函数()f x 的单调性,并说明理由;(2)若对任意的[2,1]x ∈--,不等式22()(4)0f x mx f x -++>成立,求实数m 的取值范围.附加题:(本题满分20分,本题不计入总分)已知函数2()|3|f x x x =+,x R ∈.若方程()|1|0f x a x --=恰有4个不同的实根,求实数a 的取值范围.2022~2023年呼和浩特市第二中学高一数学期末试卷参考答案与试题解析【选择题&填空题答案速查】一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2016•新课标Ⅱ•文1)已知集合{1,2,3}A =,2{|9}B x x =<,则(A B = )A .{2,1,0,1,2,3}--B .{2,1,0,1,2}--C .{1,2,3}D .{1,2}【解析】集合{1,2,3}A =,2{|9}{|33}B x x x x =<=-<<,{1,2}AB ∴=.故选:D .【评注】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.已知函数12,4()2,4x x x f x x ⎧⎪=⎨⎪<⎩,则[(2)](f f = )A .16B .2CD .4【解析】函数44x x <,f ∴【评注】本题主要考查利用分段函数以及函数的周期性求函数的值,属于基础题. 3.若a b c d >>>,则下列不等式一定成立的是( ) A .a ab c> B .ac bc > C .11a cb d<-- D .11a cb c<-- ,1b =,c 【评注】本题考查了不等式的性质,考查特殊值法的应用,是一道基础题. 4.函数42log (1)y x =-的图象大致是( )A .B .C .D .【解析】由题意可知函数的定义域为:1x <,函数是减函数.故选:C .【评注】本题考查函数的图象的判断,考查函数图象与性质的应用,是基础题. 5.关于用统计方法获取数据,分析数据,下列结论错误的是( )A .某食品加工企业为了解生产的产品是否合格,合理的调查方式为抽样调查B .为了解高一学生的视力情况,现有高一男生480人,女生420人,按性别进行分层抽样,样本量按比例分配,若从女生中抽取的样本量为63,则样本容量为135C .若甲、乙两组数据的标准差满足S S <乙甲,则可以估计乙比甲更稳定D .若数据1x ,2x ,3x ,⋯,n x 的平均数为天,则数据i i y ax b =-,(1i =,2,3,,n )的平均数为ax b -【评注】本题考查了命题真假的判断问题,也考查了抽样方式、分层抽样、标准差、平均数等基础知识,是基础题.6.设7log 3a =,13log 7b =,0.73c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b c a <<D .b a c <<【评注】本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意函数性质的合理运用. 7.已知偶函数()f x 在区间(,0]-∞上单调递减,则满足(21)(3)f x f +<的x 的取值范围是( ) A .(1,2)-B .(2,1)-C .(1,1)-D .(2,2)-【解析】偶函数()f x 在区间(,0]-∞上单调递减,则由(21)(3)f x f +<,可得|21|3x +<,3213x ∴-<+<, 求得21x -<<,故x 的取值范围为(2,1)-,故选:B .【评注】本题主要考查函数的单调性和奇偶性的综合应用,体现了转化的数学思想,属于基础题. 8.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图象绕原点逆时针旋转90︒后与原图象重合,则(1)f 的值一定不可能为( ) A .4B .3C .2D .1【解析】由题意可知:问题相当于()f x 图象每4个点为一组,每次绕原点逆时针旋转90︒后与下一个点重合.设()f x 上某点(cos ,sin )P r r θθ绕原点逆时针旋转90︒后到达点(,)P m n ',则cos(90)sin m r r θθ=+︒=-,sin(90)cos n r r θθ=+︒=,即对任意点(,)x y 绕原点逆时针旋转90︒后会到达点(,)y x -,由题,设(1)a f =,令点(1,)A a ,此组对应的点绕原点逆时针旋转90︒后可到达的其他三个点为B ,C ,D ,则有(,1)B a -,(1,)C a --,(,1)D a -,故(1)1()(1)1()a f f a a f f a =⎧⎪=-⎪⎨-=-⎪⎪-=⎩,可知当1a =时,(1)f 可取两个值1和1-,与函数定义矛盾,故选D . 【评注】本题考查的知识要点:定义性函数的应用.赋值法的应用,主要考查学生的运算能力和转换能力,属于中档题型.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是( )A .第一场得分的中位数为52 B .第二场得分的平均数为193C .第一场得分的极差大于第二场得分的极差D .第一场与第二场得分的众数相等【评注】本题考查了根据茎叶图中的数据求中位数、众数和平均数、极差的问题,是基础题. 10.给出下列结论,其中正确的结论是( ) A .函数211()2x y -=的最小值为2B .已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2]C .在同一平面直角坐标系中,函数x y e =与ln y x =的图象关于直线y x =对称D .若x ,y ,z 为正数,346x y z ==,则212x y z+=【评注】本题考查的知识要点:复合函数的性质,对数的运算,反函数,主要考查学生的运算能力和转换能力及思维能力,属于基础题. 11.下列说法正确的是( )A .用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体m 被抽到的概率是0.1B .已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C .数据27,12,14,30,15,17,19,23的第70百分位数是23D .若样本数据1x ,2x ,⋯,10x 的标准差为8,则数据121x -,221x -,⋯,1021x -的标准差为16 ,样本数据【评注】本题考查命题真假的判断,考查概率、方差、百分位数、标准差等基础知识,考查运算求解能力,是基础题.12.若3398log 142log (3)a b a b ++=+,则( ) A .a b <B .2a b <C .a b >D .2a b >【解析】33639338log 142log (3)2log 32log (3)a b a b a b a b ++=+⇔+=+,设3()2log x f x x =+,3()2log x f x x ∴=+在(0,)+∞为增函数,336633332log (3)2log 32log (3)2log (6)b a b b b a b b ∴+<+=+<+, (3)(3)(6)f b f a f b ∴<<,2b a b ∴<<,故选:BC .【评注】本题考查利用构造函数的单调性比较大小,属于中档题. 三、填空题:本题共4小题,每小题5分,共20分. 13.函数0()(1)f x x =+-的定义域是 {|2x x >-且1}x ≠ .【解析】由题意得:2010x x +>⎧⎨-≠⎩,解得:2x >-且1x ≠,故答案为:{|2x x >-且1}x ≠.【评注】本题考查了求函数的定义域问题,考查二次根式以及幂函数的性质,是一道基础题.14.现有1件正品和2件次品,从中不放回的依次抽取2件产品,则事件“第二次抽到的是次品”的概率为23. 【评注】本题主要考查了互斥事件的概率公式的应用,属于基础题.15.若函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩在R 上单调递增,则实数a 的取值范围是 9[,3)4 .【解析】函数7x 单调递增,3a,解得934a <,所以实数【评注】本题考查分段函数的单调性,考查对数函数与指数函数的单调性,属于基础题. 16.(2017•新课标Ⅰ•文9改编)已知函数()ln ln(2)f x x x =+-,有以下结论: ①函数()f x 在(0,2)单调递减; ②函数()f x 在(1,2)单调递减 ; ③函数()f x 的值域为R ;④函数()f x 的图象有对称轴1x =; ⑤函数()f x 的图象有对称中心(1,0)以上结论正确的是(只填序号即可) ②④ .【解析】函数2()ln ln(2)ln(2)f x x x x x =+-=-+的定义域为(0,2),内层函数22u x x =-+在(0,1)上单调递增,在(1,2)上单调递减,故函数2()ln ln(2)ln(2)f x x x x x =+-=-+在(0,1)上单调递增,在(1,2)上单调递减,故①错误,②正确;当1x =时,函数取得最大值,此时()0f x =,∴函数()f x 的值域不是R ,故③错误;函数()ln ln(2)f x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故④正确,⑤错误.故答案为:②④.【评注】本题考查的知识点是函数的图象与图象变化,熟练掌握函数图象的对称性是解答的关键. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)(1)直方图中a 的值为多少?(2)要再用分层随机抽样的比例分配的方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出的人数为多少人?【评注】本题考查了频率分布直方图,频率分布表及分层抽样方法,在频率分布直方图中频率=小矩形的高⨯组距=频数样本容量.18.(本题满分12分)求函数最值有很多的方法,其中某些函数的最值可以利用配方法求值域,例如: 424222()2211(1)1f x x x x x x =-=-+-=--,所以函数()f x 的最小值为1-,当且仅当21x =时取得最小值.(1)利用配方法求函数4(0)y x x x=+>的最小值;(2)某面粉厂定期买面粉,每次都购买x 吨,运费为4万元每次,已知面粉厂一年购买面粉400吨,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值应为多少?a【评注】本题主要考查函数的单调性的应用、函数模型的选择与应用、函数最值的应用等基础知识,考查应用数学的能力,属于基础题.19.(本题满分12分)已知关于x 的不等式(1)(1)0ax x --<. (1)当2a =时,解上述不等式; (2)a R ∈,解上述关于x 的不等式.【评注】本题考查了一元二次不等式的解法,含有参数的一元二次不等式的求解,考查了逻辑推理能力,属于中档题.20.(本题满分12分)(1)已知函数()24x x f x =-,[2,1]x ∈-,求()f x 的值域;(2)设函数33()log (9)log (3)f x x x =⋅,199x ,求函数()y f x =的最大值与最小值及与之对应的x 的值. 199x ,所以31log 99t ,即22t . 3333log (3)(log )(log 3log (log 2)(log x x x =+=+2132(4t t ++=.又22t -,,39x =时,)有最小值14-..所以()f x 的值域为【评注】本题考查利用换元法求函数的值域,属于基础题.21.(本题满分12分)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型(0,1)x y ka k a =>>与12(0,0)y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg20.3010≈,lg30.4711≈). 112x ,x ∈,元旦放入凤眼莲的覆盖面积是,*x N ∈,6x ∴,即凤眼莲的覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是六月份.【评注】本题考查函数模型的选择及应用,考查指数不等式的解法,考查运算求解能力,是中档题.22.(本题满分12分)已知函数13()33x x f ax +=+-是奇函数.(1)求实数a 的值,判断函数()f x 的单调性,并说明理由;(2)若对任意的[2,1]x ∈--,不等式22()(4)0f x mx f x -++>成立,求实数m 的取值范围.【评注】考查函数的奇偶性,函数单调性的证明和应用,函数恒成立问题,基本不等式等,综合性高. 附加题:(本题满分20分,本题不计入总分)已知函数2()|3|f x x x =+,x R ∈.若方程()|1|0f x a x --=恰有4个不同的实根,求实数a 的取值范围. 【解析】由()|1|0f x a x --=,可得()|1|f x a x =-, 作出()y f x =,()|1|y g x a x ==-的图象,如图所示:当0a 时,()0f x ,()0g x ,两个函数的图象不可能有4个交点,不满足题意; 当0a >时,(1),1()|1|(1),1a x x g x a x a x x -⎧=-=⎨--<⎩,当30x -<<时,2()3f x x x =--,()(1)g x a x =--, 当直线与抛物线相切时,有三个零点,此时23(1)x x a x --=--,即2(3)0x a x a +-+=, 则由△2(3)40a a =--=,可得1a =或9a =,当9a =时,()9(1)g x x =--,(0)9g =,此时不成立,所以1a =; 要使函数有四个零点,则此时有01a <<, 若1a >,此时()(1)g x a x =--与()f x 有两个交点,此时只需要当1x >时,()()f x g x =有两个大于1的不同的零点1x ,2x 即可.即2(3)0x a x a +-+=,21212(3)40(1)(1)0(1)(1)0a a x x x x ⎧=-->⎪-+->⎨⎪-->⎩⇒2121212(3)402320()1(3)10a a x x a x x x x a a ⎧=-->⎪+-=-->⎨⎪-++=--+>⎩,解得9a >, 综上所述,a 的范围为(0,1)(9,)+∞.【评注】本题考查了函数的零点个数、数形结合思想、分类讨论思想,作出图象是关键,属于中档题.。
2021-2022学年西安市长安一中高一上学期期末数学复习卷 (2)(含解析)
2021-2022学年西安市长安一中高一上学期期末数学复习卷 (2)一、单选题(本大题共8小题,共40.0分)1. 扇形的圆心角与半径相等,面积为4,这个扇形的圆心角等于( )A. √43B. 2C. π4D. π2 2. 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为A. 1和20B. 9和10C. 9和11D. 10和11 3. 函数f(x)=√x +1的定义域为( )A. (5,+∞)B. [−1,5)∪(5,+∞)C. [−1,5)D. [−1,+∞) 4. 已知角θ的终边在直线y =−2x 上,则cos2θ=( )A. 35B. 34C. −34D. −35 5. “a =2”是“直线ax +2y −1=0与x +(a +1)y +2=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6. 已知f(x)为偶函数,当x ≥0时,f(x)=m(|x −2|+|x −4|),(m >0),若函数y =f[f(x)]−4m 恰有4个零点,则实数m 的取值范围( )A. (0,16)B. (0,16)∪(56,52)C. (0,14)∪(54,52)D. (0,14) 7. 已知函数f(x)=2cos 3x+2cos 2x−2cos 2x 22cos 2x 2,则函数f(x)的最小正周期是( )A. π2B. πC. 2πD. 4π 8. 函数y =−x 2(x ∈R)是( )A. 左减右增的偶函数B. 左增右减的偶函数C. 减函数、奇函数D. 增函数、奇函数 二、多选题(本大题共4小题,共20.0分)9. 设函数f(x)、g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A. f(x)g(x)是奇函数B. |f(x)|g(x)是奇函数C. f(x)|g(x)|是奇函数D. |f(x)g(x)|是奇函数10. 已知a =x 12,b =(12)x ,c =log 12x ,则( ) A. 当a =b 时,有c >aB. 当a =b 时,有c <aC. 当b =c 时,有a >cD. 当b =c 时,有a <c 11. 已知0<α<β<π2,且tanα,tanβ是方程x 2−mx +2=0的两个实根,则下列结论正确的是( )A. tanα+tanβ=−mB. m >2√2C. m +tanα≥4D. tan(α+β)=−m12. 设x ∈R ,则“2x 2+x −1>0”成立的一个充分不必要条件是( )A. x >12B. x <−1或x >12C. x <−2D. x <−1 三、单空题(本大题共4小题,共20.0分) 13. 已知△ABC 内角A ,B ,C 的对边分别是a ,b ,c ,若cosB =14,b =3,sinC =2sinA ,则△ABC 的面积为______.14. 已知幂函数y =f(x)的图象过点(12,√22),则log 2f(8)=______. 15. α,β都是锐角,sinα=12,cos(α+β)=12,则cosβ= ______ .16. 已知函数f(x)是定义在R 上的偶函数,当x ∈[0,+∞)时,f(x)是增函数,且f(−2)=0,则不等式f(x)<0的解集为______ .四、解答题(本大题共6小题,共70.0分)17. 已知数列{a n },a n =p n +λq n (p >0,q >0,p ≠q,λ∈R,λ≠0,n ∈N ∗).(1)求证:数列{a n+1−pa n }为等比数列;(2)数列{a n }中,是否存在连续的三项,这三项构成等比数列?试说明理由;(3)设A ={(n,b n )|b n =3n +k n ,n ∈N ∗},其中k 为常数,且k ∈N ∗,B ={(n,c n )|c n =5n ,n ∈N ∗},求A ∩B .18. 设函数f(x)=x 3+1x+1,x ∈[0,1],证明:(Ⅰ)f(x)≥1−x +x 2(Ⅱ)34<f(x)≤32.19. 已知函数f(x)=Asin(x +π4),x ∈R ,且f(0)=1.(1)求A 的值;(2)若f(α)=−15,α是第二象限角,求cosα.20. 已知f(x)=Asin(ωx +φ)+1(x ∈R,A >0,ω>0,0<φ<π2)的最小正周期为π,且图象上的一个最低点为M(2π3,−1).(1)求f(x)的解析式;(2)已知f(α2)=13,α∈[0,π],求cosα的值.21. 已知△P 1P 2P 3三个顶点的坐标分别为P 1(cosα,sinα),P 2(cosβ,sinβ),P 3(cosγ,sinγ),且OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 3⃗⃗⃗⃗⃗⃗⃗ =0⃗ (O 为坐标原点). (1)求∠P 1OP 2的大小;(2)试判断△P 1P 2P 3的形状.22. 已知t 为实数,函数f(x)=2log a (2x +t −2),g(x)=log a x ,其中0<a <1.(1)若|g(m)|=|g(n)|,且m ≠n ,求mn 的值;(2)若函数g(√x 2+1+kx)具有奇偶性,求实数k 的值;(3)当x ∈[1,9]时,函数f(x)的图象始终在函数g(x)的图象的下方,求实数t 的取值范围;参考答案及解析1.答案:B解析:解:设扇形的圆心角大小为α(rad),半径为r,则r=α,可得扇形的面积为S=12r2α=12×α2×α=4.解得:扇形的圆心角大小为α=2.故选:B.由题意根据扇形的面积公式即可求解.本题是基础题,考查扇形面积的求法,注意题意的正确理解,考查计算能力.2.答案:D解析:解:设树苗可以放置的两个最佳坑位的编号为x则各位同学从各自树坑前来领取树苗所走的路程总和为:S=|1−x|×10+|2−x|×10+⋯+|20−x|×10若S取最小值,则函数y=(1−x)2+(2−x)2+⋯+(20−x)2=20x2−420x+(12+22+⋯+ 202)也取最小值由二次函数的性质,可得函数y=20x2−420x+(12+22+⋯+202)的对称轴为y=10.5又∵为正整数,故x=10或11故选D3.答案:D解析:解:由题意得:x+1≥0,解得:x≥−1,故函数的定义域是[−1,+∞),故选:D.根据二次根式的性质求出函数的定义域即可.本题考查了二次根式的性质,考查函数的定义域问题,是一道基础题.4.答案:D解析:解:根据角θ的终边在直线y=−2x上知,tanθ=−2,所以cos2θ=cos2θ−sin2θ=cos2θ−sin2θsin2θ+cos2θ=1−tan2θtan2θ+1=1−(−2)2 (−2)2+1=−35.故选:D.根据题意求出tanθ的值,再计算cos2θ的值.本题主要考查了同角三角函数的基本关系与二倍角公式应用问题,是基础题.5.答案:D解析:本题主要考查充分条件和必要条件的判断,结合直线平行的等价条件求出a的值是解决本题的关键,属于基础题.根据直线平行的等价条件求出a的值,结合充分条件和必要条件的定义进行判断即可.解:当a=0时,直线ax+2y−1=0与x+(a+1)y+2=0平行,等价为直线2y−1=0与直线x+y+2=0平行,但此时两直线不平行,故不满足题意;当a≠0时,若直线ax+2y−1=0与x+(a+1)y+2=0平行,则满足1a =a+12≠2−1,由1a =a+12得a2+a−2=0,得a=1或a=−2,由a+12≠−2得a≠−5,则若直线ax+2y−1=0与x+(a+1)y+2=0平行,则a=1或a=−2,则“a=2”是“直线ax+2y−1=0与x+(a+1)y+2=0平行”的既不充分也不必要条件,故选:D.6.答案:B解析:解:设f(x)=t,(t>0)则由y=f[f(x)]−4m=0得f[f(x)]=4m,即f(t)=4m,则m(|t−2|+|t−4|)=4m,则|t−2|+|t−4|=4,得t=5,或t=1,若t =1,则f(x)=m(|x −2|+|x −4|)=1,即|x −2|+|x −4|=1m , 若t =5,则f(x)=m(|x −2|+|x −4|)=5,即|x −2|+|x −4|=5m ,设g(x)=|x −2|+|x −4|,(x ≥0),∵函数f(x)是偶函数,∴要使函数y =f[f(x)]−4m 恰有4个零点,则等价为当x ≥0时,函数y =f[f(x)]−4m 恰有2个零点,作出g(x)在[0,+∞)上的图象如图:①{1m <22<5m <6,即{m >1256<m <52,即56<m <52,②{1m >65m >6,即{0<m <160<m <56,即0<m <16,综上实数m 的取值范围是(0,16)∪(56,52),故选:B.利用换元法将函数进行转化,利用数形结合以及分类讨论进行求解即可.本题主要考查函数与方程的应用,利用换元法结合函数与方程之间的关系,利用数形结合以及分类讨论进行求解是解决本题的关键.综合性较强,难度较大.7.答案:B=2cos2x−1=cos2x,解析:解:由二倍角公式得f(x)=2cos2x(cosx+1)−(cosx+1)cosx+1=π,∴T=2π2故函数f(x)的最小正周期是π.故选:B.本题化简是关键.对于分子的化简,前两项提取公因式,第三项考虑有半角出现从而考虑二倍角公式.本题要求学生能熟练使用二倍角公式进行化简,会求函数最小正周期,是简单题.8.答案:B解析:本题考查函数的奇偶性与单调性,属于基础题.由函数y=−x2是开口向下的一条抛物线,即可求解.解:∵y=−x2是开口向下的一条抛物线,∴y=−x2在(−∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=−x2,则f(−x)=−(−x)2=−x2=f(x),∴f(x)为偶函数.故选B.9.答案:AC解析:本题主要考查了函数奇偶性的定义在奇偶性的判断中的应用,属于基础题.由题意可知f(−x)=−f(x),g(−x)=g(x),然后分别检验各选项即可判断.解:由题意可知f(−x)=−f(x),g(−x)=g(x),对于选项A,f(−x)⋅g(−x)=−f(x)⋅g(x),所以f(x)g(x)是奇函数,故A项正确;对于选项B ,|f(−x)|⋅g(−x)=|−f(x)|⋅g(x)=|f(x)|⋅g(x),所以|f(x)|g(x)是偶函数,故B 项错误;对于选项C ,f(−x)|g(−x)|=−f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C 项正确;对于选项D ,|f(−x)⋅g(−x)|=|−f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D 项错误,故选:AC .10.答案:AC解析:根据a =b 可求出此时x 的值,然后代入解析式即可比较a 与c 的大小,作出a =x 12,b =(12)x ,c =log 12x 的图象,结合图象可比较a 与c 的大小.本题主要考查了两数的大小比较,同时考查了数形结合的数学思想和转化能力,属于较难题. 解:当a =b 时,x =12,此时c =log 12x =log 1212=1,a =(12)12=√22<1, 所以当a =b 时,有c >a ;作出a =x 12,b =(12)x ,c =log 12x 的图象如下图:当b =c 时,即两图象在交点A 处相等,设交点横坐标为t ,此时t 12>log 12t , 所以a >c .故选:AC .11.答案:BCD解析:本题主要考查两角和与差的正切公式,韦达定理,基本不等式的应用,属于中档题.由题意利用两角和与差的正切公式,韦达定理,基本不等式,得出结论.解:∵0<α<β<π2,且tanα,tanβ是方程x2−mx+2=0的两不等实根,∴tanα+tanβ=m>0,故A错误;tanα⋅tanβ=2,tan(α+β)=tanα+tanβ1−tanα⋅tanβ=m1−2=−m,故D正确;∴m=tanα+tanβ>2√tanα⋅tanβ=2√2,故B正确;m+tanα=2tanα+tanβ≥2√2tanα⋅tanβ=4,当且仅当2tanα=tanβ时,等号成立,故C正确.故选:BCD.12.答案:ACD解析:不等式2x2+x−1>0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集,直接判断即可得到答案.本题考查的知识点是必要条件、充分条件与充要条件的判断,一元二次不等式的解法,其中熟练掌握必要条件、充分条件与充要条件的定义,是解答本题的关键.解:解不等式2x2+x−1>0,得x<−1或x>12,则不等式的解集为A={x|x<−1或x>12},因此,不等式2x2+x−1>0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集,故A,C,D符合,故选:ACD.13.答案:9√1516解析:本题考查三角形的面积,涉及正余弦定理的应用,属基础题.由题意和正余弦定理可得a,c的值,由同角三角函数的基本关系可得sinB,代入三角形的面积公式计算可得.解:在△ABC中由正弦定理可知:asinA =bsinB=csinC=2R,由sinC =2sinA 得c =2a ,cosB =14,sinB =√1−cos 2B =√154, 由余弦定理可知:b 2=a 2+c 2−2accosB ,即32=a 2+(2a)2−2a ⋅2a ×14, 解得a =32,c =3,△ABC 的面积S =12acsinB =12×32×3×√154=9√1516, 故答案为:9√1516. 14.答案:32解析:解:设函数的解析式是y =x α,代入(12,√22)得: (12)α=√22,解得:α=12, 故f(8)=812,故log 2f(8)=32,故答案为:32.求出函数的解析式,求出f(8)的值,代入即可.本题考查了求函数的解析式问题,考查幂函数的定义以及对数的运算,是一道基础题.15.答案:√32 解析:解:∵α,β都是锐角,sinα=12,cos(α+β)=12,∴α=π6,α+β=π3, ∴β=π6, cosβ=√32. 故答案为:√32. 依题意,可求得α=π6,α+β=π3,从而可得β=π6,于是可求答案.本题考查特殊角的三角函数,求得β=π6是关键(当然,也可以利用两角差的余弦),属于基础题.16.答案:(−2,2)解析:解:根据题意,函数f(x)是定义在R 上的偶函数,且f(−2)=0, 则f(−2)=f(2)=0,又由当x ∈[0,+∞)时,f(x)是增函数, 则f(x)<0⇒f(x)<f(2)⇒|x|<2, 解可得:−2<x <2, 即不等式的解集为(−2,2). 故答案为:(−2,2).根据题意,由函数的奇偶性可得f(2)=f(−2)=0,结合函数的单调性分析可得f(x)<0⇒f(x)<f(2)⇒|x|<2,解可得x 的取值范围,即可得答案.本题主要考查函数的奇偶性与单调性的综合应用,关键是得到关于x 的不等式,属于中档题.17.答案:解:(1)∵a n =p n +λq n ,∴a n+1−pa n =p n+1+λq n+1−p(p n +λq n )=λq n (q −p), ∵λ≠0,q >0,p ≠q ∴a n+2−pa n+1a n+1−pa n=q 为常数∴数列{a n+1−pa n }为等比数列(2)取数列{a n }的连续三项a n ,a n+1,a n+2(n ≥1,n ∈N ∗),∵a n+12−a n a n+2=(p n+1+λq n+1)2−(p n +λq n )(p n+2+λq n+2)=−λp n q n (p −q)2,∵p >0,q >0,p ≠q ,λ≠0,∴−λp n q n (p −q)2≠0,即a n+12≠a n a n+2,∴数列{a n }中不存在连续三项构成等比数列;(3)当k =1时,3n +k n =3n +1<5n ,此时B ∩C =⌀;当k =3时,3n +k n =3n +3n =2⋅3n 为偶数;而5n 为奇数,此时B ∩C =⌀; 当k ≥5时,3n +k n >5n ,此时B ∩C =⌀; 当k =2时,3n +2n =5n ,发现n =1符合要求, 下面证明唯一性(即只有n =1符合要求). 由3n +2n =5n 得(35)n +(25)n =1,设f(x)=(35)x +(25)x ,则f(x)=(35)x +(25)x 是R 上的减函数, ∴f(x)=1的解只有一个从而当且仅当n =1时(35)n +(25)n =1, 即3n +2n =5n ,此时B ∩C ={(1,5)};当k =4时,3n +4n =5n ,发现n =2符合要求, 下面同理可证明唯一性(即只有n =2符合要求). 从而当且仅当n =2时(35)n +(45)n =1, 即3n +4n =5n ,此时B ∩C ={(2,25)}; 综上,当k =1,k =3或k ≥5时,B ∩C =⌀; 当k =2时,B ∩C ={(1,5)}, 当k =4时,B ∩C ={(2,25)}.解析:(1)根据a n =p n +λq n 可得a n+1−pa n 的表达式,整理可得a n+2−pa n+1a n+1−pa n为常数,进而可判断数列{a n+1−pa n }为等比数列.(2)取数列{a n }的连续三项a n ,a n+1,a n+2把a n =p n +λq n 代入a n+12−a n a n+2整理可知结果不为0,进而可判断a n+12≠a n a n+2,即数列{a n }中不存在连续三项构成等比数列;(3)由3n +2n =5n 整理得(35)n +(25)n =1,设f(x)=(35)x +(25)x 则可知f(x)为减函数,故可判定f(x)=1的解只有一个,从而当且仅当n =1,3n +2n =5n 成立,同样的道理可证当k =1,k =3或k ≥5时,B ∩C =⌀;当k =2时,B ∩C ={(1,5)},当k =4时,B ∩C ={(2,25)}. 本题主要考查了等比数列的确定和集合的相关知识.考查了学生分析和运算能力.18.答案:(Ⅰ)证明:因为f(x)=x 3+1x+1,x ∈[0,1],且1−x +x 2−x 3=1−(−x)41−(−x)=1−x 41+x,因为1−x 41+x≤11+x ,所以1−x +x 2−x 3≤1x+1, 即f(x)≥1−x +x 2;(Ⅱ)证明:因为0≤x ≤1,所以x 3≤x , 所以f(x)=x 3+1x+1≤x +1x+1=x +1x+1−32+32=(x−1)(2x+1)2(x+1)+32≤32;由(Ⅰ)得,f(x)≥1−x +x 2=(x −12)2+34≥34,且f(12)=(12)3+11+12=1924>34,所以f(x)>34; 综上,34<f(x)≤32.解析:(Ⅰ)根据题意,1−x +x 2−x 3=1−(−x)41−(−x),利用放缩法得1−x 41+x≤11+x ,即可证明结论成立;(Ⅱ)利用0≤x ≤1时x 3≤x ,证明f(x)≤32,再利用配方法证明f(x)≥34,结合函数的最小值得出f(x)>34,即证结论成立.本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.19.答案:解:(1)依题意,Asin π4=1…(2分),A ×√22=1…(3分),A =√2…(4分)(2)由(1)得,f(x)=√2sin(x +π4)…(5分) 由f(α)=−15得,sin(α+π4)=−√210…(6分)∵α是第二象限角, ∴2kπ+π2<α<2kπ+π,∴2kπ+3π4<α+π4<2kπ+5π4…(7分),∴α+π4是第二或第三象限角∵由sin(α+π4)=−√210<0,∴α+π4是第三象限角,∴cos(α+π4)=−√1−sin 2(α+π4)=−7√210…(9分)∴cosα=cos[(α+π4)−π4]=cos(α+π4)cos π4+sin(α+π4)sin π4=−7√210×√22−√210×√22=−45…(12分)解析:(1)由函数f(x)的解析式以及f(0)=1,求得A 的值.(2)由(1)得sin(α+π4)=−√210,求出cos(α+π4),将α用(α+π4)−π4表示,利用两角差的余弦展开求出值;本题考查三角函数的恒等变换,同角三角函数的关系式,两角差的余弦公式,属于中档题.20.答案:解:(1)由f(x)=Asin(ωx +φ)+1的最小正周期为π,则有T =2πω=π,得ω=2.∴f(x)=Asin(2x +φ)+1,∵函数图象有一个最低点M(2π3,−1),A >0, ∴A =2,且2sin(2×2π3+φ)+1=−1,则有2×2π3+φ=3π2+2kπ,k ∈Z ,解得:φ=π6+2kπ,k ∈Z , ∵0<φ<π2, ∴φ=π6,∴f(x)=2sin(2x +π6)+1;(2)由f(α2)=13,得2sin(α+π6)+1=13,得sin(α+π6)=−13. ∵0≤α≤π, ∴π6≤α+π6≤76π,又sin(α+π6)<0,∴cos(α+π6)=−√1−sin 2(α+π6)=−2√23.∴cosα=[cos(α+π6)−π6]=cos(α+π6)cos π6+sin(α+π6)sin π6=−2√23×√32−13×12=−1+2√66. 解析:(1)由f(x)=Asin(ωx +φ)+1的周期为π,求出ω,再由f(x)图象有一个最低点M(2π3,−1)列式求得φ,则三角函数的解析式可求;(2)把f(α2)=13代入函数解析式,求得sin(α+π6)=−13,结合α的范围求得cos(α+π6)的值,然后由两角差的余弦得答案.本题考查了利用三角函数的部分图象求函数解析式,考查了同角三角函数基本关系式的应用,考查了已知三角函数值求其它三角函数的值,是中档题. 21.答案:解:(1)由题意可得|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |=1,∵OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ =−OP 3⃗⃗⃗⃗⃗⃗⃗ , ∴(OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ )2=OP 3⃗⃗⃗⃗⃗⃗⃗ 2, ∴OP 1⃗⃗⃗⃗⃗⃗⃗ 2+2OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ 2=OP 3⃗⃗⃗⃗⃗⃗⃗ 2, ∴2OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =−1,即OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =−12, ∴cos∠P 1OP 2=OP1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗⃗ |OP 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|OP 2⃗⃗⃗⃗⃗⃗⃗⃗ |=−12, ∵∠P 1OP 2∈(0,π), ∴∠P 1OP 2=2π3.(2)∵P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗⃗ −OP 1⃗⃗⃗⃗⃗⃗⃗ ,∴|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=√(OP 2⃗⃗⃗⃗⃗⃗⃗ −OP 1⃗⃗⃗⃗⃗⃗⃗ )2=√OP 2⃗⃗⃗⃗⃗⃗⃗ 2−2OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 1⃗⃗⃗⃗⃗⃗⃗ 2=√3, 同理可得,|P 1P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 2P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=√3, ∴△P 1P 2P 3的形状为等边三角形.解析:(1)由题意可得|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |=1,又OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ =−OP 3⃗⃗⃗⃗⃗⃗⃗ ,两边平方可求OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =−12,从而可求cos∠P 1OP 2=OP 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗⃗ |OP 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|OP 2⃗⃗⃗⃗⃗⃗⃗⃗ |=−12,结合范围∠P 1OP 2∈(0,π),即可求解∠P 1OP 2的值.(2)利用向量的运算可得P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗⃗ −OP 1⃗⃗⃗⃗⃗⃗⃗ ,计算可求|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 1P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 2P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=√3,即可判断△P 1P 2P 3的形状.本题主要考查了三角形形状的判断,考查了向量的运算,属于中档题.22.答案:解:(1)∵|g(m)|=|g(n)|,且m ≠n ,∴g(m)=−g(n),即log a m =−log a n , 则log a m +log a n =log a mn =0, ∴mn =1.(2)设ℎ(x)=g(√x 2+1+kx)=log a (√x 2+1+kx), 若ℎ(x)是偶函数,则ℎ(x)=ℎ(−x)恒成立, 即log a (√x 2+1+kx)=log a (√x 2+1−kx), 则√x 2+1+kx =√x 2+1−kx 恒成立, kx =0恒成立,∴k =0.当k =0时,ℎ(x)=g(√x 2+1+kx)=log a √x 2+1为偶函数成立. 若ℎ(x)是奇函数,则ℎ(x)=−ℎ(−x)恒成立,即log a (√x 2+1+kx)+log a (√x 2+1−kx)=0, 则(√x 2+1+kx)(√x 2+1−kx)=1恒成立, 得(1−k 2)x 2=0恒成立,∴k =±1.当k =±1时,ℎ(x)=log a (√x 2+1±x),为奇函数成立. 综上,经检验:当k =0,±1时函数具有奇偶性.(3)当x ∈[1,9]时,函数f(x)的图象始终在函数g(x)的图象的下方, 即转化为2log a (2x +t −2)<log a x ,在x ∈[1,9]时恒成立, ∵0<a <1,∴y =log a x ,在定义域上单减, ∴转化为{2x +t −2>0√x >0在x ∈[1,9]时恒成立,∵√x >0,∴等价于2x +t −2>√x 在x ∈[1,9]时恒成立, 即t >−2x +√x +2在x ∈[1,9]时恒成立, 则t >(−2x +√x +2)max , y =−2x +√x +2=−2(√x −14)2+178在[1,9]单减,∴t >(−2x +√x +2)max =1. ∴t >1.解析:本题(1)利用对数函数的运算公式求解.(2)利用奇偶函数的定义得到等式后求k 的值,求出k 的值后需要检验. (3)利用转化思想转化为函数的最值问题求解,运算过程中需要分离参数.本题考查了对数函数的性质及运算公式,以及奇偶函数的定义式,和转化思想及分离参数求最值,综合性强,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修⑤)期末试卷一、选择题:(每小题只有一个正确答案,将正确答案代号填入下表相应题号下。
每小题5分,共50分)1、已知数列{a n }满足a 1=2,a n+1-a n +1=0,(n ∈N),则此数列的通项a n 等于 ( )A .n 2+1B .n+1C .1-nD .3-n 2、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( )A .b-a=c-bB .b 2=acC .a=b=cD .a=b=c ≠03、若b< a <0, d<c<0,则( * )A .a c<bdB .db c a > C .a +c>b+d D .a -c>b -d4、若a 、b 为实数, 且a +b=2, 则3a +3b 的最小值为 ( * ) A .18 B .6 C .23 D .2435、不等式0)86)(1(22≥+--x x x 的解集是( )A }4{}1{≥-≤x x x xB }4{}21{≥≤≤x x x xC }21{}1{≤≤-≤x x x xD 1{-≤x x 或21≤≤x 或}4≥x6、已知ABC ∆中,a=5, b = 3 , C = 1200 ,则sinA 的值为( * )A 、1435 B 、1435- C 、1433 D 、1433- 7、若不等式022>++bx ax 的解集⎭⎬⎫⎩⎨⎧<<-3121|x x 则a -b 值是( * )A 、-10B 、-14C 、10D 、14;8、我市某公司,第一年产值增长率为p ,第二年产值增长率q ,这二年的平均增长率为x ,那x 与2qp +大小关系()q p ≠是( * )A 、x<2q p +B 、x=2q p +C 、x>2q p + D 、与p 、q 联值有关9、. 目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( * )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值10、若关于x 的不等式4104822<<>---x a x x 在内有解,则实数a 的取值范围是( * )A .4-<aB .4->aC .12->aD .12-<a11、已知点A (3,1)和点B (4,6)分别在直线3x -2y+a=0两侧,则a 的取值范围是( )A 、a <-7或a >0B 、a=7或a=0C 、-7<a <0D 、0<a <7 12、若)0,0(01>>=-+y x y x ,则11++x y 的取值范围是( ) A .),0(+∞ B .)2,21( C .]2,21[ D .)1,21(二、填空题:(每小题5分,共20分)13、已知0<2a<1,若A=1+a 2, B=a-11, 则A 与B 的大小关系是 . 14、设.11120,0的最小值,求且yxy x y x +=+>> .15、△ABC 中,A (2,4)、B (-1,2)、C (1,0),D (x ,y )在△ABC 内部及边界运动,则z=x -y 的最大值为 最小值为 16、如图,它满足(1)第n 行首尾两数均为n , 1 (2)表中的递推关系类似杨辉三角, 2 2 则第n 行(2)n ≥第2个数是________。
3 4 34 7 7 45 11 14 11 56 16 25 25 16 6 ………………………………………… 三、解答题:17、在⊿ABC 中,已知030,1,3===B b c .(1)求出角C 和A ;(2)求⊿ABC 的面积S ;(3)将以上结果填入右下表.18、(12分)解关于x 的不等式ax 2-(a +1)x +1<0.17、(14分)在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-- 证明:ABC ∆是等腰三角形或直角三角形。
19、设a 、b 、c 都是正数,试证明不等式:cba b a c a c b +++++≥6,20、甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时.已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b ;固定部分为a 元.I .把全程运输成本......y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; II .为了使全程运输成本......最小,汽车应以多大速度行驶?21、制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?22、(14分)设关于x 的一元二次方程n a x 2-1n a +x+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3. (1)试用n a 表示a 1n +;高一数学期末试卷答案(必修⑤)一、 选择题二、 填空题13. A<B 14、223+ 15、1, -3 16、222n n -+17、(1)b c B C =sin sin,23sin =C 000030,120,90,60,,====∴>>A C A C B C b c 此时或者此时(2)S=0.5bcsinA=43,2318、解:当a =0时,不等式的解为x >1;当a ≠0时,分解因式a (x -a 1)(x -1)<0当a <0时,原不等式等价于(x -a 1)(x -1)>0,不等式的解为x >1或x <a 1;当0<a <1时,1<a 1,不等式的解为1<x <a 1;当a >1时,a 1<1,不等式的解为a1<x <1; 当a =1时,不等式的解为 Φ 。
17、证:)sin()()sin()(2222B A b a B A b a +-=-+2222()(sin cos cos sin )()(sin cos cos sin )a b A B A B a b A B A B ∴+-=-+化简整理得B A b B A a cos sin sin cos 22=由正弦定理得B B A A cos sin cos sin =B A =∴或2π=+B A.ABC C a b ∴∆∠=是以直角的三角形或是的等腰三角形19.证明:∵a >0,b >0,c >0,∴b a a b +≥2,ca a c +≥2,cb bc +≥2∴()()()c bb c c a a c b a a b +++++≥6,即cba b a c a c b +++++≥6. 20,解:(Ⅰ)依题意知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为)(2bv v a S v S bv v S a y +=⋅+⋅=; 故所求函数及其定义域为],0(),(c v bv vaS y ∈+= (Ⅱ)依题意知S ,a ,b ,v 都为正数,故有ab S bv vaS 2)(≥+当且仅当,bv v a =.即ba v =时上式中等号成立 若c b a ≤,则当b av =时,全程运输成本y 最小, 若c ba>,则当],0(c v ∈时,有 )()(bc c aS bv v a S +-+ )]()[(bc bv c av a S -+-==))((bcv a v c vcS-- 因为c -v ≥0,且a >bc 2,故有a -bcv ≥a -bc 2>0, 所以)()(bc caS bv v a S +≥+,且仅当v =c 时等号成立, 也即当v =c 时,全程运输成本y 最小. 综上知,为使全程运输成本y 最小,当c b ab ≤时行驶速度应为b ab v =;当c bab>时行驶速度应为v =c ;21、解:射投资人对甲、乙两个项目各投资 x,y 万元,盈利额为P 万元,则100.30.1 1.800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 0.5p x y =+ 解得x=4,y=6时,P 最大所以投资人对甲、乙各投资4万元和6万元时盈利最大; 22、解:(1)根据韦达定理,得α+β=1n n a a +,α•β=1na ,由6α-2αβ+6β=3 得 1121163,23n n n n n a a a a a ++⋅-==+故(2)证明:因为1122111213(),,23232323n n n n n a a a a a ++--=-=-=-所以。